523 research outputs found

    Global Positioning from a Single Image of a Rectangle in Conical Perspective

    Get PDF
    This article presents a method to obtain the overall positioning of the focus of a camera from an image that includes a rectangle in a fixed reference with known position and dimension. This technique uses basic principles of descriptive geometry introduced in engineering courses. The document will first show how to obtain the dihedral projections of a rectangle after three turns and one translation. Secondly, we will proceed to obtain the image of the rectangle rotated in a conical perspective, taking the elevation plane as the drawing plane and a specific point in space as the view point, and represented in the dihedral system. Thirdly, we proceed with the inverse perspective transformation; we will expose a method to obtain the coordinates in the space of a rectangle obtained from an image. Finally, we check the method experimentally by taking an image of the rectangle with a camera in which the coordinates in the drawing plane (center of the image) are the only available position information. Then, the positioning and orientation of the camera in 3D will be obtained

    GMOS-IFU Spectroscopy of 167-317 (LV2) Proplyd in Orion

    Full text link
    We present high spatial resolution spectroscopic observations of the proplyd 167-317 (LV2) near the Trapezium cluster in the Orion nebula, obtained during the System Verification run of the Gemini Multi Object Spectrograph (GMOS) Integral Field Unit (IFU) at the Gemini South Observatory. We have detected 38 forbidden and permitted emission lines associated with the proplyd and its redshifted jet. We have been able to detect three velocity components in the profiles of some of these lines: a peak with a 28-33 km/s systemic velocity that is associated with the photoevaporated proplyd flow, a highly redshifted component associated with a previously reported jet (which has receding velocities of about 80-120 km/s with respect to the systemic velocity and is spatially distributed to the southeast of the proplyd) and a less obvious, approaching structure, which may possibly be associated with a faint counter-jet with systemic velocity of (-75 +/- 15) km/s. We find evidences that the redshifted jet has a variable velocity, with slow fluctuations as a function of the distance from the proplyd. We present several background subtracted, spatially distributed emission line maps and we use this information to obtain the dynamical characteristics over the observed field. Using a simple model and with the extinction corrected Halpha fluxes, we estimate the mass loss rate for both the proplyd photoevaporated flow and the redshifted microjet, obtaining (6.2 +/- 0.6) x 10^{-7} M_sun/year and (2.0 +/- 0.7) x 10^{-8} M_sun/year, respectively.Comment: 26 pages, 10 figures (6 are in colors), accepted by A

    The young, active binary star EK Draconis

    Full text link
    EK Dra (HD 129333) is a young, active, nearby star that is orbited by a low mass companion. By combining new speckle observations with old and new radial velocity measurements we find that the orbit is highly eccentric with e=0.82\pm0.03, and we derive the true masses of both components. The masses are 0.9±0.1M0.9\pm0.1 {\rm M}_\odot and 0.5±0.1M0.5\pm0.1 {\rm M}_\odot, for the primary and secondary, respectively. From high resolution spectra we derive a new TeffT_{\rm eff} of 5700±705700\pm70 K, and a logg\log g of 4.37±0.104.37\pm0.10, which is different to previous estimates. However, the new spectroscopic distance differs by only 5.8% to the distance derived by parallax measurement of the Hipparcos satellite and thus the stellar parameters are presumably more realistic than older determinations. We derive a somewhat higher value for the metallicity of [Fe/H]=0.16±0.07[Fe/H]=-0.16\pm0.07. EK Dra turns out to be one of the few nearby young stars which will evolve similar to the sun. The precise radial velocity measurements taken in the course of this program also allows us to shed more light on to the activity of this star. In 2001 and 2002 we find a periodic signal of the radial velocity variations with a period of 2.767±0.0052.767\pm0.005 days which we interpret as the rotation period. This signal vanishes in 2003. However the signal can be recovered if only the spectra in which the photospheric lines are asymmetric are used. On the other hand, we do not find a close correlation between the asymmetry of photospheric lines and the radial velocity.Comment: 10 pages, 11 figures, accepted by A&

    Exploring pre-main sequence variables of ONC: The new variables

    Full text link
    Since 2004, we have been engaged in a long-term observing program to monitor young stellar objects in the Orion Nebula Cluster. We have collected about two thousands frames in V, R, and I broad-band filters on more than two hundred nights distributed over five consecutive observing seasons. The high-quality and time-extended photometric data give us an opportunity to address various phenomena associated with young stars. The prime motivations of this project are i) to explore various manifestations of stellar magnetic activity in very young low-mass stars; ii) to search for new pre-main sequence eclipsing binaries; and iii) to look for any EXor and FUor like transient activities associated with YSOs. Since this is the first paper on this program, we give a detailed description of the science drivers, the observation and the data reduction strategies as well. In addition to these, we also present a large number of new periodic variables detected from our first five years of time-series photometric data. Our study reveals that about 72% of CTTS in our FoV are periodic, whereas, the percentage of periodic WTTS is just 32%. This indicates that inhomogeneities patterns on the surface of CTTS of the ONC stars are much more stable than on WTTS. From our multi-year monitoring campaign we found that the photometric surveys based on single-season are incapable of identifying all periodic variables. And any study on evolution of angular momentum based on single-season surveys must be carried out with caution.Comment: Accepted for publication by MNRAS, 26 pages, 17 figures, 6 table

    Wearable Textile Platform for Assessing Stroke Patient Treatment in Daily Life Conditions

    Get PDF
    Monitoring physical activities during post-stroke rehabilitation in daily life may help physicians to optimize and tailor the training program for patients. The European research project INTERACTION (FP7-ICT-2011-7-287351) evaluated motor capabilities in stroke patients during the recovery treatment period. We developed wearable sensing platform based on the sensor fusion among inertial, knitted piezoresistive sensors and textile EMG electrodes. The device was conceived in modular form and consists of a separate shirt, trousers, glove, and shoe. Thanks to the novel fusion approach it has been possible to develop a model for the shoulder taking into account the scapulo-thoracic joint of the scapular girdle, considerably improving the estimation of the hand position in reaching activities. In order to minimize the sensor set used to monitor gait, a single inertial sensor fused with a textile goniometer proved to reconstruct the orientation of all the body segments of the leg. Finally, the sensing glove, endowed with three textile goniometers and three force sensors showed good capabilities in the reconstruction of grasping activities and evaluating the interaction of the hand with the environment, according to the project specifications. This paper reports on the design and the technical evaluation of the performance of the sensing platform, tested on healthy subjects

    Development of remote sensing technology in New Zealand, part 1. Mapping land use and environmental studies in New Zealand, part 2. Indigenous forest assessment, part 3. Seismotectonic, structural, volcanologic and geomorphic study of New Zealand, part 4

    Get PDF
    The author has identified the following significant results. As part of the tape reformatting process, a simple coded picture output program was developed. This represents Pixel's radiance level by one of a 47 character set on a nonoverprinting line printer. It not only has aided in locating areas for the reformatting process, but has also formed the foundation for a supervised clustering package. This in turn has led to a simplistic but effective thematic mapping package

    A Keck High Resolution Spectroscopic Study of the Orion Nebula Proplyds

    Get PDF
    We present the results of spectroscopy of four bright proplyds in the Orion Nebula obtained at a velocity resolution of 6 km/s. After careful isolation of the proplyd spectra from the confusing nebular radiation, the emission line profiles are compared with those predicted by realistic dynamic/photoionization models of the objects. The spectral line widths show a clear correlation with ionization potential, which is consistent with the free expansion of a transonic, ionization-stratified, photoevaporating flow. Fitting models of such a flow simultaneously to our spectra and HST emission line imaging provides direct measurements of the proplyd size, ionized density and outflow velocity. These measurements confirm that the ionization front in the proplyds is approximately D-critical and provide the most accurate and robust estimate to date of the proplyd mass loss rate. Values of 0.7E-6 to 1.5E-6 Msun/year are found for our spectroscopic sample, although extrapolating our results to a larger sample of proplyds implies that 0.4E-6 Msun/year is more typical of the proplyds as a whole. In view of the reported limits on the masses of the circumstellar disks within the proplyds, the length of time that they can have been exposed to ionizing radiation should not greatly exceed 10,000 years - a factor of 30 less than the mean age of the proplyd stars. We review the various mechanisms that have been proposed to explain this situation, and conclude that none can plausibly work unless the disk masses are revised upwards by a substantial amount.Comment: 23 pages, 8 figures, uses emulateapj.sty, accepted for publication in The Astronomical Journal (scheduled November 1999

    Effects of Surgical Repair or Reconstruction on Radiocarpal Mechanics from Wrists with Scapholunate Ligament Injury

    Get PDF
    Osteoarthritis as a result of injury/trauma is a significant problem, and there is still a need to develop tools for evaluating joint injuries and the effectiveness of surgical treatments. For the wrist in particular, injury to the scapholunate ligament from impact loading, can lead to scapholunate joint instability. Without treatment, this can lead to progressive development of wrist osteoarthritis. Joint contact pressures are important mechanical factors in the etiology of osteoarthritis, and these can be determined non-invasively through computer modeling. Hence, the goal of this work was to investigate the effects of scapholunate ligament injury and surgical repair on radioscapholunate contact mechanics, through surface contact modeling (SCM) and finite element modeling (FEM). The modeling process required geometries, boundary conditions and a contact relationship. Magnetic resonance imaging (MRI) was used to acquire images of the normal, injured and post-operative wrists, while relaxed and during active grasp loading. Surface and volumetric models were generated from the relaxed images, while kinematic boundary conditions were determined from image registration between the relaxed and loaded images. To improve the automatic image registration process, the effects of initial manual registration on the outcome of final registration accuracy, were investigated. Results showed that kinematic accuracy and subsequent contact mechanics were improved by performing a manual registration to align the image volumes as close as possible, before auto-registration. Looking at the effects of scapholunate ligament injury, results showed that contact forces, contact areas, peak and mean contact pressures significantly increased in the radioscaphoid joint. The locations of contact also shifted with injury. This novel data showed that contact mechanics was altered for the worse after injury. Novel contact mechanics data on the effects of surgical repair were also obtained. Results showed that radiolunate peak and mean contact pressures decreased significantly compared to injured, which indicated the possibility of restoring normal mechanics post surgery. SCM results were compared to FEM results to demonstrate the feasibility of the surface contact modeling approach for clinical applications. Contact parameters compared well between the two techniques. This work demonstrated the potential of MRI-based SCM as a tool to evaluate joint injuries and subsequent treatments, for clinical applications
    corecore