
Effects of Surgical Repair or Reconstruction on Radiocarpal 

Mechanics from Wrists with Scapholunate Ligament Injury 

by 

 

Joshua E Johnson 

 

MSc (ME), University of Kansas, Lawrence, Kansas, USA 

BEng (ME), University of Botswana, Gaborone, Botswana 

 

Submitted to the graduate degree program in Mechanical Engineering  

and the Graduate Faculty of the University of Kansas School of Engineering 

in partial fulfillment of the requirements for the degree of  

Doctor of Philosophy 

 

 

Committee: ___________________________________ 

Chairperson: Kenneth J Fischer, PhD 

 

___________________________________ 

Phil Lee, PhD 

 

___________________________________ 

Terence E McIff, PhD 

 

___________________________________ 

Carl W Luchies, PhD 

 

___________________________________ 

Michael Detamore, PhD 

 

Date defended: ___________________



ii 

 

The Dissertation Committee for Joshua E Johnson certifies 

that this is the approved version of the following dissertation: 

 

 

 

 

 

Effects of Surgical Repair or Reconstruction on Radiocarpal 

Mechanics from Wrists with Scapholunate Ligament Injury 

 

 

 

 

 

Committee: ___________________________________ 

Chairperson: Kenneth J Fischer, PhD 

 

___________________________________ 

Phil Lee, PhD 

 

___________________________________ 

Terence E McIff, PhD 

 

___________________________________ 

Carl W Luchies, PhD 

 

___________________________________ 

Michael Detamore, PhD 

 

Date approved: ___________________ 



iii 

 

Table of Contents 

Acknowledgements ....................................................................................................................... vii 

Table of Figures ............................................................................................................................. ix 

List of Acronyms ......................................................................................................................... xiii 

Abstract ........................................................................................................................................... 1 

Motivation ....................................................................................................................................... 3 

Specific aim 1 ............................................................................................................................. 4 

Research question ................................................................................................................... 4 

Hypothesis ............................................................................................................................... 4 

Specific aim 2 ............................................................................................................................. 4 

Research question ................................................................................................................... 5 

Hypothesis ............................................................................................................................... 5 

Specific aim 3 ............................................................................................................................. 5 

Research question ................................................................................................................... 6 

Hypothesis ............................................................................................................................... 6 

1. Background ............................................................................................................................. 9 

1.1. Introduction ...................................................................................................................... 9 

1.1.1. Basic anatomy and function ...................................................................................... 9 

1.1.2. Anatomy and function of the scapholunate interosseous ligament ......................... 13 

1.1.3. Kinematics and carpal stability ............................................................................... 17 

1.1.4. Overview of carpal injuries ..................................................................................... 23 

1.1.5. Classification of carpal instability .......................................................................... 24 

1.2. Scapholunate ligament injury/scapholunate instability .................................................. 26 

1.2.1. Pathophysiology and mechanism of injury ............................................................. 26 

1.2.2. Diagnosis................................................................................................................. 27 

1.2.3. Clinical classification .............................................................................................. 30 

1.2.4. Treatment ................................................................................................................ 30 



iv 

 

1.3. Osteoarthritis and associated factors .............................................................................. 35 

1.4. The role of magnetic resonance imaging ....................................................................... 39 

1.5. Modeling approach ......................................................................................................... 43 

1.6. References ...................................................................................................................... 49 

2. Results of Automatic Image Registration are Dependent on  Initial Manual Registration... 61 

2.1. Abstract .......................................................................................................................... 64 

2.2. Introduction .................................................................................................................... 65 

2.3. Methods .......................................................................................................................... 65 

2.4. Results ............................................................................................................................ 67 

2.5. Discussion ...................................................................................................................... 68 

2.6. References ...................................................................................................................... 70 

2.7. Tables ............................................................................................................................. 72 

2.8. Figures ............................................................................................................................ 74 

3. Scapholunate Ligament Injury Adversely Alters In Vivo Wrist Joint Mechanics. An  

MRI-based Modeling Study .......................................................................................................... 77 

3.1. Abstract .......................................................................................................................... 80 

3.2. Introduction .................................................................................................................... 81 

3.3. Methods .......................................................................................................................... 83 

3.4. Results ............................................................................................................................ 86 

3.5. Discussion ...................................................................................................................... 87 

3.6. References ...................................................................................................................... 92 

3.7. Tables ............................................................................................................................. 95 

3.8. Figures ............................................................................................................................ 96 

4. Effectiveness of Surgical Reconstruction to Restore Radiocarpal Joint Mechanics After 

Scapholunate Ligament Injury. An In Vivo Modeling Study ..................................................... 101 



v 

 

4.1. Abstract ........................................................................................................................ 104 

4.2. Introduction .................................................................................................................. 105 

4.3. Materials and methods ................................................................................................. 106 

4.4. Results .......................................................................................................................... 108 

4.5. Discussion .................................................................................................................... 110 

4.6. References .................................................................................................................... 115 

4.7. Tables ........................................................................................................................... 118 

4.8. Figures .......................................................................................................................... 119 

5. Computationally Efficient MRI-based Surface Contact Modeling as a Tool to Evaluate Joint 

Injuries and Outcomes of Surgical Interventions........................................................................ 123 

5.1. Abstract ........................................................................................................................ 127 

5.2. Introduction .................................................................................................................. 128 

5.3. Methods ........................................................................................................................ 130 

5.4. Results .......................................................................................................................... 133 

5.5. Discussion .................................................................................................................... 134 

5.6. References .................................................................................................................... 139 

5.7. Tables ........................................................................................................................... 144 

5.8. Figures .......................................................................................................................... 146 

6. Conclusion .......................................................................................................................... 151 

6.1. Summary ...................................................................................................................... 151 

6.2. Major findings and conclusions ................................................................................... 152 

6.3. Future directions ........................................................................................................... 153 



vi 

 

This page left intentionally blank. 



vii 

 

ACKNOWLEDGEMENTS 

I would like to thank God for this opportunity and privilege, with whom all things are 

possible (Matthew 19:26). I would like to thank my adviser, Dr. Fischer, for accepting me as his 

graduate student and for all his invaluable help and mentoring, which made the successful 

completion of this work possible. I would like to thank my committee members, Dr. Lee, Dr. 

Luchies, Dr. McIff and Dr. Detamore for their valuable feedback. I would like to thank Allan 

Schmitt and Franklin Hunsinger at the Hoglund Brain Imaging Center, for their assistance with 

MR imaging. I am grateful for grant support. I would like to thank my colleagues in the 

Musculoskeletal Biomechanics Lab both past (Michael Humphrey, Eric Tobaben and Mahender 

Mandala) and present (Saman Modaresi, Qi Zheng and Isaac Chappell), for their help and 

support. Last but not the least, I would like to thank my mom (Vina), my dad (Johnson), my 

brother (Enoch) and Amy for being there for me through every step of the way. I am also 

grateful to my family and friends for all their prayers and support during my time of study. 



viii 

 

This page left intentionally blank. 



ix 

 

TABLE OF FIGURES 

Figure 1.1. Osseous anatomy of the wrist from a dorsal perspective. Shown are the bones of the 

proximal (S: scaphoid, L: lunate, Tr: triquetrum, pisiform not shown) and distal (Tm: trapezium, 

Td: trapezoid, C: capitate, H: hamate) rows and the various articulating joints. Also shown are 

the radius (R), ulna (U) and metacarpals (M1-M5). Reprinted from The Journal of Hand Surgery, 

Volume 20, Patterson, R.M., Elder, K.W., Viegas, S.F., and Buford, W.L., Carpal bone anatomy  

measured by computer  analysis  of three-dimensional reconstructions  of computed  tomography  

images, Pages 923-929, Copyright (1995), with permission from Elsevier. ................................ 10 

Figure 1.2. Ligamentous anatomy of the wrist from the palmar (left) and dorsal (right) 

perspective. The palmar view shows the extrinsic ulnocarpal and palmar radiocarpal ligaments, 

the intrinsic palmar midcarpal ligaments and the distal row interosseous ligaments. The dorsal 

view shows the extrinsic dorsal radiocarpal ligament, the intrinsic dorsal midcarpal ligaments 

and the proximal and distal row interosseous ligaments. The palmar and dorsal radioulnar 

ligaments are also shown. The palmar view also shows vascular insertion into the radiocarpal 

joint capsule through the radioscapholunate ligament. Reprinted from Hand Clinics, Volume 13, 

Berger, R.A., The ligaments of the wrist. A current overview of anatomy with considerations of 

their potential functions, Pages 63-82, Copyright (1997), with permission from Elsevier. ......... 12 

Figure 1.3. Anatomy of the scapholunate interosseous (SLI) ligament shown with the 

scapholunate joint intact (A) and with the scaphoid removed (B) from a radial and proximal 

perspective. Shown are the dorsal (SLId), proximal (SLIpx) and palmar (SLIp) sections, with the 

RSL interrupting the continuity of the SLIpx and the SLIp sections. Also shown are the palmar 

capsular ligaments that attach to the lunate and the distal attachment of the dorsal section. The 

radial styloid process has been sectioned for clarity. Reprinted from The Journal of Hand 

Surgery, Volume 21, Berger, R.A., The gross and histologic anatomy of the scapholunate 

interosseous ligament, Pages 170-178, Copyright (1996), with permission from Elsevier. ......... 14 

Figure 1.4. Showing attachment sites of the palmar (vSLIO), proximal (pSLIO) and dorsal 

(dSLIO) sections of the scapholunate interosseous ligament on the scaphoid and lunate from a 

palmar (left) and dorsal (right) perspective. Also shown are the pathways and attachment sites of 

the extrinsic palmar (UL) ulnocarpal and palmar (RSC, LRL, SRL, RSL) and dorsal (DRC) 

radiocarpal ligaments, the intrinsic dorsal (DIC) midcarpal ligament and the lunotriquetral 

(LTIO) interosseous ligament. Reprinted from The Journal of Hand Surgery, Volume 34, Kijima, 

Y. and S.F. Viegas, Wrist anatomy and biomechanics, Pages 1555-1563, Copyright (2009), with 

permission from Elsevier. ............................................................................................................. 15 

Figure 1.5. Showing the three primary axes about which carpal motion occurs. These are the 

flexion-extension axis (X) in the saggital plane, the pronation-supination axis (Y) in the 

transverse plane and the radial-ulnar deviation axis (Z) in the coronal plane. Reprinted from The 

Journal of Hand Surgery, Volume 28, Moojen, T. M., Snel, J. G., Ritt, M. J. P. F., Venema, H. 



x 

 

W., Kauer, J. M. G., and Bos, K. E., In vivo analysis of carpal kinematics and comparative 

review of the literature, Pages 81-87, Copyright (2003), with permission from Elsevier. ........... 19 

Figure 2.1. Transverse slice from unloaded (green) and transformed loaded lunate (red) volumes 

in the unregistered position (left), after standard best match kinematics was applied (center) and 

best match after a 3° rotation perturbation was applied (right). ................................................... 74 

Figure 2.2. Contact data from standard best match kinematics, and from kinematics after 1, 2 and 

3 pixels/° perturbations were applied (averaged for x, y and z directions). * indicates significant 

difference ...................................................................................................................................... 74 

Figure 2.3. Contact data from standard best match kinematics, and from perturbations varying in 

x, y and z directions (averaged for 1, 2 and 3 pixels/°). ............................................................... 75 

Figure 2.4. Overall means of contact data from translation (TP) and rotation (RP) perturbations 

compared to standard. ................................................................................................................... 75 

Figure 2.5. Sample radiolunate contact pressure distribution shown on the radius articular surface 

after a standard best match kinematics (left) and a 3° rotation perturbation best match kinematics 

(right) were applied. ...................................................................................................................... 76 

Figure 3.1. MRI of the wrist acquired using CISS sequence at (A) high resolution with the hand 

relaxed for model construction and at (B) low resolution during functional light grasp for image 

registration. Coronal views shown, which were used for image segmentation. ........................... 96 

Figure 3.2. Top shows the visual feedback provided for subjects to grasp to the specified target 

(black line). Bottom shows the grip device for performing the grasp activity with the wrist braced 

for consistent loaded positions. ..................................................................................................... 96 

Figure 3.3. The 3D surface models of the radiocarpal joint for normal (left) and injured (right) 

wrists of Subject 7. Radius (red), lunate (yellow) and scaphoid (green) bones with their 

articulations are shown from a standard postero-anterior (dorsal) perspective. ........................... 97 

Figure 3.4. Contact patterns on the radius for normal (A) and injured (B) wrists of Subject 7. RS 

contact is on the left and RL contact is on the right of each radius. ............................................. 97 

Figure 3.5. Locations of centroids of radiocarpal contact for normal (N) and injured (I) wrists of 

Subject 4. An increase in the intercentroid distance was observed with injury. ........................... 98 

Figure 3.6. Means and standard errors of radiocarpal peak contact pressures, which were 

significantly higher in the injured (I) wrist compared to normal (N). * indicates p<0.05. ........... 98 

Figure 3.7. Means and standard errors of radiocarpal contact forces, which were significantly 

higher in the injured (I) wrist compared to normal (N). * indicates p<0.05. ................................ 99 



xi 

 

Figure 4.1. Sample MRI images of the normal wrist of Subject 1. Left shows a high resolution 

slice of the unloaded wrist used for model construction, while right shows a lower resolution 

slice acquired during functional loading for image registration. ................................................ 119 

Figure 4.2. Example wrist of a subject with the grip device in the active grasp position. The wrist 

was also braced for consistent loaded positions. ........................................................................ 119 

Figure 4.3. Normal (left), injured (center) and postoperative (right) surface models of the 

radiocarpal joint in the unloaded position, for Subject 5, from a dorsal/posterior view. Radius, 

lunate and scaphoid bones are colored green, red and yellow respectively. ............................... 120 

Figure 4.4. Normal (A), injured (B) and postoperative (C) contact locations of Subject 5, for 

radioscaphoid (RS) and radiolunate (RL) articulations, shown on the radius cartilage. Magnitude 

of contact pressures vary linearly from white (minimum) to dark red (maximum) for each 

articulation.  Peak pressure (PP) values are also shown. The images for this particular subject 

illustrate clear separation of the scaphoid and lunate in the injured wrist, primarily due to 

scaphoid motion.  After repair, the scaphoid moves medially to a position approaching the 

normal contact location. While this grossly illustrates the typical overall behavior, not all 

subjects exhibited these contact patterns. ................................................................................... 121 

Figure 4.5. Means (± standard errors) of radioscaphoid (RS) and radiolunate (RL) peak contact 

pressures for normal (N), injured (I) and postoperative (P) wrists. * indicates significant 

difference from injured. .............................................................................................................. 122 

Figure 4.6. Means (± standard errors) of radioscaphoid (RS) and radiolunate (RL) mean contact 

pressures for normal (N), injured (I) and postoperative (P) wrists. * indicates significant 

difference from injured. .............................................................................................................. 122 

Figure 5.1. Radiocarpal surface (left) and volumetric (right) models of the normal wrist of 

Subject 2 used for surface contact modeling (bone and cartilage geometry) and finite element 

modeling (only cartilage geometry), respectively. ..................................................................... 146 

Figure 5.2. Contact pressure distributions of the normal (N), injured (I) and postoperative wrists 

of Subject 1 from finite element modeling (left) and surface contact modeling (right). For each 

technique, first column shows radioscaphoid contact and second column shows radiolunate 

contact. Contact varies medial/ulnar to the left and dorsal/posterior to the top. ........................ 146 

Figure 5.3. Contact pressure distributions of the normal (N), injured (I) and postoperative wrists 

of Subject 2 from finite element modeling (left) and surface contact modeling (right). For each 

technique, first column shows radioscaphoid contact and second column shows radiolunate 

contact. Contact varies medial/ulnar to the left and dorsal/posterior to the top. ........................ 147 



xii 

 

Figure 5.4. Contact pressure distributions of the normal (N), injured (I) and postoperative wrists 

of Subject 3 from finite element modeling (left) and surface contact modeling (right). For each 

technique, first column shows radioscaphoid contact and second column shows radiolunate 

contact. Contact varies medial/ulnar to the left and dorsal/posterior to the top. ........................ 148 

Figure 5.5. Average contact forces across the three subjects from surface contact modeling 

(SCM) and finite element modeling (FEM) for the three conditions. ........................................ 149 

Figure 5.6. Average peak contact pressures across the three subjects from surface contact 

modeling (SCM) and finite element modeling (FEM) for the three conditions. ........................ 149 

Figure 5.7. Average mean contact pressures across the three subjects from surface contact 

modeling (SCM) and finite element modeling (FEM) for the three conditions. ........................ 150 

Figure 5.8. Average contact areas across the three subjects from surface contact modeling (SCM) 

and finite element modeling (FEM), and also from direct contact area (DA) measurements for 

the three conditions. .................................................................................................................... 150 

 



xiii 

 

LIST OF ACRONYMS 

3D:  three dimensional 

3T:  three Tesla 

ACL:  anterior cruciate ligament 

ANOVA: analysis of variance 

AP:  anteroposterior 

APL:  abductor pollicis longus 

CH:  capitohamate 

CIA:  carpal instability adaptive 

CIC:  carpal instability complex 

CID:  carpal instability dissociative 

CIND:  carpal instability nondissociative 

Cine-PC: cine phase contrast 

CISS:  constructive interference steady state 

CT:  computed tomography 

DASH: disabilities of the arm, shoulder and hand 

DEA:  discrete element analysis 

DESS:  dual echo steady state 

dGEMRIC: delayed gadolinium enhanced MRI of cartilage 

DIC:  dorsal intercarpal 

DISI:  dorsal intercalated segment instability 



xiv 

 

DRC:  dorsal radiocarpal 

DTM:  dart-throwers motion 

ECRB:  extensor carpi radialis brevis 

ECRL:  extensor carpi radialis longus 

ECU:  extensor carpi ulnaris 

EMG:  electromyogram 

FCR:  flexor carpi radialis 

FCU:  flexor carpi ulnaris 

FE:  finite element 

FEM:  flexion-extension motion 

GAG:  glycosaminoglycan 

GRE:  gradient recall echo 

LRL:  long radiolunate 

LSD:  least significant difference 

LT/LTIO/LTIL: lunotriquetral/lunotriquetral interosseous/lunotriquetral interosseous ligament 

MR/MRI: magnetic resonance imaging 

NSAIDs: nonsteroidal anti-inflammatory drugs 

OA:  osteoarthritis 

P/DRU: palmar/dorsal radioulnar 

P/DST: palmar/dorsal scaphotriquetral 

PA:  posteroanterior 



xv 

 

PG:  proteoglycan 

PRC:  proximal row carpectomy 

PSM:  pronation-supination motion 

PTOA:  posttraumatic osteoarthritis 

RBSM: rigid body spring modeling 

RL:  radiolunate 

RMS/RMSE: root mean square error 

RS:  radioscaphoid 

RSC:  radioscaphocapitate 

RSL:  radioscapholunate 

RUD:  radial-ulnar deviation 

RV:  rotation vector 

S/CNR: signal/contrast-to-noise ratio 

SC:  scaphocapitate 

SCM:  surface contact modeling 

SL:  scapholunate 

SLAC:  scapholunate advanced collapse 

SLI/SLIL: scapholunate interosseous/scapholunate interosseous ligament 

SLId/dSLIO: dorsal scapholunate interosseous 

SLIp/vSLIO: palmar scapholunate interosseous 

SLIpx/pSLIO: proximal scapholunate interosseous 



xvi 

 

SRL:  short radiolunate 

STT:  scaphotrapezium-trapezoid 

TC:  trapezocapitate 

TC:  triquetrocapitate 

TFCC:  triangular fibrocartilage complex 

TH:  triquetrohamate 

TT:  trapeziotrapezoid 

TV:  translation vector 

UC:  ulnocapitate 

UL:  ulnolunate 

UT:  ulnotriquetral 

VISI:  volar intercalated segment instability 

 



1 

 

ABSTRACT 

Osteoarthritis as a result of injury/trauma is a significant problem, and there is still a need to 

develop tools for evaluating joint injuries and the effectiveness of surgical treatments. For the 

wrist in particular, injury to the scapholunate ligament from impact loading, can lead to 

scapholunate joint instability. Without treatment, this can lead to progressive development of 

wrist osteoarthritis. Joint contact pressures are important mechanical factors in the etiology of 

osteoarthritis, and these can be determined non-invasively through computer modeling. Hence, 

the goal of this work was to investigate the effects of scapholunate ligament injury and surgical 

repair on radioscapholunate contact mechanics, through surface contact modeling (SCM) and 

finite element modeling (FEM). The modeling process required geometries, boundary conditions 

and a contact relationship. Magnetic resonance imaging (MRI) was used to acquire images of the 

normal, injured and post-operative wrists, while relaxed and during active grasp loading. Surface 

and volumetric models were generated from the relaxed images, while kinematic boundary 

conditions were determined from image registration between the relaxed and loaded images. To 

improve the automatic image registration process, the effects of initial manual registration on the 

outcome of final registration accuracy, were investigated. Results showed that kinematic 

accuracy and subsequent contact mechanics were improved by performing a manual registration 

to align the image volumes as close as possible, before auto-registration. Looking at the effects 

of scapholunate ligament injury, results showed that contact forces, contact areas, peak and mean 

contact pressures significantly increased in the radioscaphoid joint. The locations of contact also 

shifted with injury. This novel data showed that contact mechanics was altered for the worse 

after injury. Novel contact mechanics data on the effects of surgical repair were also obtained. 

Results showed that radiolunate peak and mean contact pressures decreased significantly 

compared to injured, which indicated the possibility of restoring normal mechanics post surgery. 

SCM results were compared to FEM results to demonstrate the feasibility of the surface contact 

modeling approach for clinical applications. Contact parameters compared well between the two 

techniques. This work demonstrated the potential of MRI-based SCM as a tool to evaluate joint 

injuries and subsequent treatments, for clinical applications. 
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MOTIVATION 

The goal of this study was to investigate in vivo changes in radiocarpal joint mechanics 

associated with scapholunate ligament injury and surgical repair, during active functional grasp. 

The long-term goal is to relate changes in joint contact mechanics to the risk of osteoarthritis 

(OA), to possibly prevent the onset of degeneration. Normal wrist function is the result of a 

complex interaction between articulating carpal bones and ligamentous constraints. These 

facilitate motion and load transfer between the hand and forearm. Instability of any joint can lead 

to abnormal motion and altered mechanics. 

The scapholunate interosseous ligament (SLIL) is the primary stabilizer of the scapholunate 

(SL) joint. SL dissociation is a commonly occurring wrist injury caused by disruption of the 

SLIL due to hyperextension or intercarpal rotation. This ligament injury results in SL instability 

with associated changes in kinematics and load transfer through the radiocarpal joint. Without 

treatment, SL dissociation generally leads to a progressive osteoarthritic pattern known as 

scapholunate advanced collapse. The prevalence and incidence rates for symptomatic OA are 

second highest for the hand and wrist. While the mechanism is still not clearly understood, joint 

contact pressure is believed to be an important mechanical factor. Progressive 

instability/deformity of the SL joint as a result of SLIL injury, may cause an elevation in joint 

contact pressures in the normal contact regions or in shifted regions of contact. A tool to evaluate 

changes in contact pressure that occur in vivo may provide insight into the mechanism of post-

traumatic OA. Surgical techniques such as direct ligament repair (with capsulodesis), tendon 

weaves, arthrodesis (various limited/total intercarpal fusions) etc., are performed to minimize 

pain, restore joint function and prevent the onset of OA. The postoperative effectiveness in 

restoring normal joint mechanics and function still remains a question. Several cadaveric 

experimental studies have investigated normal and pathologic wrist biomechanics (kinematics 

and kinetics). However, in vivo conditions are much more complex. Magnetic resonance imaging 

(MRI) is limited in its diagnostic value for wrist ligament injuries. However, MRI can be used to 

acquire in vivo data (such as model geometry and kinematics) and can be an effective tool when 

combined with computational modeling. Computer simulation can be a valuable tool to tailor 

patient-specific treatment procedures. MRI-based surface contact modeling is very useful to 

determine in vivo joint mechanics noninvasively, in a relatively simple and computationally 
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efficient manner, without the need for complex nonlinear analyses. Very few studies have 

investigated in vivo wrist joint mechanics and there does not appear to be any prior work on the 

in vivo effects of SLIL injury/repair on mechanics. 

Specific aim 1 

To investigate the effects of SLIL injury on normal joint mechanics through subject-specific 

functional data. The current goal was to investigate changes in peak contact pressure and contact 

pressure distribution on the cartilage surface as a result of injury, as well as other contact 

mechanics factors (contact area, contact force and average contact pressure). 

Research question 

How does scapholunate ligament disruption/injury affect normal joint mechanics? How are 

articular surface contact areas, contact forces, peak contact pressures and pressure distributions 

and average contact pressures altered as a result of injury? 

Hypothesis 

With SLIL disruption/tear and the stage of injury during the time of diagnosis, progressive 

scapholunate diastasis and instability may occur. This can cause changes in kinematics due to 

abnormal alignment that can lead to changes in load transfer and location in the joint. Hence, 

peak contact pressures and average contact pressures were expected to increase with injury 

when compared to the normal wrist. 

It is possible there exists a range of contact pressures that are required to maintain 

physiological function, and that exceeding this limit maybe one of the factors that initiate the 

onset of OA. The ability to monitor the location of peak contact pressure and contact pressure 

distribution, may help predict tissue wear or the onset and progression of degradation. 

Specific aim 2 

To evaluate the efficacy of surgical repair to restore normal joint mechanics. The current goal 

was to investigate the immediate benefits of surgical treatment by looking at changes in peak 

contact pressure and contact pressure distribution on the cartilage surface after surgery (as well 

as other contact mechanics parameters). 



5 

 

Research question 

How does surgical repair/reconstruction alter contact mechanics affected by injury? Do 

postoperative joint mechanics appear normal? Is the surgical technique effective at restoring near 

normal joint mechanics postoperatively? 

Hypothesis 

The goal of surgery is to minimize pain and deformity resulting from SLIL tears and attempt to 

restore normal carpal alignment. Depending on the surgery, patients present varying degrees of 

improvement in function, range of motion and radiographic evidence of reduction of the 

scapholunate interval. Hence, peak contact pressures and average contact pressures were 

expected to decrease postoperatively to values near normal. 

Due to the different stages of injury and instability, there is still much controversy 

concerning the right choice of treatment. The ideal timing of SLIL repair is not yet known. It is 

also believed that the ideal treatment when the SLIL is irreparable, without the presence of OA, 

has not yet been determined. The severity of instability at the time of diagnosis is a confounding 

factor, which determines the type of surgery that is performed and thus has an impact on the 

outcome. The postoperative outcomes of various treatments have been inconsistent. Physicians 

try different surgical techniques and visually and/or functionally monitor the outcomes. It may be 

possible to more effectively differentiate between treatments based on pre and postoperative 

contact mechanics data. It may also be possible to use the contact mechanics data to devise 

strategies/surgical plans to address the different stages/patterns of injury and predict the future 

outcome of surgeries. 

Specific aim 3 

To compare contact mechanics data between surface contact modeling and finite element 

modeling. The goal was to demonstrate that MRI-based surface contact modeling results can be 

used to distinguish between normal and abnormal joint mechanics and surgical treatments, in a 

computationally efficient manner. 
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Research question 

How do contact mechanics results from surface contact modeling compare with those from finite 

element (FE) modeling (which is considered the gold standard)? How complex does a model 

need to be to obtain clinically useful, accurate, and relevant data? 

Hypothesis 

FE modeling is the most commonly used technique but is also very involved. Surface contact 

mechanics can provide a reasonable idea of changes in mechanics associated with injury and 

surgical repair. This can be achieved through surface contact modeling without the need for 

complex 3D FE analyses. To be considered reliable, contact parameters from surface contact 

modeling should compare well with contact parameters from a similar analysis performed using 

FE modeling. 

To evaluate changes in joint mechanics as a result of injury/surgical intervention, it may be 

sufficient to look at contact mechanics data from surface contact modeling. Also, the geometry 

and boundary conditions from surface contact modeling can be directly implemented in an FE 

model. FE modeling can also be used determine stress and strain distribution within cartilage. 

This may provide further insight into the mechanism of degradation by understanding how 

functional integrity is compromised by breakdown within the tissue. This data may also be useful 

for tissue engineering applications. The mechanics data was based on in vivo functional loading, 

which may be able to provide experimental parameters for chondrocyte biosynthesis for cartilage 

tissue culture and transplanting, or provide information on the functional stresses that 

regenerating tissue may experience in situ. 

Since, there does not appear to be any prior work on the in vivo effects of SLIL injury/repair 

on radiocarpal joint mechanics, this study can potentially improve the understanding of the 

pathomechanics of injury, and the effectiveness of corrective measures. 

Other studies in our lab are also investigating the effects of SLIL injury on physiological 

changes in cartilage based on T2 relaxation times. It may be possible to correlate microscopic 

degenerative changes (before any visual changes) with changes in contact mechanics to predict 

the risk of OA. 
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The short-term benefits of surgery based on a 1 to 2 year follow-up after postoperative 

assessment, and the effects of conservative treatment (for patients that do not opt for surgery), 

are also planned for future investigation. It is not uncommon to observe degenerative changes 

even after surgical intervention. Using surface contact modeling, it may be possible to monitor 

load transmission through the joint for different treatments (apart from visual/functional 

outcomes) to further refine the treatment process. Clinically observed patterns of cartilage 

degeneration can be compared to model contact pressure intensities or patterns on the surface 

(contact modeling) or within the tissue (FE modeling). Treatments for joint injuries can be 

designed to minimize high stresses on or within the cartilage (unload the cartilage) as a result of 

instability/deformity, to allow intervention for preventing OA. 

Additional contact mechanics data from the short-term follow-ups and conservative 

treatments (together with further studies looking at the effectiveness of splints/braces, and joint 

mechanics at different wrist positions), may provide useful information for physical therapy and 

rehabilitation techniques on how to manage the progression and minimize the effects of 

instability. 

Due to its subtlety, SLIL injuries are often dismissed as minor sprains and diagnosis is rarely 

performed in the early stages of instability, but rather in the advanced stages. MRI-based surface 

contact modeling has the potential for early diagnosis. With advances in MRI techniques in the 

future, it may be possible to incorporate the entire process into an MRI system to obtain contact 

pressure data in real time and regularly monitor the health of the joint, as part of a general 

physical exam. With data from sufficient subjects, it may be possible to generate a database of in 

vivo peak contact pressures and pressure distributions for comparison, in order to predict 

different levels of instability thereby providing a means to diagnose ligament injuries 

noninvasively and detect the future risk of OA. This technique can be further extended to 

evaluate other joints and joint pathologies. 
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1. BACKGROUND 

1.1. Introduction 

The hand is integral in the physical expression of human behavior and has a vital function in 

daily living. A loss of this function can therefore prove very debilitating. The wrist, which 

connects the hand to the forearm, plays a key role in hand function. It allows for positioning and 

orientation of the hand in space and also for load transfer between the hand and the forearm. This 

is largely due to the intricate mechanisms and interactions between the bones and soft tissue 

(such as ligaments) that constitute the wrist joint complex. 

1.1.1. Basic anatomy and function 

The distal radius and ulna, the metacarpals and the carpus constitute the bones of the wrist 

complex (Fig. 1.1). The carpus is an organization of eight carpal bones. Until the 15
th

 century, 

the carpus was considered physiologically insignificant and hardly any anatomical or functional 

information existed. The first descriptive illustrations of the wrist bones were published in 1543 

wherein the carpal bones were numbered 1 to 8 [1]. Carpal bone nomenclature first appeared in 

1653 and the present nomenclature was proposed at the start of the 20
th

 century and adopted in 

1955 [1]. From radial to ulnar, the scaphoid, the lunate, the triquetrum and the pisiform 

constitute the bones of the proximal row, while the trapezium, the trapezoid, the capitate and the 

hamate collectively comprise the distal row (Fig. 1.1). Due to its location within the flexor carpi 

ulnaris tendon, the pisiform is often considered more of a sesamoid bone [1-4] and as such does 

not contribute to proximal carpal row function [5]. The scaphoid, which is the second largest 

carpal bone, spans the proximal and distal rows and functions as an intermediary and supporting 

structure between the two rows [1-4]. The sigmoid notch region of the distal radius and the ulna 

head together with the triangular fibrocartilage complex [(TFCC) composed of the articular disc 

and radioulnar ligaments] articulate to form the distal radioulnar joint. Proximally, the scaphoid 

and the lunate articulate with the distal radius to form the radiocarpal joints. The sagittally 

oriented interfacet prominence (interfossal ridge) separates the triangular scaphoid fossa from the 

quadrangular lunate fossa proximally on the radius articular surface [6, 7]. There is no direct 

contact between the distal ulna and the proximal row, however, the articular disc functions as an 

interface between the distal ulna, the triquetrum, the hamate and the base of the fifth metacarpal 

[2]. This interface between the ulna and the distal wrist bones forms the ulnocarpal joint. The 
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proximal row articulates distally with the proximal surface of the distal row to form the 

midcarpal joints. The distal row articulates distally with the bases of the metacarpals. Within the 

proximal and distal rows, adjacent bones articulate to form various intercarpal joints. The entire 

carpus is bound together by a complex and finely tuned network of ligaments. Interaction 

between the carpal bones, highly specialized ligamentous connections and balanced muscle 

forces allow for proper joint function. 

 

Figure 1.1. Osseous anatomy of the wrist from a dorsal perspective. Shown are the bones of the 

proximal (S: scaphoid, L: lunate, Tr: triquetrum, pisiform not shown) and distal (Tm: trapezium, 

Td: trapezoid, C: capitate, H: hamate) rows and the various articulating joints. Also shown are 

the radius (R), ulna (U) and metacarpals (M1-M5). Reprinted from The Journal of Hand Surgery, 

Volume 20, Patterson, R.M., Elder, K.W., Viegas, S.F., and Buford, W.L., Carpal bone anatomy  

measured by computer  analysis  of three-dimensional reconstructions  of computed  tomography  

images, Pages 923-929, Copyright (1995), with permission from Elsevier. 

Except for the pisiform within the flexor carpi ulnaris tendon, there are no direct motor 

attachments to the carpal bones to provide dynamic stability. The flexors and extensors that 

contribute to carpal motion, insert into the metacarpals or phalanges from their origins at the 
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elbow/proximal forearm [5]. The flexor carpi radialis (FCR) and the flexor carpi ulnaris (FCU) 

are the primary wrist flexors, the extensor carpi radialis longus (ECRL) and brevis (ECRB) are 

the primary extensors, the abductor pollicis longus (APL) and the extensor carpi ulnaris (ECU) 

are the primary radial and ulnar deviators respectively [5]. The extensor carpi ulnaris, the 

abductor pollicis longus and the extensor pollicis brevis tendons contribute to and aid in dynamic 

stability [2, 4, 5]. Hence the arrangement of the carpal bones and the various ligamentous 

interconnections play a primary role in wrist stabilization [3, 4]. The ligaments of the wrist have 

been identified and named as early as the 18
th

 century [8]. Since then, various individuals (Henke 

in 1863, Poirier in 1899, Destot in 1923, Testut in 1931, Lewis in 1970, Mayfield in 1976, 

Taleisnik in 1985, Sennwald in 1986, etc.) have progressively contributed to the further 

understanding of ligamentous functional anatomy [1, 9]. This understanding keeps evolving with 

improved knowledge of carpal function and mechanisms. Wrist injuries (ligamentous in 

particular) are difficult to treat, hence a better description of normal and pathologic physiology 

and mechanics can help identify the cause, and in turn improve treatment efficacies of wrist 

abnormalities. 

Ligaments are made up of a dense bundle of collagen fibers called fascicles surrounded by 

connective tissue, which also transmits the neurovasculature [8]. Towards the surface, the 

connective tissue groups together to form a continuous protective cover called the 

epiligamentous sheath [8]. Ligaments of the wrist are generally classified as capsular (within 

joint capsule layers) or intra-articular (entirely within the joint). The epiligamentous sheath of 

capsular ligaments has a fibrous stratum on the superficial surface and a synovial stratum on the 

deep or joint surface, while the intra-articular ligaments are covered completely by a synovial 

stratum [8]. Depending on orientation, ligaments can be further classified as extrinsic or intrinsic 

(Fig. 1.2). Extrinsic ligaments originate from the distal radius and ulna and attach to the carpal 

bones while the origins and insertions of the intrinsic ligaments are within the carpal bones [1, 4, 

7]. The intrinsic ligaments are stronger and thicker palmarly than dorsally and assist with 

intercarpal stability [4]. The majority of the extrinsic ligaments are capsular while the intrinsic 

ligaments are intra-articular or interosseous [6, 8, 9].  Depending on location, the extrinsic 

ligaments can be subdivided into palmar (volar) or dorsal. The stronger palmar ligaments are the 

major wrist stabilizers and provide a greater resistance to instability (especially against 
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hyperextension) while the lesser developed dorsal ligaments are the secondary stabilizers of the 

scapholunate (SL) joint and help prevent volar instability [4, 7]. Intercarpal motion and carpal 

stability is reliant on and facilitated by the complex arrangements of these ligaments [3, 4, 6-9]. 

 

Figure 1.2. Ligamentous anatomy of the wrist from the palmar (left) and dorsal (right) 

perspective. The palmar view shows the extrinsic ulnocarpal and palmar radiocarpal ligaments, 

the intrinsic palmar midcarpal ligaments and the distal row interosseous ligaments. The dorsal 

view shows the extrinsic dorsal radiocarpal ligament, the intrinsic dorsal midcarpal ligaments 

and the proximal and distal row interosseous ligaments. The palmar and dorsal radioulnar 

ligaments are also shown. The palmar view also shows vascular insertion into the radiocarpal 

joint capsule through the radioscapholunate ligament. Reprinted from Hand Clinics, Volume 13, 

Berger, R.A., The ligaments of the wrist. A current overview of anatomy with considerations of 

their potential functions, Pages 63-82, Copyright (1997), with permission from Elsevier. 

The distal radioulnar ligaments are important for the stability of the distal radioulnar joint 

[palmar and dorsal radioulnar (P/DRU) ligaments]. The ulnocarpal ligaments help stabilize the 

ulnocarpal joint and are thought to guide lunate and triquetrum motion [ulnolunate (UL) and 

ulnotriquetral (UT) ligaments], while also assisting with distal radioulnar joint stability 

[ulnocapitate (UC) ligament]. The palmar radiocarpal ligaments help with scaphoid distal pole 

STT 
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stability [radioscaphocapitate (RSC) ligament], constrain lunate rotation [short radiolunate (SRL) 

ligament] and translocation [long radiolunate (LRL) ligament] and maintain the functional 

integrity of the wrist [radioscapholunate (RSL) ligament]. From their proximal radial and ulnar 

origins, the palmar extrinsic ligaments tend to merge toward the middle of the carpus (Fig. 1.2, 

left). There also exists a weak spot in the palmar capsule between the radioscaphocapitate and 

the long radiolunate ligaments at the level of the midcarpal joint called the space of Poirier [1, 8]. 

The dorsal radiocarpal (DRC) ligament helps with carpal alignment and stability and constrains 

the carpus against ulnar translocation. The palmar midcarpal ligaments are thought to stabilize 

the distal pole of the scaphoid, trapezium and trapezoid [scaphotrapezium-trapezoid (STT) and 

scaphocapitate (SC) ligaments], help prevent midcarpal dissociative [triquetrohamate (TH) 

ligament] and non-dissociative [triquetrocapitate (TC) ligament] instability and are important to 

the mechanical integrity of the proximal carpal row [palmar scaphotriquetral (PST) ligament]. 

The dorsal midcarpal ligaments help to constrain midcarpal rotation and provide indirect 

scapholunate dorsal stability [dorsal intercarpal (DIC) ligament] and also facilitate proximal row 

interosseous ligament stability [dorsal scaphotriquetral (DST) ligament]. From their origins, the 

dorsal extrinsic and intrinsic ligaments tend to converge on the triquetrum (Fig. 1.2, right). The 

distal row interosseous ligaments assist in stabilizing the distal row and the carpal arch system 

and provide structural integrity to the joints [trapeziotrapezoid (TT), trapezocapitate (TC) and 

capitohamate (CH) interosseous ligaments]. The proximal row interosseous ligaments help 

stabilize the proximal row, allowing for normal scapholunate and lunotriquetral joint function 

[scapholunate (SL) and lunotriquetral (LT) interosseous ligaments]. These are but a few of the 

many known (and still unknown) functions and from this it is clear that the ligaments of the wrist 

form an intricate arrangement with a complex function beyond just a simple passive constraining 

of the carpal bones. The scapholunate interosseous ligament is considered one of the most 

important intrinsic interosseous ligaments [7]. 

1.1.2.  Anatomy and function of the scapholunate interosseous ligament 

A ligament connecting the scaphoid and the lunate was first mentioned in Destot’s 

posthumous publication in 1923 [9, 10]. This ligament, now known as the scapholunate 

interosseous (SLI) ligament, is compared to a “lateral ligamentous bolt” that holds the proximal 

row together [10] and is thought to be the primary stabilizer of the scapholunate joint [7]. Except 
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for the distal region, the SLI ligament joins all edges (dorsal, proximal and palmar) of the 

scapholunate articulation [10, 11]. Hence the possible need for secondary stabilizers RSC, STT, 

SC and DST to provide distal stability to the scaphoid and the scapholunate articulation [7, 8]. 

The SLI ligament is a “C” shaped ligament which is structurally divided into the dorsal (SLId), 

proximal (SLIpx) and palmar (SLIp) sections (Fig. 1.3) [7, 8, 10, 11]. 

 

Figure 1.3. Anatomy of the scapholunate interosseous (SLI) ligament shown with the 

scapholunate joint intact (A) and with the scaphoid removed (B) from a radial and proximal 

perspective. Shown are the dorsal (SLId), proximal (SLIpx) and palmar (SLIp) sections, with the 

RSL interrupting the continuity of the SLIpx and the SLIp sections. Also shown are the palmar 

capsular ligaments that attach to the lunate and the distal attachment of the dorsal section. The 

radial styloid process has been sectioned for clarity. Reprinted from The Journal of Hand 

Surgery, Volume 21, Berger, R.A., The gross and histologic anatomy of the scapholunate 

interosseous ligament, Pages 170-178, Copyright (1996), with permission from Elsevier. 

The SLId is a true ligament histologically, with transversely oriented collagen fibers between 

the radial aspect of the tip of the lunate dorsal horn and the corresponding ulnar-dorsal aspect of 

the proximal pole of the scaphoid (Fig. 1.4, right). This is the strongest and thickest of the three 

sections, usually 3 – 5 mm long (proximal-distal) and 2 – 4 mm thick [8, 10, 11]. The transverse 

fibers shorten in length from dorsal to palmar, giving the SLId a trapezoidal cross-section in the 

saggital and transverse planes. The superficial fibers of the SLId are oriented perpendicular and 
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tangential to the bulk fibers. The perpendicular fibers in the dorsal region attach to the dorsal 

radiocarpal joint capsule, thereby isolating contact between the distal half to three-quarters 

portion of the SLId and the radiocarpal joint. The tangential fibers in the dorsal region merge 

distally with the dorsal ST ligament. The most dorsal region of the SLId also merges with the 

DIC ligament. The SLId merges proximally with the SLIpx. This is characterized by a 

continuous transition from highly oriented fibers to a loose rubbery texture, which is otherwise 

not visible. This transition is gradual to sudden with increasing SLIpx thickness. 

 

Figure 1.4. Showing attachment sites of the palmar (vSLIO), proximal (pSLIO) and dorsal 

(dSLIO) sections of the scapholunate interosseous ligament on the scaphoid and lunate from a 

palmar (left) and dorsal (right) perspective. Also shown are the pathways and attachment sites of 

the extrinsic palmar (UL) ulnocarpal and palmar (RSC, LRL, SRL, RSL) and dorsal (DRC) 

radiocarpal ligaments, the intrinsic dorsal (DIC) midcarpal ligament and the lunotriquetral 

(LTIO) interosseous ligament. Reprinted from The Journal of Hand Surgery, Volume 34, Kijima, 

Y. and S.F. Viegas, Wrist anatomy and biomechanics, Pages 1555-1563, Copyright (2009), with 

permission from Elsevier. 

The SLIpx is distinctly anisotropic and appears as a minor disruption in the proximal 

scapholunate joint surface, which is otherwise continuous and smooth. This section does not 

display true ligamentous histology and is composed mostly of fibrocartilage throughout its 

length, and is avascular and aneural with little connective tissue. There is some longitudinal fiber 

organization in the central and most superficial surfaces. The thickness of the SLIpx varies but is 

generally the thinnest of the three sections [7, 8, 10, 11]. The fibrocartilage is particularly dense 

at the scaphoid and lunate attachment sites and blends with the articular cartilage. It is not easy to 
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identify the boundary between the articular cartilage and the ligamentous fibrocartilage. In 

instances where the SLIpx is relatively thicker, it pushes into the scapholunate joint space. The 

tip of this protrusion is wedge-shaped and forms two articulating surfaces with the scaphoid and 

lunate, similar to a knee meniscus. The pliable consistency of the SLIpx (compared to the taut 

SLId) and structure continues till gradually merging with the RSL ligament palmarly. 

Histologically, the RSL is also not a true ligament, but rather a neurovascular pedicle with loose 

connective tissue and neurovascular network forming its core, often referred to as the “intra-

articular fat pad” [6, 8]. The RSL penetrates the palmar joint capsule to merge with the SLIpx, 

separating the SLIpx and SLIp sections (Fig. 1.4, left). At the merging zone, the core of the RSL 

replaces the fibrocartilage of the SLIpx and blends into the longitudinally oriented fibers within 

the fibrocartilage. This unique anatomical arrangement is not found elsewhere in the body. The 

distal extension of this region covers the dorsal joint surface of the SLIp. 

The SLIp is histologically similar to the SLId, with proximal-ulnar to distal-radial obliquely 

oriented fibers (Fig. 1.4, left). This section is usually 4 – 5 mm long and not more than 1 mm 

thick [8, 10, 11]. The SLIp merges proximally with the joined RSL and SLIpx region. It is easy 

to visualize this sudden transition because of the oblique fiber orientation. There can be some 

interconnections of varying density between the SLIp and the RSC distally. Connective tissue 

usually separates the SLIp from the LRL ligament. Extensions of the RSL attach to the proximal-

palmar aspects of the scaphoid and lunate covering the surface of the SLIp thereby isolating it 

from the radiocarpal joint. It is therefore impossible to visualize the SLIp with the RSL intact. 

The SLI ligament is a complex structure that allows relative motion between the scaphoid 

and lunate [10, 11]. Isolation and sectioning of the SLI ligament has been observed to cause 

scapholunate joint instability and an abnormal transmission of forces through the wrist [10]. This 

leads to pressure modification on the intercarpal and radiocarpal joints resulting in secondary 

arthrosis [10]. The transversely orientated SLId is critical for resisting palmar-dorsal translation, 

distraction and torsional moments [7, 8] and facilitating control of flexion and extension motion 

[10]. The obliquely oriented SLIp is critical for constraining flexion-extension rotation [8] and 

facilitates rotational control [10]. The SLId and SLIp sections are therefore important for the 

scapholunate pair to function normally [8, 10]. The fibrocartilagenous SLIpx is not a substantial 
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mechanical structure [8]. It appears to play a very minor role in constraining motion [8] and in 

isolation, does not restrain abnormal scapholunate joint motion [7]. However, the SLIpx helps 

with scapholunate joint rotational stability and is suited to bear compressive and shear loads [7, 

8]. Age-related degenerative tears occur in the SLIpx region probably due to its unique histology 

[10, 11]. Due to less vascularity on the scaphoid proximal pole, the SLIpx commonly tears on the 

scaphoid side following trauma or degeneration, leaving most of the ligament still attached and 

intact on the lunate side [10]. The SLId is the strongest of the three sections requiring more than 

300 N to fail in tension, the SLIp fails within 150 N while the SLIpx being the weakest can only 

withstand 25 – 50 N [8, 10]. The inhomogeneity of the SLI ligament should be taken into 

account when considering ligamentous reconstruction. Treating the SLId, the SLIpx and the 

SLIp sections as a homogeneous unit can lead to failure of ligamentous reconstruction [10]. 

When performing ligamentous reconstruction, especially direct repair, it is important to note 

which sections are likely to heal and to recognize which tissues are strong enough to hold sutures 

securely in place while healing takes place [11]. 

1.1.3. Kinematics and carpal stability 

The highly complex motion of the wrist joint is achieved through a combination of 

morphology (shapes of the carpal bones and their articulations), soft-tissue constraints (extrinsic 

and intrinsic ligaments) and motor attachments (to the bases of the metacarpals) that act 

indirectly through the distal carpal row. Complex interactions between these allow for normal 

and stable carpal joint function. Stability is defined as “the ability of a joint to maintain a normal 

relationship between the articulating bones and soft-tissue constraints under physiologic loads 

for its entire range of motion” [12]. Instability can lead to abnormal load transfer between 

articulations causing increased articular cartilage stresses and can also affect carpal alignment 

leading to abnormal motion. It is therefore important to understand normal joint function in order 

to understand the effects of injuries and pathologies that cause instability and abnormal motion. 

Attempts have been made to describe cadaveric carpal motion since Henke in 1859 [1] but 

true descriptions of carpal kinematics began after the discovery of x-rays in the late 19
th

 century, 

when Bryce first studied motions of his own wrists on radiographs in 1896 [1, 13]. Since then 

several techniques have been used to investigate carpal motion, such as cineradiography, 
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stereophotogrammetry, goniometry, magnetic and video tracking, magnetic, spatial and sonic 

digitization, biplanar radiography and non-invasive markerless registration [13, 14]. Initially, the 

wrist was thought to behave as a universal joint with a single transverse axis of motion having a 

single pivot point [6]. Despite some controversy, the center of rotation is commonly believed to 

be located in the capitate head (proximal pole) [6, 9, 13]. While the capitate is still considered to 

have a “keystone” position, it is now believed that in vivo carpal motion is much more complex 

with multiple axes of rotation [13, 14]. There exist three primary axes of carpal motion (Fig. 

1.5); flexion-extension motion (FEM) in the saggital plane, radial-ulnar deviation (RUD) in the 

coronal plane and pronation-supination motion (PSM) in the transverse plane [6, 13, 15]. These 

axes of motion are still located at the capitate head but are shifted by 4 mm; the FEM axes being 

the most proximal and the ulnar deviation axis being the most distal [13, 14]. 

The range of motion varies from 140 – 150° in FEM (80° in flexion, 70° in extension), 50 – 

60° in RUD (15 – 20° in radial, 30 – 35° in ulnar) and 150° in PSM [4, 5, 15]. The distal radius 

has a slight palmar tilt (11°) in the saggital plane that allows for more flexion than extension [4, 

12]. The radiocarpal and midcarpal joints contribute differently to carpal motion. In flexion the 

midcarpal joint contributes 60% while the radiocarpal joint contributes 40% [5, 15]. In extension 

the midcarpal joint contributes 33 – 33.5% while the radiocarpal joint contributes 66 – 66.5% [5, 

15]. In RUD the midcarpal joint contributes 60% of the motion while the radiocarpal joint 

contributes 40% [5]. The entire carpus moves primarily with the forearm in PSM (less than 10° 

of relative rotation) [6]. However, there exists slight intercarpal pronation and supination during 

FEM and RUD. 



19 

 

 

Figure 1.5. Showing the three primary axes about which carpal motion occurs. These are the 

flexion-extension axis (X) in the saggital plane, the pronation-supination axis (Y) in the 

transverse plane and the radial-ulnar deviation axis (Z) in the coronal plane. Reprinted from The 

Journal of Hand Surgery, Volume 28, Moojen, T. M., Snel, J. G., Ritt, M. J. P. F., Venema, H. 

W., Kauer, J. M. G., and Bos, K. E., In vivo analysis of carpal kinematics and comparative 

review of the literature, Pages 81-87, Copyright (2003), with permission from Elsevier. 

The motions of the proximal and distal carpal rows also vary with direction of wrist motion. 

The bones of the distal carpal row interlock articularly and are tightly bound to each other and to 

the bases of the metacarpals (second and third) by intrinsic ligaments, such that there is hardly 

any intercarpal or distal carpal-metacarpal motion. In essence, the distal carpal row bones behave 

as a functional unit with the metacarpals (motor attachments) to transfer motion (direction and 

magnitude) and load [6, 9, 13]. In contrast there is more relative motion between the bones of the 

proximal carpal row to facilitate range of motion and stability [6, 13]. In flexion, both the 
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proximal and distal carpal rows undergo flexion [6, 15]. Within the proximal carpal row, 

scaphoid and lunate contributions to flexion are 69% and 51%, respectively [5, 16, 17]. Similarly 

in extension, both the proximal and distal carpal rows undergo extension [6, 15]. Within the 

proximal carpal row, scaphoid and lunate contributions to extension are 83 – 86% and 45 – 48%, 

respectively [5, 16, 17]. There is also intercarpal rotation between the scaphoid and lunate during 

FEM (13° and 21° in-plane motion in flexion and extension, respectively) [5, 16, 17]. In 

extension the scaphoid tends to supinate while the lunate tends to pronate causing a palmar 

separation [6]. In flexion the scaphoid tends to pronate while the lunate tends to supinate [6]. 

Proximal and distal carpal row motion is more complex in RUD and a reciprocal pattern is 

observed. In radial deviation, the distal row moves radially [4, 6] combined with extension and 

supination [7], while the proximal row moves ulnarly and also flexes (20°) [4-6, 9, 15]. Within 

the proximal carpal row, scaphoid and lunate contributions to radial deviation are 29% and 25% 

respectively [5, 6, 16]. In ulnar deviation, the distal row moves ulnarly [4, 6] combined with 

flexion and pronation [7], while the proximal row moves radially and also extends (20°) [4-6, 9, 

15]. Within the proximal carpal row, scaphoid and lunate contributions to ulnar deviation are 

49% and 54% respectively [5, 6, 16]. Though small, there is also intercarpal rotation between the 

scaphoid and lunate during RUD (1° in-plane motion for both radial and ulnar deviation) [5, 6, 

16]. Scaphoid and lunate motion occurs predominantly in the saggital plane (of FEM) and there 

is minimal motion outside this plane for all wrist positions [13]. It is now believed that in vivo 

carpal bone motion is much more complex than what can be defined by the traditional axes of 

motion in the anatomic planes, and cannot be explained by any one theory. Rather than limiting 

motion to the three orthogonal planes, majority of functional activities such as combing, 

throwing, swinging an object etc., involve coupled motion in an oblique plane [7, 13, 18]. This is 

the plane of the dart-throwers motion (DTM), which occurs from extension-radial deviation to 

flexion-ulnar deviation. The midcarpal joint contributes most of the motion in this plane with no 

proximal carpal row rotation [13]. This plane of motion is thought to provide more stability and 

agility, allowing one to maintain power during grip throughout the motion [13]. The 

scapholunate joint is believed to have a dorsal rotation axis, which becomes a factor as most 

carpal injuries are caused by hyperextension and intercarpal supination [14]. The position of 

neutral scaphoid and lunate rotation (zero flexion-extension rotation) lies along the DTM path 
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[13]. Thus the most natural and physiologically intended path of motion, least affects 

scapholunate stability. 

Several theories have been used in literature to describe carpal motion and stability during 

normal joint function [1-3, 5, 6, 12-15, 19]. Traditionally different patterns have been used to 

categorize carpal bones having similar motion. The row theory divided the carpal bones into two 

independent rows; distal and proximal, where motion within rows was fixed (Destot, de Lange, 

Berger) [1, 3, 13, 14]. The rows were considered rigid and rotating about fixed axes with the 

scaphoid acting as a link between the two rows. Since there are no direct tendon attachments to 

the proximal carpal row, it was considered to behave as an intercalated segment between the 

distal row and radius, with its motion facilitated by the distal row articulations and ligamentous 

constraints (Landsmeer) [1, 13]. It was later thought that the bones of the distal row were tightly 

bound together and that the bones of the proximal row were more mobile but still moved 

together within the row (Ruby) [14]. The ring theory was a modification of the row theory where 

the radial and ulnar ends of the proximal and distal rows were connected by ligaments and 

articulations, thereby facilitating function (Lichtman) [1, 6, 14]. In radial deviation, the motion 

(dorsal sliding) of the trapezium and the trapezoid on the distal end of the scaphoid was thought 

to push the scaphoid into flexion. The lunate in turn would be pulled into flexion with the 

scaphoid through the SLIL. In ulnar deviation, the STT ligament would pull the scaphoid into 

extension and the opposite would happen. The column theory divided the carpal bones into three 

longitudinal columns; the radial stability column (trapezium, trapezoid, scaphoid and radius), the 

central flexion-extension column (capitate, lunate and radius) and the ulnar rotation column 

(hamate, triquetrum and ulnar articular disc) [Navarro] [1, 13-15]. This was later modified to 

include the trapezium, trapezoid and hamate in the central column (Taleisnik) [1, 13-15]. It was 

also proposed that the three longitudinal columns performed as a three-bar link system, with 

centers of rotation located at the radiocarpal and midcarpal levels and the proximal row bones 

functioning as intercalated segments in the three chains (Gilford, Fisk, Taleisnik) [2, 3, 12, 14, 

19]. This arrangement is inherently unstable in compression, therefore, it was proposed that the 

oblique placement of the scaphoid provided stability to the capitate, lunate and radius links 

(central column) similar to a slider-crank mechanism (Linscheid) [3, 12]. Also, the shape and 

geometry of the proximal row was thought to play a role in stability, since it has no direct motor 



22 

 

control and behaves as an intercalated segment (Kauer) [1, 12]. The proximal joint surfaces of 

the scaphoid and lunate are unequally curved and this results in palmar separation of the two 

bones during extension, which is constrained by the SLIp. Also, the proximal poles of the 

scaphoid and lunate are wedge-shaped in the saggital plane but in opposite directions. Under 

load, the oblique orientation of the scaphoid causes it to flex. On the other hand the palmar 

wedge shape of the lunate causes it to extend thereby resisting scaphoid flexion. Normal 

interaction between these opposing motions was believed to provide proximal row stability. 

Another theory proposed that the helicoid articulation of the triquetrohamate joint, and not the 

wedge shape of the lunate, provided stability to the proximal row (Weber) [1, 5, 12]. Under axial 

compressive load, this unique articulating configuration would cause the triquetrum to extend 

thereby resisting scaphoid flexion (the lunate balanced between the two). It is now believed that 

no single theory is sufficient to explain carpal stability. Since the wrist is a complex joint with 

many articulations, a combination of four stabilizing mechanisms at the distal row, the midcarpal 

joint, the proximal row and the radiocarpal joint provide stability under load [12]. For instance, 

under axial compressive loading, the proximal row bones undergo different rotations (5.1° 

scaphoid, 4.2° lunate and 3.8° triquetrum) likely due to the different biomechanical properties of 

the constraining intrinsic ligaments (STT, SC, TC and TH) [12]. The intact SLIL and LTIL 

constrain these rotations and provide stability to the proximal row. The distal radius has a 14 – 

23° ulnar tilt in the coronal plane [12, 15]. The radiocarpal joint is therefore easily stabilized in 

ulnar deviation. However in maximal grip (35° extension and slight ulnar deviation), the carpus 

tends to move ulnarly [12]. The palmar and dorsal radiocarpal ligaments contribute significantly 

to resist this ulnar-sliding to provide radiocarpal joint stability. 

Carpal bone motion is dependent on wrist position during loading, direction of transferred 

forces and the geometry and orientation of the articulating surfaces. The ligaments constrain 

these motions and facilitate stability. The SLIL constrains scaphoid flexion and dorsal translation 

of the scaphoid proximal pole (SLId) to maintain normal radioscaphoid contact [12]. Disease or 

injury to any of these stabilizing mechanisms leads to carpal instability. 
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1.1.4. Overview of carpal injuries 

Carpal injuries occur as a result of damage to osseous and ligamentous anatomy. The 

resultant damage observed on clinical scans can be categorized generally into pure dislocations, 

fractures or fracture-dislocations. These injuries are determined by the type of loading, the 

duration and magnitude of loading, hand position at initiation and the biomechanical properties 

of the anatomy involved. Hyperextension, ulnar deviation and intercarpal supination are believed 

to be the main pathomechanics leading to injury [20]. 

Pure dislocations occur as a result of damage to the extrinsic and intrinsic ligaments. This 

damage can occur due to progressive wear or more commonly, due to trauma [20, 21]. These 

include lunate dislocation and perilunate dislocation (scaphoid, capitate, triquetrum and lunate 

dislocations) [20]. Hyperextension and ulnar deviation causes disruption of the RSC, the STT 

and the RSL ligaments and intercarpal supination causes progressive palmar to dorsal disruption 

of the SLIL, resulting in scaphoid dislocation and rotation [20]. Progressive capitate, triquetrum 

and lunate dislocations occur with increased severity of ligamentous damage. Fractures occur as 

a result of trauma to the bones. These include scaphoid fractures, radial styloid fractures, 

palmar/dorsal intra-articular distal radius fractures (Barton’s fracture), triquetral fractures and the 

less frequently occurring capitate fractures [20, 22]. The most common carpal injury is the 

scaphoid fracture (71.2%) followed by the triquetrum (20.4%) [20, 22]. Depending on the type of 

loading, scaphoid fractures occur at the waist (70 – 80%, in hyperextension propagating from 

palmar to dorsal), the proximal pole (in hyperextension) or the distal tuberosity (in compression) 

[20, 22]. Malunion can cause osteonecrosis of the fracture fragment (Preiser’s disease) which 

may lead to progressive loosening of the ligaments [22]. Scaphoid fractures normally occur with 

the wrist loaded in 95 – 100° of extension [5]. Lesser extension usually results in distal radius 

fractures [Colles’ fracture (fracture fragment extended) or Smith’s fracture (fracture fragment 

flexed) in flexion] [5]. Fractures can also be associated with ligamentous damage, known as 

fracture dislocations. These include transscaphoid or transtriquetral perilunar fracture-

dislocations [20]. Fracture to the lateral side of the distal radius is usually associated with 

scaphoid dislocation [22]. Scaphoid fractures are almost always accompanied by SLIL failure 

(partial tear to complete disruption) [20]. Damage to the carpal ligaments (traumatic disruption 
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or progressive laxity) as a result of fractures and dislocations can lead to carpal instability [12, 

20, 22]. 

1.1.5. Classification of carpal instability 

Changes in carpal alignment have been observed since the invention of the radiograph; 

however, carpal instabilities and post-traumatic deformities and their clinical significance have 

only recently (1972) been recognized [1, 13, 23, 24]. Carpal instabilities as a result of disease or 

injury cause changes in normal carpal alignment, that can lead to abnormal motion and load 

transfer through the carpus [12, 23, 24]. When functioning normally, the central column of the 

wrist (the radius, the lunate, the capitate and the third metacarpal) displays an almost collinear 

alignment. Changes in alignment to any of the individual links of more than 5 to 10°, indicate the 

possibility of instability [25]. Carpal instabilities have been classified into six categories. These 

categories explain the chronicity, constancy, etiology, location, directions and pattern leading to 

and following the instability [5, 7, 20, 23-27]. Descriptions of instabilities should present 

information in all these categories [25]. 

Based on the time between injury and diagnosis (chronicity), instabilities can be divided into 

acute, subacute or chronic. Acute is when less than one week passes and therefore has the 

maximum chance of healing. Subacute is between one and six weeks with some chance of 

healing, while chronic is greater than 6 weeks with little chance of healing without surgical 

repair or reconstruction. 

Based on the severity of the injury (constancy), instabilities can be divided into static, 

dynamic or predynamic. Static is used to describe instabilities that are constant (reducible or 

irreducible) and can be observed on static radiographs (standard lateral and posteroanterior). 

Dynamic is used to describe instabilities that can only be observed on standard radiographs when 

a stress/load or motion is applied, which otherwise appear normal. Predynamic is when there is 

clinical evidence and symptoms of instability but the radiographs appear normal. 

Carpal instabilities can also be categorized based on the cause (etiology). The most common 

cause is injury (traumatic) and instability can occur at the time of injury or later. The cause of 

instabilities can also be diseases such as rheumatoid, neurologic, Kienbock’s [osteonecrosis of 
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the lunate], calcium pyrophosphate crystal deposition, infection or osteonecrosis of the capitate 

(inflammatory, arthritis); birth related (congenital); due to cancerous tissue growth (neoplastic); 

less commonly induced inadvertently by surgery (iatrogenic); or any other cause (miscellaneous) 

or combinations of causes. 

Depending on the location, instabilities can be divided into radiocarpal, midcarpal, 

intercarpal, carpometacarpal or affecting specific bones/ligaments. These provide general 

information on where the abnormality can be found. Radiocarpal instabilities arise from 

individual or combinations of palmar, dorsal and ulnar dislocations or from fracture-dislocations 

such as Barton’s and radial styloid fractures. Midcarpal instabilities arise from corresponding 

ligament attenuation or disruption. In rare instances, carpometacarpal instabilities arise from 

axial injury to the carpus such as axial-ulnar dislocation, axial-radial dislocation or both. 

Instabilities can also be classified based on similar pathologies leading to deformity 

(direction). Instabilities can be caused by a translational shift of the carpal bones which are 

divided into radial, ulnar, palmar, dorsal, proximal, distal or combinations of these. Instabilities 

can also be rotary as a result of angular deformity observed by the flexion or extension of part or 

whole of the proximal carpal row. Disruption to its distal stabilizers will cause the scaphoid to 

flex. Further scapholunate diastasis due to SLIL tear (or secondary from disease such as 

Kienbock’s), causes the scaphoid to collapse into a horizontal position perpendicular to the 

forearm long axis, known as rotary subluxation. Progressive disruption of the DIC and DRC 

ligaments and also the SLIL can lead to a deformity where the scaphoid collapses into flexion, 

along with extension of the lunate together with the triquetrum. This is known as dorsal 

intercalated segment instability (DISI). DISI also often occurs with nonunion or malunion of 

scaphoid fractures. Progressive disruption of the LTIL causes the triquetrum to extend, while the 

scaphoid and lunate collapse into flexion. This is known as volar intercalated segment instability 

(VISI). A more severe deformity occurs with significant global disruption of the palmar and 

dorsal extrinsic ligaments resulting in the carpus sliding down the ulnar slope of the distal radius. 

This is known as ulnar translocation. 

Depending on the pattern, instabilities can be divided into carpal instability dissociative 

(CID), carpal instability nondissociative (CIND), carpal instability complex (CIC) or carpal 
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instability adaptive (CIA). CIA occurs as a result of the normal carpus adapting to 

malalignments extrinsic to the wrist, as in the case of distal radius fracture malunion. CID occurs 

within the proximal or distal rows as a result of disruption to the intercarpal or interosseous 

ligaments (disruption of the SLIL or LTIL leading to scapholunate or lunotriquetral instabilities 

respectively), or distal row dissociation as a result of axial injury. Scaphoid fractures with SLIL 

tear without capsular injury are still classified as CID. CIND occurs between the proximal or 

distal rows as a result of disruption to the capsular ligaments as in the case of radiocarpal or 

midcarpal instabilities. CIC is a more severe pattern of injury occurring from a combination of 

CID and CIND such as perilunate instability. Perilunate instability begins with scapholunate 

instability due to SLIL disruption, followed by capitate dislocation, triquetral dislocation due to 

disruption of LTIL, and eventually lunate dislocation due to disruption of the palmar and dorsal 

radiocarpal ligaments. SLIL disruption with capsular injury, as in the case of distal radius 

fractures or transscaphoid perilunate dislocation, also fall under CIC. 

1.2. Scapholunate ligament injury/scapholunate instability 

Scapholunate instability is the most frequently occurring carpal instability [28-31]. Widening 

of the scapholunate interval as a result of injury, was first documented by Destot in 1926 [29, 

32]. Scapholunate instability can clinically range from partial tear of the SLIL and minor loss of 

function, to complete tear and incapacitating pain. The term scapholunate dissociation has only 

recently (1972) been created to refer to the mechanical disruption of the scapholunate link [29]. 

Pain can be a result of the injured wrist not being able to withstand normal/physiologic loads [28, 

29]. 

1.2.1. Pathophysiology and mechanism of injury 

As mentioned earlier, the SLIL is the primary stabilizer of the scapholunate joint. The intact 

SLIp and SLId are critical for normal joint motion. However, the palmar extrinsic and intrinsic 

ligaments (RSC, RSL, STT, SC) and dorsal capsular ligaments (DRC, DIC) also contribute to 

secondary stability. It is also believed that SLIL disruption alone may not show considerable 

changes on plain radiographs [29, 31]. SLIp tear alone shows minimal widening of the 

scapholunate gap. Further tear of the SLId shows some widening of the scapholunate interval, 

but significant widening is observed after disruption to the RSC ligament [29]. Also SLIL 
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disruption alone does not produce static lunate malrotation, but further disruption of the DIC and 

DRC produces DISI deformity [7, 29]. Thus, the secondary stabilizers are important to facilitate 

SLIL function. These ligaments may suffer progressive damage after SLIL injury as a result of 

continued usage without treatment, finally causing failure and further instability [29, 30]. When 

scapholunate diastasis and scapholunate malalignment are visible on plain radiographs, this may 

indicate injury not only to the SLIL but also to the secondary stabilizers. 

SLIL injury and scapholunate dissociation is the first stage of perilunate dislocation [20, 32]. 

The mechanism of injury is still unclear but is believed to occur as a result of an impact load to 

the base of the thenar/hypothenar region (fall on outstretched hand) in extension, ulnar deviation 

and supination, or during repetitive twisting motion (swinging a bat) [29, 30, 33]. This causes the 

capitate to drive proximally and palmarly, causing a palmar separation of the scaphoid and lunate 

(the scaphoid and lunate are forced radial-dorsal and ulnar-palmar respectively, in opposite 

directions). SLIL tears therefore initiate at the palmar section (SLIp) and progress dorsally [29]. 

Clinical examinations usually reveal early tears in the SLIp region [29, 34]. 

1.2.2. Diagnosis 

The earlier the diagnosis, the better the chance will be for a successful surgical intervention. 

However in most cases, SLIL injury is not diagnosed until the latter stages when radiographs 

clearly show the presence of abnormality. Sometimes a patient will consult a physician for 

treatment following a sudden impact load or fall on the wrist. More often than not, patients forgo 

treatment because they feel the injury is not significant enough (dismissed as a sprain), or that 

the symptoms they experience initially are manageable and not worth the time, effort and money 

involving a physical examination. They may not remember when the injury happened, or the 

injury may happen over time due to minor repetitive trauma. Also, SLIL injury may happen 

secondary to a more severe extracarpal trauma such as a distal radius fracture and may go 

unnoticed on radiographs due to the more obvious abnormality [29, 30, 33, 35]. 

Though symptoms vary between patients, common complaints are pain or weakness during 

normal usage and sometimes swelling. Upon careful examination, other causes of radial sided 

wrist pain such as dorsal ganglion, dorsal wrist impaction syndrome, tendinitis, de Quervain’s 

disease, scaphotrapezial arthritis, radioscaphoid arthritis, carpal tunnel syndrome, scaphoid 
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fracture and perilunate instability, can be eliminated. Another common complaint is a clicking or 

snapping feeling that causes pain and, rarely is loss of motion an issue initially, but can be later 

with progression [29, 30, 32, 33]. 

Upon physical examination, some tenderness or swelling may be noticed in the scapholunate 

area and pain localized to that area is cause to suspect the possibility of scapholunate 

dissociation. Watson’s scaphoid shift test can be performed for further verification. This involves 

placing the injured hand first in ulnar deviation. Pressure is then applied to the scaphoid 

tuberosity and the hand is moved from ulnar to radial deviation. This prevents normal flexion of 

the scaphoid and with the presence of instability, causes the scaphoid proximal pole to dorsally 

sublux over the dorsal rim of the distal radius causing pain. When the pressure is released, the 

scaphoid jumps back into its radial fossa with a snap or clunk. A positive result may also occur 

due to other pathologies such as joint laxity, synovitis etc., hence the contralateral normal hand is 

used for additional verification by comparing pain levels (injured more painful) [29, 30, 33]. 

This test is not very specific and additional evaluation is required for more accurate diagnosis. 

Radiographic evaluation involves at least the anteroposterior (AP) view (in full supination) 

and the lateral view (in neutral flexion/extension) [21, 29, 30, 32, 33, 36]. The AP view may 

show widening of the scapholunate gap known as scapholunate diastasis or the “Terry Thomas 

sign”. The widening is more pronounced in the AP supinated view compared to the 

posteroanterior (PA) view in pronation. A gap of more than 2 mm indicates the presence of 

abnormality, and scapholunate dissociation is suspect if the gap is more than 3 mm. The 

“scaphoid ring sign” may also be visible in the AP view. This happens when the scaphoid 

collapses in flexion and the distal pole projection looks similar to a ring. In addition, a less than 7 

mm decrease in distance between the distal and proximal poles (foreshortened scaphoid) 

indicates rotary subluxation. As a result, the lunate may appear trapezoid-shaped in extension. 

Other signs include disruption of Gilula’s lines (c-shaped lines defined at the radiocarpal and 

midcarpal levels) and reduction in carpal height ratio (< 0.54). The lateral view may indicate 

rotary subluxation of the scaphoid, with abnormal flexion and extension of the scaphoid and 

lunate (radiolunate angle greater than 15°), respectively. In the lateral view, the angle between 

the long axes of the scaphoid and lunate varies from 30° to 60° (average 46°) in normal 
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alignment. Scapholunate dissociation is suspect with scapholunate angle more than 70°. 

Capitolunate angle more than 30° and scapholunate angle more than 80° suggests DISI 

deformity. Also, in the lateral view, the long axis of the scaphoid and a line tangent to the distal 

radius volar flare form a “V sign” in the presence of abnormality, which are otherwise almost 

parallel normally. If the static AP or lateral radiographs appear normal, additional stress 

radiographs may be required to identify a dynamic instability. This can either be an ulnar 

deviated PA view or a clenched fist AP view. A preexisting gap will be further widened 

indicating abnormality, but always must be compared to the contralateral normal wrist. 

Fluoroscopy and cineradiography may also be used to detect abnormal motion [21, 29, 30, 32, 

33, 36]. 

Arthrographic evaluation can also be used to identify partial or complete SLIL tears, but is 

less commonly used due to low sensitivity and the problem of differentiating between 

degenerative and traumatic tears. While magnetic resonance imaging (MRI) can provide 

anatomical information, the quality (resolution, signal to noise ratio) of the images are usually 

not high enough to interpret the information accurately due to complex anatomy and small size 

of the ligament, compared to a larger joint such as the knee. MR arthrograms do not provide 

much further improvement. It is generally agreed that MRI is not very reliable for diagnosis [21, 

29, 30, 33]. 

Arthroscopy is considered the gold standard for diagnosing SLIL injuries [21, 29, 30, 33]. 

This technique allows the examiner to visually inspect and accurately assess the extent of 

tearing, damage to the internal ligament structures and changes in scapholunate articular 

surfaces, which may not be as clear using the other methods. A grading system (Giessler) is used 

to categorize SLIL tears into four grades as follows. Grade 1: attenuation of SLIL from the 

radiocarpal side with no midcarpal step-off (incongruency); Grade 2: attenuation of SLIL from 

the radiocarpal side with a step-off between the scaphoid and the lunate from the midcarpal side, 

1 mm probe can be placed in between; Grade 3: step-off can be seen from both the radiocarpal 

and midcarpal sides, 1 mm probe can be place into and freely rotated between the bones; Grade 

4: complete SLIL disruption with gross instability, 2.7 mm probe can be passed between the gap 

[21, 29, 30, 33]. 
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1.2.3. Clinical classification 

Scapholunate instability can be classified into four stages, based on how severely the 

scapholunate joint is injured [29, 30]. The first stage is known as predynamic instability, which is 

the earliest stage of injury. This involves partial tear to the scapholunate membrane resulting in 

abnormal scapholunate motion with synovitis and subsequent pain. All radiographs will appear 

normal and Grade 1 Giessler pattern may be observed. Lack of treatment can lead to attenuation 

of the secondary stabilizers causing further SLIL disruption, which may progress to dynamic or 

static instability. The second stage is dynamic instability, which involves tear of the SLIp or 

SLId. Plain radiographs may still appear normal, but the scapholunate gap may increase when 

viewed on stress radiographs. Damage to the ligament may also be observed on an arthrogram. 

SLIL disruption follows Grade 2 or 3 Giessler pattern. The third stage is static instability, which 

involves additional damage to the secondary stabilizers. In this stage the deformity is fixed and 

appears on plain radiographs (scapholunate gap ≥ 3 mm, scapholunate angle > 70°). Grade 4 

Giessler pattern is observed. This stage can also be subdivided as occurring with or without DISI 

deformity. Depending on the duration of the malalignment, static instability can either be 

reducible or irreducible. The final stage is scapholunate advanced collapse (SLAC), where 

continued use with altered mechanics as a result of scapholunate dissociation can cause 

progressive degenerative changes [29, 30]. 

1.2.4. Treatment 

Since scapholunate dissociation is not often diagnosed in its early stages, treatment of the 

instability is an ongoing challenge, with not very consistent results [29, 32, 33]. The ideal 

procedure for treatment still remains elusive. Depending on the time from injury, scapholunate 

injuries are described as acute (2 to 4 weeks from injury), subacute (4 weeks to 6 months from 

injury) or chronic (more than 6 months from injury) [21, 29, 30, 33]. Due to the variation in 

injuries between patients, many factors other than time can influence the choice for the most 

appropriate patient-specific treatment. 

A series of five questions have been proposed (Garcia-Elias) to address the treatment 

procedures for scapholunate dissociation [21, 29, 31, 37]. These questions are: “1) is the SLId 

partially or completely torn, 2) if complete, can the ligament be repaired and what is the healing 
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potential, 3) what is the status of the secondary scaphoid stabilizers (is radioscaphoid angle < 

45°), 4) is the carpal malalignment reducible, and 5) are the cartilaginous surfaces normal”. 

Depending on the answers, the following six stages of scapholunate dissociation have been 

proposed: “1) partial scapholunate injury, 2) complete SLIL tear with repairable SLId, 3) 

complete SLIL tear with nonrepairable SLId but a normally aligned scaphoid, 4) complete SLIL 

tear with nonrepairable tissue and a reducible rotary subluxation of the scaphoid, 5) complete 

SLIL tear with irreducible malalignment but no evidence of cartilage degeneration, and 6) 

complete SLIL tear with irreducible malalignment and cartilage degeneration [21, 29, 31, 37]”. 

Therefore, the treatment approach can be more specific to the stage of injury. In general, if the 

deformity is not fixed, the treatment should try to restore mechanical relationship between the 

scaphoid and lunate, with necessary soft tissue augmentation. However, if the deformity is fixed 

there is less chance of soft tissue methods succeeding, hence procedures to salvage the joint may 

be required to minimize pain. 

Patients with stage 1 injury may have pain on the dorsal side of the scapholunate joint. 

Radiographs may appear normal and arthroscopy is normally used for diagnosis. In stage 2, the 

SLIL shows good potential for healing as a result of early diagnosis of SLIL tear or with 

avulsion of the SLIL from the bone, where the ligament is still intact and attached to the 

osteochondral fragment. Radiographs may still appear normal due to intact secondary stabilizers 

and arthroscopy is normally used for diagnosis. With stage 3, the SLIL tears in the middle and 

the ends usually shrink and degenerate within a week of injury, thus displaying poor potential for 

healing. Normal alignment is still observed due to intact secondary stabilizers. In stage 4, 

malalignment and DISI deformity are observed on radiographs due to additional disruption of the 

secondary stabilizers but because of the early stages of the deformity, reduction of the 

scapholunate gap is possible [29]. The following treatment methods have been applied to the first 

four stages. 

With acute scapholunate dissociation, casting and immobilization (in full supination, ulnar 

deviation, and mid-extension) have been performed, but this technique is now considered 

unreliable because it is difficult to achieve sufficient immobility in the different positions of cast 
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fixation to facilitate healing. The positions either widen the gap (in extension) or further flex the 

scaphoid (in flexion) [21, 29, 33]. 

In the acute stages of injury, closed reduction with Kirschner wire (K-wire) fixation is also 

performed and has demonstrated good results [21, 29]. The scapholunate gap is reduced and held 

in place by K-wires till healing takes place without the need to surgically open the joint [21, 29]. 

Arthroscopic debridement (with pin reduction) is also performed in the acute stage for partial 

SLIL tears [21, 29, 31]. Torn fragments of the SLIL are thought to cause synovitis and irritation 

in the joint. The fragments are arthroscopically cleaned or removed to facilitate healing. This 

technique is found to be more effective in lowering symptoms for partial versus complete tears, 

and offers a minimally invasive treatment option for patients [21, 29, 31]. 

Electrothermal collagen shrinkage has also been performed in addition to arthroscopic 

debridement [29]. This technique uses heat (75°C) to reduce SLIL laxity by changing the 

mechanical properties of type I collagen and increasing stiffness. There is potential for risk as 

collagen damage occurs beyond 80°C, including damage to articular surfaces and neurovascular 

tissue due to their proximity to the ligament [29]. 

Open reduction, internal fixation and SLIL repair (direct repair) is also performed in the 

acute stage, if the secondary stabilizers appear intact and no degenerative changes are observed 

[21, 29, 31, 34, 38, 39]. With this technique, the effectiveness of scapholunate joint reduction can 

be directly visualized and the SLId can also be repaired. The joint is accessed from the dorsal 

side near the Lister’s tubercle. K-wire joystick reduction of the joint is performed. Drill holes are 

made through the scaphoid proximal end. The SLIL and scaphoid are held together by sutures 

secured to the scaphoid waist. Additional pinning of the scaphoid and lunate is performed (6 to 8 

weeks) to keep the joint immobile (including wrist splinting), while healing takes place. Only 

repair of the SLId can be performed and results show improvement in pain and grip strength with 

some loss of motion [21, 29, 31, 34, 38, 39]. 

Capsulodesis is used to augment SLIL repair and provide further stability [21, 29, 30, 40, 

41]. This treatment is also used when there is insufficient ligament for direct repair or in the 

subacute stage where disruption to the secondary stabilizers is also present. A portion of the 
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dorsal capsule (Blatt/dorsal capsulodesis) or DIC ligament (DIC capsulodesis) is used to stabilize 

the scaphoid and prevent it from collapsing into flexion. Results show improvement in pain and 

function but with some loss of flexion motion [21, 29, 30, 40, 41]. 

Bone-tissue-bone grafts have also been performed with varying degrees of success in the 

subacute and chronic stages when the SLIL is insufficient for successful healing to take place 

[29-31, 42]. Various autografts are used to reestablish the scapholunate relationship. These 

include bone-retinaculum-bone grafts (extensor retinaculum) and bone-ligament-bone grafts 

(tarsometatarsal ligament, dorsal CH ligament, dorsal trapeziometacarpal ligament) [29-31, 42]. 

Tenodesis is another approach used in the subacute and chronic stages, where injury to the 

scapholunate joint is reducible [21, 37, 43-47]. This is used to augment fixation of the 

scapholunate interval. Several techniques have been used including four-bone ligament 

construction (a strip of the extensor carpi radialis brevis tendon passed through the capitate, 

scaphoid, lunate and radius), a strip of extensor carpi radialis longus tendon passed through the 

scaphoid, across the lunate and triquetrum (Linscheid), a strip of the flexor carpi radialis tendon 

passed through the distal scaphoid pole and attached to the distal radius (Brunelli reconstruction) 

or dorsal lunate (Van Den Abbeele) or the three-ligament tenodesis (Garcia-Elias) which is a 

further modification of the Brunelli, Linscheid and Van Den Abbeele techniques. The three-

ligament tenodesis procedure involves accessing the joint from the dorsal side near the Lister’s 

tubercle. A groove is made in the cortical dorsal distal lunate. A strip of the FCR tendon is 

passed through the scaphoid tuberosity along the region of the SLId and suture anchored into the 

lunate groove. It is then passed through the DRC ligament and sutured onto itself. Additional K-

wire pinning (6 weeks) of the scapholunate and scaphocapitate joints is performed and the wrist 

is placed in a splint for another 4 weeks. This provides stability to both the proximal and distal 

scaphoid and results indicate lessened pain, improved grip strength and motion and decreased 

scapholunate gaps [21, 37, 43-47]. 

Less commonly, scaphoid and lunate reduction is performed using screws in the subacute 

stage. However this causes problems with scapholunate motion in RUD and the long-term 

effectiveness of this method remains a question [29]. 
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Newer soft tissue reconstruction techniques have also been recently introduced to address the 

first four stages of injury. These involve minimally invasive arthroscopic repair of the volar 

section [48], minimally invasive arthroscopic repair of the dorsal section with dorsal 

capsuloplasty [49], minimally invasive arthroscopic bone-tendon-tenodesis ligamentoplasty 

(which aims to improve on the three-ligament tenodesis by reducing soft tissue trauma and 

providing more mobility postoperatively) [50], or combination of an extensor carpi radialis 

longus tenodesis and DIC capsulodesis [51]. 

Stage 5 of scapholunate dissociation occurs when the static deformity has been present for a 

while causing fibrosis, resulting in a fixed irreducible malalignment. In such instances, soft tissue 

techniques are highly likely to fail. Hence, limited carpal fusions are performed to reduce pain 

and deformity and preserve motion [21, 29, 52-54]. These techniques include scaphoid-

trapezium-trapezoid (STT, triscaphe) arthrodesis, scaphocapitate arthrodesis, scapholunate 

arthrodesis and scapholunocapitate arthrodesis. Since the scaphoid and lunate have a tendency to 

separate, scapholunate arthrodesis has a higher rate of nonunion and is considered unreliable. 

Additional procedures such as radial styloidectomy, may be required to improve effectiveness 

(STT fusion). Overall, there is improvement in pain levels and function, while resulting in 

greater loss of motion [21, 29, 52-54]. 

With degenerative changes associated with stage 6 of scapholunate dissociation, more 

extreme salvage procedures are required to minimize wrist pain but with considerable loss of 

motion [21, 29, 30, 55, 56]. These include four-corner (capitate, lunate, triquetrum and hamate) 

fusion with scaphoid excision (also known as the SLAC procedure or midcarpal arthrodesis) and 

proximal row carpectomy (PRC). Dorsal distal radius limited resection (SLAC procedure) and 

radial styloidectomy (PRC) may be required as well. Additional salvage procedures such as total 

wrist arthrodesis and total wrist arthroplasty are also performed as last resort options, but only 

after considering all associated factors (age, degree of pathology, occupation, physical demands 

etc.) [21, 29, 30, 55, 56]. 

Patients may also opt for conservative treatment as an alternative to surgery. Different 

options are available to aid the healing process. These include periodic immobilization, using 

braces that support the wrist during functional activity, nonsteroidal anti-inflammatory drugs 
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(NSAIDs), physical therapy (stretching and strength exercises) and gradual loading of the injured 

hand [33]. It is also believed that repetitive usage following injury will lead to progressive 

damage to the secondary stabilizers, causing further instability [29, 30, 33]. Scapholunate 

dissociation is usually diagnosed several weeks or months after injury, when pain becomes 

intolerable and patients start experiencing limited mobility. Therefore, conservative treatment is 

not often recommended [33]. The goal of surgery is to reduce the ensuing pain and deformity 

and to restore normal alignment and functional relationship. Though the mechanism is still 

unclear, scapholunate dissociation is known to progress to SLAC in its final stages and 

associated radiocarpal osteoarthritis [57-61]. 

1.3. Osteoarthritis and associated factors 

Osteoarthritis (OA) is a degenerative joint disease that affects the middle aged and elderly 

population more than any other joint disease [62, 63]. Primary OA commonly occurs due to 

unknown causes and predominantly affects the elderly. On the other hand, secondary OA can be 

initiated by trauma/injury to a joint and this can affect anyone, especially from the younger 

active populace [62, 63]. OA is believed to affect approximately 10% of the world’s population 

over 60 [62, 63]. Over 20 million Americans are estimated to suffer from OA, which accounts 

for 13.9% of the population over 25, and 33.6% over 65 [64]. The prevalence of radiographic 

OA is highest for the hand (7.3/100), and the prevalence of symptomatic OA of the hand (8/100) 

is second only to the knee (12.1/100) [65, 66]. Hand OA has the second highest age and sex-

standardized incidence rate (100/100,000 person years) compared to the knee (240/100,000 

person years) and hip (88/100,000 person years) for symptomatic OA [67]. Functional 

debilitating effects are commonly seen in the weight bearing joints (knee or hip), but with hand 

OA, people also often complain about considerable difficulty in grasping and even the inability 

to grasp in more severe cases. While figures are speculative, it is estimated that overall OA job-

related economic losses range from $3 to $14 billion annually [62]. This is mainly due to the 

debilitating effects of the disease that impact quality of life and function, especially in the 

working class. There is no effective way to prevent or cure OA, and with the onset of OA, there 

is no generally accepted medical treatment to prevent the loss of cartilage [63]. 
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Age is believed to be the primary risk factor for OA. The capacity of cartilage cells 

(chondrocytes) to repair and maintain a healthy joint is thought to diminish with age, thereby 

causing progressive deterioration of the articular surfaces [62, 63]. While normal regular use and 

physical activity aid normal joint health and function, excessive loading or repetitive loading that 

exceeds physiological limits can lead to joint degeneration [62, 63]. Disruption of normal joint 

function as a result of injury (intra-articular fractures, dislocations, ligament/capsule tears) can 

cause post-traumatic OA [62, 63]. The risk of post-traumatic OA maybe further increased with 

age [62]. It is important to understand how the risk of developing OA varies with injuries to 

different joints (the wrist, for instance); how the risk of developing OA varies with the type of 

injury to a particular joint (SLIL injury, for instance); how long it takes to develop OA once a 

joint is injured and the rate and mechanism of progression after onset of OA. Insight into these 

areas may supplement our understanding of the relationship between joint injuries and OA. 

The mechanism of post-traumatic OA is not well understood. It is hypothesized that injury to 

a joint may cause changes in positions and orientations of the various bones and articulations, 

which correspondingly alter normal load transfer through the joint. While there is still much 

controversy concerning the effects of SLIL tears on scapholunate motion, it is commonly 

accepted that disruption to the ligament can cause changes in the normal scapholunate 

relationship, leading to loss of alignment [14, 28, 57, 58, 68]. This is the beginning of 

scapholunate instability. With continued usage, there is further damage to the secondary 

stabilizers that leads to progressive instability, thereby causing further malalignment/deformity. 

As mentioned previously, apart from global motion of the proximal carpal row, the individual 

bones also move relative to each other within the row, the scaphoid being the most mobile. With 

its oblique orientation, scaphoid motion is constrained at both its proximal and distal ends by the 

primary (SLIL) and secondary stabilizers (RSC, STT, SC), respectively. Disruption of the SLIL 

causes the scaphoid to collapse into flexion (while the lunate extends more), and its mobility is 

further increased. Further disruption to its secondary stabilizers causes rotary subluxation of the 

scaphoid. These changes in alignment (positions and orientations) can lead to abnormal 

kinematics [68-71]. Loss of normal alignment and abnormal kinematics can lead to changes in 

load transfer through the joint. Cadaveric experiments have shown that under simulated normal 

conditions, 80 – 83% of the load is transferred from the wrist to the forearm through the 
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radiocarpal joint, and 17 – 20% through the ulnocarpal joint [5, 6]. Of the load transferred 

through the radiocarpal joint, 60% is transferred through the radioscaphoid joint and 40% percent 

through the radiolunate joint [5, 27, 72]. On average, only 20.6% of the radius articular surface is 

in contact with the scaphoid and lunate (scaphoid contact area being 1.47 times greater than 

lunate), and does not exceed 40% despite the magnitude of loading [5, 6, 27, 72]. The magnitude 

and location of contact vary with wrist position and direction of motion. Abnormal load transfer 

characteristics can lead to changes in articular surface contact locations and distributions. The 

scaphoid articular facet on the radius fossa is elliptical (triangular region of contact), while the 

lunate articular facet is spherical (quadrangular region of contact) [35, 73, 74]. Under normal 

conditions, the oblique scaphoid is congruent in its radius facet. With rotary subluxation of the 

scaphoid, the proximal articular surface looses it congruency with its radius facet and contact is 

shifted to the volar and dorsal rims of the distal radius [35, 73, 74]. This leads to a progressive 

pattern of degeneration known as SLAC. Degenerative changes do not appear to occur as a 

consequence of original insult to the joint (injury event), but rather due to abnormal changes in 

kinematics and contact locations that progressively occur following SLIL injury. As such, 

restoring kinematics and normal alignment may prevent the onset of degeneration. 

About 95% of wrist degeneration occurs around the periscaphoid region [73, 74]. Of these, 

SLAC pattern of degeneration is the most common (55%), followed by triscaphe OA (26%) or a 

combination of the two (14%) [73, 74]. In other words, SLAC pattern of degeneration is the most 

common form of wrist OA [55, 56, 60, 61, 73, 74]. While the mechanism is not clearly 

understood, scapholunate advanced collapse follows a consistent, predictable pattern [61, 73-75]. 

Degenerative changes are first observed between the radius and scaphoid in the radial styloid 

region, which is the most radial portion of the distal radius articular surface (stage I). In stage II, 

the entire radioscaphoid joint is affected by OA. With further degeneration and scapholunate 

diastasis, the proximal capitate is driven between the scaphoid and lunate. Hence, with stage III 

along with radioscaphoid OA, degeneration of the midcarpal joint at the capitate-lunate interval 

is also observed. Due to its spherical fossa, the radiolunate articulation is thought to maintain its 

congruency even with instability [55, 61, 73, 74]. Therefore, degenerative changes are not often 

seen at the radiolunate interval. However, the entire radiocarpal joint can be affected eventually 

(pancarpal OA) with progressive perilunar instability [76]. 
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Since scapholunate dissociation is not often diagnosed in its acute stages, but rather well into 

the injury stage, it is possible that degenerative changes, though not yet visible, may have already 

begun to take place (microscopic changes). Due to the different stages of injury and instability, 

there is still much controversy concerning the right choice of treatment, which is not easy to 

choose [37, 43]. The ideal timing of SLIL repair is not yet known [39]. It is also believed that the 

ideal treatment when the SLIL is irreparable, without the presence of OA, has not yet been 

determined [46]. For this stage of injury, Blatt dorsal capsulodesis is the most common treatment 

used in the US and Canada [46]. With evidence of degeneration, the choice of salvage 

procedures for treatment is more obvious. No matter what the surgical treatment used, the goal is 

to minimize/eliminate pain, correct the malalignment/deformity, restore normal function and halt 

the progression of OA [46, 75]. However, the outcome of surgery is less positive for static 

deformity compared to dynamic, and surgical effectiveness decreases with increasing severity of 

the stage of injury at the time of diagnosis [34]. Also, the results of SLIL repair vary with the 

type of occupational activities (strenuous vs. non-strenuous) performed postoperatively [39]. 

Hence, it is not uncommon to observe degenerative changes even after surgical intervention [34, 

39, 43, 46, 53]. Even the more successful three-ligament tenodesis procedure has up to 20% 

failure rates [50]. Therefore, it is important to identify the mechanisms that cause these 

degenerative changes. Rates of degenerative changes are not uniform – they can remain 

unchanged, manifest intermittently over a long period or rapidly progress in a short amount of 

time [62]. During the time of degeneration, partial repair of the degenerated articular surface has 

been observed, indicating the possibility for treatment by identifying the biological and 

mechanical factors that facilitate restoration of the joint [62, 77]. Joint contact pressures and 

pressure distributions are considered to be important mechanical factors. 

The relationship between joint contact pressures and OA is complex. It is accepted that the 

risk of OA is increased with increase in articular surface contact pressures [78-84]. However, the 

mechanism is unclear and the role played by joint contact pressures is still under debate. 

Excessive loading of the joint (as a result of obesity, strenuous physical activity, post-traumatic 

incongruity/deformity and dysplasia) is thought to increase the risk of OA [62, 63, 79, 85-88], 

but cartilage thickness and properties have also been shown to increase in areas exposed to 

higher contact pressures [78, 85, 89, 90]. Once the tissue begins to degrade, further loading is 
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thought to increase the rate at which OA progresses [85]. On the other hand, unloading the joint 

surface (joint distraction) has been shown to both cause degenerative changes (progressive 

thinning/atrophy) [77, 78, 80, 89-92], and also improve the health of degenerating cartilage [93]. 

There appears to be a connection between cartilage loading and tissue response to the mechanical 

stimulus [77, 78, 85, 87, 89, 90]. The impact of loading on degeneration may vary from the 

subchondral level to the articular surface (3D stresses), and also be influenced by the properties 

of the cells and the extra cellular matrix (anisotropy and biphasic nature) [62, 80, 84, 89]. With 

SLIL tears, changes in pressure distribution are observed following abnormal kinematics and 

load transfer through the radiocarpal joint [69]. Under simulated normal conditions, cadaveric 

experiments have shown peak contact pressures to be relatively low, averaging 3.17 MPa, and 

varying with wrist position [27]. With fixed position and static loading, an increase in contact 

pressure in the radioscaphoid joint has been observed after SLIL sectioning [69]. With SLIL 

sectioning under dynamic motion, a decrease in scaphoid contact and an increase in lunate 

contact was observed, with contact pressure shifting from the scaphoid to the lunate fossa [69]. 

With instability/deformity, a shift in the location of contact to regions of the articular surface that 

are not normally loaded (80% of the available surface) maybe a more critical factor, apart from 

an increase in peak contact pressures in the normal contact regions. It is possible there exists a 

range of contact pressures that are required to maintain physiological function, and that 

exceeding this limit maybe one of the factors that initiate the onset of OA. A tool to evaluate 

changes in contact pressure that occur in vivo may provide insight into the mechanism of post-

traumatic OA. The ability to monitor the location of peak contact pressure and contact pressure 

distribution, may help predict tissue wear or the onset and progression of degradation. 

1.4. The role of magnetic resonance imaging 

Magnetic resonance imaging is an excellent 3D imaging modality that can be used to obtain 

qualitative and quantitative information, to evaluate the structure (anatomy/morphology) and 

function (physiology) of tissue. MRI allows for direct visualization of soft tissue, such as 

articular cartilage, non-invasively. However, in order to correctly differentiate between the 

various soft tissue morphologies, the MR images must have sufficient signal/contrast-to-noise 

ratio ([S/CNR] to delineate different interfaces and to minimize chemical shift artifacts), spatial 
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resolution (to precisely capture the geometry) and reasonable image acquisition times (to 

minimize motion artifacts and patient fatigue) [94]. 

MRI has been primarily used for diagnostic purposes in the wrist, especially with regards to 

identifying pathologies in their early stages of progression [95-100]. MRI has been used to 

evaluate ulnar-sided wrist pain (such as TFCC disorders/tears, ulnar impaction syndrome, distal 

radioulnar joint instability), nerve impaction syndromes (such as carpal tunnel syndrome, 

Guyon’s canal syndrome), benign soft tissue masses (such as giant cell tumor, dorsal ganglion), 

osteonecrosis/avascular necrosis (such as Kienbock’s disease, Preiser’s disease), occult fractures 

(scaphoid, distal radius), carpal instabilities, tendinopathies (such as tendinitis, tenosynovitis, 

ruptures), synovial abnormalities (inflammation, edema, effusions), ligament abnormalities/tears 

and arthritis (rheumatoid, OA). Depending on the imaging sequence, the signal intensity varies 

between low and intermediate for the intact SLIL. With disruption, one can observe 

discontinuities/fragments within the ligament with higher signal intensity, morphological 

distortion of the ligament, or complete absence with synovial fluid in the ligament space [95, 96]. 

MRI is very useful for the early diagnosis of OA, as it is possible to characterize the progressive 

degrading of articular cartilage (increase in signal intensity from effusion, focal thinning, 

narrowing of joint space, to complete loss) [94, 95]. 

MRI has been used to evaluate morphological and biochemical changes in articular cartilage 

in vivo. Degenerative changes may already begin to occur at the microscopic level before any 

visible changes are present (partial/full-thickness focal defects). It may be possible to indentify 

the onset of degenerative changes by evaluating associated changes in proteoglycan (PG) and 

glycosaminoglycan (GAG) content, which alter normal physiology. This has been achieved 

through measurements such as T1 relaxation time in the presence of Gd-DTPA (T1[Gd]) also 

known as delayed gadolinium enhanced MRI of cartilage ([dGEMRIC] sensitive to PG content 

and GAG distribution) [101, 102], T2 relaxation times (sensitive to collagen integrity and 

orientation) [103], and T1rho (sensitive to bound water) [104]. However, these measures are not 

completely effective and do not provide any information about the biomechanical properties. 

With injury, cartilage may still have good structural and biochemical properties initially, which 

may suddenly change as a result of abnormal mechanics. Correlating structural and biochemical 
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changes with in vivo biomechanical properties, may provide useful insight into the pathology of 

OA. 

MRI has been used to obtain in vivo 3D geometry for model construction. Computed 

tomography (CT) provides images with better contrast and higher resolution, however, there is 

the risk of radiation exposure and also the inability to directly acquire soft tissue information 

[94]. Bone and cartilage anatomy have been segmented from MRI images primarily to construct 

3D models, especially for finite element analyses [105-110]. Studies involving these models 

have focused more on the lower extremity, where loading (force) or boundary (kinematics) 

conditions were acquired separately through experiments (subject-specific EMG or motion 

capture), or from pre-existing resources (standards or literature) [105, 107, 108]. Due to the 

relatively low contrast between the soft tissue interfaces, no fully automatic segmentation 

method is available and substantial manual work is required [106]. However, with techniques 

such as fat suppression (by fat saturation or water excitation), it is possible to improve contrast 

(especially at the subchondral level) and minimize chemical shift artifacts, which allows for 

semi-automated segmentation [94]. The technique to obtain model geometry has been further 

extended to also obtain direct in vivo contact area measurements from MRI scans. MRI scans of 

different joints have been acquired in various static or quasi-static positions or loading 

conditions. The effective contact areas (patellofemoral, tibiofemoral, for example) were obtained 

by segmenting regions of articular surface contact or by constructing models of the joint [111-

115]. More advanced MRI techniques have also been used to acquire muscle geometry (diffusion 

tensor MRI) and moment arm data (dynamic MRI) [106]. Future advances in body or parallel 

imaging methods and pulse sequences may improve the process of acquiring model geometry 

[106]. 

MRI has been used to evaluate in vivo joint kinematics, mainly in the load bearing joints. As 

mentioned earlier, in vivo carpal kinematics is very complex (position and direction dependent). 

The majority of the wrist kinematic studies have been experimental studies involving invasive 

marker techniques [13, 14]. However, in vitro conditions may not accurately represent in vivo 

conditions and these studies do not consider the impact of disrupting the surrounding tissue by 

marker placement, or account for the effects of dynamic motor stabilization in vivo [13, 14]. In 
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vivo kinematics can also be acquired using surface markers and motion capture systems but this 

may not accurately represent internal motion, especially in the complex joints such as the wrist 

[106]. Recently, a CT-based markerless surface registration technique has been used to precisely 

measure 3D in vivo carpal kinematics, but radiation usage is still a limitation, even with quasi-

static positioning and low-dosage protocols [13]. Markerless volume-based registration using 

MRI may not be as sensitive to errors from segmentation, and has been shown to have a 

similar/better accuracy compared to the surface registration techniques (mean translation error of 

0.21 mm and rotation error of 1.29° compared to mean translation error of 0.8 mm and rotation 

error of 1.5° for CT-based surface registration), without the risk of exposure to radiation [13, 16, 

116]. MRI, from images acquired at static or quasi-static positions (kinematic MRI) or loading 

conditions, has been frequently used to determine 3D wrist motion (scaphoid, lunate, capitate 

contributions to radiocarpal and midcarpal joint motion in FEM, RUD and DTM; triquetrum-

hamate joint motion etc.) and also flexor tendon motion in the carpal tunnel [116-120]. Cine 

phase-contrast (cine-PC) MRI has also been used to determine motion in dynamic conditions 

[106]. Future advances, which include real-time MRI and rapid MRI techniques (ultrafast 

gradient recall echo [GRE], echo planar), have the potential to provide more accurate in vivo 

kinematics [99, 106]. MRI together with volume-based registration, may provide accurate 3D in 

vivo kinematics non-invasively, representative of actual normal bone motion and changes in 

motion from injury, in order to evaluate surgical treatments at different time points. 

MRI has also been used to evaluate in vivo deformation of soft tissues. While, there is no 

non-invasive way to directly evaluate in vivo deformation of cartilage under dynamic 

motion/load, it is possible to quantify in vivo deformation based on images acquired at different 

static positions/loading conditions [121, 122]. Cartilage surfaces are segmented from images 

acquired before and after different positions and loading conditions, from which volumetric 

(surface area, thickness) measurements are made (quantitative MRI). These measures have been 

used to quantify, for example, patellar, tibiofemoral cartilage thinning/deformation with static 

and dynamic loading, or with age [94, 121-125]. However, the measures determined from 

dynamic conditions, do not represent deformation during the loading activity, but rather residual 

deformation after. This method is also very sensitive to segmentation errors (from multiple sets 

of images) and it is not easy extrapolate surface strains, contact stresses and contact force data 
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from the deformation maps. Cine-PC MRI, along with other advanced techniques such as MR 

tagging and MRI with displacement encoding with stimulated echoes (DENSE), have also been 

used to image muscle deformation and directly visualize and quantify myocardial tissue 

deformation/strains [106]. Future advances, such as ultra short echo-time (UTE) pulse sequences 

and MR elastography, may improve signal from structures with short transverse (T2) relaxation 

times (such as cartilage), and provide information on mechanical response [106]. 

While MRI is limited in its diagnostic value for wrist ligament injuries, it can be very useful 

to obtain in vivo data such as geometry and kinematics. The data can be incorporated in 

computational models to provide insight into changes in joint contact mechanics that may trigger 

the onset of OA. This combination may also be very useful to provide clinically relevant 

information that can help evaluate different surgical treatments. 

1.5. Modeling approach 

Computational modeling is a very helpful tool to evaluate joint abnormalities and simulate 

the outcomes of surgical treatments. Models can be used to estimate parameters, which are 

otherwise difficult to obtain experimentally (dynamic muscle forces for instance). Currently, 

computational modeling is the only technique by which prediction of joint contact mechanics 

may be possible, noninvasively [126]. However, many models are generic, with input parameters 

derived from a wide range of resources (experiments, standards, literature) [106]. These models 

are limited in their applicability for patient-specific treatments and therefore highlight the 

importance of subject-specific results. 

Several cadaveric experiments have been performed to evaluate normal carpal joint 

mechanics. Contact areas, contact forces, contact pressures and pressure distributions have been 

measured using sensors inserted into the joint space under different positions and/or loading 

conditions [5, 6, 27, 72]. Several cadaveric experiments have also been used to investigate how 

diseases (such as Kienbock’s) and injuries such as carpal instabilities (SLIL injury/scapholunate 

instability and progressive perilunate instability, DISI, VISI, ulnar translocation), fractures 

(scaphoid proximal pole, ulnar styloid) and fracture malunions (distal radius), alter normal joint 

mechanics and the biomechanical results of corresponding surgical treatments (limited 

intercarpal fusions [SC, STT, CH, scaphoid nonunion limited fusion], implant arthroplasties 
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[silastic scaphoid implant], joint leveling procedures [radial shortening, ulnar lengthening], etc) 

[69, 72, 127]. However, as mentioned previously, loading conditions and mechanisms are 

different in vivo. In vivo conditions are much more complex and cadaveric experiments may not 

accurately represent these conditions (for instance soft tissue interactions and dynamic motor 

stability). The magnitude and direction of loading vary with condition (static/dynamic), and also 

with the position and direction of wrist motion. It has been determined that actual forces 

transferred from the metacarpals to the distal carpal row, may exceed ten times the applied finger 

force [12]. While useful, cadaveric studies that evaluate surgical repair only provide immediate 

mechanics results, and cannot be used to assess prolonged effects at future time points. They also 

do not account for the effects of tissue healing response. 

The majority of in vivo wrist studies have focused on carpal bone kinematics. These studies 

have investigated normal carpal bone positions and orientations during different functional 

activities, and how normal kinematics are adversely affected by SLIL injury [13, 14, 16-18]. 

Some in vivo wrist biomechanics studies have looked at contact forces and stress on the median 

nerve resulting from carpal tunnel syndrome [118, 128]. Most of the in vivo studies involving 

SLIL repair, have focused only on the visual or functional outcome of surgeries used to treat the 

different stages of injury (predynamic, dynamic, static or SLAC). These studies have compared 

visual/functional data between pre and post surgical repair and also to the normal hand, to assess 

the effectiveness of the surgery. Improvements in pain level (visual analogue scale), function 

scores (disabilities of the arm, shoulder and hand [DASH] questionnaire), grip strength (pinch, 

grasp), range of motion (FEM, RUD), bone angles/height, scapholunate gap and patient 

satisfaction (have the same surgery again or not) have been used to determine a positive or a 

negative outcome of treatment [34, 37-41, 52, 53, 55, 56]. As mentioned previously, contact 

pressures are an important mechanical factor associated with OA risk. Hence, it may be more 

clinically relevant to compare in vivo contact pressures and other contact parameters before and 

after surgery, to evaluate the different surgical procedures. Most of the modeling studies 

investigating normal, injured and postoperative in vivo joint mechanics have focused on the 

lower extremity. These studies have used patient-specific model geometries to simulate ACL 

injury, patellofemoral joint mechanics and the Maquet procedure, tibial tuberosity transfers, total 

knee arthroplasty, tibio-menisco-femoral contact behavior with variations in kinematics, hip 
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implant design, femoral osteotomies and various other orthopedic procedures [79, 106, 108, 110, 

129, 130]. Most of the computer simulation joint mechanics studies of the wrist have been 

cadaveric studies (normal radiocarpal mechanics during simulated grasp, effects of injuries 

[intra-articular distal radius fracture and Colles’ fracture], and surgical treatments [CH, SC, STT 

fusions for Kienbock’s disease and four-corner arthrodesis], etc) [131-136], with only a few in 

vivo studies [137-142]. The in vivo wrist joint mechanics studies have investigated normal 

mechanics (radiocarpal mechanics during active grasp [142], radiocarpal and midcarpal 

mechanics in maximal extension [141], load transmission through the neutral wrist during static 

loading [139]) and simulations of some injuries and treatments (scaphoid fracture [140] and 

scaphoid nonunion surgery; such as screw reduction [138] and distal fragment resection [137]), 

but there does not appear to be any prior modeling work on the in vivo effects of SLIL 

injury/repair. 

The common general approach to musculoskeletal modeling involves acquiring model 

geometry using CT or MR images, from which surface or volume meshes are generated [106, 

108]. If models are constructed from CT images for joint contact analyses, then alternate 

methods may be required to obtain/define cartilage geometry/surfaces. These include using 

additional contrast agents or separate MRI scans to visualize cartilage anatomy, projecting 

cartilage surfaces from the bone surfaces (to a specified thickness or to half the joint space), or 

replacing cartilage with a mechanical equivalent (compression springs). Kinematics are acquired 

separately using motion capture systems or by matching/registering bone models to dynamic 

images acquired from biplanar fluoroscopy, and muscle forces are acquired using EMG. These 

are input into the model to obtain joint kinematics and joint reaction forces. The kinematics and 

force outputs from the model are implemented in a finite element model to determine contact 

stresses on the articular surface, or even volumetric stresses and strains. 

Finite element (FE) modeling and rigid body spring modeling (RBSM) are commonly used 

for joint contact analyses. Computer models need to be validated with experimental studies to 

ensure sufficient accuracy of the model results [126, 129]. RBSM has been used to evaluate joint 

contact forces and ligament tension [107, 135, 137, 141, 143]. In this method, bones are modeled 

as rigid, while ligaments and cartilage are modeled as tensile and compressive springs, 
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respectively. Joint reaction forces are determined from the stiffness and deformation of the 

springs when equilibrium is reached, upon application of a known external load. While this 

technique is computationally efficient compared to FE modeling, the major drawback is 

replacing the actual articular surface with discrete springs [135, 143]. 

Combining MRI with modeling may prove to be a useful tool to determine in vivo joint 

mechanics during functional loading, and this method has not been extensively used. MRI is 

believed to be the best technique to obtain subject-specific geometries [108]. MRI can be used to 

obtain bone and cartilage geometry simultaneously within the same coordinate system, thus 

eliminating the need for coordinate system registration and transformation when acquiring 

geometries from different imaging modalities. Also, MRI can be used to obtain kinematics non-

invasively from scans acquired during functional loading. Surface contact modeling is very 

useful to determine contact parameters from interpenetration of rigid bodies based on a contact 

rule [130, 136, 138, 144, 145]. However, there are limited studies that combined MRI with 

surface contact modeling for joint contact analyses. MRI-based surface contact modeling has 

been shown to be very useful to determine contact parameters in the wrist [133, 134, 142, 146]. 

This technique has been sufficiently validated with experimental studies for models constructed 

from research (9.4T) [133, 134] and clinical (3T) [146] MRI scanners. Displacement driven 

contact mechanics data (contact areas, contact forces, peak contact pressures and pressures), 

were determined using a contact algorithm that defined contact force as linearly proportional to 

strain. These studies showed that contact area and contact force outputs from model simulations 

were reliable, but there was more variability in mean and peak contact pressure data. To evaluate 

changes in joint mechanics as a result of injury/surgical intervention, it may be sufficient to look 

at surface contact mechanics data. Hence, MRI-based surface contact modeling has the potential 

to provide clinically relevant data in a relatively simple and computationally efficient manner, 

without the need for complex nonlinear analyses. Since the models are displacement controlled, 

there are no a priori force assumptions, thereby making the technique more accurate and reliable. 

Also with this technique, model geometries and boundary conditions are already available, and 

therefore can be directly implemented in an FE model, without the need for additional modeling 

steps. 
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FE modeling is the most common and accurate technique to obtain joint contact stresses 

[108]. This involves discretization of a complex system into finite elements and analyzing the 

behavior of the individual elements to approximate the response of the entire system. The 

process involves generating FE meshes of the model, defining geometric and material properties, 

specifying loading and boundary conditions, and solving a system of matrix equations for 

prescribed interactions to obtain displacements, stresses and strains throughout the model. 

Studies have used linear (4 node)/quadratic (10 node) tetrahedral or linear (8 node)/quadratic (20 

node) hexahedral (brick) elements to generate bone and cartilage meshes [79, 110, 126]. 

Cartilage is usually modeled as a deformable, homogeneous, linear elastic, isotropic solid [79, 

107-110]. If time (creep, stress relaxation) and loading (hysteresis, strain-rate) are factors that 

need to be considered (as in the case of dynamic motion), then cartilage is usually modeled as 

viscoelastic or hyperelastic [126], which are accurate representations of its material properties. 

Initially, the compressive loads on the articular surfaces are supported by the fluid pressure from 

the PG bound water within the cartilage. With fluid efflux and matrix compaction, the cartilage 

begins to deform. Fluid redistribution occurs and when equilibrium is reached (hydrostatic fluid 

pressure approaches zero, no fluid flow), the loads are borne entirely by the extra cellular matrix 

(PG-collagen) [121, 122]. Hence, the poroelastic or biphasic nature of cartilage has also been 

taken into account for more detailed analyses of cartilage behavior [89, 108]. Cartilage is 

considered incompressible (interstitial fluid) and functions to transfer loads evenly through the 

joint and allows joint motion with minimal friction [121, 122]. Therefore, frictionless interaction 

is commonly assumed between articular surfaces. Static or quasi-static analyses are often 

performed to determine joint contact stresses [108]. These are obtained by solving a set of 

nonlinear equations iteratively under static equilibrium for each time step, till criteria for 

convergence are met. To obtain reliable output from the models, it has to be ensured that the 

governing equations are performing as intended (code verification), and that the numerical 

solution from these equations is consistent (calculation verification) [107, 129]. When using 

commercial software, code verification is achieved by discarding results of iterations where 

discontinuities arise, not relaxing the convergence criteria (force residuals, displacement 

corrections), and only accepting equilibrium iteration results that have converged for all the 

analyses steps [129]. Calculation verification is performed by mesh convergence studies to 
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minimize discretization errors [129]. Converged results are typically accepted after a change of 

less than 5% percent is observed (solution asymptotes) in output parameters, after progressive 

mesh refinement [126, 129]. Validation studies are performed to ensure that the governing 

equations accurately represent the physical problem [126, 129, 147]. Sensitivity studies are also 

performed to evaluate the influence of geometry, material properties and boundary conditions to 

match results obtained from experiments under similar conditions, and thus improve model 

fidelity [126, 129]. FE modeling can be used to determine stress and strain distribution within 

cartilage, which is useful to understand effects of in vivo loading during functional activity. This 

may provide further insight into the mechanism of degradation, by understanding how functional 

integrity is compromised by breakdown within the tissue. This data may also be useful for tissue 

engineering applications, by providing information on the functional stresses that 

cultured/transplanted tissue may experience in situ. However, generating a quality FE model and 

solving the complex nonlinear contact problem is difficult and time consuming. Even performing 

a more computationally efficient rigid body FE analysis, requires considerable time to generate 

geometry with good mesh quality metrics [148]. 
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2. RESULTS OF AUTOMATIC IMAGE REGISTRATION ARE DEPENDENT ON  

INITIAL MANUAL REGISTRATION 
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2.1. Abstract 

Accurate kinematics are important to investigate normal/pathologic joint function, and we 

propose a method to further improve accuracy of image-based registration using initial manual 

registration. MRI of two wrist specimens were acquired in relaxed position, and during simulated 

grasp. Kinematics were determined from image registration between the two volumes. The 

volumes were manually aligned as close as possible prior to auto-registration, from which 

standard kinematics were obtained. Then, translation/rotation perturbations were applied to the 

manual registration to obtain altered initial positions, from which altered auto-registration 

kinematics were obtained. Also, surface models of the radiolunate joint were constructed from 

relaxed images. Kinematics and contact mechanics were compared between the standard and 

altered initial conditions. Kinematic errors increased while contact data decreased, with 

increasing perturbations. Overall, initial registration conditions clearly influence final registration 

accuracy. Manual alignment of image volumes as close as possible prior to auto-registration, 

appears to minimize kinematics and contact errors. 

 

Keywords: kinematics; image registration accuracy; voxel-based image registration;  

manual image registration; magnetic resonance imaging 
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2.2. Introduction 

Kinematics are important to investigate normal joint function and pathologic effects of injuries 

or disease. This is particularly true for complex joints such as the wrist, where normal bone 

motion facilitates stability and abnormal motion can lead to instability (Gardner et al. 2006). 

Kinematics also have a broad application in computational simulations as input parameters for 

displacement driven models. Small errors initially can lead to incremental errors in final 

simulation results, hence kinematic accuracy is of utmost importance. 

Several techniques, such as motion tracking, biplanar fluoroscopy or cine phase-contrast 

magnetic resonance imaging (MRI), have been used to measure in vivo kinematics (Crisco et al. 

2001; Rogers et al. 2002; Gardner, et al. 2006; Moro-oka et al. 2007; Tay et al. 2008; Zheng and 

Zhang 2010; Borotikar et al. 2012; Svedmark et al. 2012; Zhu et al. 2012). Motion tracking 

requires surface markers, which may not accurately reflect actual bone motions. Markerless 

image-based registration has also been used and shown to have good accuracy (Crisco, et al. 

2001; Goto et al. 2005). This method has an advantage over surface based marker techniques, 

due to its ability to directly quantify bone motion, especially for complex joints such as the wrist. 

However, when using registration to acquire kinematics from image sets such as MRI, initial 

registration conditions may potentially influence accuracy. 

The goal of this study was to investigate effects of different initial conditions on lunate 

kinematics obtained from image registration and related contact mechanics (contact force, 

contact area and peak contact pressure). We propose a method to further improve the accuracy of 

image-based registration using initial manual registration. Registration accuracy and contact data 

were expected to differ with varying initial conditions. 

2.3. Methods 

MR images of two cadaveric wrist specimens were acquired in a 3T clinical scanner (Allegra, 

Siemens, USA) using a constructive interference steady state sequence. Images were acquired 

with the wrists relaxed (unloaded), and during simulated grasp (loaded). To simulate grasp, a 

total of 110 N was distributed across select extensor and flexor tendons (Johnson et al. 2012). 

The unloaded images were acquired at high resolution for model construction (0.15×0.15×0.5 
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mm voxel), while loaded images were acquired at lower resolution for image registration 

(0.3×0.3×1.0 mm voxel). 

Radius and lunate bones with their cartilage surfaces, were segmented from the unloaded 

images to generate three dimensional (3D) surface models of the radiolunate articulation. The 

bones were assumed as rigid; hence, radius and lunate bones only (without cartilage) were 

segmented for image registration. 

Volume-based 3D image registration was performed using Analyze 5.0 (Analyze Direct, 

Overland Park, KS), which compared normalized mutual pixel intensities, to obtain kinematics 

from unloaded to loaded configuration. First, the radius was used as a fixed reference to find a 

transformation that aligned the loaded and unloaded image sets. A manual registration was 

performed to align the two image sets as close as possible in 3D (defined as the standard initial 

condition). This was followed by 25 subsequent auto-registration iterations, from which a best 

match was visually selected. This best match was defined as the standard best match. Next, the 

best match from the reference transformation was used to move the loaded lunate into the 

unloaded image coordinate system. Finally, the unloaded lunate was registered to the loaded 

lunate (now in the unloaded coordinate system) to obtain the kinematic transformation to the 

loaded configuration. A standard initial condition and standard best match were also defined for 

this step. 

To investigate the effects of different initial conditions on final radius and lunate kinematics, 

the results after a series of perturbations from the standard initial condition, were compared to 

the standard best match. Perturbations in the x, y and z directions of 1, 2 and 3 pixels 

(translation) and 1, 2 and 3° (rotation) were applied to the standard initial conditions, to obtain 

altered initial conditions. Each perturbation was again followed by 25 auto-registration iterations, 

from which best matches were selected (defined as perturbation best matches).  The 

transformations were converted into translation and rotation vectors (Woltring 1994) for 

analyses. Root mean square error (RMSE) values were calculated for both translation (TV) and 

rotation (RV) vectors between the standard best match and each perturbation best match, using 

the equation; 
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Where xsb, ysb and zsb are the components of the standard best match translation/rotation 

vector and xpb, ypb and zpb are the components of the perturbation best match vector. 

To compare effects of different initial conditions on contact mechanics, standard best match 

kinematics and perturbation best match kinematics, were implemented for surface models in the 

Joint_Model software (Kwak et al. 2000). Contact area, local contact pressure and contact force 

were determined in Joint_Model, assuming an effective cartilage relaxation modulus of 4 MPa 

(Kwak, et al. 2000) and a uniform cartilage thickness of 1 mm for each articulation. Two-way 

repeated measures analysis of variance, with Tukey LSD post hoc analysis (p < 0.05), was used 

to identify differences between standard and perturbation best matches.  

2.4. Results 

Data is presented as means of the two specimens. Looking at the effects of initial conditions on 

kinematics, TV (Table 2.1) and RV (Table 2.2) RMS errors were significantly higher for lunate 

compared to radius, for both magnitude (1, 2 or 3) and direction (x, y or z) of perturbation (p = 

0.000 for all cases). TV and RV RMS errors trended higher in the z direction, compared to x and 

y (Tables 2.1, 2.2). Averaging for direction of perturbation, we compared lunate TV and RV 

RMS errors with increasing magnitude of perturbation. TV RMS errors significantly increased 

from 2 to 3 pixel/° perturbations (p = 0.002), and RV RMS errors tended to increase with 

increasing perturbations (Table 2.3). For TV, errors tended to be higher from rotation than 

translation perturbation, and the opposite was true for RV errors (Table 2.3). A difference could 

be visually observed between the standard best match and best matches from altered initial 

conditions, especially at higher perturbation magnitudes (Figure 2.1). 

We also investigated the effects of initial conditions on radiolunate contact mechanics, by 

comparing differences in contact parameters grouped for magnitude (Figure 2.2) and direction 

(Figure 2.3) of perturbation, and overall translation and rotation perturbations (Figure 2.4). For 

contact area, differences were significantly greater (p = 0.047) after 3 pixel/° perturbations 

compared to standard, and there was only a trend for higher differences for contact force and 



68 

 

peak pressure (Figure 2.2). A strong trend was also observed for higher differences in contact 

parameters from standard, after perturbations in the z direction (Figure 2.3). For contact force 

and contact area, there was a strong trend for higher differences between standard and translation 

perturbation best matches (Figure 2.4). Contact pressure distribution also changed with altered 

registration initial conditions (Figure 2.5). 

2.5. Discussion 

We investigated the effects of different initial registration positions on final radiolunate 

kinematics and contact mechanics. Results from a series of translation and rotation perturbations 

were compared to a standard, which indicated that initial manual alignment of registration 

volumes influences registration accuracy. 

Markerless image registration is particularly useful to determine in vivo kinematics. Surface 

registration is often used, but volume-based image registration has been shown to have a 

similar/better accuracy (Goto, et al. 2005). There is still a need to improve image registration 

accuracy, especially for articulations that have small motions. 

Lower registration errors for radius indicated that size and/or shape of the bone may be a 

factor affecting voxel-based registration accuracy. The larger the bone, the more the pixel 

information, which could minimize the effects of initial position. Similarly, more distinct 

features may improve registration. 

The out of plane direction (z, in this case) generally appeared to have higher errors. Since in-

plane resolution of MR images are usually higher than out of plane, mismatch in that direction 

may further compound errors. Rotation perturbations seem to cause larger translation errors, 

likely due to translations associated with rotations. 

With increasing perturbations, contact mechanics appeared to be underestimated regardless 

of perturbation direction. Larger perturbations appear to result in kinematic errors that increase 

separation in the radiocarpal joint, resulting in lack of contact and lower values for contact data. 

This is evident from the reduction in contact area and contact pressure after perturbation (Figure 

2.5). Larger differences in contact data from translation perturbations may be a bone-specific 
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result. Due to the relatively spherical shape of the radiolunate articulation, rotation may have a 

smaller effect on contact. 

Lack of significant differences is likely due to the low specimen number. Only effects of pure 

translation and rotation perturbations were investigated. Combined perturbations should have a 

similar or worse effect. Results from perturbations may be software specific, but any automated 

voxel registration software should benefit from good initial manual registration.  

We have shown kinematic errors to increase with larger perturbations in initial position and 

orientation. Overall, initial condition for registration clearly influences accuracy. We recommend 

a careful manual alignment of the image volumes, as closely as possible, prior to auto-

registration to minimize kinematic and subsequent modeling errors. 
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2.7. Tables 

Table 2.1. RMS errors of translation vectors for the radius and lunate from initial conditions after 

translation and rotation perturbations, averaged for specimens. 

RMSE of Translation Vector (pixels) 

Perturbation 
Radius Lunate 

X Y Z X Y Z 

Translation 

(pixels) 

1 0.0140 0.0243 0.0284 0.3604 0.2943 0.1857 

2 0.0000 0.0452 0.0427 0.2918 0.2440 0.3946 

3 0.0243 0.0555 0.0492 0.2918 0.2617 0.3915 

Rotation 

(degrees) 

1 0.1208 0.0396 0.0431 0.2605 0.3153 0.2895 

2 0.0387 0.0521 0.0593 0.2992 0.2915 0.2919 

3 0.0692 0.0410 0.0845 0.4283 0.3472 0.3755 

 

Table 2.2. RMS errors of rotation vectors for the radius and lunate from initial conditions after 

translation and rotation perturbations, averaged for specimens. 

RMSE of Rotation Vector (degrees) 

Perturbation 
Radius Lunate 

X Y Z X Y Z 

Translation 

(pixels) 

1 0.0071 0.0115 0.0502 0.7669 0.6889 0.4315 

2 0.0000 0.0219 0.0584 0.7067 0.5461 0.9789 

3 0.0115 0.0467 0.0435 0.7067 0.6026 0.6229 

Rotation 

(degrees) 

1 0.0653 0.0716 0.0398 0.3413 0.6500 0.5415 

2 0.0555 0.0485 0.0549 0.5055 0.5173 0.5667 

3 0.0357 0.0634 0.0756 0.9012 0.7325 0.6453 
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Table 2.3. RMS errors of lunate translation and rotation vectors with increasing magnitude of 

perturbation, averaged for direction of perturbation. * indicates significance. 

  RMSE of Translation Vector (pixels) RMSE of Rotation Vector (degrees) 

Perturbation 

(pixel/°) 
1 2 3* 1 2 3 

Translation 0.2802 0.3102 0.3150 0.6291 0.7439 0.6441 

Rotation 0.2884 0.2942 0.3837 0.5109 0.5298 0.7597 
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2.8. Figures 

 

Figure 2.1. Transverse slice from unloaded (green) and transformed loaded lunate (red) volumes 

in the unregistered position (left), after standard best match kinematics was applied (center) and 

best match after a 3° rotation perturbation was applied (right). 

 

 
Figure 2.2. Contact data from standard best match kinematics, and from kinematics after 1, 2 and 

3 pixels/° perturbations were applied (averaged for x, y and z directions). * indicates significant 

difference 
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Figure 2.3. Contact data from standard best match kinematics, and from perturbations varying in 

x, y and z directions (averaged for 1, 2 and 3 pixels/°). 

 

 
Figure 2.4. Overall means of contact data from translation (TP) and rotation (RP) perturbations 

compared to standard. 
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Figure 2.5. Sample radiolunate contact pressure distribution shown on the radius articular surface 

after a standard best match kinematics (left) and a 3° rotation perturbation best match kinematics 

(right) were applied. 



77 

 

3. SCAPHOLUNATE LIGAMENT INJURY ADVERSELY ALTERS IN VIVO WRIST 

JOINT MECHANICS. AN MRI-BASED MODELING STUDY 
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3.1. Abstract 

We investigated the effects of scapholunate ligament injury on in vivo radiocarpal joint 

mechanics using image-based surface contact modeling. Magnetic resonance images of ten 

injured and contralateral normal wrists were acquired at high resolution (hand relaxed) and 

during functional grasp. Three dimensional surface models of the radioscaphoid and radiolunate 

articulations were constructed from the relaxed images, and image registration between the 

relaxed and grasp images provided kinematics. The displacement driven models were 

implemented in a contact modeling software, Joint_Model. Contact parameters were determined 

from interpenetration of interacting bodies and a linear contact rule. Peak and mean contact 

pressures, contact forces and contact areas were compared between the normal and injured 

wrists. Also measured were effective (direct) contact areas and intercentroid distances from the 

grasp images. Means of the model contact areas were within 10 mm
2
 of the direct contact areas 

for both articulations. With injury, all contact parameters significantly increased in the 

radioscaphoid articulation, while only peak contact pressure and contact force significantly 

increased in the radiolunate articulation. Inter-centroid distances also increased significantly with 

injury. This study provides novel in vivo contact mechanics data from scapholunate ligament 

injury and confirms detrimental alterations as a result of injury. 

 

Joint mechanics, modeling, osteoarthritis, ligament injury, wrist 
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3.2. Introduction 

Normal wrist joint function is facilitated by complex interactions between articulating 

geometry and ligamentous anatomy, which constrain motion and provide stability. Scapholunate 

interosseous ligament (SLIL) is the primary stabilizer of the scapholunate (SL) joint.
1
 SLIL tears 

from impact loading to the base of the wrist or repetitive twisting motion (in hyperextension or 

intercarpal supination) can result in a common wrist injury known as SL dissociation.
2
 SLIL 

ligament injury can cause disruption of normal SL mechanical relationship leading to loss of 

alignment.
3
 With continued usage, there is further damage to the secondary stabilizers (such as 

radioscaphocapitate and dorsal intercarpal ligaments) that leads to progressive instability, 

thereby causing further malalignment and deformity. These changes in carpal bone orientations 

can lead to abnormal kinematics.
3
 Loss of normal alignment (articular surface incongruity) and 

abnormal kinematics can alter load transfer through the joint, with subsequent degenerative 

changes to the articular surface.
4
 

Osteoarthritis (OA) is the most common degenerative joint disease that affects not only the 

elderly (33.6% of Americans over 65), but also the younger population (13.9% over 25).
5-7

 While 

attention is commonly focused on weight bearing joints (such as the hip or knee) due to 

functional debilitating effects, extremities such as the hand and wrist are also significantly 

impacted adversely. In fact, prevalence of radiographic OA is highest for the hand (7.3/100), and 

prevalence of symptomatic OA (8/100) is second only to the knee (12.1/100).
8,9

 While age is the 

primary risk factor for OA, degenerative changes also occur secondary to joint injury or trauma, 

and this is also common in the younger population.
10

 Impact joint injuries resulting in 

macroscopic (from fractures) and microscopic (from capsular or ligamentous injuries) damage 

are a frequent cause of post-traumatic OA (PTOA).
10

 PTOA can be a consequence of sudden 

local insult to the articular surface or of progressive damage as a result of joint instability and 

incongruity.
10

 In the lower extremity, ligamentous injuries cause a 10-fold increase in risk of 

developing OA and economic losses from PTOA alone amount to 3 billion dollars annually.
10

 

Without treatment, SL dissociation generally leads to a progressive osteoarthritic pattern 

known as scapholunate advanced collapse (SLAC), which is the most common form of wrist 

OA.
11

 Clinical manifestation of PTOA is highly variable, during which time certain biological or 
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mechanical factors are thought to promote repair and restoration of the joint, indicating 

possibility for treatment.
6
 Joint contact pressures and pressure distributions are considered to be 

important mechanical factors.
12

 However, the mechanism is unclear and its role is still under 

debate. Progressive instability/deformity of the SL joint as a result of SLIL injury may cause an 

elevation in joint contact pressures in normal contact regions or in shifted regions of contact. The 

ability to evaluate changes in contact pressure that occur in vivo may provide insight into the 

mechanism of PTOA. 

Several cadaveric experimental studies have investigated normal wrist biomechanics and 

biomechanics after SLIL sectioning.
3,13-16

 However, in vivo conditions are much more complex 

due to soft tissue interactions and dynamic motor stability. In vivo studies investigating SLIL, 

have mostly evaluated scaphoid and lunate kinematics after injury. Crisco et al have shown 

decreased lunate rotation in extension, and increased scaphoid rotation in flexion after SLIL 

injury.
17

 While magnetic resonance imaging (MRI) is useful for early OA diagnosis
18

 and is 

commonly used to diagnose knee injuries, such as anterior cruciate ligament tear, it is somewhat 

limited in its diagnostic value for wrist ligament injuries due to the small anatomy and lower 

spatial resolution.
2
 However, MRI can be also be used to acquire in vivo data such as model 

geometry and kinematics.
19,20

 Computer modeling is helpful to simulate joint abnormalities and 

predict joint mechanics non-invasively. Finite element (FE) modeling is the most common 

technique for joint contact analysis, but generating a quality FE model and solving the complex 

nonlinear contact problem is difficult and time consuming.
21

 To evaluate articular joint changes 

as a result of injury, it may be sufficient to look at articular surface parameters. This can be 

achieved through surface contact modeling (SCM), in a relatively simple and computationally 

efficient manner, without the need for complex nonlinear analyses.
22

 MRI when combined with 

SCM can be an effective tool to determine in vivo joint mechanics and this technique has not 

been extensively used.  

Compared to cadaveric studies, fewer studies have investigated normal and pathologic in 

vivo wrist joint mechanics,
23,24

 and there does not appear to be any prior work on the in vivo 

effects of SLIL injury on mechanics. In vivo data may improve understanding of how contact 

mechanics are altered from normal kinematics and may also improve efficacy of surgical 
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interventions that are performed to minimize pain, restore joint function and prevent the onset of 

OA. Hence, the objective of this study was to compare radiocarpal joint mechanics from MRI-

based SCM between normal wrists and wrists with SLIL injury. Our hypothesis was that peak 

and mean contact pressures would be higher in the injured wrists. 

3.3. Methods 

Ten human subjects diagnosed (clinical examination, radiographs and/or MRI) with 

unilateral SL dissociation by a board certified physician, were enrolled for the study. The study 

was approved by the Institutional Review Board. While the mechanism of injury varied, subjects 

fell into three general categories. The most common was fall on outstretched hand, and also from 

athletic injuries and vehicular accidents. The contralateral hand was used as “normal” control 

and hence, it was ensured that the normal hand had no prior patient history or clinical symptoms 

of injury. The contralateral hand was used as a control to minimize the effects of variation and 

performance from between subject factors. It was also ensured that there was no visual indication 

of articular surface degeneration or inflammatory arthritis, in both wrists. Subjects were recruited 

with ages upward from skeletal maturity, with a mean age of 40.4 years (22 to 67), and there 

were eight male and two female subjects. SL dissociation can occur in younger individuals due 

to congenital defects and other factors, but, it is harder to differentiate between biomechanical 

changes arising from injury and geometric (bone and cartilage) changes due to growth. Also, the 

likelihood of joint degeneration increases for individuals over 60 years old. While an equal 

distribution of male and female subjects was targeted, due to the nature of the injury (high-

impact loading), more male than female subjects were expected. It was also ensured that subjects 

were able to perform the functional grasp activity for the duration of the scan. 

MR images were acquired using a 3T clinical scanner using a constructive interference 

steady state (CISS) or a dual echo steady state (DESS) sequence. Nine subjects were scanned 

using CISS sequence, while one subject was scanned using DESS sequence. 

Two sets of images were acquired for both normal and injured wrists. High resolution scans 

of the injured wrist were acquired first with the hand in relaxed (unloaded) position (Fig. 3.1A). 

Then, lower resolution scans were acquired during active light grasp (loaded) position (Fig. 

3.1B). Loaded scans were designed to minimize subject fatigue and motion artifacts by reducing 
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scan time, while maintaining adequate resolution for bone segmentation. The normal hand was 

similarly scanned in the unloaded state, followed by the loaded configuration. 

The protocols for CISS were matrix: 640×416 pixels, field of view (FOV): 95×61.8 mm, 

slice thickness: 0.5 mm, scan time: ~12 mins, for relaxed scans and matrix: 320×208 pixels, 

FOV: 95×61.8 mm, slice thickness: 1.0 mm, scan time: 196 s, for grasp scans. The protocols for 

DESS were matrix: 448×240 pixels, FOV: 100×48 mm, slice thickness: 0.5 mm, scan time: 4.5 

mins, for relaxed scans and matrix: 320×320 pixels, FOV: 100×100 mm, slice thickness: 1.0 

mm, scan time: 188 s, for grasp scans. 

The grasp activity involved squeezing a pre-pressurized grip device to a specified target 

(3.125 psi = 21.6 KPa) and maintaining it for the duration of the scan, by means of a visual 

feedback system (Fig. 3.2). This target pressure was previously determined in our lab to produce 

minimal discomfort, while maintaining grip during the grasp activity for the duration of the scan. 

The grasp activity was also performed with the wrist braced to ensure consistent loaded positions 

between the subjects (Fig. 3.2). 

SCM was the primary method used to acquire contact mechanics data, which required model 

geometries, kinematics and a contact rule/relationship. The radius, lunate and scaphoid bones 

with their articular surfaces, were segmented from the high resolution unloaded images using 

image processing software (ScanIP, Simpleware, Exeter, UK). To ensure accuracy of boundary 

selection, independent quality control was performed for each segmentation. Triangular faceted 

surfaces were created from the segmented volumes to obtain 3D surface models (Fig. 3.3). 

Kinematics were obtained from 3D voxel-based image registration to match bone 

orientations in the loaded images, using Analyze 5.0 (Analyze Direct, Overland Park, KS). The 

3D voxel registration technique is based on normalized mutual information, which compares 

relative pixel information between image volumes. Bones were assumed as rigid (undergoing 

negligible deformation), while cartilage deformed even under the low loading of the light grasp 

activity. Hence, radius and carpal (lunate and scaphoid) bones without cartilage, were segmented 

from the image volumes. In every image set, each bone was isolated on a black background for 

registration. The first step was using the radius as a fixed reference to align the loaded and the 
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unloaded image sets. This registration was used to transform the loaded carpal bones into the 

unloaded image coordinate system. Finally, the unloaded carpal bones were registered to the 

(transformed) loaded carpal bones. These transformations were converted to a translation and 

rotation vector. The rotation vector initiated at the origin of the coordinate system and prescribed 

a single axis of rotation, which could be decomposed along the coordinate system axis (X: ulnar-

radial; Y: proximal-distal; Z: volar-dorsal, first direction being the positive direction for each). 

The magnitude of the rotation vector specified the angle of rotation about the axis.
25

 This 

provided kinematics from the unloaded to loaded configuration. Thus model geometries and 

kinematics were acquired for the normal and injured wrists and implemented in a contact 

modeling software. 

Displacement controlled surface contact mechanics were determined using Joint_Model 

software.
22

 The software determined contact parameters from interpenetration of interacting rigid 

bodies and the algorithm defined contact force as linearly proportional to strain. The kinematics 

placed the unloaded model geometries in the loaded configuration, from which the location of 

contact, contact area and strain were directly determined. The articular surface of each body was 

assigned a uniform thickness of 1 mm
14

 based on average measured values. The region of model 

surface penetration yielded the contact area for each articulation. The ratio of overlap/penetration 

to total thickness of the articular surfaces provided the local cartilage deformation at each node, 

which gave a first order estimate of strain. The total deformation was distributed to the bodies in 

contact based on the ratio of their cartilage thicknesses and moduli, which were the same for all 

bodies in contact. The loaded images were acquired over a relatively long period, which was 

sufficient time for the cartilage to approach equilibrium. Hence, cartilage was assigned a 

modulus of 4 MPa, as a reasonable assumption for an effective compressive relaxation 

modulus.
22

 Local nodal contact pressures were determined from the strain estimate and the 

material property. Finally, contact pressures were numerically integrated over contact area to 

obtain contact force. The ratio of contact force to contact area gave the mean contact pressure. 

Also, the regions of articular surface contact were reasonably visible in the loaded MR 

images. These regions of contact were individually segmented for each contact pair (radiolunate 

and radioscaphoid) from every loaded image set. Lengths of the segmented contact regions were 
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multiplied by slice thickness to obtain an effective area, and the areas from all images were 

summed to obtain the total contact area for each articulation. These “direct” contact areas were 

compared to the model contact areas as a form of model verification. The distances between the 

centroids of radiolunate and radioscaphoid contacts (inter-centroid distance) were also 

determined from the direct contact areas. 

Contact forces, contact areas, peak and mean contact pressures, contact pressure distributions 

and inter-centroid distances, were compared between the normal and injured wrists for both 

radiolunate (RL) and radioscaphoid (RS) articulations. Paired-samples t-test, with one-tailed 

significance defined as p < 0.05, was used to identify differences in contact forces, contact areas, 

peak and mean contact pressures and inter-centroid distances, between the normal and injured 

wrists. To determine the relationship between model contact areas and direct contact areas, a 

linear regression analysis was performed for overall (normal and injured combined) model and 

direct contact areas for each articulation. 

3.4. Results 

Data for all parameters is represented as mean ± standard error. Since positions of relaxed 

wrists were not fixed during MRI scanning, kinematics were not statistically compared between 

subjects. For the normal wrist, mean magnitude of translation vectors trended higher for 

scaphoid (2.22±0.28 mm) than for lunate (1.29±0.25 mm). Also, mean magnitude of rotation 

vectors trended higher for scaphoid (8.72±1.35°) than for lunate (5.32±1.11°). For the injured 

wrists, mean magnitude of translation and rotation vectors tended to increase for both lunate 

(1.37±0.40 mm and 8.98±1.66° respectively) and scaphoid (2.54±0.46 mm and 10.40±2.16° 

respectively), compared to the normal wrists. 

Contact pressure distributions on the radius articular surface were different between normal 

and injured wrists (Fig. 3.4). For normal wrists, lunate and scaphoid contacts were located 

generally in the mid to dorsal region. With injury, scaphoid contact generally separated from 

lunate contact towards the radial styloid region. Lunate contact generally shifted volarly or 

widened to cover the entire lunate fossa on the radius. Figure 3.5 shows an example of scaphoid 

and lunate centroids of contact from normal and injured wrists that were used to determine 
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centroidal distances. Inter-centroid distance increased significantly from normal (15.14±0.78 

mm) to injured (16.43±0.71 mm), p=0.044. 

Table 3.1 shows contact parameters compared between normal and injured wrists for both 

articulations. Peak contact pressures significantly increased with injury in both RL (p=0.012) and 

RS (p=0.038) articulations (Fig. 3.6), while mean contact pressures significantly increased with 

injury only in the RS (p=0.029) articulation. Contact forces also significantly increased with 

injury in both RL (p=0.032) and RS (p=0.005) articulations (Fig. 3.7). Model contact areas 

significantly increased with injury in the RS (p=0.022) articulation, but not in the RL 

articulation. Means of the normal and injured model contact areas were within 5 mm
2
 of means 

of corresponding normal and injured direct contact area results for RS articulation, and similarly 

within 10 mm
2
 for RL articulation (Table 3.1). Only differences between RS overall model 

contact areas and direct contact areas, were non significant (p=0.17). Regression analysis 

however, showed a significant relationship between model and direct contact area measurements 

(R
2
 = 0.89 and slope = 0.82 for RL articulation; R

2
 = 0.79 and slope = 0.96 for RS articulation, 

p<0.001). 

3.5. Discussion 

In summary, MRI-based SCM technique was used to evaluate radiocarpal joint contact 

mechanics as a result of scapholunate dissociation. Contact forces, contact areas, peak and mean 

contact pressures significantly increased in the RS articulation, while only peak and mean 

contact pressures significantly increased in the RL articulation. Results confirm that contact 

mechanics are altered after SL ligament injury. 

There is still an ongoing debate about the impact of SLIL injury on radiocarpal kinematics, 

though it is generally accepted that there are associated changes in carpal alignment.
3
 The 

scaphoid is the most mobile of the carpal bones.
26

 With SLIL tears and progressive injury to its 

secondary ligamentous stabilizers, the scaphoid is known to collapse into flexion (rotary 

subluxation), further increasing its mobility.
26

 While kinematics were not directly compared in 

this study, the magnitudes of translations and rotations trended higher for the scaphoid in the 

normal wrists, and also appeared to increase with injury. 
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With injury, progressive widening of the SL interval occurs (Fig. 3.3 right). However, the 

amount of widening depends on the degree of injury/instability. In the dynamic stage, SL 

diastasis is only visible on stress radiographs. With continued usage and further damage to the 

secondary stabilizers, the static stage develops, where the deformity is fixed and visible on plain 

radiographs.
2
 SL diastasis was somewhat evident from shift in contact locations and was clear 

according to increase in the inter-centroid distance (Fig. 3.5). Since inter-centroid distances were 

calculated directly from the loaded MR images, there may have may been less variability 

influencing the results, such that widening of the SL interval was clearly observed. 

With rotary subluxation of the scaphoid, the proximal articular surface loses it congruency 

with its radius facet and contact is shifted to the volar and dorsal rims of the distal radius.
11

 

Clinically, SLAC wrist follows a pattern where degenerative changes are first observed in the RS 

region, initiated at the radial styloid.
11

 For over half the subjects, RS contact was observed 

radially at the styloid region, prior to and following injury. Also, all contact parameters 

significantly increased with injury in the RS articulation. This may provide an explanation for 

the clinically observed initiation of OA in this region. Due to its more spherical fossa, the RL 

articulation is less sensitive to instability,
11

 which may explain why only some of the parameters 

significantly increase with injury in the RL articulation. While magnitude and location of contact 

vary with wrist position, experiments have shown radiocarpal peak contact pressures to fall 

within 3 MPa,
14,27,28

 as observed in this study. With SLIL injury there was an increase in peak 

contact pressure in both articulations. However, the magnitude was higher in the RL articulation, 

indicating a shift in load from the scaphoid to the lunate fossa. This has also been observed 

previously for dynamic motion after SLIL sectioning.
16

 On average, only 21% of the radius 

articular surface is in contact with the scaphoid and lunate under normal function, and does not 

exceed 40% despite the magnitude of loading.
29

 As cartilage matures, it may develop a 

conditioning to physiological loading over a period of time.
30

 As such, normal regions of contact 

may be able to withstand increases (sudden or gradual) in contact pressures till a threshold is 

exceeded (after which damage occurs), while the regions that are not normally loaded may be 

sensitive to even minor changes in pressure distribution. While peak (both RL and RS) and mean 

(only RS) contact pressure increased, a shift in the location of contact may also be an OA risk 

factor for both articulations. This is evident in Figure 3.4 for example, where the load 
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transmission through the joint clearly shifted. From the results, degenerative changes do not 

appear to occur as a consequence of original insult to the joint (injury event), but rather due to 

abnormal changes in kinematics and contact locations that progressively occur following SLIL 

injury. As such, restoring kinematics and normal alignment may prevent the onset of 

degeneration. 

Of interesting note was the significant increase in contact force in both articulations, even 

though grasp activity was the same for both normal and injured wrists. This may be due to co-

contracture, where both wrist flexors and extensors are dynamically involved to minimize 

instability, as subjects attempt to compensate for pain by altering their grip during grasp activity. 

Since there are no direct motor attachments, to provide stability during physiologic loading (axial 

loading for instance), scapholunate motion is constrained by the intact intrinsic ligaments.
31

 The 

wrist motors may provide additional indirect dynamic stability. The results suggest that with 

injury, the wrist flexors and extensors appear to be compensating for loss of this ligamentous 

constraint. In a physiological attempt to minimize the existing instability, there appears to be a 

corresponding change in the load transmission through the joint, which may increase OA risk. 

Prior experimental studies have shown the reliability of direct contact area measurements in 

verifying modeling accuracy.
14

 With in vivo data, there is the added possibility of motion 

artifacts (particularly in injured wrists) influencing results, which might explain why RL model 

contact area was different from direct contact area. Regression analysis indicates that this method 

still provides a useful means of verifying in vivo model results, which is otherwise not possible. 

One limitation of the study was the relatively low number of subjects analyzed. Therefore, it 

was not possible to evaluate contact mechanics with regard to injury/instability patterns. 

Variation in peak and mean contact pressure results between articulations may also be due to 

differences in injury patterns. The subject pool for this study included three acute (2 to 4 weeks 

from injury), two sub-acute (4 weeks to 6 months) and five chronic (> 6 months) cases. While 

differences were observed by comparison of normal and injured wrists, grouping the subjects by 

pattern may better indicate changes in contact mechanics from initiation and progression of 

instability. This is particularly useful for early diagnosis, as contact mechanics at the time of 

evaluation can be compared with those observed at a specific/intermediate stage of injury. Also, 
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it was not possible to directly validate the in vivo models. However, the MRI-based SCM 

technique has been sufficiently validated and shown to be reliable to obtain contact mechanics 

data.
14,28

 Further, the in vivo data compared well to prior data, and also to the directly measured 

contact area data. 

The ability to evaluate extent of joint injuries (soft tissue or articular surface) is still limited 

and research is ongoing to quantify the severity of injuries, particularly to improve therapy and 

treatment outcomes.
10

 Recent work has demonstrated the feasibility of quantifying articular 

fracture severity from surface fragments.
10

 Even in the wrist, extracarpal or carpal fractures 

(distal radius and scaphoid respectively) are frequently associated with SLIL tears.
32

 However, 

most joint injuries are more subtle in nature (microscopic damage versus fractures), making them 

difficult to diagnose and treat. The earlier the diagnosis, the better the chance will be for surgical 

intervention to be successful. However, in most cases SLIL injury is not diagnosed until the 

latter stages when radiographs clearly show the presence of abnormality, which further 

highlights the need for a tool to evaluate injury. The ability to monitor the location of peak 

contact pressure and contact pressure distribution in vivo, may provide a means to differentiate 

between injury/instability patterns, and also help predict tissue wear or the onset and progression 

of degradation. With further work, it may be possible to construct a database of pressures and 

pressure distributions that correspond to clinically observed patterns of degeneration. This may 

prove to be a valuable tool to evaluate soft tissue injuries. Studies are also investigating the 

relationship between biochemical changes in cartilage at the tissue level and OA risk.
33

 MRI-

based SCM correlated with physiological data has the potential to be a powerful tool to evaluate 

joint injuries. 

In conclusion, this study provides novel in vivo data on the effects of SLIL injury on 

radiocarpal mechanics and results indicate detrimental alterations subsequent to injury. This has 

the potential to provide insight into the progression of joint instability with altered mechanics, 

which may improve efficacy of treatment measures to minimize risk of OA development. 
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3.7. Tables 

Table 3.1. Means and standard errors (±) of select contact parameters compared between normal 

and injured wrists for both radiolunate (RL) and radioscaphoid (RS) articulations. * indicates 

injured parameters significantly different from normal. 

Mean (± Standard Error) Normal Injured 

RL 

Mean Contact Pressure (MPa) 0.37 (0.06) 0.47 (0.05) 

Model Contact Area (mm
2
) 53 (9) 72 (8) 

Direct Contact Area (mm
2
) 58 (10) 81 (9) 

RS 

Mean Contact Pressure (MPa) 0.38 (0.04) 0.48 (0.05)* 

Model Contact Area (mm
2
) 60 (5) 86 (14)* 

Direct Contact Area (mm
2
) 63 (6) 90 (12) 
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3.8. Figures 

 

Figure 3.1. MRI of the wrist acquired using CISS sequence at (A) high resolution with the hand 

relaxed for model construction and at (B) low resolution during functional light grasp for image 

registration. Coronal views shown, which were used for image segmentation. 

 

 

Figure 3.2. Top shows the visual feedback provided for subjects to grasp to the specified target 

(black line). Bottom shows the grip device for performing the grasp activity with the wrist braced 

for consistent loaded positions. 
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Figure 3.3. The 3D surface models of the radiocarpal joint for normal (left) and injured (right) 

wrists of Subject 7. Radius (red), lunate (yellow) and scaphoid (green) bones with their 

articulations are shown from a standard postero-anterior (dorsal) perspective. 

 

 

Figure 3.4. Contact patterns on the radius for normal (A) and injured (B) wrists of Subject 7. RS 

contact is on the left and RL contact is on the right of each radius. 
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Figure 3.5. Locations of centroids of radiocarpal contact for normal (N) and injured (I) wrists of 

Subject 4. An increase in the intercentroid distance was observed with injury. 

 

 
Figure 3.6. Means and standard errors of radiocarpal peak contact pressures, which were 

significantly higher in the injured (I) wrist compared to normal (N). * indicates p<0.05. 
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Figure 3.7. Means and standard errors of radiocarpal contact forces, which were significantly 

higher in the injured (I) wrist compared to normal (N). * indicates p<0.05. 
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4. EFFECTIVENESS OF SURGICAL RECONSTRUCTION TO RESTORE 

RADIOCARPAL JOINT MECHANICS AFTER SCAPHOLUNATE LIGAMENT 

INJURY. AN IN VIVO MODELING STUDY 
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4.1. Abstract  

Disruption of the scapholunate ligament can cause a loss of normal scapholunate mechanics 

and eventually lead to osteoarthritis. Surgical reconstruction attempts to restore scapholunate 

relationship and shows improvement in functional outcomes, but postoperative effectiveness in 

restoring normal radiocarpal mechanics still remains a question. The objective of this study was 

to investigate the benefits of surgical repair by observing changes in contact mechanics on the 

cartilage surface before and after surgical treatment. Six patients with unilateral scapholunate 

dissociation were enrolled in the study, and displacement driven magnetic resonance image 

based-surface contact modeling was used to investigate normal, injured and postoperative 

radiocarpal mechanics. Model geometry was acquired from images of wrists taken in a relaxed 

position. Kinematics were acquired from image registration between the relaxed images, and 

images taken during functional loading. Results showed a trend for increase in radiocarpal 

contact parameters with injury. Peak and mean contact pressures significantly decreased after 

surgery in the radiolunate articulation and there were no significant differences between normal 

and postoperative wrists. Results indicated surgical repair improves contact mechanics after 

injury and that contact mechanics can be surgically restored to be similar to normal. This study 

provides novel contact mechanics data on the effects of surgical repair after scapholunate 

ligament injury. With further work, it may be possible to more effectively differentiate between 

treatments and degenerative changes based on in vivo contact mechanics data. 



105 

 

4.2. Introduction 

Wrist joint motion involves a complex interplay between articulating geometries and 

ligamentous constraints, which play a vital role in joint stability (Berger, 1997). The 

scapholunate interosseous ligament (SLIL) is the primary stabilizer of the scapholunate (SL) 

joint (Kijima and Viegas, 2009). Disruption of the SLIL is a common injury, known as 

scapholunate dissociation (Kuo and Wolfe, 2008), and can lead to instability. Scapholunate 

instability disrupts the normal scapholunate relationship (Ruby et al., 1987). The misalignment 

results in abnormal radiocarpal kinematics and load transfer (Ruby et al., 1987; Sokolow, 2001). 

Subsequent changes in distributions of articular surface contact are associated with progressive 

degeneration known as scapholunate advanced collapse (SLAC), the most common cause of 

wrist osteoarthritis (Watson and Brenner, 1985). 

Osteoarthritis (OA) is the most functionally and economically debilitating of the 

degenerative joint diseases (Buckwalter et al., 2004). Both age and joint injuries are known risk 

factors for OA (Anderson et al., 2011). Cartilage damage can occur from direct injury to the 

joint, or from progressive instability due to ligamentous injuries. There is a high risk of OA after 

ligament injuries (Anderson et al., 2011). SLIL injury, if untreated, generally leads to radiocarpal 

OA (Roberts et al., 2006). 

Due to its subtlety, scapholunate dissociation is not often diagnosed early. Also, the rate of 

progression to SLAC arthropathy varies between individuals. Thus, time from SLIL injury that 

allows for successful repair is not established (Pomerance, 2006), and ideal treatment when the 

SLIL is irreparable is unknown (Pollock et al., 2010). The various treatments have inconsistent 

postoperative outcomes (Saffar et al., 1999), so more data on treatment methods may improve 

outcomes.   

Contact pressure and changes in contact locations and patterns are important mechanical 

factors in the pathomechanics of OA (Andriacchi et al., 2004).  Contact mechanics can be 

evaluated efficiently by surface contact modeling based on magnetic resonance image (MRI). 

Joint mechanics data from surface contact modeling can illustrate injury contact patterns and 

show effectiveness of surgical interventions.  
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Cadaveric studies cannot adequately assess complex in vivo conditions (active muscle forces 

and dynamic stability), nor the effectiveness of surgery after healing or at other future times.  

Cadaveric studies that have investigated treatments for scapholunate dissociation, have primarily 

examined limited fusions (Viegas and Patterson, 1997). Few studies have investigated in vivo 

wrist joint mechanics, though recent work in our lab has shown the effects of SLIL injury on 

radiocarpal mechanics. There does not appear to be any prior work on efficacy of surgical repair 

to restore normal radiocarpal joint mechanics after SLIL injury. 

Hence, the goal of this study was to investigate immediate benefits of surgical repair by 

observing changes in contact mechanics on the cartilage surface before and after surgical 

treatment. Our hypothesis was that peak and mean contact pressures would increase with injury, 

and decrease postoperatively to values near normal. 

4.3. Materials and methods 

Six human subjects were enrolled for protocols approved by the internal review board. 

Subjects were males with a mean age of 31.3 years (22 to 55). Subjects were diagnosed with 

unilateral scapholunate dissociation, without visual indication of OA (no focal defects or bone-

on-bone contact observed on MRI, and arthroscopic evaluation in some cases), by a board 

certified physician (injured wrists). Contralateral wrists, with no prior history of injury, were 

used as controls (normal wrists). Injured wrists were re-evaluated 12 to 15 weeks after surgical 

repair (postoperative wrists). 

Functional data was collected for normal, injured and postoperative wrists. Grip strength 

levels were measured using a hand dynamometer (Baseline
®
). Pain levels were measured using a 

visual analogue scale (0=minimum to 10=maximum) for four conditions: during rest, during 

daily activities (with splint), during grip strength test and after grip strength test. 

MRI was acquired using constructive interference steady state (CISS) or dual echo steady 

state (DESS) sequences in a 3T clinical scanner. Two image sets were acquired for each wrist. 

Injured wrists were first imaged at high resolution (CISS: in-plane voxel 0.15×0.15 mm, scan 

time ~ 12 mins; DESS: in-plane voxel 0.22×0.2 mm, scan time 4.5 mins; out-of-plane thickness 

0.5 mm for both) with the hand relaxed (unloaded). Then, images were acquired during 
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functional grasp (loaded) at reduced resolution (CISS: in-plane voxel 0.30×0.30 mm, scan time 

196 s; DESS: in-plane voxel 0.31×0.31 mm, scan time 188 s; out-of-plane thickness 1.0 mm for 

both) to minimize scan time (Fig. 4.1). Grasp involved constantly gripping to a specified target 

(3.125 psi) for the duration of the scan. This target was previously determined to create minimal 

discomfort while gripping for up to four minutes. Reduced scan times were to minimize subject 

fatigue and motion artifacts (especially with injury), while acquiring images with adequate 

resolution. Wrists were braced to ensure consistent loaded positions during grasp (Fig. 4.2). The 

normal and postoperative wrists were similarly scanned. 

Surface contact modeling required model geometries, kinematics and a contact relationship 

(i.e. contact pressure linearly proportional to strain).  Radius, lunate and scaphoid bones with 

their cartilage surfaces, were segmented from the high resolution images (ScanIP, Simpleware, 

Exeter, UK). These were wrapped with triangular surface elements to create undeformed 3D 

surface models of the radiolunate and radioscaphoid articulations for the normal, injured and 

postoperative wrists (Fig. 4.3). 

Kinematics were acquired using markerless volume-based image registration between 

relaxed and functionally loaded image sets (Analyze 5.0, Analyze Direct, Overland Park, KS). 

Bone only segmentations were used for image registration based on the assumption that bones 

deformed negligibly under light grasp, while cartilage deformed even under the low loading 

conditions. First, the radius was used as a fixed reference to align the loaded and unloaded image 

sets. The transformation from this step was used to place the loaded images of carpal bones in 

the unloaded image coordinate system. Lastly, unloaded carpal bone image sets were registered 

to the “transformed” loaded carpal bone image sets. Thus, scaphoid and lunate kinematics were 

obtained for the normal, injured and postoperative wrists. The kinematics placed the unloaded 

carpal bone models in the functionally loaded state. 

Model geometries and kinematics were implement in the Joint_Model program to obtain 

displacement constrained contact mechanics (Kwak et al., 2000). Contact areas and locations of 

contact were determined directly from overlapping surface elements of the rigid bodies in the 

functionally loaded state. A uniform thickness of 1 mm was assigned to each articular surface 

based on typical values (Johnson et al., 2012). While the cartilage thickness was uniform, 
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articular surfaces were the actual anatomical surfaces from the MR images. The overlap and total 

thickness were used to estimate deformation at each node, which gave a first order 

approximation of the local cartilage strain. Since the images were acquired over a relatively long 

period of time, it was assumed that the cartilage was substantially relaxed. Hence, an effective 

compressive relaxation modulus of 4 MPa was used as material property (Kwak et al., 2000). 

Local contact pressure was determined from the nodal strain and material property. The nodal 

contact pressures were integrated over the contact area associated with each node, to obtain 

contact force. The ratio of contact force to contact area gave the mean contact pressure. 

We also determined contact areas directly from the loaded MR images. Regions of articular 

surface contact were visible in the images. These were segmented individually using b-splines 

from each image in the image set, to obtain arcs of contact. Each contact arc length was 

calculated from the b-splines and multiplied by the slice thickness. These were summed to obtain 

the effective contact area for each articulation. These “direct” contact areas were compared to the 

model contact areas to verify modeling accuracy. Locations of scaphoid and lunate centroids of 

contact were also determined from the loaded images to obtain scapholunate intercentroid 

distances, which were compared between the normal, injured and postoperative wrists. 

Contact pressure distributions were qualitatively compared between normal, injured and 

postoperative wrists. Grip strength, peak and mean contact pressures, contact forces, model 

contact areas and intercentroid distances, were compared between the three conditions using one-

way repeated measures analysis of variance (ANOVA). Two-way ANOVA was used to compare 

pain levels between state and condition, and also contact areas between method (model, direct) 

and condition. All data were tested for parametric assumption. Tukey’s LSD was used for post 

hoc analysis with significance defined as p < 0.05. Linear regression analysis was performed to 

determine the relationship between model and direct contact areas. Power analysis was also 

performed to estimate number of subjects that would be required to observe significant 

differences. 

4.4. Results 

All data is presented as means (± standard error). For all subjects, locations of scaphoid and 

lunate contact on the radius were commonly in the mid to dorsal region and also along the entire 
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fossa (volar to dorsal). With injury, scaphoid contact appeared to shift dorsal and sometimes also 

laterally toward the styloid region, while lunate contact shifted away from dorsal towards the 

middle. Figure 4.4 shows the dorsal-lateral shift in radioscaphoid contact with injury (B) 

compared to normal (A). Surgery appeared to return the contacts somewhat towards their normal 

locations (Fig. 4.4C). There were no significant differences in intercentroid distances between 

the normal, injured and postoperative wrists (15.06 ± 0.69, 16.59 ± 0.78 and 16.76 ± 1.05 mm, 

respectively). 

Grip strength significantly decreased in the injured wrists (66.8 ± 19.2 lbs) compared to the 

normal (110.2 ± 9.8 lbs). Grip strength was also significantly lower in the postoperative wrists 

(74.2 ± 13.1 lbs) compared to the normal but there were no significant differences between the 

injured and postoperative wrists. Pain levels were significantly higher when performing daily 

activities (2.0 ± 0.5), compared to when at rest (0.9 ± 0.5). There was a strong trend for increase 

in pain levels during the grip strength test (1.7 ± 0.6), compared to when at rest. There were no 

significant differences in pain levels between when at rest and after the grip strength test (1.3 ± 

0.5). Also, pain levels were significantly higher in the injured wrists (3.6 ± 1.3) compared to 

normal (0). However, pain levels were similar to normal, postoperatively (0.8 ± 0.4). 

In the radiolunate articulation, there was a trend for increase in peak and mean contact 

pressures with injury (Figs. 4.5, 4.6). There was a significant decrease in peak (p = 0.023) and 

mean (p = 0.044) contact pressures postoperatively, compared to the injured wrists (Figs. 4.5, 

4.6). There were no significant differences between the normal and postoperative wrists. In the 

radioscaphoid joint, no significant differences were observed between normal, injured and 

postoperative wrists (Figs. 4.5, 4.6), though there was a strong trend for decrease in peak contact 

pressure postoperatively, compared to the injured wrists. 

Contact force showed a trend for increase in the injured wrists for both the radiolunate and 

radioscaphoid articulations (Table 4.1). After surgery, contact force showed a strong trend for 

decrease but there were no significant differences in contact force (Table 4.1). 

Similarly, model contact area showed a trend for increase with injury, and decrease after 

surgery in both the radiolunate and radioscaphoid articulations (Table 4.1). There were no 

significant differences between contact areas in both articulations. Also, there were no significant 

differences between model and direct contact areas in both articulations. Model contact areas 
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were within 10 mm
2
 of the direct contact areas in the radiolunate articulation (Table 4.1). Aside 

from the postoperative wrists, model contact areas were within 2 mm
2
 of the direct contact areas 

in the radioscaphoid articulation (Table 4.1). Regression analysis of all contact area data, showed 

a significant relationship between model and direct contact area measurements (R
2
 = 0.88; slope 

= 0.79 and R
2
 = 0.78; slope = 1.3 for the radiolunate and radioscaphoid articulations respectively, 

p < 0.001). 

To differentiate between effects of surgical repair on contact parameters after injury, results 

from power analysis indicated that typically 7 to 10 subjects will be required. To observe 

changes in normal mechanics after injury, 10 to 15 subjects would be needed. 

4.5. Discussion 

We investigated the in vivo effects of SLIL injury on normal radiocarpal mechanics, and 

subsequent surgical repair to restore normal scapholunate relationship, using MRI-based surface 

contact modeling. An adverse mechanical response to the injury was observed from the tendency 

of contact parameters to increase post injury. The study showed a significant decrease in contact 

pressures in the radiolunate joint of the postoperative wrists, compared to the injured, and there 

were no significant differences between normal and postoperative wrists. A trend toward 

decrease in other contact parameters was also observed post surgery. The results supported our 

hypothesis that surgical intervention lowers elevated contact parameters after injury, returning 

them to near normal. 

It is believed that SLIL disruption alone may not produce significant widening of the SL 

interval (Kuo and Wolfe, 2008). SL diastasis visible on plain radiographs, may also indicate 

progressive damage to the secondary stabilizers (Manuel and Moran, 2010). SL diastasis after 

injury, was generally observed by a separation in the locations of scaphoid and lunate contact on 

the radius articular surface qualitatively (Fig. 4.4), and also from the trend toward increase in 

intercentroid distance quantitatively. Normal intercentroid distances from this study (15.06 ± 

0.69 mm) were similar to those observed in previous studies (14.91 mm) (Patterson and Viegas, 

1995). 

SL diastasis visible in the unloaded position (Fig. 4.3 center), suggests progressive instability 

from damage to the secondary stabilizers. The dorsal (scaphoid) and volar (lunate) shifts in 
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contact locations observed after injury are indicative of dorsal intercalated segment instability 

deformity, where the lunate extends and the scaphoid collapses into flexion.(Kuo and Wolfe, 

2008) The radiocarpal articulations are considered incongruous (Patterson and Viegas, 1995), 

hence the non-uniform/unsymmetrical contact patterns were expected. 

Functional data were consistent with physical examinations of SLIL injury. There is a loss of 

grip strength and increase in pain levels after injury (Manuel and Moran, 2010), as observed in 

this study, likely due to the shift in contact locations and abnormal load transfer through the 

joint. Surgical repair attempts to minimize pain and improve function. Pains levels were similar 

to normal postoperatively, which is a common outcome of surgery (Kuo and Wolfe, 2008; 

Manuel and Moran, 2010). No significant improvements in grip strength after surgery could be a 

result of subjects being cautious and protecting the repair. However, improvements in grip 

strength have also been observed over time (Chabas et al., 2008; Garcia-Elias et al., 2006). 

Peak and mean contact pressures were expected to increase with injury in both radiolunate 

and radioscaphoid articulations. Prior work in our lab has shown peak and mean contact 

pressures to significantly increase in the radioscaphoid articulation, and peak pressure to 

significantly increase in the radiolunate articulation. An increase in contact pressure above a 

certain threshold, may be a risk factor for initiation of degenerative changes. However, a more 

critical mechanism may be a shift in contact location (particularly in the radioscaphoid 

articulation) to normally unloaded articular regions, even though increase in contact pressure is 

not significant. 

While there were no significant differences, contact forces and model contact areas in 

particular, showed a trend for increase with injury in both articulations. Prior work in our lab has 

also shown all contact parameters to increase significantly with injury in the radioscaphoid 

articulation. This corresponds to the clinically observed SLAC pattern, where degenerative 

changes are initially observed at the radioscaphoid region, and then progress medially (Weiss 

and Rodner, 2007). The grasp activity was always the same, so the trend toward increase in 

contact forces with injury may be due to co-contracture, to stabilize the injured joint. This is also 

indicated by the fact that after surgery, contact forces showed a strong trend to decrease to near 

normal values postoperatively. Experiments have shown normal contact forces and contact areas 
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to be higher in the radioscaphoid articulation compared to the radiolunate articulation (Patterson 

and Viegas, 1995), which was observed in this study. 

The significant relationship between model and direct contact area measurements from 

regression analysis (and no significant differences from two-way ANOVA), suggests reliability 

of the MRI-based surface contact modeling technique. The usefulness of the method of 

estimating contact area from grasp MR images to verify in vivo modeling accuracy, has been 

previously shown (Johnson et al., 2012). Due to the possibility of motion artifacts with human 

subjects (especially for loaded scans), the consistently higher values may indicate a tendency to 

overestimate direct contact area measurements. 

The observed trends and variation in data could be attributed to the differences in 

injury/instability patterns between the subjects. SL instability can be clinically classified into 

predynamic, dynamic, static and SLAC stages (Manuel and Moran, 2010; Walsh, 2002). Of the 

six subjects, two were acute (< four weeks from injury and diagnosis), where the instability may 

have been minimal. One was subacute (between four weeks and six months). Three were chronic 

(> six months), which may have been sufficient time for progressive instability to develop. 

Differences in stages of instability (Manuel and Moran, 2010; Walsh, 2002), variations in 

manifestation/progression of instability (Watson and Brenner, 1985; Werner et al., 2007), 

difficulty in treatment selection (Chabas et al., 2008; Garcia-Elias et al., 2006) and inconsistent 

outcomes (Chabas et al., 2008; Fortin and Louis, 1993; Pollock et al., 2010; Pomerance, 2006; 

Saffar et al., 1999), all highlight the importance of tools to evaluate soft tissue injuries and 

corrective measures, and the risk of OA development (Anderson et al., 2011). MRI-based surface 

contact modeling can be a useful tool to determine joint contact mechanics. 

One limitation of the study was modeling a single pose to evaluate SLIL injury and surgical 

repair. Scapholunate motion occurs predominantly in flexion-extension (Gardner et al., 2006), 

and corresponding changes in kinematics after injury may be better visualized during this 

motion. However, there is minimal scapholunate motion during most functional activities 

(Gardner et al., 2006), and these positions may better indicate changes in mechanics with 

instability. The light grasp pose corresponded to the power grip activity, which the wrist 
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frequently undergoes during activities of daily living. Also, the clenched fist anteroposterior 

(longitudinal compressive load) view is commonly used to diagnose SL instability in its early 

stages (Manuel and Moran, 2010). Hence, the light grasp pose was considered appropriate to 

investigate the effects of injury and surgical repair, since subsequent mechanics have functional 

implications. It was also easier to acquire MR images to obtain model geometry and boundary 

conditions using a quasi-static pose. In the future, investigating mechanical changes during other 

dynamic functional activities, such as dart thrower’s motion or circumduction, may also provide 

additional useful data.  

To simplify the analysis, uniform cartilage thickness was assumed for each surface, which 

may have led to variation in strain estimates. This may also explain some of the variation in 

contact pressure results. Assigning spatially varying cartilage thickness values may further 

improve accuracy of acquiring subject-specific contact data. Also, the relatively low number of 

subjects may have resulted in fewer significant differences in contact parameters. Power analysis 

indicated that observed trends may become significant by doubling the number of subjects. 

The surgeries performed were four direct ligament repairs, one three-ligament tenodesis (a 

modified Brunelli procedure according to Garcia-Elias et al. (2006)), and one scaphocapitate 

arthrodesis. Significant decreases in radiolunate peak and mean contact pressure postoperatively, 

indicated the benefits of having surgery. Surgical outcomes appeared positive from similarities in 

these radiolunate parameters between normal and postoperative wrists. However, the benefits 

may be limited by the severity of instability at the time of diagnosis. The longer the time between 

injury and treatment, the greater the possibility of the instability worsening. As mentioned 

before, with increasing severity, instability can progress to the periscaphoid region and 

eventually towards the lunate side. Decrease in postoperative contact pressures in the radiolunate 

articulation may indicate the effectiveness of treatments to correct less severe instabilities, which 

may not have had sufficient time to fully develop. No significant decrease in postoperative 

contact pressures suggests a more severe deformity in the radioscaphoid articulation, which may 

not have been completely corrected after surgery, indicating that more robust reconstruction 

techniques may be required for effective outcomes. Surgery tended to reduce the SL diastasis 

(Fig. 4.3 right), however not all contact locations appeared completely restored (Fig. 4.4). Lack 
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of significant reduction of the scapholunate interval may also suggest that longer time may be 

needed to heal after repair. This may provide an explanation as to why degenerative changes are 

sometimes observed even after surgical intervention. Due to the relatively low number of 

subjects, it was not possible to address effectiveness of reconstruction by technique. The 

mechanical outcomes of surgeries are expected to be different for ligament repairs, tendon 

weaves and salvage procedures, and an overall comparison of repair to injured and normal, 

though appearing positive, may not accurately present the complete picture. Further work is 

warranted to categorize reconstructive surgeries according to their biomechanical outcomes.  

In conclusion, this study provides novel radiocarpal contact mechanics data on the efficacy of 

surgical repair after SLIL injury that further strengthens the importance of surgery to 

manage/halt the progression of instability and minimize/eliminate the risk of developing OA. 

Future work would include pooling subjects according to type of surgery and also investigating 

subsequent benefits at 1-2 years post surgery. The potential is to provide insight into the 

effectiveness of surgery from a contact mechanics perspective and better establish the extent to 

which each surgical repair/reconstruction restores normal joint mechanics. 
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4.7. Tables 

Table 4.1. Contact force, model contact area and direct contact area data for normal, injured and 

postoperative wrists for both radiolunate (RL) and radioscaphoid (RS) articulations. 

 Mean (± Standard Error) Normal Injured Postoperative 

RL 

Contact Force (N) 23 (6) 37 (6) 14 (5) 

Model Contact Area (mm
2
) 58 (14) 70 (9) 46 (6) 

Direct Contact Area (mm
2
) 61 (15) 79 (13) 50 (6) 

RS 

Contact Force (N) 27 (6) 40 (12) 22 (6) 

Model Contact Area (mm
2
) 65 (8) 82 (23) 59 (14) 

Direct Contact Area (mm
2
) 64 (8) 81 (16) 77 (8) 
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4.8. Figures 

 

Figure 4.1. Sample MRI images of the normal wrist of Subject 1. Left shows a high resolution 

slice of the unloaded wrist used for model construction, while right shows a lower resolution 

slice acquired during functional loading for image registration. 

 

 

Figure 4.2. Example wrist of a subject with the grip device in the active grasp position. The wrist 

was also braced for consistent loaded positions. 
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Figure 4.3. Normal (left), injured (center) and postoperative (right) surface models of the 

radiocarpal joint in the unloaded position, for Subject 5, from a dorsal/posterior view. Radius, 

lunate and scaphoid bones are colored green, red and yellow respectively. 
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Figure 4.4. Normal (A), injured (B) and postoperative (C) contact locations of Subject 5, for 

radioscaphoid (RS) and radiolunate (RL) articulations, shown on the radius cartilage. Magnitude 

of contact pressures vary linearly from white (minimum) to dark red (maximum) for each 

articulation.  Peak pressure (PP) values are also shown. The images for this particular subject 

illustrate clear separation of the scaphoid and lunate in the injured wrist, primarily due to 

scaphoid motion.  After repair, the scaphoid moves medially to a position approaching the 

normal contact location. While this grossly illustrates the typical overall behavior, not all 

subjects exhibited these contact patterns. 
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Figure 4.5. Means (± standard errors) of radioscaphoid (RS) and radiolunate (RL) peak contact 

pressures for normal (N), injured (I) and postoperative (P) wrists. * indicates significant 

difference from injured. 

 

 

Figure 4.6. Means (± standard errors) of radioscaphoid (RS) and radiolunate (RL) mean contact 

pressures for normal (N), injured (I) and postoperative (P) wrists. * indicates significant 

difference from injured. 
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5. COMPUTATIONALLY EFFICIENT MRI-BASED SURFACE CONTACT 

MODELING AS A TOOL TO EVALUATE JOINT INJURIES AND OUTCOMES OF 

SURGICAL INTERVENTIONS 



124 

 

This page left intentionally blank. 



125 

 

Formatted for submission to Journal of Biomechanical Engineering 

Computationally Efficient MRI-based Surface Contact Modeling as a Tool to Evaluate 

Joint Injuries and Outcomes of Surgical Interventions 

 

1) Joshua E. Johnson 

Department of Mechanical Engineering 

University of Kansas, 3138 Learned Hall, Lawrence, KS, 66045 

a2joe@ku.edu 

 

2) Phil Lee 

Hoglund Brain Imaging Center 

University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160 

plee2@kumc.edu 

 

3) Terence E. McIff 

Department of Orthopedic Surgery 

University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160 

tmciff@kumc.edu 

 

4) E. Bruce Toby 

Department of Orthopedic Surgery 

University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160 

btoby@kumc.edu 

 

 



126 

 

5) Kenneth J. Fischer
1
 

Department of Mechanical Engineering, Department of Orthopedic Surgery 

1530 W. 15
th

 St, 3138 Learned Hall, Lawrence, Kansas, 66045 

Phone: 785 864 2994 

Fax: 785 864 5254 

fischer@ku.edu 

 

1
Corresponding author 



127 

 

5.1. Abstract 

Joint injuries and the resulting posttraumatic osteoarthritis (OA) are a significant problem. 

There is still a need for tools to evaluate joint injuries, their effect on joint mechanics, and the 

relationship between altered mechanics and OA. Better understanding of injuries and their 

relationship to OA may aid in the development or refinement of treatment methods. This may be 

partially achieved by monitoring changes in joint mechanics that are a direct consequence of 

injury. Techniques such as image-based finite element modeling can provide in vivo joint 

mechanics data, but can also be laborious and computationally expensive. Alternate modeling 

techniques that can provide similar results in a computationally efficient manner are an attractive 

prospect. It is likely possible to estimate risk of OA due to injury from surface contact mechanics 

data alone. 

The objective of this study was to compare joint contact mechanics from image-based 

surface contact modeling (SCM) and finite element modeling (FEM), in normal, injured 

(scapholunate ligament tear) and surgically repaired radiocarpal joints. Magnetic resonance 

images (MRI) of the normal, injured, and postoperative wrists of three subjects were acquired 

when relaxed, and during functional grasp. Surface and volumetric models of the radiolunate and 

radioscaphoid articulations were constructed from the relaxed images for SCM and FEM 

analyses, respectively. Kinematic boundary conditions were acquired from image registration 

between the relaxed and grasp images. For the SCM technique, a linear contact relationship was 

used to estimate contact parameters based on interactions of the rigid articular surfaces in 

contact. For FEM, a pressure-overclosure relationship was used estimate parameters based on 

deformable body contact interactions. The SCM technique was able to evaluate variations in 

contact parameters arising from scapholunate ligament injury and also the effects of surgical 

repair, with similar accuracy to FEM. At least 80% of contact forces, peak contact pressures, 

mean contact pressures and contact areas from SCM were within 10 N, 0.5 MPa, 0.2 MPa and 15 

mm
2
 respectively, of the results from FEM, regardless of the state of the wrist. Depending on the 

application, the MRI-based SCM technique has the potential to provide clinically relevant 

subject-specific results in a computationally efficient manner compared to FEM.  
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5.2. Introduction 

Computational modeling is very useful in biomechanics to simulate normal and pathologic 

joint function. It is also useful to determine the efficacies of various surgical procedures 

performed to treat joint pathologies and simulate their outcomes. Models can be used to estimate 

in situ parameters that are difficult to acquire through experiments non-invasively (such as 

contact pressure distributions). Currently, computational modeling is the only technique 

available to non-invasively evaluate in vivo joint contact mechanics [1]. However, most models 

make use of input parameters derived from various general sources such as literature, standards 

or experiments, and are therefore limited for patient-specific applications [2]. Joint injuries (soft 

tissue or articular surface) are a significant problem and there is still a need for tools to 

effectively evaluate joint injures and associated sequelae [3]. The ability to monitor the initiation 

and progression of joint instability after injury may aid in determining prognosis, leading to 

better treatment algorithms. In order to refine or develop treatments that are targeted towards 

individuals, it is important to focus on subject-specific models. 

Several modeling techniques exist to evaluate in vivo joint mechanics. The common 

techniques include image-based finite element modeling (FEM) [4-13], rigid body spring 

modeling/discrete element analysis (RBSM) [14-16] or surface contact modeling (SCM) [17-19]. 

The models are either displacement driven or force driven. Generally, model geometries are 

acquired from modalities such as computed tomography (CT) [4-8, 14, 15, 19] or magnetic 

resonance imaging (MRI) [9-11, 17, 18]. Kinematics are determined through external (surface 

markers) or internal measures (biplanar radiography), while tendon forces are estimated from 

corresponding musculature (EMG and cross sectional area) and ground reaction forces are 

measured using force platforms [11, 20]. These loads and displacement boundary conditions are 

input into the model to infer joint kinetics/kinematics and resulting stresses and strains (surface 

and/or volumetric). 

FEM is the most common and accurate method to determine stresses [20]. However, 

depending on the complexity of the problem, the process of developing the mesh can be 

laborious and obtaining a converged solution can be computationally intensive [21]. Depending 

on the type of problem (for instance, deformable versus rigid), more simplified analyses can be 
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performed based on relevant assumptions to determine appropriate solutions. This is the basis of 

RBSM and SCM techniques. Using these methods, joint mechanics can be evaluated in a 

computationally efficient manner compared to FEM [22]. The underlying question is whether 

these methods are competent to provide data that is sufficiently accurate for clinically relevant 

applications. 

The ability to accurately determine joint mechanics has wide clinical implications, especially 

in complex joints such as the wrist. It may be possible to sufficiently evaluate changes in joint 

mechanics as a result of injury or surgical intervention, from surface contact mechanics data 

alone. This can be achieved through the SCM technique, without the need for a complex 

volumetric analysis [23]. However, the SCM technique has not been extensively used. 

In vivo simulation studies more accurately represent physiological conditions than ex vivo 

studies (for instance, soft tissue interactions and dynamic motor stability), and can be used to 

assess temporal response to joint injuries and corresponding surgical treatments. Computational 

modeling has been extensively applied to the lower extremity to evaluate in vivo joint mechanics 

[4-11, 18]. In the wrist, studies have evaluated in vivo joint mechanics during functional 

activities [12, 14, 16, 17] and also simulated the effects of some carpal fractures and limited 

fusions [13, 15, 19]. In particular, scapholunate (SL) ligament injury is a commonly occurring 

wrist ligament injury that can lead to SL joint instability and progressive degenerative changes 

[24-27]. There does not appear to be any prior modeling work on the in vivo effects of SL 

ligament injury or surgical repair. 

Hence, we investigated differences in vivo radiocarpal joint mechanics between the SCM and 

FEM techniques, after SL ligament injury and surgical repair. We did not intend to make 

comparisons between the normal, injured and postoperative states. Our goal was to show that 

contact parameters obtained from SCM would be comparable to those obtained from a similar 

FEM analysis regardless of wrist state, and to demonstrate the feasibility and applicability of the 

SCM technique. 
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5.3. Methods 

Three human subjects diagnosed with unilateral SL ligament injury by a board certified 

physician, were enrolled for the study. Protocols were approved by the local Institutional Review 

Board. The subjects were all male with a mean age of 36 years. Preoperative images were first 

acquired of the injured and contralateral (normal) wrists. The injured wrists were imaged again 

12 to 15 weeks post surgical repair (postoperative). 

MR images were acquired using a constructive interference steady state (CISS) or a dual 

echo steady (DESS) state sequence. High resolution images were first acquired with the wrists in 

a relaxed position (unloaded) at 0.15 × 0.15 mm in-plane pixels for CISS sequence (field of view 

[FOV] = 95 × 61.8 mm
2
, slice thickness = 0.5 mm, number of slices = 104, repetition time [TR] 

= 14.8 ms, echo time [TE] = 7.4 ms, flip angle = 60°, number of average = 1) and 0.22 × 0.2 mm 

in-plane pixels for DESS sequence (FOV = 100 × 48 mm
2
, slice thickness = 0.5 mm, number of 

slices = 110, TR = 30 ms, TE = 5.7 ms, flip angle = 25°, number of average = 1). Then, images 

were acquired during active light grasp (loaded) at a lower resolution (CISS: voxel = 0.3×0.3 

mm, slice thickness = 1.0 mm, number of slices = 52, TR = 12 ms, TE = 6 ms and DESS: voxel 

= 0.31×0.31 mm, FOV = 100×100 mm
2
, slice thickness = 1.0 mm, number of slices = 52). The 

loaded scans were acquired at lower resolution to reduce scan time. This minimized subject 

fatigue and related motion artifacts during scanning, while maintaining adequate resolution for 

the modeling process. The grasp task involved gripping to a specified target with the help of a 

visual feedback system, and maintaining the grip for the duration of scan. The wrists were also 

braced in 20° extension during the scan to maintain a consistent loaded position between wrists. 

Both the SCM and FEM techniques required model geometries, kinematics (displacement 

driven) and a contact relationship. For SCM, the radius and carpal bones (scaphoid and lunate) 

including their cartilage surfaces were segmented from the unloaded images using ScanIP® 

(Simpleware, Exeter, UK), to generate models of the radiocarpal articulations with triangular 

surface elements (Figure 5.1 left). The bones were assumed as rigid, that is, undergoing 

negligible deformation under the relatively light loading activity. Hence for FEM (Figure 5.1 

right), only cartilage surfaces were segmented (same articular surfaces as SCM), which were 

used to generate 4-node tetrahedral meshed volumetric models using ScanFE® (Simpleware, 

Exeter, UK). Lunate, scaphoid and radius mesh refinement resulted in a range of 10805, 9691, 
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and 17740 nodes respectively, to 19301, 18286, and 28635 nodes, based on convergence 

analysis. 

Kinematics were acquired from image registrations between the unloaded and loaded image 

volumes using Analyze 5.0® (Analyze Direct, Overland Park, KS). Since the bones were 

assumed as rigid, only the bone tissue of the radius and carpal bones was segmented from the 

two image sets. Briefly, the radius was used as a fixed reference to align the loaded and unloaded 

image sets. This reference transformation was used to reposition the loaded carpal bones into the 

unloaded coordinate system. Then, carpal bone transformations were determined between the 

unloaded carpal bones and loaded carpal bones (now in the same coordinate system as the 

unloaded images). This final transformation placed the unloaded carpal bone models, in the 

functionally loaded position. 

Surface models of the radiocarpal articulations with the final kinematics, were implemented 

in the SCM software, Joint_Model [23]. A uniform thickness of 1 mm was assigned to each 

articular surface based on typical measured values. Though the thickness was uniform for 

analyses, the model articular surface was the actual anatomical surface from the images. Since 

the loaded images were acquired over a relatively long period of time, the cartilage was assumed 

to have had sufficient time to relax (approach equilibrium). Hence, an effective compressive 

relaxation modulus of 4 MPa was assigned to the articular surfaces [23]. Contact measures were 

determined from interactions of the rigid surfaces in contact, based on a linear contact rule. 

Contact area was calculated from overlapping nodes of the surface elements in contact. The 

depth of interpenetration/overlap was used to determine a first order estimate of normal 

compressive strain at each node in contact, based on the thicknesses of the cartilage surfaces at 

that location. These “deformations” were distributed to the nodes on each surface, based on the 

ratios of their thickness and modulus values. In the case of uniform thickness assumption, the 

thicknesses and modulii were the same for each surface in contact. Nodal contact pressures were 

determined from the local strains and material properties. Contact pressures were numerically 

integrated over the entire contact region to obtain the total compressive contact force on the 

articulation. 
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Volumetric models of the radiocarpal articulations together with kinematics, were also 

implemented in the FEM software, Abaqus® (Simulia, Providence, RI), on a Windows® PC 

with 12 processors. Since the cartilage was assumed to have substantially relaxed, time- and 

flow-independent material characteristics were assumed. Hence, the cartilage was modeled as an 

elastic, homogeneous and isotropic deformable solid. Similarly, the value of effective modulus 

was the same as for the SCM analysis. Due to the dual phase interstitial fluid-solid matrix 

interaction, the instantaneous response of articular cartilage is to behave as an incompressible 

material, where the hydrostatic forces support the loads applied to the joint surface. With time, 

fluid efflux and matrix compaction result in cartilage starting to become more compressible. 

Hence, Poisson’s ratio ν = 0.20 was chosen to model the long-term response of the hydrated 

cartilage matrix [28-30]. The subchondral nodes of the cartilage volumes were rigidly 

constrained by the kinematic boundary conditions. The linear penalty constraint method was 

used to enforce the pressure-overclosure relationship between the surfaces in contact. 

Frictionless contact was assumed between the articular surfaces (neglecting tangential behavior) 

and a finite sliding formulation was used to model the normal interaction between the bodies. 

Contact areas, contact forces, peak contact pressures and pressure distributions were determined. 

The solutions were accepted as converged after a less than 5% variation in contact force with 

mesh refinement. 

To verify modeling accuracy, contact area results from the simulations were compared to 

contact areas directly measured from the loaded MR images. The regions where articular 

surfaces were visibly in contact, were segmented from each image. The lengths of these contact 

arcs were multiplied by slice thickness and summed to determine the effective “direct” contact 

areas for each articulation. Contact forces, contact areas, peak and mean contact pressures and 

contact pressure distributions were compared between the SCM and FEM techniques for the 

radiolunate (RL) and radioscaphoid (RS) articulations, from normal, injured and postoperative 

wrists. 
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5.4. Results 

Qualitatively, the location of contact pressure distribution matched well between SCM and 

FEM for the normal, injured and postoperative wrists of all subjects (Figures 5.2 to 5.4). This 

was expected, since the same kinematics were implemented in both modeling approaches. 

Due to the low number of subjects, no tests for statistical significance were performed. 

Absolute differences between SCM and FEM contact parameters for RL and RS articulations of 

each subject, were compared for all three conditions (18 total comparisons for each measure). 

Absolute differences between SCM and FEM contact parameters for both articulations averaged 

across subjects for each condition, were also compared (6 total comparisons for each measure). 

Table 5.1 shows comparison of contact forces between SCM and FEM and also the absolute 

value of the difference for the normal, injured and postoperative wrists of all subjects. For all 

subjects, absolute differences were within 10 N for 15 out of the 18 results. Taking the average 

across the three subjects, absolute differences of RL and RS contact force in all wrist states were 

all within 6 N (Figure 5.5). The overall average (wrist states and articulations) signed difference 

between SCM and FEM was 1 N. Contact force signed differences for normal, injured and 

postoperative wrists were similar between SCM and FEM for the radiolunate articulation (Figure 

5.5). 

Table 5.2 shows comparison of peak contact pressures between SCM and FEM for the 

normal, injured and postoperative wrists of all subjects. The absolute differences were within 0.5 

MPa for 13 out of the 18 results. The differences of the average of peak contact pressures across 

the subjects between SCM and FEM were under 0.5 MPa, except for radioscaphoid 

postoperative wrists (Figure 5.6). The overall average signed difference between SCM and FEM 

showed SCM peak pressure to be 0.34 MPa lower than FEM. For the radiolunate articulation, 

signed differences were similar between SCM and FEM for normal, injured and postoperative 

wrists (Figure 5.6). 

Table 5.3 shows mean contact pressures compared between the SCM and FEM techniques 

for the normal, injured and postoperative wrists of all subjects. The absolute differences were 

within 0.2 MPa for 15 out of the 18 results, and under 0.5 MPa for all results. Except for 

radioscaphoid postoperative wrists, the differences of the average of mean contact pressures 
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across the three subjects were within 0.2 MPA (Figure 5.7). The overall average signed 

difference between SCM and FEM showed SCM mean pressure to be 0.14 MPa lower than 

FEM. Signed differences in mean contact pressures were similar between SCM and FEM for 

normal, injured and postoperative wrists in both articulations (Figure 5.7). 

 Table 5.4 shows comparison of normal, injured and postoperative contact areas between 

SCM and FEM, and also direct contact areas for all subjects. For 15 out of the 18 results, 

absolute differences between SCM and FEM were within 15 mm
2
. Taking the average of contact 

areas across the three subjects, the difference between SCM and FEM was over 15 mm
2
 only for 

radioscaphoid normal and injured wrists (Figure 5.8). The overall average signed difference 

between SCM and FEM showed FEM contact area to be 12 mm
2
 lower than SCM. Signed 

differences for normal, injured and postoperative wrists observed between SCM and FEM were 

of similar magnitude, only in the radiolunate articulation (Figure 5.8). Except for radioscaphoid 

postoperative wrists, average contact areas from SCM were within 15 mm
2
 of the average direct 

contact area results (Figure 5.8). Model (SCM and FEM) contact areas tended to match direct 

contact areas more closely for the radiolunate articulation (Figure 5.8). 

5.5. Discussion 

We compared radiocarpal contact mechanics as a result of scapholunate dissociation and 

subsequent surgical intervention determined using the SCM technique, to results of a parallel 

analysis using FEM. At least 80% of contact forces, peak contact pressures, mean contact 

pressures and contact areas from SCM were within reasonable limits (10 N, 0.5 MPa, 0.2 MPa 

and 15 mm
2
, respectively) of the results from FEM, suggesting viability of the SCM approach. 

Change in wrist status did not appear to affect SCM accuracy compared to FEM, further 

affirming the SCM technique. 

Mechanical factors are considered important in the etiology of initiation and progression of 

osteoarthritis (OA), and peak contact pressures and pressure distributions are considered to be 

key mechanical factors [31]. Increase in peak contact pressures above a physiological threshold 

may cause cellular damage leading to the inability of cartilage to repair and maintain a healthy 

extracellular matrix. Peak contact pressures tended to increase with injury, particularly in the 

radiolunate articulation. Peak contact pressure results from SCM and FEM were in the range 
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reported by prior in vitro studies [22, 32, 33]. Also, the non-uniform/asymmetrical contact 

distributions observed from both techniques are typical of the incongruent radiocarpal 

articulations [32]. While radioscaphoid peak contact pressure appeared to decrease after injury in 

some instances, it was observed that location of peak contact pressure and distribution had 

shifted more compared to radiolunate contact (Figure 5.3). Scapholunate diastasis is clinically 

observed after ligament disruption with increasing severity of instability [34], and a subsequent 

shift in contact may also be a potential OA risk factor.  

Higher differences in contact parameters between SCM and FEM observed in the 

radioscaphoid articulation may be due to geometry and kinematics specific to this location. 

Scaphoid contact was mainly observed at the dorsal ridge, particularly in the injured and 

postoperative wrists (Figures 5.2 to 5.4). There are rapid changes in geometry associated with 

this region, where the radius contact surface transitions from relatively flat to areas of high 

curvature. As such, deformable interaction of the FEM technique may more accurately model the 

contact in this region compared to rigid surface interaction of SCM. Also, the lower mesh 

resolution of the SCM models (Figure 5.1 left) may have caused an averaging effect especially in 

the regions of high curvature. This may have caused an underestimation of SCM nodal strains 

(less overlap) resulting in lower estimates of peak contact pressures and subsequently contact 

forces and mean contact pressures. 

FEM contact areas corresponded more closely to direct contact area measurements, than 

those from SCM (Figure 5.8). This was expected as the volumetric models were deformable, 

which would represent the apparent deformations of the articular surfaces on the loaded MR 

images from which the direct contact areas were calculated. While contact areas from SCM were 

determined from overlapping nodes of the interacting rigid bodies. Direct contact area 

measurements were generally higher than the model measurements. For both articulations, SCM 

and FEM contact areas for the normal wrists most closely matched the direct contact area 

measurements. With injury, the effects of motion artifacts on the loaded images may be more 

significant, thereby influencing segmentation and registration (kinematics) accuracy, and 

potentially affecting direct contact area measurements. Larger differences observed in the 

radioscaphoid articulation between model and direct contact area results (Figure 5.8), could be a 
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result of the scaphoid being more mobile than the lunate [35]. Currently, direct contact area is the 

only measurement available to verify our in vivo modeling accuracy. 

Since its introduction, the application of finite element modeling has progressed rapidly in 

the biomechanics field. The applications are no longer just limited to basic tissue stress analysis. 

They now include complex multi-phasic interactions, biomechanical models that simulate 

physiologic/pathologic conditions, tissue response at implant interfaces, osteoporotic fracture 

predictions, etc. [36]. The extent of model complexity is dictated by the level of detail required 

of the output variables. However, as models get more complicated (non-linear contact problem 

for instance), more time and resources are required to prepare the models and complete the 

analysis [21], which questions their feasibility for clinical applications. Alternate modeling 

techniques that can produce similar results to the FEM “gold standard” could potentially provide 

clinically relevant results in an efficient manner. 

MRI-based surface contact modeling has significant potential as a research and clinical tool. 

While CT is a common imaging modality, MRI is believed to be the best method to obtain 

subject-specific geometry [20]. Osseous and soft tissue geometries can be acquired from the 

same set of images without the need for coordinate system registration (when using multiple 

imaging modalities) or the use of contrast agents. With MRI-based SCM, the actual cartilage 

surface can be segmented, thereby eliminating the need to replace articular surfaces with a 

mechanical equivalent such as discrete springs [14-16]. It also eliminates the need for 

approximating the cartilage surfaces using half the distance between bone geometry (assuming 

articular contact which may not be the case during imaging). Studies have shown these methods 

to have lower accuracy in predicting contact mechanics [21, 37]. Inclusion of joint space with 

cartilage thickness and additional assumptions at joint edges (extra thickness), are thus avoided. 

Using fat suppressed T2-weighted sequences (DESS for example) minimizes chemical shift 

artifacts, providing better delineation between tissue interfaces and allowing for semi-automatic 

segmentation of the bone, which improves model generation efficiency [38]. Also, with quality 

control, boundary segmentation errors can be reduced to less than 8% [39]. There is a risk of 

radiation exposure in using radiographic methods to acquire kinematics [40], such as multi-

planar X-ray fluoroscopy techniques. Though this technique provides accurate real-time 3D 
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motion, it is difficult to apply effectively to complex joints with multiple small articulating bones 

such as the wrist, and accuracy in such applications is not yet verified. Kinematic boundary 

conditions can be determined from image registration of static/quasi-static images (kinematic 

MRI) or from dynamic images (cine-PC MRI) acquired during functional loading [2, 17], which 

do not require a priori force assumptions. Intensity based volume registration is less sensitive to 

segmentation errors [41]. Loading conditions estimated from muscle geometry determined using 

diffusion tensor MRI [2] and muscle activity from EMG, can be applied to SCM for force driven 

models. 

One limitation was that FEM contact results were not directly validated with experiments. 

The MRI-based SCM technique has been sufficiently validated to provide reliable joint contact 

mechanics data [22, 42]. Since FEM is accepted as the gold standard, it was used as the standard 

for comparison. As mentioned earlier, both SCM and FEM results were in reasonable agreement 

with published data and also with the direct contact area measurements. The low number of 

subjects was another limitation of the study. While data from three subjects provided a 

reasonable comparison between SCM and FEM, it was not sufficient (nor intended to be so) to 

make conclusions on the effects of injury and surgical repair. Using the SCM technique, prior in 

vivo work in our lab has shown significant increases in all contact parameters in the 

radioscaphoid articulation as a result of injury [Chapter 3] and a significant decrease in contact 

pressures in the radiolunate articulation after surgical repair [Chapter 4]. Another limitation was 

the uniform thickness assumption for the articular surfaces to simplify the analysis. Total 

articular thickness of the contacting surfaces was used to approximate local strains. Assigning 

higher thickness values to the cartilage surfaces can lead to lower strain estimates, and 

subsequently underestimate contact pressure results. Variable thickness cartilage models can also 

be implemented using SCM. Also, SCM mesh resolutions were comparatively lower than FEM 

due to processing limitations of the current modeling software version. Lower geometric fidelity 

may have resulted in an averaging of the nodal contact pressures from a coarser mesh 

distribution. To further improve SCM accuracy, future work would include comparing results 

from higher resolution models and also from assigning subject-specific spatially varying 

cartilage thicknesses determined from the MR images. 
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MRI-based surface contact modeling can provide useful in vivo joint contact mechanics data 

in a computationally efficient manner compared to FEM, making the technique more clinically 

feasible. Some differences between SCM and FEM results could also be attributed to the specific 

implementation of the FEM analysis. For instance, studies have shown a rigid subchondral 

interface assumption, used in the FEM analysis, to predict higher contact pressures than a 

deformable bone-cartilage interface [37]. While more complex and time consuming, FEM can be 

used to perform detailed analyses such as influence of depth dependent anisotropy on stresses, 

effects of fluid layer between articulating surfaces on contact mechanics, etc. Thus, it is likely 

the tool of choice for most research studies. Results from this study indicate MRI-based SCM to 

be a practical tool that can efficiently obtain clinically relevant data, which can differentiate 

between normal and abnormal conditions, and potentially assess OA risk based on contact 

mechanics data. 
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5.7. Tables 

Table 5.1. Comparison of radiolunate (RL) and radioscaphoid (RS) contact forces from MRI-

based surface contact modeling (SCM) and finite element modeling (FEM) and absolute 

differences (DIFF) for normal, injured and postoperative wrists of all three subjects. 

    Normal Injured Postoperative 

    SCM FEM DIFF SCM FEM DIFF SCM FEM DIFF 

RL 

1 13 16 3 50 27 22 7 9 2 

2 46 53 8 39 41 2 9 10 1 

3 6 5 1 9 12 4 16 19 3 

RS 

1 22 13 10 34 10 24 12 13 1 

2 15 12 3 3 5 2 5 5 0 

3 11 17 6 11 18 7 15 26 11 

 

Table 5.2. Comparison of radiolunate (RL) and radioscaphoid (RS) peak contact pressures from 

MRI-based surface contact modeling (SCM) and finite element modeling (FEM) and absolute 

differences (DIFF) for normal, injured and postoperative wrists of all three subjects. 

    Normal Injured Postoperative 

    SCM FEM DIFF SCM FEM DIFF SCM FEM DIFF 

RL 

1 0.88 1.17 0.29 1.39 1.12 0.28 0.42 0.77 0.35 

2 0.91 1.23 0.32 1.30 1.42 0.12 0.73 1.09 0.36 

3 0.72 0.85 0.14 0.98 1.15 0.16 0.79 1.14 0.35 

RS 

1 1.15 1.24 0.09 2.18 2.20 0.02 1.59 2.55 0.96 

2 1.04 1.27 0.23 0.54 1.09 0.54 0.66 1.17 0.52 

3 0.69 1.11 0.42 0.87 1.48 0.61 0.60 1.42 0.82 
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Table 5.3. Comparison of radiolunate (RL) and radioscaphoid (RS) mean contact pressures from 

MRI-based surface contact modeling (SCM) and finite element modeling (FEM) and absolute 

differences (DIFF) for normal, injured and postoperative wrists of all three subjects. 

    Normal Injured Postoperative 

    SCM FEM DIFF SCM FEM DIFF SCM FEM DIFF 

RL 

1 0.36 0.48 0.13 0.62 0.56 0.07 0.20 0.33 0.14 

2 0.46 0.63 0.16 0.48 0.56 0.08 0.21 0.31 0.10 

3 0.34 0.44 0.09 0.35 0.45 0.10 0.35 0.50 0.15 

RS 

1 0.40 0.48 0.08 0.55 0.57 0.02 0.83 1.30 0.48 

2 0.40 0.43 0.03 0.33 0.52 0.19 0.23 0.39 0.17 

3 0.20 0.40 0.20 0.30 0.60 0.30 0.25 0.50 0.24 

 

Table 5.4. Comparison of radiolunate (RL) and radioscaphoid (RS) contact areas from MRI-

based surface contact modeling (SCM) and finite element modeling (FEM) and absolute 

differences (DIFF), and also direct contact area measurements (DA) for normal, injured and 

postoperative wrists of all three subjects. 

    Normal Injured Postoperative 

    SCM FEM DA DIFF SCM FEM DA DIFF SCM FEM DA DIFF 

RL 

1 37 33 40 4 79 49 87 30 34 27 31 7 

2 99 85 99 14 81 72 119 8 42 31 60 12 

3 18 11 17 7 25 28 19 3 45 38 54 7 

RS 

1 57 26 62 30 62 18 49 45 15 10 65 5 

2 38 28 25 11 10 10 35 0 22 14 50 8 

3 57 43 77 14 38 30 64 8 59 53 71 6 
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5.8. Figures 

 

Figure 5.1. Radiocarpal surface (left) and volumetric (right) models of the normal wrist of 

Subject 2 used for surface contact modeling (bone and cartilage geometry) and finite element 

modeling (only cartilage geometry), respectively. 

 

 

Figure 5.2. Contact pressure distributions of the normal (N), injured (I) and postoperative wrists 

of Subject 1 from finite element modeling (left) and surface contact modeling (right). For each 

technique, first column shows radioscaphoid contact and second column shows radiolunate 

contact. Contact varies medial/ulnar to the left and dorsal/posterior to the top. 
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Figure 5.3. Contact pressure distributions of the normal (N), injured (I) and postoperative wrists 

of Subject 2 from finite element modeling (left) and surface contact modeling (right). For each 

technique, first column shows radioscaphoid contact and second column shows radiolunate 

contact. Contact varies medial/ulnar to the left and dorsal/posterior to the top. 
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Figure 5.4. Contact pressure distributions of the normal (N), injured (I) and postoperative wrists 

of Subject 3 from finite element modeling (left) and surface contact modeling (right). For each 

technique, first column shows radioscaphoid contact and second column shows radiolunate 

contact. Contact varies medial/ulnar to the left and dorsal/posterior to the top. 
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Figure 5.5. Average contact forces across the three subjects from surface contact modeling 

(SCM) and finite element modeling (FEM) for the three conditions. 

 

 
Figure 5.6. Average peak contact pressures across the three subjects from surface contact 

modeling (SCM) and finite element modeling (FEM) for the three conditions. 
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Figure 5.7. Average mean contact pressures across the three subjects from surface contact 

modeling (SCM) and finite element modeling (FEM) for the three conditions. 

 

 
Figure 5.8. Average contact areas across the three subjects from surface contact modeling (SCM) 

and finite element modeling (FEM), and also from direct contact area (DA) measurements for 

the three conditions. 
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6. CONCLUSION 

6.1. Summary 

The study to evaluate the effects of scapholunate ligament injury and surgical repair on 

radiocarpal joint mechanics, has been successfully concluded. It is generally accepted that 

abnormal joint posture and motion are a consequence of disruption to the normal scapholunate 

mechanical linkage, as a result of scapholunate ligament injury. As such there is abnormal load 

transmission through the joint, which is manifested as altered joint mechanics. Among other 

factors, it is believed there is a relationship between the ensuing abnormal mechanics, 

particularly magnitude and distribution of contact pressures and clinically observed degenerative 

changes, though the mechanism is not well understood. Surgical reconstruction attempts to 

correct the deformity, but successful repair is commonly determined by a visual and/or 

functional outcome. A tool to effectively monitor in vivo joint mechanics may facilitate injury 

diagnosis and improve treatment efficacy. 

MRI has limited diagnostic applicability for wrist ligament injuries, but is advantageous for 

obtaining in vivo data such as model geometry and loading or boundary conditions. MRI 

combined with computational modeling can be used to obtain in vivo joint mechanics. FE 

modeling is the most common and accurate technique for joint contact analysis. However, 

solving the complex non-linear contact problem is time consuming. Even performing a more 

computationally efficient rigid body FE analysis, requires considerable time to generate 

geometry with good mesh quality metrics. Surface contact mechanics may be sufficient to 

clinically evaluate injuries and surgical outcomes, and the MRI-based surface contact modeling 

technique can be used to determine joint contact mechanics in a manner that is feasible for 

clinical applications. 

The focus of this work was to investigate the effects of scapholunate ligament injury and 

surgical repair through MRI-based SCM and also compare these results to a similar FE analysis. 

The process involved generating SCM and FE geometry (from image segmentation), acquiring 

boundary conditions (kinematics from image registration) and applying a contact interaction to 

solve for contact forces, contact areas, peak and mean contact pressures and contact pressure 

distributions. The following were the major findings and conclusions of the study. 
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6.2. Major findings and conclusions 

The effect of initial manual registration on automatic registration accuracy was investigated. 

Results showed that manual registration to align registration volumes as close as possible prior to 

auto-registration, appeared to reduce errors in final kinematics and in contact mechanics. Though 

the results may be software specific, the study indicated that a good initial manual registration 

should improve kinematics results from any automated voxel registration software. 

The effects of SL ligament injury on radiocarpal contact mechanics were investigated. 

Results showed that all contact parameters significantly increased in the radioscaphoid joint, 

while peak and mean contact pressures significantly increased in the radiolunate joint. There was 

also a significant increase in the intercentroid distances. Increase in radioscaphoid contact 

parameters and shift in contact locations correspond to clinically observed osteoarthritic patterns, 

which initiate in the lateral radioscaphoid region. While contact pressures increased, a shift in 

contact pressure distributions may also be a potential OA risk factor. Alterations to physiologic 

grasp were observed by the increases in contact forces after injury. Though the radiolunate joint 

is more stable, observed shift in load transfer from the scaphoid to the lunate, may explain why 

even the integrity of this joint is eventually compromised. Novel in vivo contact mechanics data 

indicated detrimental alterations to radiocarpal mechanics from SL ligament injury. 

The effects of surgical repair on radiocarpal contact mechanics after SL ligament injury were 

investigated. Results showed significant decrease in peak and mean contact pressures after repair 

in the radiolunate articulation only, and no significant differences in these contact parameters 

between normal and postoperative wrists. There were no significant differences in intercentroid 

distances between the injured and postoperative wrists. Significant decrease in contact pressures 

indicated the benefits of having surgery. However, the benefits may be limited by the severity of 

instability at the time of diagnosis. The surgical technique appears to have been effective to 

minimize radiolunate instability, but perhaps in some cases, not the more severe radioscaphoid 

instability. Lack of significant reduction of the scapholunate interval also suggests that perhaps a 

longer time may be needed to heal after repair. In addition, contact parameters after repair 

suggested that perhaps more robust ligament reconstruction techniques may be required to 

effectively correct the deformity resulting from injury and restore normal carpal alignment. 

Novel radiocarpal contact mechanics data on the efficacy of surgical repair after SLIL injury, 
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further strengthened the importance of surgery to manage the progression of instability and 

minimize the risk of developing OA. 

Contact mechanics results from SCM were also compared to results from a similar FE 

analysis. Results typically showed good agreement between SCM and FEM for contact forces, 

contact areas, peak and mean contact pressures. Contact pressure distributions were very similar 

between the two techniques. Also, model contact area results compared well to direct contact 

area measurements for the normal wrists, providing further verification. The study showed that 

based on relevant assumptions, MRI-based SCM has good potential for clinical applications to 

evaluate joint injuries and surgical outcomes in a computationally efficient manner, based on 

surface contact mechanics. 

6.3. Future directions 

The study on effects of injury only compared the overall effects of SL ligament injury on 

contact mechanics. Progression of instability varies between patients. The stages of instability 

(predynamic, dynamic, static and SLAC) alter carpal alignment differently, and therefore, are 

expected to display different mechanical behavior. Also, surgical treatments and outcomes vary 

with severity of instability (static versus dynamic). With more subjects, it may be possible to 

differentiate between the different stages of instability by investigating the variation in contact 

mechanics with progressive instability. Increase in peak contact pressure is expected from the 

least severe stage of instability (predynamic) to the most severe (SLAC stage and bone-on-bone 

contact). 

The study on effects of surgery compared only the overall effects of surgical repair 

(regardless of repair type) on contact mechanics altered by injury. Degenerative changes are 

sometimes observed even after treatment. Surgical outcomes are expected to vary between 

techniques that directly repair the ligament (most mobility), reconstruct the joint with tendon 

weaves, or partially/totally fuse the joint (least mobility). With more subjects, it may be possible 

to group mechanical outcomes according to technique, to better understand how effective each 

technique is to restore normal joint mechanics. The potential for healing depends on the 

condition of the SL ligament (partial/complete tear), secondary stabilizers (intact/disrupted) and 

cartilage surface (healthy/degenerated). Peak contact pressures are expected to be similar to 
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normal for direct repairs, which have the maximum potential for healing. When the SL ligament 

is irreparable, peak contact pressures are expected to be close to normal for soft tissue 

reconstruction techniques (tenodesis) that can restore and are robust enough to maintain normal 

alignment. Peak contact pressures are not expected to be restored to normal for joint salvage 

procedures (fusions). 

While the MRI-based SCM technique compared well to FE modeling, the technique can be 

further developed by investigating the effects of mesh resolution and spatially varying cartilage 

thickness on contact mechanics. Lower geometric fidelity of the current models, may have 

resulted in an averaging of the nodal contact pressures due to the coarser mesh distribution. The 

uniform cartilage thickness assumption may also have resulted in an 

underestimation/overestimation of contact pressures. Contact mechanics from mesh resolutions 

similar to FE models and also from anatomical cartilage thickness values measured from MRI, 

can be investigated. By increasing mesh resolution of the SCM models and also incorporating 

spatially varying cartilage thickness, peak contact pressures (and other contact parameters) are 

expected to be closer to the FEM results. Due to different methods of solving the contact 

problem, there will always be a difference in results between the techniques. Clearly, the 

deformable contact interaction using FEM is a more accurate modeling assumption than the first 

order estimate of strain using SCM. 

With enough subjects, it may be possible to construct a database of pressures and pressure 

distributions that correspond to clinically observed patterns of degeneration. This may prove to 

be a valuable tool to evaluate soft tissue injuries. The ability to monitor the location of peak 

contact pressure and contact pressure distribution in vivo, may provide clinical data to aid in the 

selection of the most effective treatment process. Based on contact mechanics data from different 

instability patterns, more robust techniques can be selected that may ensure a more successful 

outcome. 

Additionally, location of peak contact pressures and pressure distributions can potentially be 

correlated to physiological changes in cartilage tissue (from T2 relaxation times), to better 

understand the mechanism of the onset and progression of PTOA. Postoperative contact 

mechanics data from follow-up studies, can provide information on the short-term benefits of 
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surgical repair. Studies into the efficacies of immobilization devices such as braces and splints 

may provide useful information to facilitate the healing process. Models with ligamentous 

constraints can also be implemented, to investigate changes in contact mechanics from ligament 

laxity with progressive instability or progressive wear. Using FE modeling, it may be possible to 

correlate surface contact pressures with 3D internal stresses. Thus, it may also be possible to 

estimate internal stress parameters using SCM alone. 

The subtlety of SL ligament injury, highlights the importance of early diagnosis. The 

computational efficiency of the MRI-based SCM method, makes it feasible for clinical 

applications. With advances in MR imaging techniques and automated mesh generation 

procedures, it is envisioned that contact mechanics data may be acquired in real-time for clinical 

assessment. The ability to monitor load transmission through the joint may aid in prognosis of 

soft tissue injuries and simulate the outcomes of surgical treatments. This method can be further 

applied to investigate contact mechanics in other joints. 

In conclusion, the MRI-based surface contact modeling technique was used to identify 

clinically relevant changes in contact mechanics as a result of scapholunate ligament injury and 

surgical repair. The process of acquiring joint mechanics data was computationally efficient, and 

has good potential for clinical applications. 


