11 research outputs found

    Development and Design of Deep Learning-based Parts-of-Speech Tagging System for Azerbaijani language

    Get PDF
    Parts-of-Speech (POS) tagging, also referred to as word-class disambiguation, is one of the prerequisite techniques that are used as part of the advanced pre-processing stage across pipeline at the majority of natural language processing (NLP) applications. By using this tool as a preliminary step, most NLP software, such as Chat Bots, Translating Engines, Voice Recognitions, etc., assigns a prior part of speech to each word in the given data in order to identify or distinguish the grammatical category, so they can easily decipher the meaning of the word. This thesis addresses the novel approach to the issue related to the clarification of word context for the Azerbaijani language by using a deep learning-based automatic speech tagger on a clean (manually annotated) dataset. Azerbaijani is a member of the Turkish family and an agglutinative language. In contrast to other languages, recent research studies of speech taggers for the Azerbaijani language were unable to deliver efficient state of the art accuracy. Thus, in this thesis, study is being conducted to investigate how deep learning strategies such as simple recurrent neural networks (RNN), long short-term memory (LSTM), bi-directional long short-term memory (Bi-LSTM), and gated recurrent unit (GRU) might be used to enhance the POS tagging capabilities of the Azerbaijani language

    Automatic Extraction of Lithuanian Cybersecurity Terms Using Deep Learning Approaches

    Get PDF
    The paper presents the results of research on deep learning methods aiming to determine the most effective one for automatic extraction of Lithuanian terms from a specialized domain (cybersecurity) with very restricted resources. A semi-supervised approach to deep learning was chosen for the research as Lithuanian is a less resourced language and large amounts of data, necessary for unsupervised methods, are not available in the selected domain. The findings of the research show that Bi-LSTM network with Bidirectional Encoder Representations from Transformers (BERT) can achieve close to state-of-the-art results

    Generating Effective Sentence Representations: Deep Learning and Reinforcement Learning Approaches

    Get PDF
    Natural language processing (NLP) is one of the most important technologies of the information age. Understanding complex language utterances is also a crucial part of artificial intelligence. Many Natural Language applications are powered by machine learning models performing a large variety of underlying tasks. Recently, deep learning approaches have obtained very high performance across many NLP tasks. In order to achieve this high level of performance, it is crucial for computers to have an appropriate representation of sentences. The tasks addressed in the thesis are best approached having shallow semantic representations. These representations are vectors that are then embedded in a semantic space. We present a variety of novel approaches in deep learning applied to NLP for generating effective sentence representations in this space. These semantic representations can either be general or task-specific. We focus on learning task-specific sentence representations, where often these tasks have a good amount of overlap. We design a set of general purpose and task specific sentence encoders combining both word-level semantic knowledge and word- and sentence-level syntactic information. As a method for the former, we perform an intelligent amalgamation of word vectors using modern deep learning modules. For the latter, we use word-level knowledge, such as parts of speech, spelling, and suffix features, and sentence-level information drawn from natural language parse trees which provide the hierarchical structure of a sentence together with grammatical relations between the words. Further expertise is added with reinforcement learning which guides a machine learning model through a reward-penalty game. Rather than just striving for good performance, we always try to design models that are more transparent and explainable. We provide an intuitive explanation about the design of each model and how the model is making a decision. Our extensive experiments show that these models achieve competitive performance compared with the currently available state-of-the-art generalized and task-specific sentence encoders. All but one of the tasks dealt with English language texts. The multilingual semantic similarity task required creating a multilingual corpus for which we provide a novel semi-supervised approach to make artificial negative samples in the presence of just positive samples

    Multi-dialect Arabic broadcast speech recognition

    Get PDF
    Dialectal Arabic speech research suffers from the lack of labelled resources and standardised orthography. There are three main challenges in dialectal Arabic speech recognition: (i) finding labelled dialectal Arabic speech data, (ii) training robust dialectal speech recognition models from limited labelled data and (iii) evaluating speech recognition for dialects with no orthographic rules. This thesis is concerned with the following three contributions: Arabic Dialect Identification: We are mainly dealing with Arabic speech without prior knowledge of the spoken dialect. Arabic dialects could be sufficiently diverse to the extent that one can argue that they are different languages rather than dialects of the same language. We have two contributions: First, we use crowdsourcing to annotate a multi-dialectal speech corpus collected from Al Jazeera TV channel. We obtained utterance level dialect labels for 57 hours of high-quality consisting of four major varieties of dialectal Arabic (DA), comprised of Egyptian, Levantine, Gulf or Arabic peninsula, North African or Moroccan from almost 1,000 hours. Second, we build an Arabic dialect identification (ADI) system. We explored two main groups of features, namely acoustic features and linguistic features. For the linguistic features, we look at a wide range of features, addressing words, characters and phonemes. With respect to acoustic features, we look at raw features such as mel-frequency cepstral coefficients combined with shifted delta cepstra (MFCC-SDC), bottleneck features and the i-vector as a latent variable. We studied both generative and discriminative classifiers, in addition to deep learning approaches, namely deep neural network (DNN) and convolutional neural network (CNN). In our work, we propose Arabic as a five class dialect challenge comprising of the previously mentioned four dialects as well as modern standard Arabic. Arabic Speech Recognition: We introduce our effort in building Arabic automatic speech recognition (ASR) and we create an open research community to advance it. This section has two main goals: First, creating a framework for Arabic ASR that is publicly available for research. We address our effort in building two multi-genre broadcast (MGB) challenges. MGB-2 focuses on broadcast news using more than 1,200 hours of speech and 130M words of text collected from the broadcast domain. MGB-3, however, focuses on dialectal multi-genre data with limited non-orthographic speech collected from YouTube, with special attention paid to transfer learning. Second, building a robust Arabic ASR system and reporting a competitive word error rate (WER) to use it as a potential benchmark to advance the state of the art in Arabic ASR. Our overall system is a combination of five acoustic models (AM): unidirectional long short term memory (LSTM), bidirectional LSTM (BLSTM), time delay neural network (TDNN), TDNN layers along with LSTM layers (TDNN-LSTM) and finally TDNN layers followed by BLSTM layers (TDNN-BLSTM). The AM is trained using purely sequence trained neural networks lattice-free maximum mutual information (LFMMI). The generated lattices are rescored using a four-gram language model (LM) and a recurrent neural network with maximum entropy (RNNME) LM. Our official WER is 13%, which has the lowest WER reported on this task. Evaluation: The third part of the thesis addresses our effort in evaluating dialectal speech with no orthographic rules. Our methods learn from multiple transcribers and align the speech hypothesis to overcome the non-orthographic aspects. Our multi-reference WER (MR-WER) approach is similar to the BLEU score used in machine translation (MT). We have also automated this process by learning different spelling variants from Twitter data. We mine automatically from a huge collection of tweets in an unsupervised fashion to build more than 11M n-to-m lexical pairs, and we propose a new evaluation metric: dialectal WER (WERd). Finally, we tried to estimate the word error rate (e-WER) with no reference transcription using decoding and language features. We show that our word error rate estimation is robust for many scenarios with and without the decoding features

    A review of affective computing: From unimodal analysis to multimodal fusion

    Get PDF
    Affective computing is an emerging interdisciplinary research field bringing together researchers and practitioners from various fields, ranging from artificial intelligence, natural language processing, to cognitive and social sciences. With the proliferation of videos posted online (e.g., on YouTube, Facebook, Twitter) for product reviews, movie reviews, political views, and more, affective computing research has increasingly evolved from conventional unimodal analysis to more complex forms of multimodal analysis. This is the primary motivation behind our first of its kind, comprehensive literature review of the diverse field of affective computing. Furthermore, existing literature surveys lack a detailed discussion of state of the art in multimodal affect analysis frameworks, which this review aims to address. Multimodality is defined by the presence of more than one modality or channel, e.g., visual, audio, text, gestures, and eye gage. In this paper, we focus mainly on the use of audio, visual and text information for multimodal affect analysis, since around 90% of the relevant literature appears to cover these three modalities. Following an overview of different techniques for unimodal affect analysis, we outline existing methods for fusing information from different modalities. As part of this review, we carry out an extensive study of different categories of state-of-the-art fusion techniques, followed by a critical analysis of potential performance improvements with multimodal analysis compared to unimodal analysis. A comprehensive overview of these two complementary fields aims to form the building blocks for readers, to better understand this challenging and exciting research field

    Conditioning Text-to-Speech synthesis on dialect accent: a case study

    Get PDF
    Modern text-to-speech systems are modular in many different ways. In recent years, end-users gained the ability to control speech attributes such as degree of emotion, rhythm and timbre, along with other suprasegmental features. More ambitious objectives are related to modelling a combination of speakers and languages, e.g. to enable cross-speaker language transfer. Though, no prior work has been done on the more fine-grained analysis of regional accents. To fill this gap, in this thesis we present practical end-to-end solutions to synthesise speech while controlling within-country variations of the same language, and we do so for 6 different dialects of the British Isles. In particular, we first conduct an extensive study of the speaker verification field and tweak state-of-the-art embedding models to work with dialect accents. Then, we adapt standard acoustic models and voice conversion systems by conditioning them on dialect accent representations and finally compare our custom pipelines with a cutting-edge end-to-end architecture from the multi-lingual world. Results show that the adopted models are suitable and have enough capacity to accomplish the task of regional accent conversion. Indeed, we are able to produce speech closely resembling the selected speaker and dialect accent, where the most accurate synthesis is obtained via careful fine-tuning of the multi-lingual model to the multi-dialect case. Finally, we delineate limitations of our multi-stage approach and propose practical mitigations, to be explored in future work

    Biomedical entities recognition in Spanish combining word embeddings

    Get PDF
    El reconocimiento de entidades con nombre (NER) es una tarea importante en el campo del Procesamiento del Lenguaje Natural que se utiliza para extraer conocimiento significativo de los documentos textuales. El objetivo de NER es identificar trozos de texto que se refieran a entidades específicas. En esta tesis pretendemos abordar la tarea de NER en el dominio biomédico y en español. En este dominio las entidades pueden referirse a nombres de fármacos, síntomas y enfermedades y ofrecen un conocimiento valioso a los expertos sanitarios. Para ello, proponemos un modelo basado en redes neuronales y empleamos una combinación de word embeddings. Además, nosotros generamos unos nuevos embeddings específicos del dominio y del idioma para comprobar su eficacia. Finalmente, demostramos que la combinación de diferentes word embeddings como entrada a la red neuronal mejora los resultados del estado de la cuestión en los escenarios aplicados.Named Entity Recognition (NER) is an important task in the field of Natural Language Processing that is used to extract meaningful knowledge from textual documents. The goal of NER is to identify text fragments that refer to specific entities. In this thesis we aim to address the task of NER in the Spanish biomedical domain. In this domain entities can refer to drug, symptom and disease names and offer valuable knowledge to health experts. For this purpose, we propose a model based on neural networks and employ a combination of word embeddings. In addition, we generate new domain- and language-specific embeddings to test their effectiveness. Finally, we show that the combination of different word embeddings as input to the neural network improves the state-of-the-art results in the applied scenarios.Tesis Univ. Jaén. Departamento de Informática. Leída el 22 abril de 2021

    Alzheimer’s Dementia Recognition Through Spontaneous Speech

    Get PDF
    corecore