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Abstract

The advent of the Internet, and more specifically Web 2.0, has contributed

to the proliferation of large volumes of unstructured information available

digitally. The growth of electronic data is especially important in specific areas

such as biomedicine, where the number of published documents (articles,

clinical and technical reports, among others) is increasing exponentially. In

order to organize and manage this data, several manual curation efforts have

been made to identify relevant information in the texts. However, manual

review of these documents for clinical knowledge extraction is costly and time-

consuming. One of the main objectives of Natural Language Processing (NLP)

is to facilitate these tasks by proposing automated methods for optimizing

the workflow of healthcare professionals. Specifically, automated systems can

help healthcare professionals as decision support systems and by managing

patients’ medical data in a short time. In fact, the application of NLP in the

field of biomedicine has attracted the attention of the research community

in recent years due to the development of interesting systems showing the

advantages of using NLP techniques in this field.

In biomedical text mining, Named Entity Recognition (NER) is an impor-

tant task in the field of NLP used to extract significant knowledge from textual
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documents. The goal of NER is to identify chunks of text that refer to specific

entities of interest, such as protein names, drugs, symptoms, and diseases,

reporting to medical experts a large amount of the knowledge embedded in

the textual data.

On the other hand, machine learning and deep learning methods have

shown significant improvements in several NLP tasks such as machine trans-

lation and text generation. In this thesis we aim to take advantage of this

technology and apply it to the biomedical NER task in Spanish. To accomplish

this goal, we propose a model based on neural networks that is able to process

the text included in health documents. The neural network architecture is

composed of a Bidirectional Long Short Term Memory (BiLSTM) with a layer

of Conditional Random Field (CRF) to predict each word as a proper entity. To

represent the text we employ a combination of word embeddings providing

knowledge to each word according to the combination selected. Moreover,

we generate new domain and language-specific word embeddings to test

their effectiveness. This approach is evaluated in three scenarios of differ-

ent biomedical sub-domains. Finally, we demonstrate that the combination

of different word embeddings as input to the neural network improves the

state-of-the-art results in the applied scenarios.
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Chapter 1

Introduction

One of the main purposes of clinical text mining is the possibility to process

and analyze the large volumes of textual information contained in medical

records. Through this treatment of the information, we attempt to answer

questions such as, which patients presented a certain condition? What kind of

conditions were used to detect the disease? What were the results of the tests

performed? What was the treatment given? These questions could seem quite

simple for some medical professionals, but they become extremely complex

when managed automatically by computational systems.

In the biomedical domain, we can find large collections of free textual

information (medical reports, Electronic Health Records - EHR, scientific

papers, among others) that contain very relevant data that need to be studied

in depth. However, current health information systems are not prepared

to analyze and extract this knowledge due to the time and cost involved in

processing it manually. The field of artificial intelligence known as Natural

Language Processing (NLP) is being applied to medical documents to build

applications that can understand and analyze this huge amount of textual
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information automatically [1]. Following the definition by Chowdhury [2]:

"NLP is an area of research and application that explores how computers can

be used to understand and manipulate natural language text or speech to do

useful things."

Many researchers in the NLP field focus on the area of Information Extrac-

tion (IE) in the biomedical domain to address these challenges. IE systems take

natural language text as input and produce structured information specified

by certain criteria and that is relevant to a particular application. Depending

on the different inputs of IE systems and expected outputs, many sub-tasks

can be defined such as Named Entity Recognition (NER).

The term Named Entity was established in 1996, at the 6th Message Under-

standing Conference (MUC-6), to refer to "unique identifiers of entities" [3]. In

broad terms, the NER task consists of locating and classifying parts of the text

into pre-defined categories such as places, people, organizations, expressions

of time, and quantities. However, in the biomedical domain, the important

entities included in documents are not limited to those mentioned above. In

this particular case, it is necessary to recognize some special types of named

entities, such as diseases, procedures, treatments, and drugs, among others.

NER not only serves as a task included in IE but also plays an essential

role in a variety of NLP applications such as information retrieval, automatic

text summarizing, or question answering [4]. Additionally, the recognition

of biomedical entities in a text can be a starting point for the subsequent

extraction of relationships between entities, allowing these concepts to be

represented in some coherent and standardized form.
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In this thesis, we focus on information extraction from Spanish biomedical

texts, more specifically, on the NER task. Spanish has more than 480 million

native speakers1 and nowadays there is a worldwide interest in processing

medical texts in this language. With this study, we aim to advance the task

of biomedical NER in this relevant language and thus answer the above-

mentioned questions.

In order to accomplish this study, we propose a methodology based on

deep learning. Furthermore, different word embeddings are used in combina-

tion to obtain a better representation of each word. With this approach, we aim

to achieve the desired final goal: to recognize biomedical entities accurately in

different scenarios.

In the following sections, we show the motivations that have led us to ad-

dress the NER task in the biomedical field. We also describe the objectives and

goals that we intend to achieve with this thesis. Subsequently, we formulate

the hypotheses which will serve as a basis for initiating the research. And

finally, we explain the methodology followed during the research process.

1.1 Motivation

Over the years, the recognition of biomedical entities has motivated the sci-

entific community to continue developing automatic systems to facilitate the

extraction of medical knowledge. NER is a difficult task to solve that can help

in many other medical-related systems such as those presented below:

• Clinical decision support. Clinical decision support emphasizes the
1Spanish language: https://en.wikipedia.org/wiki/Spanish_language

https://en.wikipedia.org/wiki/Spanish_language
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ability to produce evidence-based reports on daily health services to

assist experts in their decisions and actions [5]. This information can be

used by NLP methods that develop evidence-based applications detect-

ing early warning for the monitoring of disorders and the development

of personalized patient care [6, 7]. Automated NER systems can pro-

vide real-time results, which means that entities such as diseases can be

detected immediately. This evidence can be used to help professionals

identify emerging health problems, for instance, to alert them to the

presence of certain unexpected findings [8].

• Entity representation. In the NER task, different words can have sim-

ilar meanings. This problem is caused by the multiple ways in which

a particular entity can be represented and written. For instance, "adri-

amicina" (adriamycin), "doxorrubicina" (doxorubicin) and "hidroxildaunor-

rubicina" (hydroxyldaunorubicin) refer to the same drug widely used

in cancer chemotherapy. Another consideration is that entities appear

as acronyms or their descriptions, e.g. "enfermedad pulmonar obstructiva

crónica" (chronic obstructive pulmonary disease) and "EPOC" (COPD)

are referred to as the same disease (chronic inflammatory lung disease

causing airflow obstruction of the lungs).

On the other hand, an acronym does not always have a unique de-

scription, it can be interpreted as two different entities depending on

the context. For instance, in Spanish, PCR can be referred to "parada

cardiorrespiratoria" (cardiorespiratory arrest), "Reacción en Cadena de la

Polimerasa" (Polymerase Chain Reaction) or "Proteína C-Reactiva" (Protein
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C-Reactive). Finally, as we see in the examples, biological entities may

also have multi-word names, so the problem is additionally compli-

cated by the need to determine name boundaries and resolve overlap of

candidate names.

• Sub-domain of application. The biomedical NER community has the

opportunity to further advance the recognition of any type of named

entity in different sub-domains such as the oncological, radiological,

and pharmaceutical domains. Existing evaluation forums focus on spe-

cific applications that allow researchers to address specific tasks and

progressively improve NER techniques. In particular, there are chal-

lenges related to drug and gene extraction such as PharmaCoNER [9]

and CHEMDNER [10], and the identification of cancer problems [11]. In

addition, in the pharmacological domain, there are workshops concern-

ing the extraction of Adverse Drug Events (ADEs) [12, 13]. Relationship

extraction was also born as a consequence of the NER task, since once

the entity is recognized, it could be related to other entities [14, 15]. As

we can see, there is a great concern to generate models that can identify

entities according to a specific biomedical domain, which has been an

extra motivation in the achievement of this thesis.

• Basis for other NLP tasks. Biomedical entity recognition serves as the

basis for many other crucial areas of information management, such as

classification tasks, question answering, information retrieval, and text

summarization [16, 17, 18]. For instance, the use of NER becomes impor-

tant for analyzing the clinical text and obtaining the most relevant tags
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in each report, allowing the classification of documents. Regarding the

question answering task, it is common practice to use NER systems to ex-

pand the query using synonyms of entities, descriptions, and acronyms

in order to obtain better results. Another important challenge offered

by the NER is to assign each entity a unique identifier in a database or

controlled vocabulary. This process is known as entity normalization in

which, once a biomedical entity has been identified, it can be shared in a

standardized way with other systems.

• Extracting structured information. Biomedical NER is a task that facili-

tates medical professionals in structuring reports contributing to solu-

tions such as providing a summary of patient conditions or serving as a

tool to organize the documentation of the physician’s decision-making

process, plan development, and patient outcomes.

As we can see, there are many problems and difficulties that can be solved

indirectly by advancing in solving the NER task in the health domain. There-

fore, the main motivation of this thesis is to extract relevant knowledge from

biomedical texts that can be useful and helpful for open problems in the

medical area.

1.2 Objective

The main objective of this thesis focuses on the study, analysis, and develop-

ment of NLP techniques and tools for the NER task in the biomedical domain

in Spanish. Specifically, it focuses on the study and applicability of different
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combinations of word embeddings as word representation.

This general objective has been defined through the following specific

objectives:

• Collect resources available in Spanish annotated with biomedical entities

used in different challenges.

• Study and select the existing word embeddings in Spanish serving as

input to the network.

• Propose a deep learning-based method for NER in the biomedical do-

main that can take a combination of different word embeddings as input.

• Generate a new word embedding for Spanish focused on the biomedical

domain to see how effective it is in comparison to existing ones.

• Evaluate the performance of the proposed method on the NER problem

using three application scenarios: pharmacological domain, oncological

domain, and knowledge discovery in biomedical texts.

• Conduct a results analysis comparing our system with the state-of-the-

art.

• Perform an error analysis to understand the capabilities and drawbacks

of our system.

• Identify open issues from the conclusions in order to propose future

research.
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1.3 Hypothesis

In this thesis, we address the problem of biomedical entity extraction in

Spanish through deep learning and combinations of word embeddings using

NLP methods. Based on the objectives set out above, our general hypothesis

can be summarized as follows:

  NLP techniques applied to the NER task can improve biomedical systems. 

However, since this hypothesis is very ambitious, we have decided to

subdivide it into three specific hypotheses:

Hypothesis 1 (H1). Deep neural networks in NLP leverage the advantage of exist-

ing relevant information from the Spanish biomedical textual data and the NER task,

outperforming models that do not integrate this information properly.

Deep learning methods have emerged in recent years in the area of NLP.

This success is due to the ability to tackle complex learning problems through

multiple levels of representation and abstraction that help to make sense of

texts in tasks such as NER.

Previously with the NER issue, Conditional Random Fields (CRFs) [19]

were the primary modeling method for sequential labeling and extracting

information from documents. However, deep learning has replaced CRF, caus-

ing the focus to shift from feature engineering to neural network design and

implementation. The main weakness of CRFs is that they are unable to model

the semantic similarity between two words. To overcome this problem, many
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CRFs rely on dictionaries (a list of words related to the domain). However,

this is a poor solution as dictionaries are intrinsically limited and can be very

expensive to develop [20].

More recently, Recurrent Neural Networks (RNNs) are powerful deep

learning models for application in NLP. These models usually use a vector

representation for each token by reading token by token and "remembering"

important information. In other words, they are loop networks that allow for

the persistence of information and are capable of handling sequential data

such as text sequences [21].

Considering the above, we believe that RNNs could be a potential model

for addressing the NER task, in addition to other deep learning methods.

Hypothesis 2 (H2). Combining different types of word embeddings by concatenat-

ing each embedding vector to form the final word vectors is an important part of the

biomedical entity recognition task. The probability of recognizing a specific entity in

a text should increase as optimal representations of that word are combined because

they are more comprehensively represented and integrate relevant knowledge.

Word embeddings are functions that allow us to map words to an n-

dimensional vector, based on the assumption that words in a similar space

must be related to each other. These models attempt to capture as much

information from the context as possible in a word, and can even contain

semantic and syntactic information [22].

Context-independent and context-based word embeddings are the most

popular approaches at the moment. On the one hand, context-independent

embeddings are static and word-level, which means that each distinct word
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receives exactly one pre-computed embedding. Examples of this type are

Bag-of-Words, Tf-Idf, Word2Vec, GloVe, and fastText [23, 24, 25]. On the

other hand, context-based embeddings are based on the assumption that

the same word in different contexts has different meanings. Some examples

include transformer-based word embeddings such as Bidirectional Encoder

Representations from Transformers (BERT) [26] and RoBERTa [27].

Considering both types of approaches, in this thesis we use different word

embeddings, comparing them individually and proposing combinations. We

believe that by combining different word representations through concate-

nation, the system may be able to understand a word more appropriately

and then classify it as an entity or non-entity. The main advantage of using a

combination of embeddings for each word is that this allows the combination

of the knowledge of different embeddings in order to generate better quality

word representations, i.e. it obtains the benefits of different word embeddings

given their different nature, their training corpus, and their specific purpose.

Finally, we consider that given the different nature of the selected word em-

beddings, in different scenarios the optimal combinations may be different

from each other.

Hypothesis 3 (H3). Integrating domain-specific knowledge into the training corpus

can be beneficial for improving the quality of word embeddings. Thus, this resource

provides a more accurate representation of words in a particular context and domain.

Existing word embeddings have been trained on a huge corpus and gen-

erally work well, but sometimes fail on specific tasks such as health. The

incorporation of generic word embeddings can lead to a difficult training
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process where there is a discrepancy among domain words. For instance, in

Spanish, the word "órgano" (organ) can have different meanings. Depending

on the context of an application, it can refer to a collection of tissues or a

harmonic instrument.

Therefore, a crucial issue in achieving a robust system is that it is usually

dependent on the domain in which the data is represented. The training of

word embeddings involves fitting a model to a pre-processed corpus and

adjusting the hyperparameters of the model, which are settings whose values

are empirically specified before training.

With this hypothesis we aim to address the following question: would it

be beneficial to train domain and language-specific word embeddings?

1.4 Methodology

The methodology to be followed in order to achieve the above objectives is as

follows:

1. Study and review of state-of-the-art. We will study the current state of

the literature, compile important sources, ideas, and concepts related to

NLP and the NER task. In addition, we will review the most commonly

used Machine Learning (ML) methods in the NER task.

2. Experimental design. This step consists of creating a set of procedures

to test the hypotheses. Good experimental design requires a solid under-

standing of the system under study. Specifically, experimental design is

a way of carefully planning the experiments to be conducted in the NER
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task to achieve valuable objectives and results.

3. Implementation and experimentation. After designing the experiments,

we will proceed to the implementation and experimentation step. In

this step, we will test the method in different application scenarios. In

our particular case, we will use the proposed system in three health-

related experimental frameworks: oncological, pharmacological, and

knowledge discovery in biomedical texts.

4. Analysis of results. Subsequently, the systems developed will be evalu-

ated and the results obtained will be compared with existing ones. The

analysis of the results is another important part of the methodology

used, as this step will show the success of our system. Finally, an error

analysis is carried out to identify possible improvements to our systems.

1.5 Thesis outline

This thesis is organized into six chapters and an appendix. This first chapter

contains an introduction explaining the motivation and objectives that led

us to carry out the study. Furthermore, we have presented the hypotheses

with the research questions we intend to solve and the methodology we will

carry out. The remainder of this thesis is divided into different chapters and

is organized as follows.

Chapter 2 presents an overview of the methodologies based on ML com-

monly used in the NER task and which are necessary to understand the later

parts of this thesis. Specifically, this chapter analyzes the ML approaches
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carried out to solve the NER problem in the biomedical domain. These tech-

niques have been used throughout this thesis and have been divided into two

categories: supervised and unsupervised methods.

Chapter 3 summarizes previous work on NLP tasks based on ML in the

biomedical domain and shows an extensive literature review of the NER task

with regard to present state-of-the-art studies. Since the interest of this thesis

lies in word representation, this chapter details the review of existing methods

for word representations up to the moment. Finally, it presents knowledge

resources widely used by the Biomedical NLP (BioNLP) community.

Chapter 4 describes the proposed model to solve the biomedical entity

extraction problem. After an extensive review of previously applied method-

ologies, we propose an approach based on a Bidirectional Long Short-Term

Memory (BiLSTM) neural network with a final CRF layer. The input to the

network will be composed of word embeddings to represent the words of

a document consistently. Following this idea, our approach proposes the

combination of different types of word embeddings by concatenating each

embedding vector to form the final word vector. Finally, this chapter shows

the new word embeddings created in this study for the specific domain and

language.

Chapter 5 presents the experimentation carried out using the approach

proposed previously. The experimental framework was developed in three

scenarios belonging to different biomedical sub-domains including pharma-

cology, oncology, and knowledge discovery. For each scenario, this chapter
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contains a description of the problem addressed, the dataset used, the method-

ology employed, and results obtained. Finally, error analysis and discussions

are included for each one.

Chapter 6 contains our conclusion where we summarize our findings and

main contributions. Moreover, this chapter provides an outlook into the future,

the publications derived from the study, and the research results transferred.
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Chapter 2

Machine learning approaches

This chapter provides basic knowledge in order to establish the basis for

the following chapters. We will give a brief introduction to NLP to outline

its general principles and then we will detail the most frequent approaches

used in machine learning in the scope of artificial intelligence. According to

McCarthy [28], we can define the Artificial Intelligence as follows:

"Artificial Intelligence (AI) is the science and engineering of making intelli-

gent machines, especially intelligent computer programs. It is related to the

similar task of using computers to understand human intelligence."

Nowadays, AI has become more popular thanks to increased data volumes,

advanced algorithms, and improvements in computer and storage power.

Specifically, AI in healthcare has led to rapid advancement in digital medicine

across multiple clinical specialties, including oncology [29, 30], radiology [31],

and neurology [32]. Since a substantial amount of most relevant clinical

information is embedded in unstructured data [33], NLP plays an essential role

in extracting valuable information that can benefit decision-making, report

structuring, report classification, and entity recognition, among others.
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For more complex applications of NLP, the systems are based on ML

models to improve their understanding of human language. According to

Mitchell [34] a scientific field is best defined by the central question it studies.

Therefore, the field of ML seeks to answer the question How can we build

computer systems that automatically improve with experience, and what are the

fundamental rules that regulate all learning processes?

Briefly, ML is defined by the Computer Scientist and ML pioneer Mitchell

[35] as:

"The study of computer algorithms that allow computer programs to auto-

matically improve through experience."

Over the past decades, many automatic NER systems have been developed

and used to identify and categorize biomedical entities using ML approaches.

These approaches can be organized into different categories. For example,

considering whether the algorithm is trained with labeled data or not, we can

classify such algorithms into supervised learning and unsupervised learning.

In the course of this thesis, we have studied some of the approaches

included in the previous categories and summarized in Figure 2.11. On the

one hand, within the unsupervised methods, we have investigated rule-based

methods and dictionary-based methods. On the other hand, in supervised

learning methods, we have made a distinction between traditional algorithms,

neural networks, and transformer-based models.
1It should be noted that this classification has been proposed by ourselves.
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Rule-based methods
Unsupervised 

learning

Machine learning 
approaches

Supervised 
learning

Traditional   
algorithms

Neural networks

Support vector machines

Logistic regression

Conditional random fields

Dictionary-based methods

Naive Bayes

Convolutional neural networks

Recurrent neural networks

Transformer-based models

Figure 2.1: Classification of the machine learning methods studied throughout this
thesis.

2.1 Unsupervised learning

In this section, we aim to survey two of the unsupervised learning techniques

used for NER tasks in the biomedical domain. Unsupervised learning is a

machine learning technique in which it is not necessary to supervise the model,

i.e. it learns patterns from unlabeled data.

2.1.1 Rule-based methods

Rule-based systems are one of the most widely-used unsupervised methods

in ML. These models are very appropriate in situations where the knowledge

to be represented comes with a structure of rules.

The handcrafted models are hand-built systems that rely mainly on the

intuition of human designers. They generally incorporate human knowledge
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in the form of patterns or rules. Usually, patterns use grammatical (e.g. Parts-

Of-Speech), syntactical (e.g. word precedence), and other language features to

make a more accurate identification.

In rule-based systems, two types of rules are typically used:

• Pattern-based rules. These rules are based on checking a given sequence

of tokens for the presence of the constituents of some pattern. To under-

stand this type of approach, we present some examples of text features

to be considered by the rule designer. In these examples, the aim would

be to recognize chemicals and drugs in sentences.

– May be acronyms such as "ADP" for the "acetylacetonate" compo-

nente and "DTT" for "dithiothreitol".

– May be composed of a molecular formula including alphanumeric

characters in capital letters such as "C6N4" referred to as "tetracya-

noethylene" and "CD34" which is a transmembrane phosphoglyco-

protein protein.

– May contain a prefix such as "amino-", for example, "aminoglyco-

side" and "aminoacids".

– May contain a suffix such as "-nitrile" included in "butanedinitrile"

and "succinonitrile".

The rules described above are not sufficient to identify all occurrences of

entities in a document. Frequently, the rules themselves are incomplete

and do not cover many examples.
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Patterns in a sentence are often described using regular expressions

(regexp) and matches. A regular expression consists exclusively of

normal characters (such as "abc") or a combination of normal characters

and meta-characters (such as "ab*c). Meta-characters describe certain

constructions or character patterns, e.g, whether a character should be

at the beginning of the line or whether a character should only appear

exactly once [36].

• Context-based rules. Usually, the relevant information on the named

entities is given in the contexts of their mentions. Analyzing a mention

by humans or machines is a hard task without any contextual infor-

mation where we can find the correct meaning of a word through a

sequence. For example, if the term "Apple" occurs alone, it is not possi-

ble to identify what this term refers to. It could refer to the fruit, a person,

a company, or a place. Resolving these ambiguities is often referred to

as Named Entity Disambiguation (NED), which is a highly challenging

aspect of an entity extraction task.

Context-based rules establish a higher level of relationship between the

tokens and the extracted features, e.g. windows size in a sentence and

the use of conjunctions in order to connect words, phrases, clauses, or

sentences.

Rule-based systems work very well when the language lexicon is not di-

verse. The advantages of these systems are that they are relatively easy to

understand and the cause-effect relationship is transparent so that a domain

expert can check the rule base and make adjustments if necessary. Due to
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specific domain rules and incomplete dictionaries, high precision and low

recall of such systems are often observed. The main disadvantages of these

methods are several: i) the manual construction of the rules, which can be

a time-consuming task depending on the domain, ii) since the rules are cre-

ated for a very specific scenario, it is not possible to transfer this system to

another different domain, and iii) they do not handle incomplete or incorrect

information very well, i.e. data that does not have an associated rule will be

ignored.

2.1.2 Dictionary-based methods

Dictionary-based approaches are other popular techniques in unsupervised

ML. These techniques use linguistic resources such as dictionaries, glossaries,

empty word lists, taxonomies, and thesauri to analyze the different levels of

language: phonetic, lexical, semantic, or pragmatic.

This type of method is really useful in fields where the entities to be

recognized may be contained in lists of words. However, these techniques are

not always useful, for instance, if the entity to be identified is a first name and

surname of a person, due to its nature and diversity, it will be difficult to find

them in any resource, either in a dictionary or a list of words.

Dictionary-based approaches require exploration of variations in entity

spelling in order to carry out the matching process [37]. Some examples of

variations that can be taken into account by the automatic pattern matching

process are:
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• Special characters such as hyphen, slash, and brackets are used as sepa-

rators in different combinations by different authors. For instance, the

entity "Ki-67" and "Ki67" refers to the same protein but contains a dash

between characters, which makes them difficult to match correctly.

• Parts of the names can be spelled in the upper case by some authors and

lower case by others. Each author can write their texts without following

a formatting guide so it is possible to find mixed capital and small letters

such as "Beta-HCG" and "beta-hcg".

• There is a wide variety of acronyms in the human language, we may

have problems with matching descriptions and acronyms such as "Ag"

(antigen).

Often, the dictionaries used in NLP could contain a large amount of useful

information to address the problems mentioned above. On the one hand, it

is possible to find them with a simple list of words which our system must

match directly, but on the other hand, they could contain synonyms, antonyms,

descriptions, acronyms, among others, whereby the system needs to perform

a less comprehensive search.

Since a dictionary may have many meanings of an entity, the system has to

determine which meaning is used in the context of a document. In this process,

note that it is important to disambiguate each word in the right context in

order to carry out a correct matching. For instance, if we take into account the

word "cólera" (cholera) (in Spanish could be related to illness or a bad mood),

the entity can be included in a disease dictionary, but in a sentence like "la chica
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montó en cólera al no encontrar sus llaves" (the girl went into a rage when she

could not find her keys) the word "cólera" should not be labeled as a disease

since it refers to a mood.

2.2 Supervised learning

The main goal of supervised learning is to build a concise model of the distri-

bution of class labels in terms of predictive features using a labeled training

dataset. The resulting algorithm is used to assign class labels to test instances.

For a description of these methods, we have performed a division including

traditional algorithms, neural networks, and transformer-based models.

2.2.1 Traditional algorithms

In the context of ML, traditional algorithms mean the things we have been

doing for years and are often the basis for more advanced ML. In the following

section, we review four algorithms that are considered traditional machine

learning methods and are widely used by researchers interested in the NER

task. These algorithms include Naive Bayes, logistic regression, CRF, and

support vector machines2.

Naive Bayes

Naive Bayes (NB) is a simple probabilistic classifier that makes the naive

assumption that all the feature variables are independent. In broad terms, an

2Although there are more algorithms included in traditional machine learning, in this
section, we wanted to highlight those commonly used in NER and specifically those used in
the initial studies of this thesis.
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NB classifier assumes that the value of a particular feature is independent of

the value of any other feature, given the class variable [38].

The NB technique decides the possibility based on a table of feature vectors.

An entity extraction problem can be written as the problem of finding the

class with maximum probability given a set of observed feature values [39].

This probability is the posterior probability of the class given the data and is

computed using the Bayes theorem, as:

P(y, X) =
P(X|y)P(y)

P(X)
(2.1)

Where y is a variable class, X is represented by a vector of features such

as X = {x1, x2, ..., xn}, P(y) is the prior probability and P(X|y) the likelihood

function.

As described above, when we compute P(y, X) the feature variables are

assumed to be independent which implies that the joint probability can be

written as a product of probabilities:

P(y, X) = P(y)
M

∏
m=1

P(Xm|y) (2.2)

In this equation, the category label of X is predicted as the class y which

has the highest P(y, X).

There are different types of NB classifiers such as multinomial Naive Bayes

which is mostly used for document classification problems, similar to the

multinomial we can find Bernoulli Naive Bayes with boolean variables as pre-

dictors, and Gaussian Naive Bayes when the predictors take up a continuous
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value and are not discrete.

Logistic regression

Logistic Regression (LR) is another technique that ML has adopted from the

statistical field [40]. Specifically, the algorithm LR is a discriminative model

that describes the conditional probability as:

P(y|X) =

exp(
M
∑

m=1
λm fm(y, X))

∑y′ exp(
M
∑

m=1
λm fm(y′, X))

(2.3)

Logistic regression is a linear method, but the predictions are transformed

using the logistic function. This function is also called sigmoid which describes

the weight λm fm of features fm defined with respect to y and X in order to

generate a class prediction. Moreover, the features are defined for state-

observation pairs fm(y, X) [41].

Conditional Random Fields

The Conditional Random Fields (CRFs) are an important type of ML mod-

els motivated by the principle of the Maximum Entropy Markov Model

(MEMMs) [42] and used for sequence labeling.

Lafferty, McCallum, and Pereira [19] proposed CRF as probabilistic mod-

els to segment and tag sequence data in order to inherit the advantages of

previous models, overcome their shortcomings and increase their efficiency.

According to the authors, there are two main differences between CRF and

MEMMs are two: MEMMs use exponential state models for the conditional
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probabilities of the next states given the current state, and the CRF algorithm

has a single exponential model for the joint probability of the entire label

sequence given the observation sequence. Thus, the weights of the different

features in different states can be exchanged with each other.

The basic principle of CRF is to define the conditional probability distri-

bution over the label sequences in a given observation [20]. More specifically,

the conditional probability of a sequence of labels y given a sequence of word

X is shown in Equation 2.4.

P(y|X) =

exp(
n
∑

i=1

m
∑

j=1
λj f j(yi−1, yi, X))

∑
y

exp(
n
∑

i=1

m
∑

j=1
λj f j(yi−1, yi, X))

(2.4)

Where the denominator of the equation is a normalization factor of all state

sequences. f j(yi−1, yi, X) is one m function which describes a specific feature

and λj is a learned weight for each feature function.

Using CRF models the sequences could be represented by linguistic fea-

tures. Typical features for CRFs can be generalized such as the previous word,

current word, next word and Part-Of-Speech tag to provide context to the

model. Furthermore, other features respond to the syntax of the word such as

is it small, is it capitalized, is it a number, among others.

Support Vector Machines

Support Vector Machines (SVMs) are supervised learning models with asso-

ciated learning algorithms for data classification. SVMs were developed in

the 1990s, within the field of computer science. Although they were originally



26 Chapter 2. Machine learning approaches

developed as a binary classification method, their application has extended

to multiple classifications and regression problems. SVMs have proven to

be one of the best classifiers for a wide range of situations and are there-

fore considered one of the benchmarks in the field of statistics and machine

learning [43].

In a binary classification task, when we have n observations, each with

p predictors and whose response variable has two levels, we can use hyper-

planes to build a classifier that allows us to predict which group an observa-

tion belongs to according to its predictors. This same problem can also be

addressed with other methods such as LR, Latent Dirichlet Allocation (LDA),

and classification trees.

In a p-dimensional space, a hyperplane is defined as a subspace plane and

related to p− 1 dimensions. For instance, in a two-dimensional space, the hy-

perplane is a 1-dimensional subspace, i.e. a straight line. In three-dimensional

space, a hyperplane is a two-dimensional subspace, a conventional plane. For

p > 3 dimensions it is not intuitive to visualize a hyperplane, but the concept

of subspace with p-1 dimensions is maintained.

SVMs achieve good results when the boundary between classes is approx-

imately linear, however, their capacity declines if they are not linear. One

strategy for addressing this type of scenario is to expand the dimensions of the

original space. The fact that groups are not linearly separable in the original

space does not mean that they are not separable in a larger space. This scenario

is shown in Figure 2.2, where we can see two groups, whose separation in

two dimensions is not linear (left of the figure), but are made independent
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variables by adding a third dimension (right of the figure).

x

x

y

y

z

Figure 2.2: Hyperplane extension in SVM

The SVM model allows the expansion of space through kernels [44]. Al-

though we will not go into detail, there are many different kernels, some of the

most used being: linear, polynomial, Gaussian Radial Basis Function (RBF),

and hyperbolic tangent or sigmoid.

2.2.2 Neural networks

In recent years, deep neural networks have revolutionized many application

domains of ML. Deep neural networks are part of a broader family of machine

learning methods based on Artificial Neural Networks (ANNs). An ANN

employs a hierarchy of layers in which each layer considers information from a

previous layer and then passes its output to other layers [21]. While traditional

ML algorithms are usually linear, deep learning algorithms are stacked in a

hierarchy of increasing complexity and abstraction.

ANNs, usually named neural networks, are inspired by the biological

neural networks that constitute brains. An ANN is based on a set of connected
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units or nodes called artificial neurons or simply neurons, which attempt

to model the neurons in a biological brain. Each neuron has inputs and

produces a single output that can be sent to multiple other neurons. The

inputs can be the characteristic values of a sample of external data, such as

images or documents. Moreover, these characteristics may be the outputs of

other neurons. The final outputs of the neural network accomplish the task,

for instance, the identification of an entity in the text. Usually, the neurons

are organized into multiple layers as we can see in Figure 2.3. In this figure,

the neural network structure consists of input, hidden, and output layers.

Note that neurons in one layer connect only to neurons in the immediately

preceding and following layers.

Input layer Hidden layer Output layer

Figure 2.3: Basic ANN architecture.

The Feedforward Neural Network (FNN) was the first and simplest type of

ANN [45]. In this particular network, information moves in only one direction:

forward from the input nodes, through the hidden nodes (if any), and to the

output nodes, so there are no cycles or loops in the network. FNNs can be
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divided into two groups: Single-Layer Perceptron (SLP) and Multi-Layer

Perceptron (MLP). On the one hand, SLP consists of a single layer of output

nodes, whereby the inputs are fed directly to the outputs through a series of

weights. On the other hand, MLP consists of multiple layers of computational

units, usually interconnected in a feed-forward way. Each neuron in one layer

has direct connections to the neurons of the subsequent layer [46].

The learning process of a neural network takes the desired inputs and

outputs and updates the internal state accordingly so that the calculated

output is as close as possible to the desired output [47]. The prediction process

takes an input and subsequently generates (using the internal state) the most

probable result according to its past experience. To achieve this, we will briefly

discuss the learning process in several steps:

1. Initialization. The initialization of the model refers to the first hypothe-

sis that the process intends to start. As with genetic algorithms and the

theory of evolution, neural networks can start from anywhere. Therefore,

a random initialization of the model is a common practice.

2. Forward propagate. This step is concerned with propagating the com-

putations of all the neurons within all the layers that move from left to

right. This begins in the input layer and ends with the final prediction.

The forward calculations occur during training to evaluate the target

and loss function under the current network parameter settings in each

iteration, as well as during prediction when applied to new, previously

unseen data.
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3. Loss function. At this step, on the one hand, we have the actual output

of our randomly initialized neural network. On the other hand, we have

the desired output we would like the network to learn. The loss function

is a performance metric on how well the neural network achieves its

objective of generating results as close to the desired values as possible.

For this reason, ML algorithms aim to minimize the loss function. In

classification models, the most common loss functions used are binary

cross-entropy, categorical cross-entropy, and cosine similarity, among

others. For regression-based problems, we also have functions like Mean

Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and

Mean Absolute Error (MAE).

4. Differentiation. In mathematics, differentiation is the step that can help

the network to optimize the weights. It is the partial derivative of the

loss function. Therefore, by finding the partial derivative of the loss

function, we know how much (and in which direction) we must adjust

our weights and biases to decrease the loss.

5. Back-propagation. In the neural network, any layer can forward its

results to many other layers, in this case, to perform back-propagation.

Essentially, this step evaluates the expression for the derivative of the

loss function as a product of derivatives between each layer from left to

right using the gradient of the weights.

6. Weight update. The updates of the weights of the neurons will reflect the

importance of the error propagated backward after a forward pass has

been completed. The methods of updating weights are called optimizers.
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7. Iterate until convergence. Since we update the weights with a small

step, the network will need several iterations to learn the most optimal

output.

In an ANN, the activation functions determine the output of a deep learn-

ing model, its accuracy, and also the computational efficiency of training a

model. Softmax and sigmoid functions are common functions used in the

final or output layer of a neural network to obtain a categorical and Bernoulli

distribution respectively (function for binary classification) [48]. For hidden

layers, the most popular activation functions are Rectified Linear Unit (ReLU)

and a hyperbolic tangent or tanh function [49]. Additionally, some functions

applied to the neural network have different configuration parameters. For

instance, the learning rate is an adjustment parameter in the optimization

function that determines the size of the step in each iteration while moving

towards a minimum loss function.

As mentioned above, neural networks often use optimizers to reduce losses.

These are algorithms or methods used to change the attributes of a particular

neural network, such as weights and learning rate. Some examples of the most

commonly used optimizers are Adam, Stochastic Gradient Descent (SGD),

Adadelta, RM-Sprop, Adamax, and Adagrad [50, 51, 52].

ANNs have limitations in remembering sequences when they are large.

For example, suppose a 90-word sentence in which the penultimate word

refers to the beginning of the sentence. ANNs tend to forget information on

time steps that are far behind schedule. To address this problem, the attention

mechanism emerged to deal with time-varying data (sequences). Attention is
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considered one of the most influential ideas in the deep learning community

because it maintains relevant information over time. With this mechanism,

each word of the sentence contains a hidden state with past values that will

be taken into account in each iteration [53].

In conclusion, deep learning represents a set of techniques based on ANN.

The two main architectures designed for classification are the RNNs and

Convolutional Neural Networks (CNNs) [45]. These two models differ in the

kind of input that they predict: RNNs are designed to classify temporal signals

and CNNs are designed to classify spatial signals. The following sections

describe the particularities of these types of ANN.

Recurrent Neural Networks

RNNs were first studied in 1986 [54] and they are a class of ANNs in which

the connections between nodes form a directed graph along a time sequence.

RNNs are commonly used for ordinal or temporal problems, such as NLP,

speech recognition, and image subtitling; they are also incorporated into

popular applications such as "Apple’s Siri" and "Google Voice Search".

RNNs use a memory cell that takes information from previous input

to influence the current input and output. While traditional deep neural

networks assume that inputs and outputs are independent of each other

(no feedback), the output of RNNs depends on the above elements within

the sequence. Figure 2.4 illustrates how RNN (on the left of the figure) has

a recurrent connection on the hidden state and FNN contains no feedback

(on the right of the figure). This loop restriction ensures that sequential
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information is captured in the input data [21].

Figure 2.4: Comparison of RNNs (left) and FNNs (right).

In order to deepen the knowledge about RNN, we describe two variants

of RNN architectures that we have used in the course of this thesis:

• Long Short-Term Memory (LSTM) networks are a type of RNN capable

of learning order dependence in sequence prediction problems. LSTM

was introduced by Hochreiter and Schmidhuber [55] in 1997 as a solution

to the vanishing gradient problem.

A common LSTM unit is composed of a cell, an input gate, an output

gate and a forget gate. The cell remembers values over arbitrary time

intervals and the three gates (input, output, and forget) regulate the

flow of information into and out of the cell. Therefore, the LSTM can

remove or add information to the cell status. To better understand this

performance Figure 2.5 shows an LTSM network cell. As we can see,

the input gate (it), the forget gate ( ft) and the output gate (ot) in the

current step (t), transform the input vector xt taking the previous output

ht−1 using its corresponding weight and bias computed with a sigmoid
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function. Moreover, the cell state ct takes the information given from the

previous cell state ct−1. Finally, the current output ht is defined by the

function of the cell state and regulated by the output gate.

Figure 2.5: Long Short-Term Memory cell.

• Gated Recurrent Units (GRU) are a gating mechanism in recurrent net-

works, introduced in 2014 by Cho et al. [56]. GRU is considered similar

to the LSTMs as it also works to address the short-term memory problem

of RNN models.

The main differences between LSTM and GRU networks are two: i) GRU

instead of using a cell state to regulate information uses hidden states,

and ii) GRU instead of three gates, has only two, a restart gate and an

update gate. Similar to the gates within LSTMs, the restart and update

gates control how much and what information is retained.

As we can observe in Figure 2.6, this type of RNN defines the input gate

zt and the reset gate rt which take the input vector xt of the current time

(t) and the previous output ht−1 using its corresponding weight and

bias computed with a sigmoid function. The current cell information is



Chapter 2. Machine learning approaches 35

captured by using the input and the previous output regulated by the

reset gate with the function. Then, the output vector ht is regulated by

the reset gate by choosing the most significant information between the

current and the previous cells.

Figure 2.6: Gated Recurrent Units cell.

Convolutional Neural Networks

In cases where the inputs are large, RNNs involve a large number of training

parameters. The main idea for overcoming this problem is to take the local

representation that describes the entire input rather than taking the global

representation. CNN uses layers with convolution filters that are applied

to local features in order to represent local information [57]. In this type of

neural network, the connections between nodes do not form a loop but use a

variation of MLP designed to require minimal preprocessing.

Originally invented for computer vision, CNN models have subsequently

been shown to be effective for NLP and have achieved excellent results in text

classification [58]. CNNs can also be applied to NLP tasks using textual data
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because the inputs are the vector representation of each word in a sentence.

Three types of layers make up the CNN: convolutional layers, pooling

layers, and fully-connected layers. As we show in Figure 2.7, the convolutional

is the first layer that is used to extract the various features from the input. In

this layer, the mathematical operation of convolution is performed between

the input and a filter of a particular size MxM. In most cases, the convolutional

layer is followed by the pooled layer. The main objective of this layer is to

decrease the size of the map of convolutional features to reduce computing

costs. Finally, the fully connected layer consists of the weights and biases

along with the neurons and is used to connect the neurons between two

different layers. These layers are normally placed before the output layer and

form the last layers of the CNN architecture.

Input Convolution Pooling Fully 
connected

Output

Figure 2.7: Basic CNN architecture.

2.2.3 Transformer-based models

The Transformer is a deep learning model introduced in 2017, used primarily

in the field of NLP [59]. Similar to RNNs, Transformers are designed to

handle sequential data such as natural language for tasks like NER and text
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classification. Contrary to RNNs, Transformers do not require sequential data

to be processed in order, therefore, Transformers do not need to process the

beginning of a sentence before processing the end. Due to this aspect, this

technique allows much more parallelization than RNNs and therefore reduces

training times.

The most important part of the Transformer is the attention mechanism.

The attention mechanism represents the importance that other tokens of an

entry have for the coding of a given token. In other words, the attention

mechanism allows the Transformer to focus on certain words on both the

left and the right to treat the current word according to the NLP task we are

addressing.

A further advantage of the Transformer architecture is that learning in one

language can be transferred to other languages via transfer learning. In broad

terms, transfer learning is the idea of taking the knowledge acquired when

performing a task and applying it to a different task. Transformers rely on this

technique in order to achieve state-of-the-art results [60].

There is a major difference between the traditional approach of building

and training ML models, and using a methodology that follows the principles

of transfer learning. Figure 2.8 illustrates the difference between traditional

ML and the new idea based on transfer learning. In this figure, we can see that

traditional ML (left of the figure) is isolated and occurs strictly task-specifically

(task 1 and task 2) and dataset (dataset 1 and dataset 2). Therefore, the training

models are independent of each other and do not retain any knowledge that

can be transferred from one model to another. On the contrary, by using
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transfer learning models (right of the figure) it is possible to take advantage of

the knowledge (characteristics, weights, etc.) of the previously trained models

to train new systems.

Dataset 2

Dataset 1
Learning
System 1

Learning
System 2

Dataset 2

Dataset 1
Learning
System 1

Learning
System 2

Knowledge
transfer

pre-training

Figure 2.8: Traditional machine learning vs transfer learning models.

As we can observe in Figure 2.8, Transformer models are first trained in

huge amounts of text (dataset 1) in a step called pre-training. During this step,

the models are expected to learn the words, structure, morphology, grammar,

and other linguistic characteristics of the language. In this step, the text is

represented by tokens through a tokenization process converting the actual

text into a numerical representation that can be used with neural network

models.

Once the text is converted to an ANN-compatible format, we can train

the model to understand the language. Masked Language Modelling (MLM)

is a technique used to perform this task [26]. With this technique, a certain

percentage of the tokens in a sequence is replaced with a mask token, and the

model is asked to predict the token that was previously there. When trained in
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a task using this technique, a model is able to learn good representations of the

various vocabulary tokens. Other techniques for learning text representation

are Causal Language Modeling (CLM), which predicts the probability of a

word given the previous words in a sentence, and Translation Language

Modeling (TLM) designed for cross-lingual data [61].

The result of this prior training process is a model that is capable of mod-

eling a language accurately, understanding the different characteristics and

linguistic rules of the language [62].

Transfer learning is popular in deep learning, given the enormous re-

sources needed to train deep learning models and the large and challenging

datasets on which deep learning models are trained. Fortunately, many pre-

trained models are already available for reuse and serve as a starting point

for different tasks. Hugging Face3 is the most popular Python library that

contains these models. Among the most well-known pre-trained models, we

can find T5, GPT-3, GPT-2, BERT, XLNet, and RoBERTa, which demonstrate

the ability of Transformers to perform a wide variety of such NLP-related

tasks and have the potential to find real-world applications [63, 64, 65, 26, 61,

27].

In essence, Transformers changed by NLP offering the following benefits:

• It introduced a revolutionary attention mechanism that replaces convo-

lutional or recurrent architectures.

• It produced a shift in transfer learning from pre-training (word vectors)

3Hugging Face: https://huggingface.co/transformers/

https://huggingface.co/transformers/
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for feature extraction to the training of generic language models (pre-

trained models).

• It provided fine-tuning where the model may need to be adapted for the

task of interest.

• It resulted in an exponential growth in the size of pre-trained language

models, which led to high performance in a series of NLP tasks involving

understanding the language.

• It provided pre-trained models for tasks where we lack large datasets to

train on.
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Chapter 3

Related work

This chapter summarizes previous work covering NLP tasks in the biomedical

domain. Specifically, current attempts to address the NER task will be pre-

sented taking into account the architectures and methodologies followed by

the authors. For a comprehensive review, we have divided this chapter into

several sections including important aspects of current literature such as the

biomedical domain, approaches applied to the NER task, word representation,

and biomedical knowledge resources.

3.1 Biomedical domain

BioNLP refers to the methods and study of how text mining may be applied

to texts and literature of the biomedical field and other more specific sub-

domains such as radiology, oncology, and pharmacology [66]. Moreover,

BioNLP is frequently used by health services since it has benefits such as re-

ducing uncertainty, supporting evidence-based decision-making, and offering

interoperability with health systems. All these potential benefits are briefly
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described below in order to show some methods and possible applications in

the biomedical field.

Many studies involved with developing BioNLP approaches have been

dedicated to uncertainty detection. For instance, in Information Retrieval (IR)

tasks, uncertainty detection improves the results of information extraction

from radiology reports [67]. Following this idea, Vincze et al. [68] created the

BioScope corpus, which is an open-access resource for research on uncertainty

management in biomedical texts. The corpus consists of three parts, namely

medical free texts, biological full papers, and biological scientific abstracts.

Due to their prevalence and high level of biomedical uncertainty, breast can-

cer [69] or pneumonia [70] are important cases for analyzing the impact of

biomedicine on illness identity.

Regarding support for evidence-based decision making, it refers to a health

information technology system designed to provide physicians and other

healthcare professionals with Clinical Decision Support (CDS), i.e. assistance

in clinical decision-making tasks. ML and NLP researchers can play a key

role in making evidence more actionable, for example, by making it easier to

seek out and extract reported findings [71]. Peiffer-Smadja et al. [72] focused

on the evaluation of the use of decision support systems concerning various

ML techniques, the evaluation of the results, and the implications of these

decision support systems at the real-time clinical level for the diagnosis of

cardiac problems.

Currently, the new COronaVIrus Disease 2019 (COVID-19) is creating an

important and urgent threat to global health. In this way, many efforts are
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being focused on developing automated solutions to support medical experts

in the early detection of the disease based on medical images and text [73, 74].

Prediction models that combine variables or features to estimate the risk of

people becoming infected are helping clinicians to deal with the COVID-19 out-

break [75]. As mentioned above, these models require innovative approaches

that provide immediate and real-time results. For instance, López-Úbeda et al.

[16] developed an ML model that automatically extracted radiological find-

ings consistent with COVID-19 in chest Computed Tomography (CT) reports.

This system is currently used in real-life scenarios by radiologists as a decision

support tool to detect suspected cases of COVID-19. In this study, they also

extract information using an unsupervised automatic system and add extra

information to the system. Specifically, they detect virus-related disorders

such as bilateral pneumonia and ground-glass opacities.

The last benefit mentioned is interoperability. In this case, BioNLP mod-

els can contribute to solving the problems of semantic interoperability and

knowledge reuse in clinical information systems. Following the definition of

Miranda et al. [76]:

"Interoperability is the ability of independent systems to exchange mean-

ingful information and initiate actions from each other, in order to operate

together to mutual benefit."

Interoperability is currently a major issue within the scientific community

because electronic health information systems used in healthcare organiza-

tions have developed independently with tools, methods, processes, and

procedures that result in a large number of unique and proprietary models
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that represent and record patient information [77]. In order to ensure semantic

interoperability between healthcare systems, it is necessary to use standards

that allow the exchange of data, as well as the use of normalized and curated

vocabularies, which unify the data used in different institutions resulting in

the correct exchange of information. Some of the standardized vocabularies

are detailed in the next Section 3.4.1. In this context, the NER task is one of

the most widely used because it allows the extraction of knowledge that can

be shared in a standard and understandable way [78].

This thesis focuses on the extraction of named entities using biomedical

texts as a source of information. NER adapts to any situation where a high-

level overview of a large amount of text is useful. Moreover, the NER task can

be applied to a variety of healthcare systems to perform automatic knowledge

extraction. For example, with the entities identified in a text, a user could

understand the topic of the text and quickly group texts according to their

relevance or similarity; they could also improve the speed and relevance of the

IR system through text summaries and using meaningful entities; and finally,

NER could be standardized through ontologies and controlled vocabularies

to manage and exchange information [79].

3.2 Biomedical Entity Recognition

Sophisticated information processing methods are required for the efficient

acquisition and integration of data from a corpus of biomedical literature.

Effective identification of terms is key to accessing stored information since it

is the terms that represent the knowledge in the texts. Due to the complexity
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of dynamically changing biomedical terminology, term identification has

been recognized as a challenge within text mining, and as a consequence,

has become an important research topic in both the NLP and biomedical

communities.

Since there is currently a great growth in demand for understanding and

extracting information from medical texts, the NLP community has organized

a series of open challenges focused on biomedical entity extraction. These

challenges usually have several advantages: they provide a corpus available

in different languages; they propose a baseline system of experimentation;

they provide the participants with an evaluation method, and they offer the

state-of-the-art in a specific task and dataset. Some of the most popular NER

task-focused challenges are briefly described below.

On the one hand and focused on English, DDIExtraction [15] was pre-

sented at the SemEval 2013. The task concerned the recognition of drugs and

the extraction of Drug-Drug Interactions (DDI) included in the biomedical

literature. This challenge was divided into two subtasks: the recognition and

classification of pharmacological substances and the extraction of DDI where

participants could submit their systems. The N2C2 - National NLP Clinical

Challenges shared task [12] was focused on the extraction of ADEs from

clinical records and three subtasks were evaluated: concept extraction, rela-

tion classification, and end-to-end systems. Other workshops have also been

proposed in the past to address the ADEs task in texts other than biomedicine,

more specifically using tweets [13]. In 2015, the CHEMDNER challenge [10]
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was organized by BioCreative and promoted the development of novel, com-

petitive and accessible chemical text mining systems.

On the other hand, the use of Spanish as the main language of a chal-

lenge has emerged in recent years providing important workshops. In 2018

at IberEval, the DIANN [80] (Disability Annotation Task) task consisted of

detecting disabilities in English and Spanish texts, independently of each

other. The PharmaCoNER [9] (Pharmacological Substances, Compounds and

proteins Named Entity Recognition) track was also proposed as an entity

recognition task in the pharmacological domain. The main objective was to

find mentions of chemicals and drugs in clinical cases. The challenge was

composed of two sub-tasks: i) NER offset and entity classification, and ii)

concept indexing using SNOMED-CT as vocabulary. Cantemist [11] (CANcer

TExt MIning Shared Task) was the first task focused on entity recognition in

the oncology domain. Participants in this task could submit systems to the

three sub-tasks proposed by the organizers named cantemist-NER, cantemist-

NORM, and cantemist-CODING. Focused on the recognition of diagnoses and

procedures, the CodiEsp [81] track was born in CLEF eHealth 2020. Other chal-

lenges related to the biomedical domain, such as eHeatlh-KD [14] (eHealth

knowledge discovery), instead of using entities specific to the medical field

use general-purpose entities.

Researchers interested in entity extraction tasks have explored a variety of

ML approaches. As we described in Chapter 2, the ML approaches formulate

the clinical NER task as a sequence labeling problem that aims to find the

best labeling sequence from clinical text. Many previous studies applied



Chapter 3. Related work 47

the CRF method [19] in order to perform the identification and subsequent

classification of entities. CRF is the most popular solution among conventional

ML algorithms. A typical CRF model usually uses features from different

linguistic levels, including ontologies, lexicons, syntactic information, or word

embeddings [82]. SVM is another useful algorithm used in traditional ML

to identify biomedical entities [83, 84]. For instance, Takeuchi and Collier

[85] focused on identifying entities from the domain of molecular biology.

They used a text collection of MEDLINE1 abstracts in order to perform the

experiment. In addition, they add to the system a set of word-level linguistic

features including word surface forms, Part-Of-Speech tags, and orthographic

features. The study showed that the combination of some features achieves

high results (about 74% F1-score) in this specific domain.

Early studies of the NER task primarily aimed at RNNs to produce promis-

ing results. These studies have demonstrated the great effectiveness of RNN

applied to biomedical entity extraction using complex network architec-

tures [86, 82, 87]. Compared with traditional ML methods, RNNs usually use

an embedding layer as input in order to learn the vector representation of

words [24, 88, 89, 22].

In 2015, Huang, Xu, and Yu [90] proposed a variety of LSTM models for

sequence labeling, including LSTM networks, BiLSTM networks, LSTM with

a CRF layer (LSTM-CRF), and BiLSTM with a CRF layer (BiLSTM-CRF). Their

research found that the BiLSTM-CRF model made effective use of both past

and future input features. The models presented produce state-of-the-art

1MEDLINE: https://www.nlm.nih.gov/medline/index.html

https://www.nlm.nih.gov/medline/index.html
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accuracy on Part-Of-Speech labeling, chunking, and NER datasets. More

recently, Hong and Lee [91] introduced DTranNER, a novel CRF-based frame-

work incorporating a deep learning-based label-label transition model into

biomedical NER tasks. They performed experiments on five benchmark cor-

pora to compare the state-of-the-art methods in each of them. The DTranNER

model achieves the best F1-score on four datasets, including BC2GM [92],

BC4CHEMD [10], BC5CDR [93] on chemical and disease datasets surpassing

the popular BioBERT model [63] based on Transformers. However, BioBERT

outperforms DTranNER on the NCBI-Disease [93] corpus.

Although RNNs have obtained high results and a wide range of related

literature on the NER task in recent years, the pre-training of Transformer-

based language models such as BERT [26] has also led to impressive gains

in NER systems [94]. Some pre-trained models based on BERT are even

specific to the biomedical domain such as BioBERT [63], which is pre-trained

on large-scale biomedical corpora and ClinicalBERT, which specializes in

clinical texts and showing improvement in some NLP tasks in the clinical

domain [95]. SciBERT is a pre-trained language model on scientific text that

has demonstrated similar results in the biomedical field but improves in the

computer science domain compared to BioBERT [64].

Given the increasing number of available pre-trained models, the related

literature, like the state-of-the-art results, is constantly changing. Thus, all of

the described models above are frequently compared by fine-tuning them to

different domains and corpora [96, 64, 97].

Concerning Spanish, there are pre-training models for this language. BETO
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[65] is a BERT model trained on a large Spanish corpus and SpanBERT [98] is

a pre-training method that is designed to better represent and predict spans of

text. Contrary to English, this language does not yet have a specific model for

the biomedical domain. However, with the growing attention being paid to

these language models in languages other than English, multilingual models

such as mBERT [26], XLM-RoBERTa [27] and XLM [61] have been generated

and can be used for the development of systems in different languages.

3.3 Word representations

In the field of NLP, researchers needed to find a way to represent textual

data as input into ML systems. This process consists of transforming a set of

categorical features in the raw text (words, letters, Part-Of-Speech tags, word

position, word order, among others) into a series of vectors.

First, beyond converting words into a numerical representation, we ask the

following questions: what are we interested in knowing about the text when

performing this data encoding? and more specifically, what exactly do we

want to encode? In this section, we discuss the options most commonly used

by the NLP community to represent words that ML systems can understand.

The first approach emerged as a simple method in which each word in the

vocabulary was given a unique identifier. A vocabulary in a corpus or text

consists of the unique words included in it. Dictionary lookup methods are a

simple way of representing text by checking whether an input string appears

in a dictionary. Otherwise, if the word does not appear, the string is marked

as a misspelled or Out-Of-Vocabulary (OOV) word [99].
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A dictionary-based approach stores as many named entities as possible

in a list called a gazetteer, which offers high accuracy in correctly identifying

these entities [100]. Currently, such methods are outdated for simple word rep-

resentation because they have limitations but they are still used as additional

features for word representation in neural networks [101, 102, 82]. The main

shortcomings of these techniques can be summarized as follows: i) a short

dictionary may not be sufficient to find the word in context, ii) a dictionary

may not contain all the words we want to represent, and iii) a large dictionary

greatly increases the cost of the search.

The second approach to carrying out word representation we studied is

named one-hot encoding. This technique uses a representation of categorical

variables as binary vectors. The main idea is to create a vocabulary size

vector filled with all zeros except one position. Then, for a word, only the

corresponding column is filled with the value 1 and the rest has value zero.

Moreover, this method uses a vector position to indicate that the word is

OOV [103]. In order to better understand this type of representation, Figure 3.1

shows an example where the sentence "anomalías del sistema nervioso" (nervous

system abnormalities) is encoded through zeros and ones. As we can see, the

encoded words consist of a vector of dimension N + 1, where N is the size of

the vocabulary and the extra 1 is added for OOV words.

One-hot vectors are frequently used as word representations for NER tasks.

For instance, Kuru, Can, and Yuret [104] developed a neural network-based

model that took as input a one-hot vector representation to encode the input

characters. Additionally, one-hot vectors can be used as input features for ML
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Figure 3.1: Example of one-hot encoding. English translation: nervous system abnor-
malities.

methods [16] by entering extra information into the algorithms. Following

this idea, Li et al. [105] concatenated the one-hot Part-Of-Speech encoding

with other word representations.

The concept of word similarity is also difficult to extract since the word

vectors mentioned so far are statistically orthogonal. For example, the word

pairs "tumor" and "tumors", or "drug" and "medicine", are similar but are

represented in different ways. Therefore, we need a more robust approach to

address the discovery of similarities between words. To address early word

similarity problems, distributional approaches to word representation were

born.

One of the most widely used methods in the family of distributional rep-

resentations is named Tf-Idf (Term frequency – Inverse document frequency).

The Tf-Idf is a Bag-Of-Words (BOW) weighting model used to give weights

to the words in a document collection by measuring how often a word is

found within a document (Tf), offset by the frequency with which the word is
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found in the entire collection (Idf) [106]. Often, ML models also simply use the

weighted Tf to assign the number of occurrences of a word in a document. The

main idea behind this approach is that words typically appearing in a similar

context and document would have a similar meaning. Tf, Idf, and Tf-Idf have

been compared in studies related to biomedical entity recognition as word

weights. Zhang and Elhadad [107] showed that Idf and Tf-Idf weights provide

improvements over using only term frequency as a weight.

One of the main drawbacks of the previous word encodings shown is

the lack of meaning representation. With approaches such as one-hot or

distributional, we represent the presence and absence of words in a par-

ticular text, however, we cannot determine any meaning from the simple

presence/absence of these words. Part of this problem is that we lose the

positional relationships between words and word order. This order in the

sequence of words ends up being crucial in representing the meaning of the

words and is discussed below.

Word embeddings are a family of NLP techniques that focus on mapping

the semantic meaning of a word in a geometric space. For this purpose, a

numerical vector is associated with each vocabulary word, so that the distance

between any two vectors captures part of the semantic relationship between

the two associated words. Moreover, word embeddings play a fundamental

role in transfer learning, as they are trained on large amounts of corpus by us-

ing neural networks [22]. Figure 3.2 shows an example of the mapping of each

word of the corpus to a dense representation vector. Thus, word vectors are

positioned in the vector space so that words that share semantic meaning in
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the corpus are placed very close to each other in the vector space. Specifically,

the figure shows how the words "ojo" (eye), "ocular" (ocular) or "pupila" (pupil-

lary) are represented in an 8-dimensional vector (size of word embeddings).

Subsequently, the word embeddings can be displayed in a 2-dimensional

vector space through dimensionality reduction using t-distributed Stochastic

Neighbor Embedding (t-SNE). The t-SNE algorithm calculates a similarity

measure between pairs of instances in the high dimensional space and the low

dimensional space [108].

Word Word embeddings

Dimensionality 
reduction of word 
embeddings from 

8D to 2D

Visualization of word 
embeddings in 2D

pupila

párpados

ojo

ocular

párpado

lagrimal

pupila

párpado

párpados

lagrimal

ojo

ocular

-0.19  -0.12   0.36    0.07   0.06   0.08    0.78   -0.26

0.02   -0.04   -0.27  -0.23   0.11   0.60    0.38   -0.25  

0.02   -0.46   0.13   -0.38   0.18   0.42    -0.14   0.43

-0.14  -0.27  -0.22   -0.31   0.35   0.78    0.24   -0.34

-0.02  -0.32  -0.40   -0.22  0.38   0.52     0.47   -0.32

0.01   -0.28   0.32   -0.07   0.37   0.31    -0.34   0.21

Figure 3.2: Example of word embeddings by mapping each word into a vector space.

Word embeddings were popularized by Word2Vec in 2013 [23]. After-

ward, Pennington, Socher, and Manning [24] created the algorithm GloVe

which aims to perform the meaning embeddings procedure of Word2Vec

explicitly. Although the vocabulary of a word embedding space is large, we

can find situations where a word is OOV. FastText was designed to resolve

this situation by improving Word2Vec [25].

Recently, contextual word embeddings such as Embeddings from Lan-

guage Models (ELMo) and BERT have emerged. These techniques generate
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embeddings for a word according to the context in which the word appears,

thus generating slightly different embeddings for each occurrence of the

word [109]. On the one hand, ELMo is derived from a bidirectional LSTM that

is trained with a coupled language model objective on a large text corpus [110],

in this way, ELMo looks at the entire sentence before assigning a vector to each

word. On the other hand, BERT representations are jointly conditioned on

both the left and right context and use the Transformer [59], a neural network

architecture based on a self-attention mechanism (cf. Section 2.2.3).

Since there are pre-trained models specific to Spanish, we can also extract

the pre-trained word embeddings to represent the words in context. The most

commonly used word embeddings are taken from the BETO model [65]. Fur-

thermore, there are a variety of static word embeddings based on Word2Vec,

GloVe, and FastText. Specific to the biomedical domain, Soares et al. [111]

develop a word embedding using the fastText model and two sources of data:

i) the SciELO (Scientific Electronic Library Online) database [112], which con-

tains full-text articles primarily in English, Spanish, and Portuguese, and ii)

the Wikipedia, with a subset which we call Wikipedia health, comprising the

categories of Pharmacology, Pharmacy, Medicine and Biology. Santiso et al.

[113] developed word embeddings to perform negation detection in health

records written in Spanish. As a corpus, they used both biomedical domain

and general domain data. For the specific domain, they used unannotated elec-

tronic medical records from a hospital in Spain. For the general domain, they

used the Spanish Billion Word Corpus and Embeddings (SBWCE) corpus [25].

The integration of contextual and non-contextual word embeddings in
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neural architectures has shown impressive gains in a wide variety of natural

language tasks ranging from sentence classification to sequence tagging [114,

115, 116, 88, 89]. Akhtyamova and Cardiff [117] showed that contextualized

word embeddings outperform other types of embeddings on a variety of

tasks including NER. To do this, they used five benchmark datasets leading to

significant improvements over the baseline they propose.

To conclude this section, we point out that word representation plays an

important role in NLP tasks as it can be used in many different applications

that require them as a resource, especially those using RNNs [90, 118, 119].

In this way, neural networks will be able to learn how a language model is

represented through words, as the philosopher Wittgenstein [120] stated:

"The meaning of a word is its use in the language."

3.4 Knowledge resources

Nowadays, the use of appropriate knowledge resources is essential for the

development of NLP systems. In this section, we review the most popular

terminology resources in the field of BioNLP and automatic entity detection

tools. On the one hand, terminological resources include ontologies, controlled

vocabularies, and lexicons that are available to researchers to better represent

knowledge through concepts, structures, and relationships between them. On

the other hand, computational frameworks have been developed to rapidly

build tools for biomedical entity extraction tasks.
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3.4.1 Terminological resources

The identification of entities in the biomedical literature is one of the most

challenging research topics of recent years, both in NLP and in the biomed-

ical communities. Fortunately, there are numerous manually-corrected and

curated terminology resources available to the scientific community where

researchers can find relevant biomedical entities.

Curated terminology resources provide the common medical language nec-

essary for interoperability and efficient exchange of clinical data. To maximize

the value of health information, these resources must be used appropriately

according to their purpose, domain, and design. They are designed to serve

a variety of purposes with the following benefits: i) health knowledge is in-

cluded in an easily accessible resource, ii) concepts are often categorized for

searching, iii) they facilitate data normalization, and iv) they allow interoper-

ability between systems through unique concept identifiers.

Among the difficulties in successfully identifying terms are wide lexical

variations, which prevent some terms from being recognized in the biomedical

text, the synonymy of terms, and the homonymy of terms (when a term has

several meanings), which create uncertainty as to the exact identity of the

term [121]. In order to address this problem, different ontologies, controlled

vocabularies, terminologies, and dictionaries containing a variety of terms

have been designed. Showing the open issues and challenges, Freitas, Schulz,

and Moraes [79] provided a survey of terminologies and ontologies applied

to biology and medicine.

An ontology is an explicit specifications of conceptualizations [122]. The
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term is borrowed from philosophy, where ontology is a systematic account

of existence. However, in the computer science field, the view of ontology

is somewhat narrower. A definition of ontology was given by Uschold et al.

[123] describing ontology thus:

"An ontology may take a variety of forms, but necessarily it will include

a vocabulary of terms and some specification of their meaning. This in-

cludes definitions and an indication of how concepts are inter-related which

collectively impose a structure on the domain and constrain the possible

interpretations of terms."

In ontologies, the characteristics associated with the names of entities (e.g.

descriptions, relations with other objects, functions, among others) describe

more specifically the meaning of each one of them. Also, the relationships

between entities make the ontologies well-structured [124, 125].

Currently, no ontology captures the entire range of concepts in the biomed-

ical domain. However, despite the concerns mentioned, there are several

well-designed biomedical ontologies, such as the UMLS (Unified Medical

Language System) [126], the Gene Ontology (GO) [127], the EcoCyc ontol-

ogy [128] and TAMBIS Ontology (TaO) [129]. UMLS and GO are the most

popular biomedical ontologies in the BioNLP community since they currently

involve the largest number of concepts.

• UMLS [126] is a collection of files and software that brings together

many biomedical and health vocabularies and standards to enable in-

teroperability between computer systems. The UMLS integrates over 2
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million names for some 900,000 concepts from more than 60 biomedi-

cal vocabularies, as well as 12 million relations among these concepts.

UMLS is based on three sources of knowledge:

– Metathesaurus is the major component of the UMLS containing

concepts and codes from many different vocabularies, hierarchies,

definitions, relationships, and attributes. Some vocabularies such

as MedDRA (Medical Dictionary for Regulatory Activities) [130],

SNOMED-CT (Systematized Nomenclature of Medicine — Clinical

Terms) [131] and MeSH (Medical Subject Headings) [132] can be

found in the UMLS Metathesaurus.

– Semantic Network which provides high-level categories (semantic

types) used to categorize each concept in the Metathesaurus and

relationships between concepts semantic relations.

– SPECIALIST lexicon and lexical tools containing a large syntactic

lexicon of biomedical and tools for normalizing strings, generating

lexical variants, and creating indexes.

The UMLS ontology has been a reference for generating corpora avail-

able to the scientific community interested in the NER task. Some

corpora annotated with UMLS identifiers include MedMentions [133],

MIMIC [134] and MANTRA corpus [135]. These corpora have been

used by various researchers to carry out their experiments. For instance,

Soldaini and Goharian [136] presented an unsupervised system that

extracts medical concepts from unstructured text. Given a document,
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the system extracts sections of the documents that have an approximate

match in the set of UMLS strings by returning associated concepts. Song,

Yu, and Han [137] also examined the impact of the dictionary on the per-

formance by combining three different terminology resources including

UMLS.

• GO [127] provides structured and computational knowledge about the

functions of genes and gene products. GO was created in 1998 and has

been widely adopted in the life sciences. It is considered an ontology

that facilitates the biologically significant annotation of genes and their

products in a wide variety of organisms. A great number of concepts

are annotated in the GO. Specifically, this ontology includes 1,561,738

genetic products in its last version (January 20212). Fortunately, GO

publishes official versions of the ontology monthly, which means it is

constantly updated and freely available3.

Other terminological resources used in the biomedical domain are called

controlled vocabulary. A controlled vocabulary is a hierarchically organized

list of related terms. Terms included in a controlled vocabulary must have an

unambiguous and non-redundant definition that makes them unique in the

vocabulary. We can find relevant vocabularies in the biomedical field such as

MeSH and SNOMED-CT.

• MeSH [132] is a controlled and hierarchically-organized vocabulary pro-

duced by the National Library of Medicine (NLM). This vocabulary is

2Gene Ontology releases: http://geneontology.org/stats.html
3Gene Ontology downloads: http://geneontology.org/docs/downloads/

http://geneontology.org/stats.html
http://geneontology.org/docs/downloads/
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used to index, catalog, and search for biomedical and health-related in-

formation. In addition, MeSH includes the subject headings that appear

in MEDLINE/PubMed, the NLM catalog, and other NLM databases.

In this structure, the descriptors include additional information about

the attributes of the concepts and their relationships. Existing MeSH

headings associated with a MEDLINE document have been used in com-

bination with NLP methods to identify relationships between entities,

including cancer types, treatments, and drug classes, among others [138,

139].

• SNOMED-CT [131] is the most comprehensive, clinically validated,

semantically rich, and multilingual clinical healthcare terminology in

the world. This vocabulary is used by physicians and other healthcare

providers in the EHR to capture, retrieve and analyze clinical data. This

clinical terminology is currently maintained and distributed by the In-

ternational Health Terminology Standards Development Organisation

(IHTSDO) and contains more than 400,000 different concepts in English.

Moreover, it is a multilingual terminology that handles different lan-

guages including English, Spanish, and Swedish, and several dialects

such as the German spoken in Austria.

Some terminology embraces a formal framework that is discouraged

when the semantics are overloaded. For instance, the concept "influenza"

could mean the disease influenza or the virus that causes the disease. The

development of SNOMED-CT ensures that a clinician is only allowed

to choose the concept for influenza that "is a" respiratory tract infection
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and "has a" causative agent of influenza virus.

For many years, SNOMED-CT has been used by the NLP community to

identify and normalize entities within textual data. Thanks to the cate-

gorization of the resource, it has allowed researchers to focus on specific

entities such as chemicals and drugs [82], disorders [140, 16], anatomical

phrases [141], or even for general purposes [142]. In some of the studies

mentioned above, researchers used a subset of SNOMED-CT to perform

concept normalization. Furthermore, SNOMED-CT has been included

as a feature in the ML systems to improve concept identification [143,

144].

Finally, other terminological resources included in the biomedical domain

such as ICD and RadLex contain more specific knowledge according to the

area or problem to be solved.

• ICD (International Classification of Diseases) defines the universe of

diseases, disorders, injuries, and other related health conditions, listed in

a comprehensive and hierarchical fashion. The ICD is published by the

World Health Organization (WHO) and is presented in different versions.

ICD-6 was first published in 1949 and today ICD in its 11th version is

the most updated with 80,000 concepts. Moreover, the WHO works

with specialized user groups to develop ICD-derived classifications that

allow greater depth in a specialized area such as oncology (ICD-O) or

primary care (ICPC). ICD-10 has been used as a benchmark in different

challenges and studies. On the one hand, the previously mentioned

CodiEsp track [81] required the analysis and transformation of Spanish
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medical narratives into a structured or coded format using ICD-10. On

the other hand, the Multilingual Information extraction task at CLEF

2018 (as in previous versions [145]) used this terminology resource to

code death certificates in French, Hungarian, and Italian [146].

• RadLex is a complete set of radiology terms for use in radiology report-

ing, decision support, data mining, data logging, education, and research.

The comprehensive lexicon is currently only available in English but a

full translation of RadLex into German has been completed by the Ger-

man Radiology Society. RadLex already contains over 8,000 anatomical

and pathological terms. Many of these terms are not currently available

in any other medical terminology system [147].

Recently, literature reviews have shown that the use of RadLex is grow-

ing [148]. For instance, Datta, Godfrey-Stovall, and Roberts [149] carry

out the mapping of entities by proposing two deep learning-based NLP

methods based on a pre-trained language model and RadLex as termi-

nology.

3.4.2 Mapping tools

As described above, the range and diversity of ontologies, terminologies, and

lexicon have increased dramatically over the years. The demand for mapping

textual data with these terminological resources has led to the creation of au-

tomatic systems and tools. Each of these systems has common characteristics,

all of which employ one or more of the following features: lexical analysis,

often using a specialized lexicon; syntactic analysis, a mapping procedure
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that takes into account partial matching; and the use of knowledge sources to

make the match.

In the biomedical domain, we can find some interesting tools for English

such as MicroMeSH [150], CHARTLINE [151], and EDGAR [152]. Most of

them use the UMLS ontology to match entities recognized in the textual data

with the largest Metathesaurus known so far. Among the tools most commonly

used by the BioNLP community, we can include cTAKES and MetaMap.

• cTAKES [153] is a popular system that aims to build and evaluate an

open-source NLP system for the extraction of information from the

textual EHR written in English. This system provides mappings to

the UMLS using different components: cTAKES tokenizer, normalizer,

Part-Of-Speech tagger, and NER annotator. Relevant studies evaluated

cTAKES as a NER system for peripheral artery disease case discov-

ery [154], disorder identification [155, 156] and diagnostic knowledge

extraction [157].

• MetaMap [158] is a highly configurable application developed by NLM

to map biomedical text to the UMLS Metathesaurus or, equivalently, to

identify Metathesaurus concepts referred to in an English text.

This tool employs a knowledge-intensive approach, NLP methods, and

computational-linguistic techniques to identify concepts more accurately.

MetaMap is used in many studies as a benchmark. For instance, Jimeno

et al. [100] compared three solutions. On the one hand, they used a

dictionary-based model, on the other hand, a statistical model, and

finally the mapping tool MetaMap. The study showed that dictionary
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searches already provide competitive results compared to the other

methods. He and Kayaalp [159] used the CRF framework to compare

it with the MetaMap output. The results revealed that the features the

authors included in CRF were able to identify entities more accurately.

Since MetaMap and cTAKES are the most commonly used tools, there

is research comparing the two systems [157, 160, 155], while others

combine them to achieve better accuracy [156].

As for Spanish, there have been a few attempts to process biomedical

reports in this language. To address this issue, Carrero, Cortizo, and

Gómez [161] proposed a "Spanish MetaMap" that combines automatic

translation techniques with the MetaMap tool. Castro et al. [162] de-

veloped a system for the identification of biomedical concepts in the

Spanish language using SNOMED-CT as a knowledge source. More-

over, other systems use pipelines to address the NER task, such as that

proposed by Perez, Cuadros, and Rigau [163]. In this tool, they use a

sequential pipeline that retrieves mapping candidates from an indexed

UMLS Metathesaurus. Then, they use the IXA pipeline [164] for basic

language pre-processing, and finally, they employ UKB [165] for Word

Sense Disambiguation (WSD).

• FreelingMed [166] system recognizes concepts included in clinical doc-

uments written in Spanish. This tool uses the Freeling analyzer [167]

and extends its linguistic data with various knowledge sources includ-

ing SNOMED-CT, a list of medical abbreviations, Bot PLUS, and ICD-9.

Using the analyzer, the system output consists of the tokenized text, the
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corresponding lemma, Part-Of-Speech tag, and also the semantic tag of

the clinical entities.

• BSB (Buscador Semántico Biomédico - Biomedical Semantic Search Engine)

is a prototype that includes a biomedical entity recognition system and

semantic search engine [168]. The systems mentioned above often use

a single source of knowledge to perform the entity identification task,

however, BSB integrates different terminologies and dictionaries. BSB

proposes an integrated architecture with a core focused on terminology.

This architecture is composed of four main components and is illustrated

in Figure 3.3:

Figure 3.3: BSB architecture.

1. Terminology knowledge bases. SNOMED-CT, UMLS, and ICD-10

are used by this architecture to leverage information retrieval and

browsing.
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2. The term identification engine. This is the central part of the sys-

tem. Starting from any free text, the system identifies the specialized

concepts by carrying out several steps such as text normalization,

Part-Of-Speech tag with the CoreNLP tool [169], tokenization, and

partial matching

3. The information retrieval module. This component retrieves from

different sources and collections those documents closer to the

concepts identified.

4. Concept exploration. Semantic links between concepts provided

in terminology thesauri and concept graphs, like UMLS, allow for

term navigation and gathering. This is an important tool when

searching for information since the semantic search is performed

by exploring concepts that move in the graph of semantic relation-

ships.

The main objective of the BSB is to serve as a proof of concept in the

development of entity recognition, analysis, and medical text search sys-

tems for both expert and non-expert user communities. Tthe developed

system is freely available at http://sinai.ujaen.es/demo/bsb/.

Finally, we can highlight that the BSB system has been one of the de-

velopments accomplished during the thesis as a knowledge discovery

tool.

http://sinai.ujaen.es/demo/bsb/
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Chapter 4

Proposed model: combining word
embeddings

In this chapter, we present the methodology applied for the recognition of

biomedical entities in Spanish. This methodology will be applied subsequently

in several sub-domains of biomedicine (cf. Chapter 5). The proposed system

consists of three steps: i) we carry out a pre-processing of the text using

NLP resources and methods; ii) we analyze, study, and create different word

embedding approaches as a words representation to introduce them into the

neural network; and iii) we describe the neural network used to finally identify

relevant entities by integrating different word embeddings in a combined way.

4.1 Text pre-processing

The initial step in data science is the data preparation or text pre-processing.

In textual NLP tasks, this means that any raw text needs to be carefully

preprocessed before the algorithm can process it. Text pre-processing usually

consists of several steps that depend on a specific task and the type of text to
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be handled. In our particular case, we work with texts written in Spanish and

related to a different medical sub-domain. The pre-processing carried out in

all the texts is the following:

• Sentence tokenization. This process consists of splitting the text into

individual sentences. For this purpose, we use the FreeLing library [170]

that incorporates analysis functionalities for a variety of languages, in-

cluding Spanish.

• Word tokenization. This step converts text strings to streams of token

objects, where each token object is a separate word, punctuation sign,

number/amount, date, e-mail, URL/URI, etc. In this step, we also use

the FreeLing library. This library offers an optimal result for clinical

texts since in some cases the entities, institutions, and organizations do

not separate them as individual tokens, e.g. the sentence "El síndrome

de Cornelia de Lange (SCdL)" is separated into the following tokens: "El",

"síndrome", "de", "Cornelia_de_Lange", "(", "SCdL", ")".

• Lowercase. The texts have been converted to lowercase.

4.2 Word embeddings

After performing the textual pre-processing, we assign a representation vector

to each word. To do this, we used an NLP technique called word embeddings.

Word embedding is a representation vector that contains semantic informa-

tion, which allows it to be associated with other vectors (words) according

to different grammatical contexts. The vectors can be entered into neural
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networks, making it easier to establish complex relationships between words

because their semantics are already known.

Word embeddings are usually classified as predictive models because they

are computed through language modeling objectives such as the prediction of

the next word or a missing word. Moreover, word embeddings are commonly

used and evaluated in two types of NLP tasks: intrinsic and extrinsic [171].

For intrinsic tasks, word embeddings are used to calculate or predict semantic

similarity between words. On the contrary, for extrinsic tasks, word embed-

dings are used as the input for various NLP tasks, such as NER and text

classification, among others. Our current focus is to study NER tasks in the

biomedical domain considered as an extrinsic task.

As previously mentioned, this type of word representation was popular-

ized by Word2Vec [23]. Afterward, Pennington, Socher, and Manning [24]

created the algorithm GloVe which tries to perform the meaning embeddings

procedure of Word2Vec in an explicit manner. On the one hand, Word2Vec

takes texts as training data for a neural network and the resulting embedding

captures whether words appear in similar contexts. On the other hand, the

GloVe algorithm is focused on the word’s co-occurrences over the whole cor-

pus. Its embeddings are related to the probabilities of two words appearing

together.

Although the vocabulary of a word embeddings space is large, we can

find situations where a word is OOV. FastText was designed in order to

solve this situation improving Word2Vec [25]. In the case of a word OOV,

the corresponding word embeddings are induced by averaging the vector
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representation of its character n-grams. This allows the model to compute

word representations for words that did not appear in the training data

Mikolov et al. [172] propose two model architectures for learning dis-

tributed representations of words that try to minimize computational com-

plexity: CBOW and the skip-gram model. CBOW is learning to predict the

word by the context or maximizing the probability of the target word by look-

ing at the context, while in the skip-gram model the distributed representation

of the input word is used to predict the context.

Several resources related to word vector representations in Spanish are

available1 [173, 25, 111, 113], although they are still scarce compared to other

internationally known languages such as English.

Since 2018, pre-trained language models showed a paradigm shift in the

way NLP models were being built. The new intuition using pre-trained

language models was to initialize an entire model architecture with pre-trained

weights.

Language Word embeddings Algorithm/Model

Classic WE SPA Wikipedia FastText
SPA Spanish medical embeddings FastText

Contextual WE

SPA Pooled contextualized embeddings Flair
SPA BETO BERT

Multi-Lang XLM-RoBERTa RoBERTa
Multi-Lang mBERT BERT

Table 4.1: Overview of the different embeddings used. WE: Word embeddings. SPA:
Spanish.

In order to address the task of word representation, we use various word

embeddings: classic word embeddings and contextualized word embeddings
1Spanish word embeddings: https://github.com/dccuchile/spanish-word-embeddings

https://github.com/dccuchile/spanish-word-embeddings
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based on pre-trained language models. All these word representations are

summarized in Table 4.1 showing an overview of the different embeddings,

the training language, and the model or algorithm used. Also, we describe

each of them below.

4.2.1 Classic word embeddings

Classic word embeddings can capture semantic and syntactic essentials of

words from a large number of raw text corpora without human intervention

or language-dependent processing. These word embeddings are also known

as static word embeddings since the same word will always have the same

representation regardless of the context where it occurs. The classic word

embeddings we used for this study are presented below.

FastText embeddings from Spanish Wikipedia

The first embeddings used have been pre-trained on Wikipedia texts in Span-

ish. Wikipedia is a multilingual online encyclopedia created and maintained

as an open collaboration project. In addition, Wikipedia is one of the largest

and most popular general reference works on the World Wide Web because it

offers free content on many diverse topics.

Wikipedia word embeddings are trained using the fastText method with a

skip-gram model. The dimension of the word vectors is 300 and they contain

985,667 word vectors.

To clarify the word vector representation through the Spanish Wikipedia

word embeddings we provide Figure 4.1 showing a graphical representation
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of the word "tumor" (tumor) and its most similar words. This graphic uses the

t-SNE algorithm in order to visualize high-dimensional data.

Since the embeddings are simply vectors of numbers such as A = [a1, a2,

..., an] and B = [b1, b2, ..., bn], we can compute the cosine similarity between

two vectors. Cosine similarity is a metric widely used to determine how

similar two vectors are. This trigonometric function gives a value equal to

1 if the angle understood is zero, i.e. if both vectors point to the same place.

Taking into account this measure, the words "tumor" (tumor) and "carcinoma"

(carcinoma) obtain a similarity value of 77.99% using Spanish Wikipedia

embeddings.

Figure 4.1: Vector space of word embeddings trained on Wikipedia in Spanish.

Spanish medical embeddings

The disadvantage of pre-trained word embeddings available in Spanish is that

the words containing them may not capture the peculiarities of the language

in a specific application domain. For example, Wikipedia may not have much
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word coverage of particular aspects of biomedical literature or clinical cases,

so the results may not be optimal due to the generality of the downloaded

word embedding model. Although there are word embeddings trained for

this domain [173, 25, 111, 113], they are not always available to the scientific

community, therefore, we have generated the Spanish Medical Embeddings

(SME)2. The steps to train word embeddings in a large biomedical corpus are

detailed below.

1. Corpus and resource collection.

This resource consists of an unannotated corpus of the Spanish language

compiled from different corpora and resources from the web related to

the biomedical domain. This corpus covers different scopes and content

types, including:

• IBECS (Índice Bibliográfico Español en Ciencias de la Salud) [174] is a

bibliographical database that collects scientific journals covering

multiple fields in health sciences. This database is maintained by

the Spanish National Health Sciences Library (BNCS).

• SciELO[112] is a bibliographic database, digital library, and coop-

erative electronic publishing model of open access journals. This

initiative gathers electronic publications of complete full-text ar-

ticles from scientific journals of Latin America, South Africa, and

Spain.

2SME: http://bit.do/fLTt3

http://bit.do/fLTt3
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• Pubmed [175] is a free search engine accessing primarily the MED-

LINE database, a bibliographical database of references and ab-

stracts on life sciences and biomedical topics.

• MedlinePlus [176] is an online information service provided by

the U.S. NLM. Moreover, this resource contains records related to

Spanish health topics.

• The OPUS - EMEA corpus is a parallel corpus compiled from

documents from the European MEdicines Agency (EMEA) [177].

The corpus includes documents related to medicinal products and

their translations into 22 official languages of the European Union.

• Portion of Wikipedia health. Wikipedia is a free online encyclope-

dia, created and edited by volunteers around the world and hosted

by the Wikimedia Foundation. This encyclopedia is organized hi-

erarchically by category. We downloaded Wikipedia pages that

belong to the category "Medicina" [178] up to the fourth sub-level

of hierarchy. To do this, we employed the Wikipedia Application

Programming Interface (API) for Python.

• Web resources. Finally, we also downloaded additional content

from different websites such as Webconsultas [179], WebMd [180],

Organización Mundial de la Salud [181], Mujer y Salud [182], Mejor

con Salud [183], Mayo Clinic [184], Diario Médico [185], and EFE

Salud [186].

2. Corpus pre-processing.
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As previously mentioned, text pre-processing is a fundamental step in

the NLP field. This step aims to transform the text into a more suitable

form so that machine learning algorithms can perform better. The steps

we have carried out to clean and prepare the texts extracted from the

different resources are as follows:

(a) Removed scripts.

(b) Removed HTML tags.

(c) Lowercase.

(d) Removed URLs.

(e) Replaced multiple spaces with a single one.

3. Parameters for embeddings training.

Once we have the text prepared, we use the fastText algorithm for the

training phase of word embeddings. To train the word embeddings we

used the following parameters:

(a) The selected algorithm is the skip-gram model.

(b) The minimum word frequency to 3.

(c) The learning rate to 0.05.

(d) The number of epochs to 10.

(e) The dimension of the final word embedding is 300.

Finally, the number of word vectors obtained was 1,704,151. Compar-

ing these generated word embeddings and the embeddings trained on
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Wikipedia, we can see that our trained word embeddings cover more

vocabulary (almost double).

4.2.2 Contextual word embedding

Contextual word embeddings are considered powerful embeddings because

they capture latent syntactic-semantic information that goes beyond standard

word embeddings. The main goal of contextual word embeddings is to prove

more than one representation for each word depending on the context in

which it appears. Contextual embedding methods are used to learn sequence-

level semantics by considering the sequence of all words in the documents.

Thus, such techniques learn different representations for polysemous words.

The contextual word embeddings studied in our approach are pooled

contextual embeddings and Transformer-based embeddings.

Pooled contextualized embeddings

Pooled contextualized embeddings are based on character-level language mod-

eling and their use is particularly useful when the NER task is approached

as a sequential labeling problem for several reasons: i) the embeddings are

pre-trained on large unlabeled corpora, ii) they can capture the meaning of

the words in context producing different embeddings for polysemous words

depending on their usage, and iii) both help better handle rare and misspelled

words and model sub-word structures such as prefixes and endings [187].

According to their author, these word embeddings are also known as con-

textual string embeddings, although researchers also refer to them as Flair
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embeddings.

This type of word embeddings is based on character-level tokenization

rather than word tokenization. In other words, it converts a sentence into a

sequence of characters as illustrated in Figure 4.2. Each sentence is passed

as a sequence of characters to a bidirectional character-level neural language

model. Taking the example of the figure, the BiLSTM model allows "de"

to retrieve information from the previous word "cáncer" and the next word

"mama" so that it can compute the vectors in the context of a sentence.

C á n c e r d e m a m a

rCáncer rde rmama

Character Language Model

Figure 4.2: Extraction of a contextual string embedding for a sentence in a sentential
context. English translation: breast cancer.

In pooled contextualized embeddings, Akbik, Bergmann, and Vollgraf

[188] added a pooled operation to distill a global word representation from all

contextualized instances. Clinical texts tend to be ungrammatical and limited

in context, lacking even complete sentences. For example, the sentence "La

enfermedad de Carrión." is very short and does not provide a context for the

reader. If we consider that the word "Carrión" is rare, i.e. this is the first time
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this word has occurred in the corpus used, the underspecified context allows

this word to be interpreted as a disease or a person. In addition, clinical

notes make heavy use of acronyms and abbreviations, making them highly

ambiguous.

Pooled contextual embeddings were created to address this problem by

dynamically creating a "memory" of contextualized embedding and applying

a pooling operation to distill a global contextualized embedding for each

word. This means that it uses the original word embedding and the previous

contextual information of each word with a pool operation to combine em-

bedding vectors. Finally, the resulting pooled contextualized embedding has

twice the dimensionality of the embedding. Figure 4.3 displays an example

using the pooled operation of the word "Carrión" in the current sentence "el río

Carrión" taking into account the memory of this word.

C a r r i ó ne n f e r m

embcontext Carrión 2

e d a d d e

o s e ntp r ó x i m o s e v e n C a r r i ó nC a r r i ó ne l r í o

embcontext Carrión 3embcontext Carrión 1

pooling
+concatenation

embpooled  Carrión

current sentence memory

Figure 4.3: Example using the pooled operation (embpooled) for the word "Carrión" in
the current sentence.
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Embeddings based on Transformer

The idea of training a separate language model to produce better contextual

word representation has proved very successful in many NLP tasks, but RNN

language models, due to their recurrent and sequential nature tend to be

slow to train and very hard to parallelize. For this reason, Vaswani et al. [59]

developed a non-recurrent alternative to RNNs at the heart of which there is

the Transformer block.

Transformer architecture replaces RNN cells with self-attention and point-

wise fully connected layers, which are highly parallelizable and more cost-

effective to compute. Together with positional encoding, Transformers can

capture long-range dependencies. This architecture provides a more compre-

hensive representation of the sequence at the level of the sentence.

Unlike other language representation models, BERT [26] is designed to

pre-train deep bidirectional representations from the unlabeled text by jointly

conditioning on both left and right context in all layers. BERT proposes an

MLM objective, where some of the tokens of an input sequence are randomly

masked, and the goal is to predict these masked positions taking the cor-

rupted sequence as input. BERT applies a Transformer encoder to attend to

bi-directional contexts during pre-training.

There are several multilingual models available that also include the Span-

ish language. For instance, multilingual BERT (mBERT) [26] has been trained

jointly on Wikipedia data on 104 languages. Spanish is also included in the

cross-lingual language model (XLM-100 and XLM-17) [61], which was trained

on 100 Wikipedia languages, and cross-lingual RoBERTa (XLM-RoBERTa) [27],
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which was trained on much larger CommonCrawl corpora including 100

languages. Finally, BETO [65] is a BERT model trained on a big Spanish

corpus.

In our experiment frameworks, we have used three specific pre-trained

word embeddings. Two of them are focused on multilingual models (mBERT,

XLM-RoBERTa) and the remaining one (BETO) is specifically focused on

Spanish.

• mBERT (Multilingual BERT) released by Devlin et al. [26] is a single

language model pre-trained from monolingual corpora in 104 languages

including Spanish. The training set is a concatenation of monolingual

Wikipedia corpora from all languages. We used the bert-base-multilingual-

cased model with 12 self-attention layers and 110M parameters in total.

• XLM-RoBERTa makes a few changes to the released BERT model and

achieves substantial improvements. The changes include i) training

the model longer with larger batches and more data, ii) training on

longer sequences, and iii) dynamically changing the masked positions

during pre-training. For our research, we test the xlm-roberta-base model

containing 12 self-attention layers and 125M parameters in total.

• BETO trained a model similar in size to a BERT-base [26]. In order

to train the model, texts were collected from different sources such as

Spanish Wikipedia and all the texts included in the OPUS project [189]

related to the Government, subtitles, and stories, among others. The

total size of the corpora gathered is comparable to the corpora used in
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the original BERT. The corpus for training has about 3 billion words and

it is freely available3. This model has 12 self-attention layers and 110M

parameters in total.

In order to process the corpus, all Transformer models use a hybrid be-

tween word-level and character-level tokenization called subword tokeniza-

tion. There are different models of subword tokenization, among the most

important of which we can include: Byte Pair Encoding (BPE) [190], Word-

Piece [191], Unigram Language Model [192], and Sentence Piece [193].

The models described above have been trained using the Sentence Piece

model (SPM). This tokenization technique has been created to train multi-

lingual models since not all languages use spaces to separate words. SPM

is a language-independent subword tokenizer and detokenizer designed for

neural-based text processing. Other subword tokenizations assume that the

input sentences are pre-tokenized. SPM treats the input as a raw stream, in-

cludes the space in the set of characters to use, then uses unigram to construct

the appropriate vocabulary.

Some examples of sub-word tokenization using mBERT, XLM-RoBERTa

and BETO are shown in Figure 4.4, 4.5 and 4.6 respectively. These figures show

how upper and lower case is treated (examples 1 and 2), how its tokenizer

treats hyphens between words (example 3), and how it deals with language

errors (example 4). We can highlight that BETO and XLM-RoBERT models

correctly separate complete and lowercase words such as "hepatitis" (hepatitis)

and "crónica" (chronic). Furthermore, BETO and mBERT break the word into

3BETO corpus: https://github.com/josecannete/spanish-corpora

https://github.com/josecannete/spanish-corpora


82 Chapter 4. Proposed model: combining word embeddings

two subwords using the ## simbol, unlike XLM-RoBERTa that replaces blank

spaces with underscores even at the beginning of the sentence.

(1) hepatitis B crónica

(3) Hepatitis B-crónica

(2) Hepatitis B crónica

(4) hepatitis B cronica

['hep', '##ati', '##tis', 'B', 'c', '##rónica']

['He', '##pati', '##tis', 'B', 'c', '##rónica']

['He', '##pati', '##tis', 'B', '-', 'c', '##rónica']

['hep', '##ati', '##tis', 'B', 'c', '##ronica']

Figure 4.4: Example of subword tokenization using the mBERT model. English
translation: Chronic hepatitis B.

(1) hepatitis B crónica

(3) Hepatitis B-crónica

(2) Hepatitis B crónica

(4) hepatitis B cronica

['▁hepatitis', '▁B', '▁crónica']

['▁He', 'pati', 'tis', '▁B', '▁crónica']

['▁He', 'pati', 'tis', '▁B', '-', 'cr', 'ónica']

['▁hepatitis', '▁B', '▁cro', 'nica']

Figure 4.5: Example of subword tokenization using the XLM-RoBERTa model. En-
glish translation: Chronic hepatitis B.

(1) hepatitis B crónica

(3) Hepatitis B-crónica

(2) Hepatitis B crónica

(4) hepatitis B cronica

['hepatitis', 'B', 'crónica']

['He', '##patitis', 'B', 'crónica']

['He', '##patitis', 'B', '-', 'crónica']

['hepatitis', 'B', 'cron', '##ica']

Figure 4.6: Example of subword tokenization using the BETO model. English transla-
tion: Chronic hepatitis B.

In the field of NLP, contextual word embeddings can represent each word

according to the context in which it occurs. Therefore, they may eliminate

some problems of ambiguity in words. It is well known that in medicine

many terms can be ambiguous according to their meaning in Spanish. Some
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examples of ambiguous words in the biomedical domain are "cólera", "radio",

and "frente", among others. "Cólera" can be used as a mood (anger) or as an

illness (cholera) and "radio" could be referred to broadcasting (radio), anatomy

(radius) or geometry (radius). Moreover, "frente" could be a weather condition

(front) or an anatomical part (forehead). For the last case ("frente"), we wanted

to see an example of similarity using the same word with different meanings.

To do this, we extracted the word embeddings from the BETO model for each

word. Figure 4.7 illustrates the cosine similarity between word vectors. As

we can see, the word "frente" referred to a meteorological condition has a

similarity of 73% with "frente" related to the anatomy of the body. In contrast,

the last two instances of the word "frente" are referred to as an anatomical part

of the body, so they obtain a higher cosine similarity (90%).

Llega un frente de aire frío a España: abrígate y mide la temperatura de tu frente. En tu cara encontrarás la frente.

Cosine similarity: 0.73 Cosine similarity: 0.90

Figure 4.7: Similarity cosine in the word "frente" with different meanings by using
BETO word embeddings. English translation: A cold air front arrives in Spain: wrap
up and measure your forehead temperature. You will find your forehead on your
face.

4.3 BiLSTM-CRF architecture

Once the text has been represented and the different word embeddings de-

scribed, in this section we present the final step to assembling our system. Our

approach will combine word embeddings using a BiLSTM neural network

with a final CRF layer.
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RNNs have been employed and produced promising results on a variety of

tasks including language model [194, 195] and NER [196]. An RNN maintains

a memory based on historical information, which enables the model to predict

the current output conditioned on long-term features.

Figure 4.8 shows the basic RNN [197] with an input layer x, hidden layer

h and output layer y. In the NER task, x represents input features and y

represents tags or labels. This example shows the recognition of proteins in

a sentence. In this case, the words that constitute the PROTEÍNA entity are

"proteína C reactiva". In addition, the figure illustrates outputs with a special

scheme. Annotations are coded using the BIO tagging scheme [198]. Thus

each token in a sentence was labeled with B (beginning token of an entity), I

(inside token of an entity), and O (non-entity). In the example of Figure 4.8,

the annotated entity is "proteína C reactiva" (C-reactive protein), the category

or class of the entity is PROTEÍNA, the beginning of the entity (B-PROTEÍNA)

is the word "proteína" and "C" and "reactiva" are tokens inside the entity (I-

PROTEÍNA). The BIO scheme and variants are the most popular in the NER

task [199].

O O B-PROTEÍNA I-PROTEÍNA I-PROTEÍNA

dosificación de proteína C reactiva

x

h

y

Figure 4.8: Simple architecture of an RNN model. English translation: C-reactive
protein dosage.
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LSTM is a variant of the above RNN that solves long-term memory. LSTMs

have a more complex cell structure than a normal RNN because it allows them

to better regulate how to learn or forget efficiently from the different input

sources [55].

With the definition of LSTM described above, we can see that the hidden

state at the time only captures information from the past. However, both past

(left) and future (right) information could also be beneficial for our task. For

instance, in the sentence "Hemoglobina de 10,9 g/dl y glucosa de 55mg/dl.", it

helps to tag the word "Hemoglobina" as B-PROTEÍNA, if the LSTMs know the

following word refers to the dose.

One shortcoming of conventional LSTM is that they are only able to make

use of the previous context. In order to incorporate the future and past

information in the sentence, we extend LSTM with a bidirectional approach,

referred to as the BiLSTM [200]. The idea is to divide the state of the neurons of

a regular RNN into one part that is responsible for the positive time direction

(forward states) and one part for the negative time direction (backward states).

After applying a BiLSTM in our model, we need to predict the correct label

for each token. To accomplish this task, we use the popular algorithm for NER

named CRF. In the NER task, the CRF algorithm is beneficial in considering

the correlations between labels in neighborhoods and jointly decoding the

best chain of labels for a given input sentence [19].

Similar to the model proposed by Huang, Xu, and Yu [90], in our final

architecture we combine a BiLSTM network and a CRF layer to form the

BiLSTM-CRF model. As an input layer to the BiSLTM-CRF model, we use the
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word vectors studied above. Current NER models often combine different

types of embedding by concatenating each embedding vector to form the final

word vectors. We similarly experiment with different stackings of embeddings

vectors to form the input of the network. In this way, the probability of

recognizing a specific word (entity) in a text should be increased as different

types of representation of that word are combined. For instance, in many

configurations, it may be beneficial to include classic word embeddings to add

potentially greater latent word-level semantics to our proposed embeddings.

The final word representation is given by Equation 4.3, where the word w1

is represented as a concatenation of pooled embedding and a precomputed

fastText embedding of that word.

wi =

[
wiPooledEmbedding

wiFastTexEmbedding

]
(4.1)

The final architecture employed is shown in Figure 4.9. Given a sentence,

the model predicts a label corresponding to each of the input tokens in the

sentence. Firstly, through the embedding layer, the sentence is represented as

a sequence of vectors X=(x1,x2,. . . ,xn) where n is the length of the sentence.

The combination of embeddings are taken as input of each time step of the

BiLSTM. The implicit state output sentence of forward LSTM (
−→
h1 ,
−→
h2 , ...,

−→
hn )

and the output sequence of reverse LSTM (
←−
h1 ,
←−
h2 , ...,

←−
hn ) are concatenated

to obtain hn = [
−→
hn ;
←−
hn ] (BiLSTM output) [201]. Finally, instead of modeling

tagging decisions independently, the CRF layer is added in order to decode

the best tag of all the possible tags.
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Biopsia de ADC de próstata E-IV

h1

h1

P1

tag

h2

h2

P2

tag

h3

h3

P3

tag

h4

h4

P4

tag

h5

h5

P5

tag

h6

h6

P6

tag

forward
LSTM

backward
LSTM

BiLSTM
output

Sentence

Concatenation of 

word embedding 

vectors

BiLSTM

layer

CRF layer

Figure 4.9: Architecture of the BiLSTM-CRF model.

4.4 Closing remarks

In this chapter, we have described the general approach we will take to the

NER task in the biomedical domain. This approach is divided into several

steps: first, we pre-process the textual data, then we describe the word em-

beddings that will be used to represent each document. Moreover, we also

generate specific word embeddings for the biomedical domain because we

consider that it can be very helpful to have a representation of words that

have been trained with specific biomedical documents. Lastly, our approach

uses a neural network composed of a BiLSTM network with a CRF layer. It

is important to highlight that our methodology proposes the combination of

different types of word embeddings by concatenating each embedding vector
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to form the final word vectors. In this way, the probability of recognizing a

specific entity in a text should be increased as different types of representation

of that word are combined.

For the implementation of our system, we have employed Flair [202]. Flair

is an NLP library developed by Zalando Research. Flair is built on PyTorch, as

PyTorch is considered one of the best deep learning frameworks. After testing

several hyperparameters, in most of our experiments Flair is used with the

following configuration: learning rate as 0.1, dropout as 0.5, maximum epoch

as 150, 300 neurons with tanh activation function, and a batch size of 32. In

addition, we use early stopping to control overfitting in deep learning neural

network models by stopping training before the weights have converged [203].

Finally, all experiments were performed on a single Tesla-V100 32 GB GPU

with 192 GB of RAM.



89

Chapter 5

Experiments and results

In this chapter, we study different scenarios for applying entity recognition.

All these scenarios have in common the approach described above (cf. Chap-

ter 4). Each sub-section of this chapter contains a description of the problem

addressed, the dataset used, the methodology employed and results obtained.

Finally, error analysis and discussions are included for each one.

5.1 Named Entity Recognition in the pharmacolog-
ical sub-domain

5.1.1 Problem description

Chemical and drugs named entity recognition is a fundamental step for fur-

ther biomedical text mining and has received much attention recently. This

task aims to automatically detect chemical and drug mentions in biomedi-

cal literature and is a great challenge to the scientific community for several

reasons: there are several ways to refer to the same chemical or drug, ab-

breviations and acronyms are commonly used, symbols are often included
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in scientific publications and new chemicals and drugs are constantly and

rapidly reported [204].

NLP can be a solution that gives fast, accurate, and automated concept

detection that can provide important advances for the NER scientific commu-

nity [4].

NER in the pharmacological domain has been studied by many important

researchers recently [205, 206, 207]. In addition, specific challenges such as

chemical compound or drug name recognition (CHEMDNER) [10] and the

extraction of drug-drug interactions from biomedical texts task (DDIExtrac-

tion) [15] have been designed to address this issue. Most of the studies that

conduct the chemical and drug extraction task employ biomedical terminolo-

gies including SNOMED-CT and UMLS [208, 142].

The first challenge in the extraction of chemical and drug mentions in clin-

ical cases written in Spanish is named PharmaCoNER [209]. PharmaCoNER

was presented at the 5th Workshop on BioNLP Open Shared Tasks in 2019.

The main goal of PharmaCoNER is to promote the development of NER tools

of practical relevance, that is chemical and drug mentions in non-English

content. This challenge proposes two sub-tasks for interested participants:

• NER offset and entity classification. The first evaluation scenario con-

sists of the classical entity-based evaluation that requires that the system

outputs match exactly the beginning and end locations of each entity

tag, as well as the entity annotation type.

• Concept indexing. The second evaluation scenario consists of a concept

indexing task where for each entity the list of unique SNOMED-CT
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concept identifiers has to be generated.

Following the focus of this study, we propose an approach based on neural

networks using a combination of word embeddings to address the first sub-

task of PharmaCoNER: NER offset and entity classification.

5.1.2 Corpus description

The dataset used in this challenge is the Spanish Clinical Case Corpus1

(SPACCC). The SPACCC corpus was created by collecting 1,000 clinical cases

from SciELO [112]. This type of narrative shows properties of both the biomed-

ical and medical literature, as well as clinical records. Moreover, clinical cases

involve a variety of medical disciplines such as oncology, cardiology, urology,

infectious diseases, and pneumology, and these medical disciplines cover a

diverse set of chemicals and drugs [209].

The annotation of the entire set of entity mentions was carried out by

medicinal chemistry experts and it includes the following four entity types or

categories:

• Normalizables: mentions of chemical compounds and drugs that can be

normalized or standardized in a unique identifier in the SNOMED-CT

knowledge base (e.g. vincristine, dactinomycin, and doxorubicin).

• No-Normalizables: mentions of chemical compounds and drugs that

cannot be standardized (e.g. pyrazolone and triptans).

1SPACCC: https://github.com/PlanTL-SANIDAD/SPACCC

https://github.com/PlanTL-SANIDAD/SPACCC
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• Proteinas (proteins): peptides, proteins, genes, peptide hormones, and

antibodies (e.g. transaminases, S-100, HMB-45, and PSA).

• Unclear: pharmaceutical formulations, general treatments, chemother-

apy programs, vaccines, and a predefined set of general substances (e.g.

cigarettes, alcohol, and tobacco). Mentions of this class will not be part

of the entities evaluated by this challenge.

The SPACCC corpus is composed of a training set (train), a development

set (dev), and a test set (test gold). Table 5.1 shows some statistics about

the number of documents, sentences, and the number of entities in each set,

among others.

Train Dev Test gold

# of docs 500 250 250

# of sentences 8,071 3,748 3,930

# of tokens 202,901 96,869 100,963

# of unique tokens 18,623 12,170 12,442

# of Normalizables 2,304 1,121 973

# of Proteinas 1,405 745 860

# of No-Normalizables 24 16 10

# of Unclear 89 44 34

Table 5.1: Basic analysis of SPACCC corpus documents.

Entities annotated as Normalizables have an average of 1.2 words per

entity although they reach a maximum of 5 words, i.e. "heparina de bajo peso

molecular" (low molecular weight heparin). Moreover, Proteinas contain a

mean of 1.4 words per entity and the entity with the largest number of words
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is "anticuerpos inmunoglobluina M (IgM) para parvovirus B19" (immunoglobulin

M (IgM) antibodies for parvovirus B19). In contrast, the entities with category

No-Normalizables and Unclear have an average of 2 words. In all cases,

entities are formed by words in sequential order, which means that there are

no discontinuous entities.

The SPACCC corpus is distributed in Brat standoff format [210] and plain

text format with UTF-8 encoding. The annotations are included in a separate

document (ANN file) with the same name as the plain text document name

following the standards defined in Brat. In the NER task, every line of the

ANN file contains the mention string of the annotation, its start character

offset, and its end character offset, which uniquely locate the mention in the

text document. Figure 5.1 displays a fragment of a sample annotation.

Text document

T1 Proteinas  251     268  proteínas totales

T2 Normalizables 271     277 calcio

T3 Proteinas 309     320 hemoglobina

Category

Start character 

offset

End character 

offset

Mention 

string

ANN file

En la exploración física presenta abdomen blando y depresible, globuloso, sin palpación de 

masas ni megalias. No dolor a la exploración. Puño-percusión renal bilateral negativa.

Analíticamente presenta bioquímica sin alteraciones con perfil hepático, proteínas totales y 

calcio en rango normal. Hemograma con hemoglobina de 9,4 g/dL, y 22.500 leucocitos (N: 

72,9%). Hemostasia sin hallazgos. 

Figure 5.1: Example of annotation file for PharmaCoNER task.
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5.1.3 Methodology

The methodology followed is described in detail in Chapter 4. Specifically, the

architecture applied is based on a BiLSTM-CRF and a combination of word

embeddings. This methodology is chosen because it facilitates the processing

of arbitrary length input sequences and enables the learning of long-distance

dependencies, which is useful in the case of the NER task. Furthermore, our

method proposes the combination of different types of word embeddings by

concatenating each embedding vector.

For experiments in this scenario, we first performed a pre-processing of

the corpus (cf. Section 4.1) and then it was converted to CoNLL format [211].

The CoNLL format consists of a text file with one word per line with sentences

separated by an empty line. The first word in a line should be the word and

the last word should be the label. Figure 5.2 shows an example of a SPACCC

corpus fragment using the CoNLL format and the BIO tagging scheme. The

numbers between the first and last positions correspond to the start and end

positions of the word in the clinical document.

Once we have the correct format, it is entered into the proposed neural

network composed of a BiLSTM and a CRF layer (cf. Section 4.3) to train the

system and subsequently predict the correct label for each word.

5.1.4 Results

In this section, we report the performance of the proposed method along with

the comparison with the latest state-of-the-art studies.

To compute the metrics we used the evaluation library proposed by the



Chapter 5. Experiments and results 95

serología 195 204 O
positiva 205 213 O
para 214 218 O
veb 219 222 O
( 223 224 O
vca 224 227 B-Proteinas
igg 228 231 I-Proteinas
, 231 232 O
vca 233 236 B-Proteinas
igm 237 240 I-Proteinas
y 241 242 O
ebna 243 247 B-Proteinas
positivas 248 257 O
) 257 258 O

Figure 5.2: Example of annotation file in SPACCC corpus.

organizers of the PharmaCoNER challenge2. The primary evaluation metrics

used consisted of standard measures from the NLP community, namely micro-

averaged precision, recall, and balanced F-measure:

Precision = TP/(TP + FP) (5.1)

Recall = TP/(TP + FN) (5.2)

F−measure(F1) = 2 ∗ Precision ∗ Recall
Precision + Recall

(5.3)

where TP (True Positive) is the set of samples that have exactly matched

the start and end locations of each entity label, as well as the type of entity

2PharmaCoNER evaluation script: https://github.com/PlanTL-SANIDAD/
PharmaCoNER-Evaluation-Script

https://github.com/PlanTL-SANIDAD/PharmaCoNER-Evaluation-Script
https://github.com/PlanTL-SANIDAD/PharmaCoNER-Evaluation-Script
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annotation with the gold standard, FP (False Positive) refers to a system

response that does not exist in the gold annotation, and FN (False Negative) is

a golden annotation that is not captured by a system.

Precision (%) Recall (%) F1 (%)

Wikipedia 86.65 84.8 85.71
SME 88.66 89.65 89.15
Pooled 90.56 87.03 88.76
BETO 85.9 83.37 84.61
XLM-RoBERTa 80.21 76.92 78.53
mBERT 85.06 80.87 82.91

Wikipedia + SME 90.58 90.25 90.41
Pooled + BETO 79.58 80.47 80.02
XLM-RoBERTa + mBERT 84.35 79.91 82.07

Wikipedia + SME + Pooled 92.71 90.83 91.76

Table 5.2: Micro-averaged performance for the NER pharmacological domain in
Spanish using the BiLSTM-CRF approach.

The results of using different types of word embeddings comparing them

individually and proposing different combinations are presented in Table 5.2.

For each of the experiments carried out in this thesis, we will compare the

results by applying the word embeddings individually. Then, a combination

of embeddings is performed following three types of grouping: i) classic word

embeddings, ii) contextual word embeddings trained on Spanish, and iii)

contextual word embeddings trained on a large multilingual corpus. Finally,

further combinations of two or more embeddings are performed. Only the

best result achieved is reflected in Table 5.2. However, all the results obtained

can be found in Appendix A Table A.1.
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As mentioned above, we first carried out an experiment using each word

embedding explained in Section 4.2 individually. In terms of precision, we

achieved 90.56% by applying Pooled embeddings. However, recall and F1-

score obtained better results using self-trained embeddings (SME), reaching

89.65% and 89.15% respectively. The use of SME in our system is already

yielding significant results, almost 90% of F1.

Subsequently, we propose a combination of word embeddings to represent

the words in the corpus. We provide a combination of them according to their

type: classical word embeddings (Wikipedia + SME), contextual word embed-

dings trained on Spanish (Pooled + BETO), and contextual word embeddings

trained on a multilingual corpus (XLM-RoBERTa + mBERT). The best result

with these combinations has been obtained using classical word embeddings,

specifically, 90.58% precision, 90.25% recall, and 90.41% F1-score. We found a

small improvement by making a combination exceeding 90% of F1.

Since the combination of classic word embeddings has obtained a signifi-

cant result, we have added the pooled word embeddings to this concatenation

(Wikipedia + SME + Pooled). We have selected the pooled embeddings be-

cause they also perform well in the individual evaluation. For this scenario,

we obtain the best results in all metrics: 92.71% precision, 90.83% recall, and

91.76% F1-score.

The runtime of an RNN is often due to the size of the corpus and the

number of unique words contained. We wanted to analyze the runtime for

the PharmaCoNER corpus using different word representations to obtain

time-complexity according to the size of the word embeddings. Table 5.3
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Runtime Embeddings size

Wikipedia 02:12:07 ± 26.98 300
SME 02:08:10 ± 5.60 300
Pooled 04:38:26 ± 36.18 8,192
BETO 04:24:25 ± 33.74 3,072
XLM-RoBERTa 02:38:10 ± 51.43 768
mBERT 02:59:50 ± 16.24 3,072

Wikipedia + SME 02:10:30 ± 47.24 600
Pooled + BETO 05:18:14 ± 43.1 11,264
XLM-RoBERTa + mBERT 04:40:03 ± 46.79 3,840

Wikipedia + SME + Pooled 04:01:59 ± 53.25 8,792

Table 5.3: Running time results and word embedding sizes using the PharmaCoNER
corpus.

provides both parameters: the execution time of the neural network and

the size of the word embeddings used. In order to obtain these results, we

use the GPU benchmark detailed in Section 4.3. Moreover, we ran each

experiment three times and have shown the average and Standard Error of

the Mean (SEM) in seconds. On the one hand, traditional word embeddings

obtain the best runtime if they are used individually because they are the

smallest embeddings (300). Afterward, Transformer-based word embeddings

also obtain efficient times, except when using BETO. Pooled embeddings

are the most time-consuming vectors to run and they are also the largest

vectors (8,192). On the other hand, the combination of traditional embeddings

(Wikipedia + SME) is still time efficient since the size of each vector is small

in comparison with others. Using BETO or Pooled embeddings increases the

runtime in all cases.
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System Word embedding P (%) R (%) F1 (%)

BiLSTM-CRF (Our model) Wikipedia + SME + Pooled 92.71 90.83 91.76

BERT [212] Char emb + POS tagger + Word
shape

91.23 90.88 91.05

Rule and dictionary-based [213] - 90.62 91.31 90.97

BiLSTM-CRF [118] SciELO Flair + SciELO fastText +
BPE + Char emb

91.97 89.74 90.84

Table 5.4: State-of-the-art results for the NER pharmacological domain in Spanish. P:
Precision, R: Recall, POS: Part-Of-Speech.

Since the corpus is available in the PharmaCoNER challenge, we have

summarized the most relevant scientific contributions to perform a compar-

ison of results. Table 5.4 shows the comparison of the state-of-the-art in the

SPACCC corpus.

On the one hand, the study proposed by Akhtyamova et al. [118] applied a

method based on BiLSTM-CRF similar to our approach. Their model is trained

using the custom SciELO Flair embeddings, SciELO fastText embeddings,

BPE embeddings [214] and character embeddings. On the other hand, León

and Ledesma [213] used a regexp contextual rule system with a previously

developed lean rule formalism [215]. Xiong et al. [212] developed a system

based on BERT concatenating several features as input such as character-

level representation, Part-Of-Speech tagging representation, and word shape

representation of each word.

We can observe that we are superior in terms of precision and F1, although

relatively weaker in terms of recall. Taking into account the F1-score, our

results are 0.71 points higher than the method proposed by Xiong et al. [212],

0.79 points higher than León and Ledesma [213] and 0.92 than Akhtyamova

et al. [118]. Therefore, we obtain state-of-the-art values by recognizing entities
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in the Spanish pharmacological sub-domain.

5.1.5 Error analysis

In order to gain deeper insight into the proposed method performance, we

have conducted an error analysis. We mainly analyze the instances in the test

set that were wrongly labeled by our system in the SPACCC dataset. In terms

of presence or absence of correctness entity recognition, we use the metrics TP,

FP, FN, precision, recall, and F1-score. In a general test, precision is a measure

of how well a test can identify TP. Sensitivity can also be referred to as recall

and it is the percentage or proportion of TP out of all the samples that have

the condition (TP and FN). As we detailed above, F1-score is obtained as a

consequence of precision and recall.

Labeling every token as out-of-entity would be useless, but would still

give a high classifier accuracy. In these scenarios, the very large class of

negatives is not so interesting, and obtaining a True Negative (TN) is typically

unremarkable [216]. For this reason, we do not include this metric in our error

analysis.

Label TP FP FN Precision (%) Recall (%) F1 (%)

Normalizables 900 54 73 94.34 92.5 93.41
Proteinas 774 77 84 90.95 90.21 90.58
No-Normalizables 2 0 8 100 0.2 0.33

Overall 1,676 131 165 92.71 90.83 91.76

Table 5.5: Analysis of entity results using the BiLSTM-CRF model with Wikipedia +
SME + Pooled embeddings.
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A more in-depth analysis of results is shown in Table 5.5. This analysis

summarizes the results obtained for each annotated entity in the SPACCC

corpus using the BiLSTM-CRF model with Wikipedia + SME + Pooled embed-

dings. As we see, the entity Normalizables obtains the best value of F1-score

(93.41%), this entity is correctly annotated 900 times (TP), although it has been

mislabeled 54 and 73 times (FP and FN). The category Proteinas also reaches

high values with all metrics, specifically 90.58% of F1-score. In contrast, the

No-Normalizables entity is the complex one to identify since there are 24

mentions in the training set and 10 mentions in the test set. The system has

been able to recognize only two (TP) obtaining a 0.33% of F1. The results of

the table suggest that the system is more accurate in identifying entities the

more mentions the training corpus contains.

requiriendo analgésicos no esteroideos ( ketorolaco ) para el control del dolor

Gold O O O O O B-Proteinas O O O O O O

System O B-Normalizables I-Normalizables I-Normalizables O B-Proteinas O O O O O O

Figure 5.3: Example of FP in the PharmaCoNER corpus comparing the gold output
and the output of our system. English translation: requiring non-steroidal analgesics
(ketorolac) for pain control.

determinación de vimentina , citoqueratina 7 y citoqueratina de amplio espectro

Gold O O O O O O O B-Proteinas O O O

System O O B-Proteinas O B-Proteinas I-Proteinas O B-Proteinas I-Proteinas I-Proteinas I-Proteinas

Figure 5.4: Example of FN in the PharmaCoNER corpus comparing the gold out-
put and the output of our system. English translation: determination of vimentin,
cytokeratin 7 and broad-spectrum cytokera.

Regarding some errors produced by our system, we wanted to show

some examples of fragments of the SPACCC corpus in which our system

misclassified. An example of FP is displayed in Figure 5.3, in this figure you
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can see how our system identifies the words "analgésicos no esteroideos" as a

Normalizables entity but on the gold output it is not labeled. In Figure 5.4

we show an FN since our system identifies the entity "citoqueratina de amplio

espectro" as Proteinas but in the gold system the correct entity is "citoqueratina".

This is a clear example of how our system, although it is correct with the

label (Proteins), does not match well the beginning and the end of the entity.

Errors such as the latter shown (no matching start or end of the entity but the

matching type of entity) occur 81 times. Another error of this type is found

with the entity annotated on the gold as "antigangliósidos GM1 y GD1b" where

our system recognizes "antigangliósidos GM1" and "D1b" independently. This

means that the system produces three error types: one FN and two FP, because

the originating entity has not been annotated by the system (one FN) and our

system has produced two entities that are not in the gold standard (two FP).

Moreover, we found some errors produced by our system related to the

tokenizer used. Specifically, we found three incorrect occurrences when tok-

enizing a protein that ends with an abbreviation and is followed by a dot. For

instance, in the sentence "Suplementos de vitamina D. No refería hábitos tóxicos.",

our tokenizer split the sentence into the following tokens: "Suplementos", "de",

"vitamina", "D.", "No", "refería", "hábitos", "tóxicos" and ".". The token "D." has

probably been confused with the Spanish abbreviation Don and the tokenizer

has joined the abbreviation with the dot. For this reason, our system has

produced a negative output since the correct entity was "vitamina D" and we

have identified "vitamina D.".

Finally, other errors are associated with the golden standard. We found two
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errors annotating the entity "TG" (thyroglobulin). In both cases, our system

has assigned the Proteinas label to that mention, but in the gold standard, it is

marked as Normalizables. It should be noted that this entity is found 6 times

in the training set and all instances are labeled as Proteinas.

5.1.6 Discussion

Drug and chemical name recognition aims to recognize types of mentions

in unstructured medical texts and classify them into pre-defined categories.

These types of tasks are fundamental to medical information extraction and

medical relation extraction systems [205, 206, 207].

Given the large growth of the scientific community researching the phar-

macological subdomain, the clinical NLP community has organized a series

of open challenges with the focus on identifying chemical and drug entities

from narrative clinical notes. These workshops are very useful because the

participants use innovative and updated systems, offering a state-of-the-art

approach to the tasks.

Following the neural network proposed by Huang et al [90], our approach

uses the BiLSTM-CRF network to detect chemicals and drugs in Spanish

biomedical literature using the PharmaCoNER [209] challenge and SPACCC

corpus as a starting point. Our main goal was to prove the performance

of different types of word embeddings for the NER task: classic word em-

beddings trained with fastText on the Spanish Wikipedia corpus, contextual

embeddings that provide extra information about the context, and other word

embeddings trained by ourselves adding more sources of information related
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to the biomedical domain.

Our model shows that the combination of traditional word embeddings

together with contextual word embeddings shows improvements over those

used individually. In our experimentation, we have carried out several combi-

nations taking into account the results of each individual embedding. Finally,

we obtained the best results by combining two traditional (Wikipedia and

SME) and one contextual embedding (Pooled). The results are promising since

we obtain 92.71% precision, 90.83% recall, and 91.76% F1-score.

It should be noted that the results obtained in the corpus were already high,

so achieving improvements allows for further research in this field. In the

recognition of drugs and chemicals in Spanish, we achieved state-of-the-art

results. Specifically, we showed a 0.71% improvement in F1-score and 1.48%

precision compared to the best research so far [212].

The analysis of results is an important step in our study. With this analysis,

we can consider the future improvements of our system. We have shown sev-

eral cases of error in which our system has not labeled correctly. In particular,

our error cases cover a low percentage of false negatives and false positives.

Overall, we obtained 131 FP and 165 FN corresponding to the 0.07% and 0.09%

of the total number (1,843 annotated entities). Our analysis suggested that

we could improve on the tokenization of our texts since it sometimes did

not separate the tokens most effectively. We could also treat entities that are

marked as consecutive but are independently identified by our system or the

opposite, for instance, our system recognizes "isoenzimas" and "FA" but the

correct entity is "isoenzimas de FA". The entities labeled as No-Normalizables
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involved only 24 instances in the training set so our system has not been able

to identify this type comprehensively.

5.2 Extracting neoplasms morphology mentions from
literature and electronic health records

5.2.1 Problem description

Cancer has caused nearly 10 million deaths worldwide by 2020, according to a

study by the WHO International Agency for Research on Cancer (IARC) [217].

The most common cancers in recent years are female breast cancer (11.7%

of the total new cases), followed by lung cancer (11.4%), colorectal cancer

(10%), prostate cancer (7.3%), and stomach cancer (5.6%). Specifically in

Spain, according to the Spanish Society of Medical Oncology, the number of

new cancer cases diagnosed in 2020 will reach 277,394 [218]. For this reason,

scientists and medical experts are making an effort to study this type of disease

in depth.

Observations resulting from cancer evaluations are often reported by

pathologists and documented in pathology reports. The observations de-

scribed in the pathology reports are used by clinicians to guide decision-

making and determine appropriate treatment and prognosis of the tumor.

Text mining has emerged as a potential solution for bridging the gap be-

tween free-text and structured representation of cancer information [219, 220].

It uses NLP, knowledge management, data mining, and ML techniques to

efficiently process large document collections in order to support information
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retrieval, document classification, information extraction, terminology extrac-

tion (which collects domain-relevant terms from a corpus of domain-specific

documents), and named entity recognition, among other activities. In sum-

mary, NLP can facilitate the use of information from the literature and EHR in

biomedical data analysis.

In the case of cancer text mining approaches, most efforts were exclusively

focused on medical records in English [221, 222]. Moreover, due to the lack of

high-quality manually-labeled clinical texts annotated by oncology experts

most previous efforts relied mainly on customized dictionaries of names

or rules to recognize clinical concept mentions. More recently, advanced

technologies based on deep learning offer promising results [221, 223].

Due to the special relevance of cancer as one of the main causes of death

and the increasing health costs for oncological treatments, a challenge has been

created to identify entities related to oncology named Cantemist [30] (Iberian

Languages Evaluation Forum - IberLEF 2020). Cantemist is the first shared

task specifically focusing on the NER of a critical type of concept related to

cancer, namely tumor morphology. The Cantemist task is structured into three

independent subtasks, each one taking into account a particularly important

usage scenario:

• Cantemist-NER. This subtask consists of automatically finding tumor

morphology mentions.

• Cantemist-NORM. The second subtask requires returning all tumor

morphology entity mentions together with their corresponding ICD-O

codes (Spanish version: eCIE-O-3.1), i.e. finding and normalizing tumor
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morphology mentions. This subtask is also known as clinical concept

normalization or named entity normalization.

• Cantemist-coding. The last subtask requires returning for each docu-

ment a ranked list of its corresponding ICD-O-3 codes.

Since the goal of our study concerns the extraction of entities, we will

address the first proposed task (Cantemist-NER) focused on the biomedical

domain and more specifically on the oncological field.

5.2.2 Corpus description

Cantemist corpus is a collection of 1,301 oncological clinical case reports writ-

ten in Spanish. All documents of the corpus have been manually annotated by

clinical experts following the guidelines3 with mentions of tumor morphology

(in Spanish, "morfología de neoplasia").

The corpus is composed of three sets: training, development, and testing.

The task organizers have also provided two development sets (dev 1 and

dev 2) so that participants can train their systems more accurately. Some

statistics of the Cantemist corpus can be found in Table 5.6. In this table, we

can see information related to the number of annotated entities, sentences,

and vocabularies, among others.

The clinical cases were distributed in plain text in UTF-8 encoding, where

each clinical case would be stored as a single file. These clinical case reports

were carefully selected to represent records reflecting as much as possible the

3Cantemist guidelines: https://zenodo.org/record/3878179

https://zenodo.org/record/3878179
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Train Dev 1 Dev 2 Test gold

# of docs 501 250 250 300

# of sentences 22,022 10,847 9,917 12,739

# of tokens 441,993 219,172 177,574 240,562

# of unique tokens 22,280 15,391 13,921 16,551

# of Morfología_neoplasia 6,396 3,341 2,660 3,633

Table 5.6: Cantemist corpus statistics.

clinical narrative related to electronic clinical reports. Figure 5.5 illustrates an

example text snippet corresponding to a short sample record that includes

the following entities: "neuroblastoma poco diferenciado" (poorly differentiated

neuroblastoma), "metástasis" (metastasis), "peritumorales" (peritumoral) and

"tumoral" (tumoral). Note that in the Cantemist corpus the entities are always

one or more consecutive words.

The Cantemist challenge provides an annotation file for each clinical case

report with the entities. An example of this file is shown in Figure 5.6. This

figure illustrates three entities with different identifiers (T1, T2, and T7), the

start and end positions, and the text string of the entity.

Resultado histopatológico de piezas quirúrgicas: neuroblastoma
poco diferenciado, pobre en estroma schwaniano. Metástasis en 3
ganglios linfáticos retroperitoneales peritumorales con
infiltración/metástasis del parénquima hepático y afectación de
márgenes quirúrgicos de la tumorectomía retroperitoneal y
hepatectomía. Diámetro tumoral 16 cm. Índice mitótico/cariorexis
(IMK): intermedio.

Figure 5.5: Example plain text Cantemist corpus document.
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Figure 5.6: Example of annotation file for Cantemist corpus.

The size of the entities is an important aspect to take into account in the

corpus statistics because a large entity is probably more difficult to detect

than a simple entity of one or two words. An example of a large entity is

"carcinoma intraductal predominantemente grupo 3 de Van Nuys (micropapilar y

sólido de alto grado citológico con necrosis) con cancerización lobulillar" (intraductal

carcinoma predominantly Van Nuys group 3 -micropapillary and solid high

grade cytological with necrosis- with lobular cancerization) since it contains

20 words in Spanish. Table 5.7 summarizes some statistics on the number of

words contained in the entities for each set of the corpus. All sets contain

entities with only one word and the average number of words in an entity is

usually between 2.25 and 2.3 which is reasonable. However, the maximum

number of words in all sets is above 16.

Train Dev 1 Dev 2 Test gold

Minimum of words within the entity 1 1 1 1

Mean of words within the entity 2.30 2.27 2.30 2.25

Maximum of words within the entity 16 17 20 25

Table 5.7: Statistics on the number of words within the entities in the Cantemist
corpus.
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To conclude this section, we would like to emphasize another important

issue regarding the entities annotated in the corpus. The corpus Cantemist

contains large entities and on some occasions, we have verified they have

identified entities inside other entities. Figure 5.7 presents an example of a

large entity that starts at position 3,058 and ends at position 3,122, it also

shows how there is another entity mention ("metastásica") at position 3,069,

which means that one entity is annotated within another. As we have been

able to analyze, we have found 30 entities included within other mentions in

the training set, 15 entities in development set 1, 8 entities in development set

2, and 17 in the test set.

… Afectación metastásica de la médula ósea de las vértebras sacras … 

Start position: 3,069
End position:  3,080
Entity type: Morfología neoplasia

Start position: 3,058
End position:  3,122
Entity type: Morfología neoplasia

Figure 5.7: Example of a long annotated entity with another annotated entity inside
it in the Cantemist corpus. English translation: Metastatic involvement of the bone
marrow of the sacral vertebrae.

5.2.3 Methodology

The methodology followed to address this scenario is described in Chapter 2.

We first perform a pre-processing of the Cantemist corpus (cf. Section 4.1).

Afterward, the corpus is converted to the CoNLL format. This format admits

one word for each line of the file along with the start and end positions and

the label assigned to each word using the BIO tagging scheme (see Figure 5.8).
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Finally, we select the word embeddings we are going to use and we carry out

the experimentation in the BiLSTM-CRF neural network.

metástasis 3044 3054 B-Morfología_neoplasia
pulmonares 3055 3065 I-Morfología_neoplasia
de 3066 3068 I-Morfología_neoplasia
cáncer 3069 3075 I-Morfología_neoplasia
de 3076 3078 O
páncreas 3079 3087 O
intervenido 3088 3099 O
con 3100 3103 O
extensión 3104 3113 B-Morfología_neoplasia
abdominal 3114 3123 I-Morfología_neoplasia
. 3123 3124 O

Figure 5.8: Example of annotation file in the Cantemist corpus.

Since the organizers of the challenge delivered two development sets (dev

1 and dev 2), we decided to use training and development set number 1 as

training, while number 2 development set was used to validate our system.

The reason is that development set 1 contains a greater number of annotated

entities and more tokens than development set 2.

5.2.4 Results

In order to represent the results obtained, this section has been distributed as

follows: i) we show the metrics used for the evaluation of the system, ii) we

present the results achieved using a combination of word embeddings, iii) we

show the runtime of the neural network according to the embeddings used,

and iv) we conduct a comparison with the state-of-the-art studies using this

corpus.
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The evaluation metrics used are proposed by the organizers of the Can-

temist challenge. In this case, the main evaluation metric has been micro

average F1-score. In addition, precision and recall have been computed as

follows:

Precision = TP/(TP + FP) (5.4)

Recall = TP/(TP + FN) (5.5)

F−measure(F1) = 2 ∗ Precision ∗ Recall
Precision + Recall

(5.6)

where TP is the set of samples that have exactly matched the start and end

positions of each entity label, as well as the type of entity annotation with the

gold standard, FP refers to a system response that does not exist in the gold

annotation, and FN is a golden annotation that is not captured by a system.

In order to extract entities related to malignant neoplasm and as in the

previous experiments, we have presented several combinations of embed-

dings. As in the previous experiment, we present three evaluation scenarios

in Table 5.8. On the one hand, we have used the embeddings individually.

On the other hand, we have combined them according to their type and lan-

guage (classic word embeddings, contextual embeddings trained on Spanish,

and contextual embeddings trained on multilingual corpus). Finally, other

different combinations of more than two word embeddings are presented.

Firstly, considering that word embeddings are used independently, we
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Precision (%) Recall (%) F1 (%)

Wikipedia 81.2 80.8 81
SME 83.4 86.6 85.2
Pooled 84.9 83.8 84.4
BETO 81.9 75.5 78.3
XLM-RoBERTa 80.7 73.7 77
mBERT 81.9 74.8 78.2

Wikipedia + SME 84 86.1 85
Pooled + BETO 81.8 75 78.6
XLM-RoBERTa + mBERT 81 72.6 76.6

Wikipedia + SME + Pooled 85.9 85.1 85.5

Table 5.8: Micro-averaged performance for NER in the oncological domain in the
Cantemist corpus using the BiLSTM-CRF approach.

obtain the best precision value by using Pooled embeddings. However, the

best recall and F1-score value have been achieved with SME embeddings

(86.6% and 85.2% respectively). The worst result in all metrics has been

obtained using XLM-RoBERTa Transformer-based embeddings (77% F1-score).

Secondly, we test several combinations according to their origin and

whether they are multilingual or monolingual. In this case, we find that

these combinations (the second part of the table) obtain slightly worse results

in their combination than in the use of them independently, e.g. SME em-

beddings perform better individually than in combination with Wikipedia.

But this is not always the case, for example, the combination of Wikipedia

+ SME improves the word embeddings of Wikipedia individually, and the

combination of Pooled + BETO improves BETO.
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Lastly, to make other combinations, we take into account the word rep-

resentations that obtained high results individually. Wikipedia, SME, and

Pooled embeddings perform better in an individual way, therefore, we have

decided to implement the combination of Wikipedia + SME + Pooled. They

obtain the highest value achieved, specifically 85.9% precision, 85.1% recall,

and 85.5% F1-score. Other combinations and their results using the Cantemist

corpus can be found in Appendix A Table A.1.

Runtime Embeddings size

Wikipedia 05:02:41 ± 44.54 300
SME 06:19:01 ± 1:24.12 300
Pooled 15:56:25 ± 9:10.38 8,192
BETO 08:21:24 ± 28.38 3,072
XLM-RoBERTa 08:51:58 ± 1:55.08 768
mBERT 07:47:05 ± 1:04.42 3,072

Wikipedia + SME 06:24:10 ± 1:11.28 600
Pooled + BETO 1 day 4:09:17 ± 1:06.07 11,264
XLM-RoBERTa + mBERT 10:47:03 ± 1:21.26 3,840

Wikipedia + SME + Pooled 20:54:41 ± 1:52.19 8,792

Table 5.9: Running time results and size of word embeddings using the Cantemist
corpus.

The execution time and size of the word vectors are detailed in Table 5.9.

As in previous experiments, the least time spent has been using traditional

word embeddings (SME and trained on Wikipedia). Even when combining

traditional word embeddings (Wikipedia + SME) we obtain better response

time due to the number of vectors used (300 + 300). As we can see, Pooled

embeddings have long execution times since one word is represented with

a vector size of 8,192 elements. On the other hand, word embeddings based
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on Transformers obtain the same runtime approximately (between 7 and 8

hours). The longest time obtained has been using Pooled + BETO embeddings

as together each word is represented with a vector size of 11,264. According

to Table 5.8, our best result has been obtained by using the combination of

Wikipedia + SME + Pooled with an execution time of 20h and a standard error

of the mean of 1 minute and 52 seconds. With this configuration, each word is

represented with a vector of 8,792 numbers.

System Pre-trained model/word em-
bedding

P (%) R (%) F1 (%)

BERT [224] Multilingual BERT 87.1 86.8 87
Ensemble model based on
Transformer [225] BETO and SciBERT [64] 86.8 87.1 86.9

BiLSTM-CRF (Our model) Wikipedia + SME + Pooled 85.7 85.2 85.5

BERT [226] Multilingual BERT, character
and fastText embeddings.

85.4 85.2 85.3

Table 5.10: State-of-the-art results for the extraction of neoplasm morphology men-
tions in Spanish. P: Precision, R: Recall.

The comparison of results with other studies has been carried out thanks

to making the dataset and the evaluation script available to the scientific

community. Moreover, this challenge has been a reference point for researchers

focused on this domain, language, and task since it had great popularity

in 2020 [30]. Specifically, a total of 23 teams (mostly from the academic

community) participated in the task by sending in up to 62 runs. Although the

task is in Spanish, teams from up to 16 countries participated, which shows

considerable attention from the community.

Table 5.10 summarizes the four top results of the Cantemist challenge.

Xiong et al. [224] have obtained the highest F1-score (87%). Their system is



116 Chapter 5. Experiments and results

highly balanced: 87.1% precision and 86.8% recall. It is almost equivalent

to the F1-score obtained by García-Pablos, Perez, and Cuadros [225] (86.9%).

We rank third using our methodology and reaching an 85.5% F1-score [119].

Finally, Lange et al. [226] obtained 85.4% precision, 85.2% recall and 85.3% F1.

Most successful teams employ machine learning approaches for NER tasks.

For instance, Xiong et al. [224] propose a model considered as a Machine

Reading Comprehension (MRC) problem inspired by Li et al. [227] and Levy

et al. [228], whose task is to answer questions regarding different types of

entities based on given passages. A Transformer-based language model and a

classification layer are employed by García-Pablos, Perez, and Cuadros [225]

using voting ensembles. Our method employs a BiLSTM-based model with

a CRF layer by combining different word embeddings and Lange et al. [226]

use multilingual BERT, character and fastText embeddings [111] similar to Yu,

Bohnet, and Poesio [229].

5.2.5 Error analysis

This section presents the results in a more comprehensive way. For this

purpose, we first use the measures TP, FP, and FN to provide the number of

entities that our system correctly detected and the number of entities that it

misclassified.

The Cantemist corpus, unlike the previous scenario, has only one type of

annotated entity (morphology of neoplastic), therefore, we show the results

according to that category. Note that we present the results of this section

using the best method, which means that it uses a BiLSTM-CRF network with
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the Wikipedia + SME + Pooled word embeddings.

Based on the analysis of the Cantemist corpus, Table 5.6 showed that the

dataset contained 3,633 entities of malignant neoplasm type in the test set.

Taking into account this number, our method has obtained 3,096 TP, 521 FP,

and 537 FN. Thus, the number of entities correctly annotated by the system is

3,096 (85.22% of the total). It also identified 521 entities (14.34% of the total

number) that were not included in the gold standard (FP), and finally, the

proposed system did not recognize 537 entities (14.78% of the total) that were

labeled in the gold standard (FN). The gold standard contains a total of 3,633

entities, which is obtained by adding the number of successes (TP) and the

number of FN.

For further error analysis, we show examples where the proposed ap-

proach has recognized incorrect entities. Figure 5.9 presents a fragment of the

test dataset in which our system has classified incorrectly. Specifically, the fig-

ure shows how the gold standard contained the entity "lesión a nivel hipofisario"

(lesion at pituitary level) labeled as cancer morphology, but our method has

not been able to identify it. If we take into account the number of occurrences

of some of the words included in that entity, the word "hipofisario" (pituitary)

occurs 9 times in the Cantemist training corpus, of which 6 times it appears

with the word "macroadenoma" (which is more related to cancer). In the test

set, the proposed approach correctly detected "pituitary macroadenoma" but

incorrectly "lesion at the pituitary level" as shown in Figure 5.9, demonstrating

that the system is locating words associated with the oncology domain.

Often, cancer-related entities in the Cantemist corpus detail a part of the
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engrosamientos a nivel de la duramadre y lesión a nivel hipofisario

Gold O O O O O O O B-Morfología_neoplasia I-Morfología_neoplasia I-Morfología_neoplasia B-Morfología_neoplasia

System O O O O O O O O O O O

Figure 5.9: Example of FN in the Cantemist corpus comparing the gold output and
the output of our system. English translation: thickening at the dura mater and injury
at the pituitary.

body along with indications of tumors, i.e. "carcinoma de ovario izquierdo" (left

ovarian carcinoma), "tumor urotelial" (urothelial tumor), "linfoma folicular" (fol-

licular lymphoma), and "adenocarcinoma intestinal" (intestinal adenocarcinoma),

among others. For this reason, it is important to focus on those words that are

related to cancer along with parts of the body.

An example of FP is illustrated in Figure 5.10. In this case, the proposed

method has labeled the entity "pseudotumor inflamatorio" (inflammatory pseu-

dotumor) as a neoplastic morphology when in the gold standard it was tagged

as a non-entity. Although it seems that the entity is referred to as a malignant

tumor, if we look at the full context of the sentence, it claims the follow-

ing: "Otras opciones de patología no maligna incluyen infecciones virales por CMV

o un pseudotumor inflamatorio" (Other non-malignant pathology options in-

cluded viral infections from CMV or an inflammatory pseudotumor). So,

non-malignant pathologies are being listed in this document. Pseudotumor is

a word that does not occur once in the training corpus and only once in the

test set. Probably, our system has misclassified this word because of the close

relationship it has with the word tumor.

The positions of the entity mentions are also an aspect to take into account

to identify them correctly. Indicating a start or end position incorrectly means

an FP and an FN at the same time because we annotate an entity that does
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incluyen infecciones virales por CMV o un pseudotumor inflamatorio

Gold O O O O O O O O O

System O O O O O O O B-Morfología_neoplasia I-Morfología_neoplasia

Figure 5.10: Example of FP in the Cantemist corpus comparing the gold output and
the output of our system. English translation: included viral infections from CMV or
an inflammatory pseudotumor.

not exist in the gold standard (FP) and also forgets to recognize an entity

included in the gold (FN). In order to conduct this analysis, we carried out a

semi-automatic test and discovered that our system marked the end position

incorrectly 88 times in the entities and 282 times in the start position. To

better clarify these errors, Figure 5.11 shows an example of the gold notation

included in the test set with the start and end position. In addition, Figure 5.12

illustrates the output of entities extracted by our system. As we can see, in

the gold standard the entity ranges from position 3,042 to 3,090 and contains

7 words ("cáncer de mama localmente avanzado o metastásico"). However, our

system only recognized 2 words independently ("cáncer" and "metastásico").

Therefore, this error results in one FN and two FP.

MORFOLOGÍA_NEOPLASIA 3042 3090 cáncer de mama localmente
avanzado o metastásico

Figure 5.11: Example of a gold standard annotation in the Cantemist test set. English
translation: locally advanced or metastatic breast cancer.

MORFOLOGÍA_NEOPLASIA 3042 3048 cáncer
MORFOLOGÍA_NEOPLASIA 3079 3090 metastásico

Figure 5.12: Example of our system’s annotation in the Cantemist test set. English
translation: cancer and metastatic.
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Example Test set Entity

# 1 Gold 1. progresión tumoral a nivel hepático
2. tumoral

System 1. progresión tumoral a nivel hepático

# 2 Gold 1. afectación metastásica pulmonar bilateral
2. metastásica

System 1. metastásica

# 3
Gold 1. adenocarcinoma (ADC) infiltrante

2. ADC

System 1. adenocarcinoma
2. ADC

Table 5.11: Examples of misclassification of our system by having entities within
other entities. English translation: #1 tumor progression to the liver level, #2 bilateral
pulmonary metastatic involvement, and #3 infiltrating adenocarcinoma (ADC).

The last error analysis performed has been about recognizing entities

included within other entities. As we know, the Cantemist corpus contained

entities that were included in other entities according to their start and end

positions (see more details in Figure 5.7). Our proposed approach and the

labeling scheme carried out did not take into account these types of entities, so

it has not been able to detect them independently from each other. Table 5.11

lists errors obtained by the proposed approach when there are entities that

are part of other entities. This table presents three examples indicating the

mentions that the system has to detect (gold) and those that our system has

identified (system). For instance, in example one the gold standard contains

two entities: "progresión tumoral a nivel hepático" (tumor progression to the liver

level) and "tumoral" (tumoral), but our system has only detected the first one,

ignoring "tumoral" as a separate entity. In example two, gold standard included

two entities: "afectación metastásica pulmonar bilateral" (bilateral pulmonary
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metastatic involvement) and "metastásica" (metastatic), however, the method

identified only "metastásica" as an entity. Finally, in example three, the gold

test also contained two entities: "adenocarcinoma (ADC) infiltrante" (infiltrating

adenocarcinoma - ADC) and "ADC", but in this case, the system independently

detected "adenocarcinoma" and "ADC".

5.2.6 Discussion

Due to the large amount of information stored in a clinical report related

to the oncology domain, the NLP community proposes challenges such as

Cantemist. Cantemist is a new shared task on Spanish NLP included in the

conference of the Spanish Society of Natural Language Processing (SEPLN).

Cantemist is composed of three sub-tasks: NER, concept normalization, and

clinical coding specifically. Our study focuses mainly on the detection and

classification of mentions of biomedical entities, so we have the opportunity

to employ our methodology in the oncological domain using the Cantemist

challenge.

The Cantemist corpus is a pioneer work on the distribution of domain-

specific medical NLP corpus and in languages other than English. The dataset

contains a total of 1,301 oncological clinical case reports written in Spanish

and contains a total of 16,030 entities related to neoplastic morphologies. As

we have studied, these entities have relevant characteristics described below:

• The entities are very different in size. The size of the annotated entities

in this corpus is diverse. We can find entities with one word or entities

of up to 25 words. The most frequent size of an entity is around two to
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three words.

• The entities contain extra information. Since some entities in the cor-

pus are large, they contain more relevant information within them. Fre-

quently, entities include adjectives that modify or enhance the noun of

the entity, for example, the entities "carcinoma epitelial maligno" (malig-

nant epithelial carcinoma) and "carcinoma de células pequeñas" (small cell

carcinoma) contain the words "malignant" and "small". In addition, they

often include parts of the human body to differentiate where the tumor

is located. For example, in the entities "carcinoma renal" (renal carcinoma)

and "carcinoma de pulmón derecho" (right lung carcinoma), carcinomas are

found in the renal part of the patient and the right lung.

• The entities include other entities within them. Finally, another impor-

tant feature within the annotated entities is that they may contain other

entities within them. As we have analyzed, in many cases the entities are

usually large and the entities located inside are one word. Also, several

of the entities found inside are usually acronyms, for instance, the entity

"metástasis de carcinoma - M1 " (carcinoma metastasis - M1) contains the

separate entity "M1" and "tumor estromal gastrointestinal maligno (GIST)"

(malignant gastrointestinal stromal tumor - GIST) includes "GIST".

Regarding the results obtained, we did not reach the state-of-the-art using

the Cantemist corpus, but we are satisfied to be in the top three. Considering

the large number of participants registered in this challenge, we achieved

85.7% precision, 85.2% recall, and 85.5% F1-score. Xiong et al. [224] obtained
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the best result reaching 87% F1-score using BERT and a multilingual pre-

trained model.

5.3 Knowledge extraction and discovery from health
texts

5.3.1 Problem description

The large amount of clinical text available online has motivated the develop-

ment of automated knowledge discovery systems to analyze this data and

discover relevant evidence. These discoveries or findings may serve as the ba-

sis for new treatments, understanding of disease and drug-drug interactions.

The eHealth Knowledge Discovery (eHealth-KD) challenge leverages a

semantic model of human language that encodes the most common expres-

sions of factual knowledge by using general-purpose entity types and thirteen

semantic relations among them.

To address the task of biomedical information extraction, the eHealth-KD

shared task has been conducted for two years [230, 231]. The organizers

provide different NLP tasks to automatically extract a variety of knowledge

from electronic health documents written in Spanish. In 2020 [232], eHealth-

KD proposes two subtasks related to capturing the semantic meaning of

health-related sentences: i) entity recognition (subtask A), whose goal is to

identify all the entities in a document and their types; and ii) relation extraction

(subtask B), which seeks to identify all relevant semantic relationships between

the entities recognized. Even though this challenge is oriented to the health

domain, the structure of the knowledge to be extracted is general-purpose.
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The challenge has been included at IberLEF 2020 (SEPLN) and involved

the participation of eight research teams from different institutions.

Using this scenario, we focus on the NER task (subtask A). The main

objective of this task is to identify all the entities included in the document

and also to determine the category of this entity. These entities are relevant

terms (single word or multiple words) that represent semantically important

elements in a sentence.

5.3.2 Corpus description

The corpus is composed of a list of health documents written in Spanish

extracted from MedlinePlus [176]. MedlinePlus is an online information

service provided by the NLM that includes health information and a medical

encyclopedia covering hundreds of diseases, conditions, and general wellness

topics [233]. Recent research has used MedlinePlus as a source of information

to create their approaches to NLP and continue their studies in the biomedical

domain [234, 160].

MedlinePlus files contain several entries related to health and medical

issues and have been processed to remove all XML markup extracting the

textual content. Once the convenient text was extracted, the organizers applied

additional preprocessing to remove undesirable phrases, such as headers,

footers, and similar elements, and to flatten HTML lists into simple sentences.

The final documents are manually tagged using Brat standoff format [210] by

a group of annotators. After tagging, the Brat output file (ANN format) was

processed to obtain the output files in the desired format.
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In this corpus, the annotated entities always consist of one or more com-

plete words and never include any surrounding punctuation symbols, paren-

thesis, etc. The types of entities annotated in this corpus are:

• Concept: identifies a relevant term, concept or idea, in the knowledge

domain of the sentence.

• Action: identifies a process or modification of other entities. It can be

indicated by a verb or verbal construction, such as "afecta" (affects), but

also by nouns, such as "problemas" (problems) and "análisis" (analysis).

• Predicate: identifies a function or filter of another set of elements, which

has a semantic label in the text such as "parte posterior" (backside) and is

applied to an entity such as "ojo" (eye).

• Reference: identifies a textual element that refers to an entity (of the

same sentence or different one) which can be indicated by textual clues

such as "estos" (these), "su" (your), etc.

Figure 5.13 shows an example of three sentences with the relevant entities

annotated. In this example, we can see some entities that span more than one

word such as "vías respiratorias" (airway) and "60 años" (60 years).

The corpus is divided into different sets including training, development,

transfer, ensemble, and testing. The development and transfer sets contain sen-

tences related to the biomedical domain and an alternative domain (Wikinews)

respectively. This alternative domain is proposed by the organizers to evalu-

ate other scenarios outside the medical domain. Moreover, the unreviewed
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Figure 5.13: Example of sentence annotation for the eHealth-KD challenge.

dataset named "ensemble" contained the submissions from past editions. Ta-

ble 5.12 shows a statistical summary of the eHealth-KD corpus.

Train Dev Ensemble Transfer Test gold

No. sentences 800 200 3,000 100 100

No. tokens 12,867 3,350 38,965 3,016 1,455

No. unique tokens 2,484 1,085 3,667 1,245 593

No. Concept 3,112 797 9,513 841 377

No. Action 1,319 340 3,866 278 121

No. Predicate 412 124 963 104 49

No. Reference 169 44 403 19 9

Table 5.12: Summary statistics of the eHealth-KD Corpus.

In our case, since the organizers offer different datasets, the training, ensem-

ble and transfer sets (800 + 3,000 + 100 sentences respectively) constitute the

training set, while the development set (200 sentences) was used to validate

the system.

An important feature of this corpus relates to discontinued entities. Discon-

tinuous entities are referred to as those mentions that contain non-continuous

words, in other words, they are not sequential entities since they contain
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words that are not labeled as an entity. The number of entities concerned

is reduced: in the training set 8 entities, in the validation set 2, and in the

ensemble set 1. The other groups did not contain such entities. An example of

this type is presented in Figure 5.14. In this figure, we can see the sentence

and the annotated entities. The entity "sentidos del olfato" (olfactory senses) is

not an entity with sequential words, moreover, in this entity, some words are

overlapped with words from another entity, in this case, the word "sentidos".

- Sentence:
Los sentidos del gusto y el olfato nos brindan gran placer.

- Annotated entities:
sentidos del gusto
sentidos del olfato

Figure 5.14: Example of a discontinued annotated entity in the eHealth-KD corpus.
English translation: The senses of taste and smell give us great pleasure.

The entities included in the eHealth-KD corpus have different sizes de-

pending on the category of the entity being labeled. We have conducted a

simple analysis counting the number of words that make up the entity. This

analysis is shown in Table 5.13. As we can appreciate, the entities labeled with

the category Concept include a larger number of words than the other cate-

gories. Specifically, these entities can contain up to 9 words such as "Centros

para el Control y la Prevención de Enfermedades" (Centers for Disease Control

and Prevention). Entities classified as References are usually the shortest ones

containing only one word. Examples of this type of entity are "esta" (this) and

"ambas" (both).
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Train Dev Ensemble Transfer Test gold

Concept
Min 1 1 1 1 1

Mean 1.24 1.26 1.20 1.37 1.23

Max 9 6 7 7 5

Action
Min 1 1 1 1 1

Mean 1 1.01 1 1 1.02

Max 3 3 1 2 3

Predicate
Min 1 1 1 1 1

Mean 1.04 1.04 1 1.04 1.16

Max 4 2 4 2 4

Reference
Min 1 1 1 1 1

Mean 1 1 1 1 1

Max 1 1 1 1 1

Table 5.13: Statistics on the number of words within the entities in the eHealth-KD
corpus.

5.3.3 Methodology

The steps followed to carry out the experimentation in this corpus have been

the following:

1. Pre-processing of the text included in the medical documents (cf. Sec-

tion 4.1).

2. Convert each set to CoNLL format. For this purpose, a file is generated

for each set of the corpus in which it includes mainly one word per line

together with the assigned tag. In order to clarify this step, we show

in Figure 5.15 an example in which we see a fragment of the training

corpus. This figure shows three of the four existing categories in the

corpus. The entities labeled as Concept are three: "padres" (parents),
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"hijos" (children) and "peligros" (dangers); there are two entities of the

Action category in this fragment: "deben" (must) and "conocer" (know);

and finally, the entity "estos" (these) is a Reference type, in reference to

the problems mentioned in the previous sentence.

los 3029 3032 O
padres 3033 3039 B-Concept
y 3040 3041 O
los 3042 3045 O
niños 3046 3051 B-Concept
deben 3052 3057 B-Action
conocer 3058 3065 B-Action
estos 3066 3071 B-Reference
peligros 3072 3080 B-Concept
. 3080 3081 O

Figure 5.15: Example of annotation file in eHeatlh-KD corpus. English translation:
Parents and children should be aware of these dangers.

3. Select the word embeddings for the performance of the experiments

(Section 4.2).

4. Train the system with the corpus by using the proposed methodology

(Section 4.3) and then evaluate the output.

The eHeatlh-KD dataset contains two development sets ( transfer and

development) and an ensemble set with the annotations produced by previous

tasks. In our particular case, we used as training set the combination of the

training, transfer and ensemble, and the development set as the validation set.
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5.3.4 Results

The metrics defined by the eHealth-KD challenge to evaluate these experi-

ments are commonly used for some NLP tasks such as NER or text classifica-

tion, namely precision, recall, and F1-score. Contrary to previous experiments

this challenge provides other metrics in an evaluation considering different

categories of errors. These metrics can be defined in terms of comparing the

response of a system against the golden annotation, i.e. correct, incorrect,

partial, spurious, and missing entities [235]:

• Correct (C): matches are reported when a text in the system output file

exactly matches a corresponding span of text in the gold file in the start

and end positions, and also the entity type.

• Incorrect (I): matches occur when the start and end positions match, but

not the type of the entity.

• Partial (P): matches are reported when two intervals (start and end) have

a non-empty intersection, such as the case of "vías respiratorias" (airways)

and "respiratorias" in the previous example (and matching the correct

category). Notice that a partial phrase will only be matched against a

single correct phrase. For example, "cáncer de mama" (breast cancer) could

be a partial match for both "cáncer" and "mama", but it is only counted

once as a partial match with the word "cáncer" while the word "mama" is

counted as Missing. This aims to discourage a few large text spans that

cover most of the document from receiving a very high score.
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• Missing (M): matches are those that appear in the gold file but not in the

system file.

• Spurious (S): matches are those that appear in the system file but not in

the gold file.

From these definitions, the organizers compute precision, recall, and F1

measure as follows:

Precision =
C + 1

2 P
C + I + P + S

(5.7)

Recall =
C + 1

2 P
C + I + P + M

(5.8)

F−measure(F1) = 2 ∗ Precision ∗ Recall
Precision + Recall

(5.9)

The results obtained by following the proposed methodology and the

described word embeddings are shown in Table 5.14. As in the previous

scenarios, we have shown the results in a grouped form to better describe

them. First, we evaluate each word embedding independently (first section of

the table). Second, we propose a combination of word embeddings according

to their type (contextual and non-contextual) and by language (Spanish or

multilingual). Finally, we show other results of different combinations (third

section of the table).

Initially and taking into account the use of word embeddings individually,

we obtained results of between 80% and 82% of F1-score. Specifically, the

best value of F1 was obtained using the embeddings extracted from the BETO
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Precision (%) Recall (%) F1 (%)

Wikipedia 82.87 80.04 81.43
SME 83.21 80.22 81.68
Pooled 82.31 79.95 81.21
BETO 83.93 80.31 82.08
XLM-RoBERTa 82.87 79.59 81.19
mBERT 83.05 78.87 80.9

Wikipedia + SME 83.24 80.4 81.79
Pooled + BETO 83.99 80.22 82.06
XLM-RoBERTa + mBERT 84.06 80.13 82.04

SME + BETO + mBERT 85.59 80.67 83.06

Table 5.14: Performance results for the NER task in health documents using the
BiLSTM-CRF approach.

pre-trained model (82.08%). Following BETO, the use of SME obtained values

close to F1, reaching 81.68%.

Using traditional embeddings together (Wikipedia + SME) we obtain an

81.79% F1-score, which shows a slight improvement in the use of them in-

dependently. By combining the BETO and Pooled embeddings, we do not

achieve an improvement because BETO improves individually rather than in

combination. On the other hand, the combination of the multilingual models

achieves an enhancement when compared to mBERT or XLM-RoBERTa, as it

obtains 84.06% precision (the highest precision so far analyzed) and 82.04% of

F1.

Other interesting results are shown in the last section of the table. After

making several combinations (cf. Appendix A Table A.1), we wanted to

show the most successful ones. The combination of SME + BETO + mBERT
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embeddings achieves the highest values in all the proposed metrics: 85.59% for

precision, 80.67% for recall, and 83.06% for F1. Unlike the previous scenarios,

with this corpus, we obtain good results by combining Transformers-based

word embeddings with SME.

Runtime Embeddings size

Wikipedia 37:41 ± 1.03 300
SME 37:29 ± 5.52 300
Pooled 01:12:11 ± 5.25 8,192
BETO 01:19:15 ± 18.64 3,072
XLM-RoBERTa 01:11:02 ± 0.47 768
mBERT 01:26:05 ± 2.97 3,072

Wikipedia + SME 34:30 ± 2.04 600
Pooled + BETO 01:50:21 ± 6.04 11,264
XLM-RoBERTa + mBERT 01:40:07 ± 9.48 3,840

SME + BETO + mBERT 01:43:23 ± 11.18 6,444

Table 5.15: Running time results and size of word embeddings using the eHealth-KD
corpus.

The time employed in training our approach with each word embedding

studied is presented in Table 5.15. We consider this a key point since we see

the time spent on each corpus with different word embeddings. Furthermore,

we show the size of the vector used for each word in order to determine

whether it is a variable that affects the training time. The runtime has been

obtained using the same GPU for each experiment and then averaging it

(three runs). We also show the SEM in seconds knowing how much those

times differ. As in previous experiments, we can observe that the time spent

using non-contextual word embeddings is much less than the time spent
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with contextual embeddings. We also highlight the large size involved in

using Pooled embeddings. However, the use of embeddings obtained from

models based on Transformers consumes approximately the same time as

Pooled embeddings. Our best result taking into account the F1-score has been

achieved by using the combination of SME + BETO + mBERT embeddings

and has consumed an average of 1 hour and 43 minutes.

System Model/word embedding P (%) R (%) F1 (%)

BiLSTM-CRF (Our model) SME + BETO + mBERT 85.59 80.67 83.06

BERT [236] BETO 82.16 82.01 82.09

BiLSTM-CNN-CRF [237] mBERT + medical embedding [111]
+ SUC embedding [25]

80.72 82.46 81.58

BiLSTM-CRF [238] mBERT + character embedding +
POS tagger embedding

82.03 80.85 81.43

Table 5.16: State-of-the-art results for entity extraction using the eHealth-KD corpus
in Spanish. P: Precision, R: Recall, SUC: Spanish Unannotated Corpora.

A comparison of the best publications and results using the eHealth-KD

corpus is summarized in Table 5.16. Other studies such as those proposed

by Medina and Turmo [237] and Rodríguez-Pérez et al. [238] use similar ar-

chitectures to our model. Rodríguez-Pérez et al. [238] use a deep learning

model (BiLSTM-CRF) concatenating word embeddings including mBERT,

character embedding, and Part-Of-Speech tagger embedding. The results of

this study obtained an 81.43% F1-score. Medina and Turmo [237] employ a

BiLSTM network with a CNN and a CRF layer. On this occasion, the word

representation vectors used are different. On the one hand, they use contex-

tual embeddings extracted from the mBERT pre-trained model. They also

concatenate medical embeddings trained on Spanish [111]. On the other hand,

they added the general domain Spanish Unannotated Corpora (SUC) [25].
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With the described methodology, they reach 81.58% F1. Finally, García-Pablos

et al. [236] presented an end-to-end deep neural network with pre-trained

BERT models as the core for the semantic representation of the input texts

using the BETO model, which ranks second after our results with an 82.09%

of F1-score.

The eHealtk-KD challenge attracted a significant number of researchers

from the NLP community interested in this task. A total of 8 teams participated

in this challenge and the average F1-score was 70.17%, so we are satisfied with

the methodology used. Specifically, our study finished in the first position

and considerably above the average achieved.

5.3.5 Error analysis

An in-depth analysis of results and errors is presented in this section. This

allows us to find improvements for our future work. For this purpose, we use

the metrics described above: correct, incorrect, partial, spurious, and missing.

Other experiments such as those discussed in previous sections (Section 5.1

and 5.2) have a simple classification evaluation that can be measured in terms

of TP, TN, FP, and FN, and subsequently compute precision, recall, and F1-

score for each named-entity type. These challenges involve discarding partial

matches and other scenarios when the NER system evaluates the named-entity

surface string correctly but the type wrongly. However, the eHealth-KD share

task evaluates these scenarios again at a full-entity level.

A fine-grained evaluation of these systems can be defined in terms of

comparing the response of our best system (BiLSTM-CRF using SME + BETO
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+ mBERT embeddings) against the golden annotation. Then, the evaluation

of our system considering these different categories of errors is shown in

Table 5.17.

Entity Correct Incorrect Partial Spurious Missing
Concept 313 6 30 10 28
Action 95 9 1 22 16
Predicate 20 7 0 6 22
Reference 5 0 0 0 4
Total 433 22 31 38 70

Table 5.17: Evaluation results obtained by combining word embeddings in terms of
comparing the response of the system against the golden annotation in the eHealth-
KD corpus.

As we can see, Table 5.17 summarizes the corpus entity types (rows) and

the evaluated measures (columns). The results obtained are remarkable thanks

to the great number of correct entities that we obtain. For example, our system

can match 433 identifying entities of 556 (which means 77.9%): 313 entities

are of the Concept category, 95 of the Action type, 20 of the Predicate type,

and 5 References. This first row is consistent with Table 5.12 since the more

entities contained in the training set, the greater the probability of classifying

them correctly. The number of incorrectly identified entities (the type of entity

category did not match) is 22, representing a low value (4% of the total).

Moreover, our system has incorrectly annotated partial mentions 31 times,

30 of which were in Concept type entities. 38 entities were recognized by

the system but were not in the gold file (spurious), and on the contrary, 70

entities appeared in the gold annotation and were not identified by our system

(missing). Some of the errors frequently detected by our system are analyzed

below.
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In order to carry out an in-depth study of the incorrectly labeled entities,

we performed a confusion matrix. Figure 5.16 illustrates the matrix providing

the number of errors committed by our approach when compared to the gold

annotation. As we can see, the number of entities annotated as Action in

the gold standard and labeled by our system with the Concept category is

9 including words like "trasplante" (transplant) and "recuperación" (recovery).

These errors usually occur due to verb conjugation problems. In other words,

if they refer to a noun they should be labeled as a Concept, or on the contrary

if they refer to an Action or verb labeled as an action. For instance, the word

"transplant" appears 14 times in the training set where 10 times it is labeled as

Action.

On the contrary, 6 mentions with the Concept label have been classified

as Action by our system. Examples of this type are: "problemas" (problems),

"dolores" (pains) and "anomalías" (anomalies). Note that 6 mentions of the

predicate type have been incorrectly identified by our system, assigning them

the Concept category. Some words associated with this type of error are: "edad"

(age), "uno" (one) and "dos" (two).

Concerning the spurious and missing errors, we have collected some mis-

labeled entities as shown in Table 5.18. The proposed method has not been

able to identify the examples of entities presented in the table. We would

like to highlight the missing Concepts such as LASIK, "Equeratomileusis in

situ asistida con láser" (laser assisted "in situ" keratomileusis), "Consejo Insti-

tucional de Revisión" (Institutional Review Board) and "DE" (disfunción eréctil-

Erectile Dysfunction). All of them form names of institutions, organizations,
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Concept Action Predicate Reference

Concept x 6 0 0

Action 9 x 0 0

Predicate 6 1 x 0

Reference 0 0 0 x

G
ol
d

System

Figure 5.16: Confusion matrix for entities incorrectly classified by our system using
the eHealth-KD corpus

or acronyms which the system has not been able to recognize.

Measure Category Examples

Spurious
Concept Inmunitaria (Immunity) and papel (paper)

Action Evitar (avoid) and ayudar (help)

Predicate Muchos (many) and pocos (few)

Missing
Concept LASIK (laser assisted “in situ" keratomileusis) and faciales (facials)

Action Causar (cause) and análisis (analysis)

Predicate Después (then) and varios (several)

Table 5.18: Examples of errors caused by our systems using the spurious and missing
measurements in the eHealth-KD corpus.

Partial matches are produced when the system is not able to correctly

identify the start or end position of the mention. Usually, this type of error may

produce other spurious and missing errors. Some examples are illustrated

in the following figures. The figures include the gold annotation and the

annotation obtained by our system. For instance, figure 5.17 shows the gold

entity "menor de edad" (underage), and as we can see, the system has identified

two entities: "menor" and "edad" which has resulted in two errors. On the one

hand, "menor" has been identified as a partial error, and on the other hand, the
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entity "edad" as spurious because they were not in the gold file. The same error

with different entity types is presented in Figure 5.18. In this case, the golden

entity is "glucosa-6 fosfato-deshidrogenasa" (glucose-6-phosphatedehydrogenase)

but our system has identified two independent entities and consequently has

produced two errors.

- Gold annotation:
Entity: menor de edad

- System annotation:
Entity: menor
Error type: partial

- System annotation:
Entity: edad
Error type: spurious

Figure 5.17: Example 1. Partial and spurious errors produced by the system against
the golden entity in the eHealth-KD corpus. English translation: underage.

- Gold annotation:
Entity: glucosa-6 fosfato-deshidrogenasa

- System annotation:
Entity: glucosa-6
Error type: partial

- System annotation:
Entity: fosfato-deshidrogenasa
Error type: spurious

Figure 5.18: Example 2. Partial and spurious errors produced by the system against
the golden entity in the eHealth-KD corpus. English translation: glucose-6-phosphate
dehydrogenase.

Other types of errors caused by the partial entities can produce missing
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mentions. Figure 5.19 illustrates an example of this type of error. In this case,

the entity annotated in the gold standard is "ataque de vértigo" (dizzy spell) but

our system has only identified one mention ("ataque"). This has meant that the

entity found has been classified as partial and a missing entity ("vértigo") since

the system has not been able to recognize it.

- Gold annotation:
Entity: ataque de vértigo

- System annotation:
Entity: ataque
Error type: partial

- Other error:
Entity: vértigo
Error type: missing

Figure 5.19: Example of partial and missing errors produced by the system against
the golden entity in the eHealth-KD corpus. English translation: dizzy spell.

Accomplishing a manual count of the entities annotated incorrectly as

partial, we have found that 85% of them have produced other errors and have

supposed an increase of spurious and missing entities. So we conclude that

our system must be improved in terms of the start and end positions of an

entity, in particular, we have to focus on the Concept type entities since they

are the ones that have classified our system the worst.

5.3.6 Discussion

The eHealth-KD challenge, in its third edition, leverages a semantic model

of human language that encodes the most common expressions of factual
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knowledge, through a set of four types of general-purpose entities. Although

this challenge contained several scenarios for the participants, our main goal

was to put into practice our approach to the NER task (scenario 2 and task A).

In this section, we have applied the methodology outlined above (cf. Chap-

ter 4) based on neural networks. Specifically it is composed of a BiLSTM with

a CRF layer to predict mentions of entities. In this particular case, the entities

are diverse: concepts, actions, references, and predictions making the chal-

lenge to be considered as the general domain. However, to carry out this task,

the documents that compose the corpus are extracted from the MedlinePlus

online library containing health information.

In the challenge, a total of eight teams of researchers from different in-

stitutions have been involved in the NER task by proposing novel systems.

According to the organizers of the eHealth-KD 2020 task, the most significant

change from previous ones is the use of contextual embeddings (i.e. Trans-

former architectures and specifically BERT) as a replacement for traditional

word embeddings.

Following the idea of the previous experiments, we evaluated different

types of word embeddings taking into account their nature. The results

achieved have been satisfactory. We obtain 85.59% precision, 80.67% recall,

and 83.06% F1-score by combining multiple word representations. The com-

bination of word embeddings that produced the best results was using SME,

BETO, and mBERT. It is important to highlight in this scenario the good per-

formance of the embeddings extracted from BETO, reaching 82.08% F1-score

individually. Until now, these embeddings had obtained positive results but
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not as close to the state-of-the-art as in the corpus. This is probably due to

the general purpose of the entities to be recognized, which in previous experi-

ments was strongly focused on biomedicine and word embeddings such as

SME performed better.

A direct comparison with other participants was carried out to see the

enhancement produced by our system. Furthermore, the comparison summa-

rized the approaches employed by the authors, thus demonstrating that the

novel BERT model offers results as good as the deep learning methods. More

specifically, García-Pablos et al. [236] employed the Transformer-based BERT

architecture using the BETO model trained on Spanish. They also achieved en-

couraging results with an 82.09% F1-score. In the final evaluation, we reached

the first position in terms of results and therefore the state-of-the-art in the

eHealth-KD corpus.

An analysis of results and errors has been conducted in more detail in

this chapter discovering possible improvements to our system in future work.

With this error analysis we have found the following important elements:

i) our system does not usually fail to find the category, however, the most

confusing entities are Concept and Action; ii) finding the start and end position

of an entity remains a major challenge, specifically in entities annotated as

Concept; iii) sometimes, making a mistake in partial matching causes an

increase in the number of errors of spurious and missing entities.
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Conclusions

The huge growth in electronically stored biomedical data has made knowledge

extraction an important task in this domain. Health documents may include

relevant evidence such as findings, diseases, and treatments that can help

health professionals in their decision-making. However, this information

is difficult to process manually by professionals due to the time and cost

involved, so the generation of automatic resources is necessary. One of the

goals of NLP is to facilitate these tasks by enabling the use of automated

methods that extract knowledge from a text with high validity and reliability.

Specifically, the NER task applied to the biomedical domain aims to extract

and identify entities of interest that can be used by health professionals.

Biomedical entity recognition is an important task that is still unresolved

but can help in other medical-related systems. For example, the NER can

identify important findings that are essential for safe and effective health care.

Moreover, this task can be applied to other NLP tasks such as text classification

by serving as a support point. Finally, NER can be applied to several sub-

domains of healthcare, such as oncology, recognizing cancer-related findings,
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and pharmacology, identifying drugs, medicines, or adverse events.

Researchers have invested significant effort into developing NLP methods

and tools for the NER task from narrative clinical texts. Several architectures

of machine learning approaches have been applied to addressing this task.

With the emergence of deep learning, models can use feature representations

(i.e. word embeddings) of large volumes of unlabeled clinical text. A word

embedding is a numerical vector for representing words in a text and it allows

us to leverage knowledge about language semantics more precisely. In addi-

tion, many pre-trained word embeddings are publicly available, such as the

GloVe, fastText, and contextualized word embeddings based on Transformers

models.

The advances in deep learning and the representation of words through

word embeddings have motivated us to apply them in the NER task for the

Spanish biomedical domain. Most of the research on the NER task has been

conducted in English. Therefore, this thesis aims to advance the study of

entity recognition in Spanish, the second most spoken language in the world

and the third most used on the Internet1.

This thesis is focused on the use of a sophisticated neural network ar-

chitecture based on BiLSTM with a CRF layer to predict each word as an

appropriate entity (or non-entity). The BiLSTM network is composed of two

LSTM networks that read sentences from right to left and vice versa. This

ensures that it is able to understand the context of each sentence. In addition,
1Spanish language: https://en.wikipedia.org/wiki/Spanish_language

https://en.wikipedia.org/wiki/Spanish_language
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the first layer of the neural network consists of a combination of word embed-

dings based on vector concatenation improving the final classification of each

word. For this purpose, we have used several word embeddings available for

Spanish. Among those used, we highlight traditional word embeddings such

as fastText trained on Spanish Wikipedia and contextual word embeddings

such as pooled contextualized embeddings and BETO. Moreover, we have

generated new ones specific to the language and domain in order to be able to

better understand the clinical language.

To test our proposed model, we have used three corpora available thanks

to the challenges proposed in different national and international conferences.

Specifically, we used the datasets included in the PharmaCoNER [209], Can-

temist [30] and eHealth-KD [232] challenges. Since the workshops provide the

results of the participants as well as their approximations, we have been able

to compare our systems with the state-of-the-art results showing the strengths

of our approach.

6.1 Main contributions

This research has carried out a series of studies, analyses, and development of

NLP techniques designed to address the task of NER in Spanish biomedical

texts. This has resulted in several contributions to the research that we have

considered on the basis of the hypotheses outlined in Section 1.3.

To support hypothesis H1, we can summarize the following contributions:
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(H1). Deep neural networks in NLP leverage the advantage of existing 
relevant information from the Spanish biomedical textual data and the NER 
task, outperforming models that do not integrate this information properly.

• We have investigated and implemented different machine learning ap-

proaches as shown in Chapter 2. First, we have reviewed unsupervised

models and then advanced to supervised models using traditional mod-

els such as CRF and deep neural networks.

• In our review of the state-of-the-art in deep learning, we have exposed

what kind of architectures are used by the scientific community inter-

ested in NER (Section 3.2).

• We have proposed a model based on neural networks. Specifically,

the architecture is composed of a BiLSTM network and a CRF layer

(Section 4.3).

To support hypothesis H2, we provide the following contributions:

(H2). Combining different types of word embeddings by concatenating each 
embedding vector to form the final word vectors is an important part of the 
biomedical entity recognition task. The probability of recognizing a specific 
entity in a text should increase as optimal representations of that word are 
combined, because they are more comprehensively represented and integrate 
more knowledge.

• In our review of related literature we have found that word representa-

tions and, more specifically, word embeddings are the most commonly

used methods (Section 3.3).
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• We have selected different word embeddings to include in the neural

network to address the NER problem in biomedicine (Section 4.2).

• We have presented a model based on a combination of word embeddings

for a more exhaustive representation of the words, thus improving entity

identification systems (Section 4.3).

The contributions that support hypothesis H3 can be summarized as fol-

lows:

(H3). Integrating domain-specific knowledge into the training corpus can be 
beneficial for improving the quality of word embeddings. Thus, this resource 
provides a more accurate representation of words in a particular context and 
domain. 

• We have collected an unannotated corpus by extracting documents

from different corpora and websites related to the biomedical domain,

obtaining a vocabulary of 1,704,151 words (Section 4.2.1).

• We have generated new word embeddings specifically for the biomedical

domain in Spanish (Section 4.2.1).

Finally, after describing the specific contributions for each hypothesis, the

global contributions resulting from this study can be summarized as follows:

• We have developed a system based on machine learning that obtains

substantial improvements in the NER task using NLP techniques applied

to the biomedical domain in Spanish.
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• We have implemented a model based on deep networks and a combina-

tion of word embedding in three biomedical scenarios: pharmacology

(Section 5.1), oncology (Section 5.2), and knowledge discovery (Sec-

tion 5.3).

• For each scenario, we have described the problem to be solved and

the corpus to be used. We have presented the results achieved with

each combination of embeddings, the execution time, and the size of

the combination vector. Furthermore, we have been able to compare

our system with state-of-the-art results and conducted an error analysis.

Finally, we have exposed a discussion and thus compiled the main

findings of that scenario.

• We have obtained performance improvements over the previous state-

of-the-art using the proposed model.

6.2 Future work

For future work, we will study the performance of using more linguistic

features as an input in the neural network because we believe it would add

extra knowledge to the network by indicating how the word functions in

meaning as well as grammatically within the sentence. A morphological and

syntactic analysis will be performed on the biomedical reports to determine,

on the one hand, the form, class, or grammatical category of each word and,

on the other hand, the concordance and hierarchy relations that the words

have with each other.
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Considering the corpus with which the experiments are conducted, other

annotation schemes will be used to solve the following problems:

1. Entities inside other entities, for instance in the sentence "Se biopsian

nuevamente informándose como linfoma cutáneo primario T tipo micosis fun-

goide" (The biopsies are repeated and reported as primary cutaneous T-

lymphoma mycosis fungoides) there are two annotated entities "linfoma

cutáneo primario T tipo micosis fungoide" (primary cutaneous T-lymphoma,

mycosis fungoides type) and "micosis fungoide" (mycosis fungoides), so

there are words that are in two different entities.

2. Discontinuous entities in corpora, for example, in the sentence "Los

análisis de sangre y orina son la única manera de saber si usted tiene enfermedad

renal" (Blood and urine tests are the only way to know if you have

kidney disease) the annotated entities are "análisis de sangre" (blood tests)

(an entity with consecutive words) and "análisis de orina" (urine tests)

(discontinuous entity).

Since our study has been conducted for a specific language, in future work,

we plan to extend it to different languages such as English in order to see the

usefulness of the different word embeddings trained for languages other than

Spanish.

Finally, there are pre-trained models available for the biomedical domain

such as BioBERT and ClinicalBERT that could be taken into consideration.

Although all of them are in English, we will work on generating a new model

for Spanish, taking into account the computational resources involved.
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6.3 Publications

During the course of this thesis, work has been carried out in different work-

shops and tasks, some directly related to the thesis topic and others close to

the task that have also served to add value to the research. As a result of this

work, the following publications in high impact journals and conferences have

been produced (in chronological order):

6.3.1 Journals

1. Andreu-Marin, A., Martínez-Santiago, F., Ureña-López, L. A., & López-

Úbeda, P.. (2017). El lenguaje del pensamiento. Ciencia Cognitiva, 11:3,

50-52.

2. López-Úbeda, P., Díaz-Galiano, M. C., Montejo-Ráez, A., Martínez-

Santiago, F., Andreu-Marin, A., Martín-Valdivia, M. T & Ureña-López, L.

A. (2018). Biomedical Semantic Information Retrieval. Procesamiento

del Lenguaje Natural, (61), 189-192.

Impact source: SCImago Journal Rankings (SJR): 0.21. Impact factor: Q2.

3. López-Úbeda, P., Díaz-Galiano, M. C., Martín-Noguerol, T., Ureña-

López, A., Martín-Valdivia, M. T., & Luna, A. (2020). Detection of unex-

pected findings in radiology reports: A comparative study of machine

learning approaches. Expert Systems with Applications, 160, 113647.

Impact source: WOS (JCR). Impact factor: Q1.

4. López-Úbeda, P., Díaz-Galiano, M. C., Montejo-Ráez, A., Martín-Valdivia,
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M. T., & Ureña-López, L. A. (2020). An Integrated Approach to Biomedi-

cal Term Identification Systems. Applied Sciences, 10(5), 1726.

Impact source: WOS (JCR). Impact factor: Q2.

5. López-Úbeda, P., Díaz-Galiano, M. C., Martín-Noguerol, T., Luna, A.,

Ureña-López, L. A., & Martín-Valdivia, M. T. (2020). COVID-19 detection

in radiological text reports integrating entity recognition. Computers in

Biology and Medicine, 127, 104066.

Impact source: WOS (JCR). Impact factor: Q2.

6. López-Úbeda, P., Díaz-Galiano, M. C., Martín-Noguerol, T., Luna, A.,

Ureña-López, L. A., & Martín-Valdivia, M. T. (2021). Automatic medical

protocol classification using machine learning approaches. Computer

Methods and Programs in Biomedicine, 105939.

Impact source: WOS (JCR). Impact factor: Q1.

7. López-Úbeda, P., Plaza del Arco, F. M. P., Díaz-Galiano, M. C., & Martín-

Valdivia, M. T. (2021). How Successful is Transfer Learning for Detecting

Anorexia on Social Media? Applied Sciences, 11, 1838.

Impact source: WOS (JCR). Impact factor: Q2.

8. López-Úbeda, P., Plaza del Arco, F. M. P., Díaz-Galiano, M. C., & Martín-

Valdivia, M. T. (2021). NECOS: An annotated corpus to identify construc-

tive news comments in Spanish. Procesamiento del Lenguaje Natural,

(66).
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Impact source: SCImago Journal Rankings (SJR): 0.21. Impact factor: Q2.

Accepted for publication.

9. López-Úbeda, P., Pomares-Quimbaya, A., Díaz-Galiano, M. C., & Schulz,

S. (2021). Collecting specialty-related medical terms: Development and

evaluation of a resource for Spanish. BMC Medical Informatics and

Decision Making.

Impact source: WOS (JCR). Impact factor: Q3. Accepted for publication.

10. López-Úbeda, P., Díaz-Galiano, M. C., Ureña-López, L. A., & Martín-

Valdivia, M. T., (2021). Combining word embeddings to extract chemical

and drug entities in biomedical literature. BMC Bioinformatics.

Impact source: WOS (JCR). Impact factor: Q1. Under review.

11. López-Úbeda, P., Díaz-Galiano, M. C., Ureña-López, L. A., & Martín-

Valdivia, M. T., (2021). Integrating hybrid word embeddings for deep

learning in biomedical entity recognition. Expert Systems with Applica-

tions.

Impact source: WOS (JCR). Impact factor: Q1. Under review.

6.3.2 Conferences

1. López-Úbeda, P.. (2018). Integración de Conocimiento para la Mejora

de Sistemas de Recuperación de Información. In Proceedings of the Doc-

toral Symposium of the XXXIV International Conference of the SEPLN,

pp. 31–36.
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2. López-Úbeda, P., Díaz-Galiano, M. C., Martín-Valdivia, M. T., & Ureña-

López, L. A. (2018). Machine Learning to Detect ICD10 Codes in Causes

of Death. In CLEF (Working Notes).

3. López-Úbeda, P., Díaz-Galiano, M. C., Martín-Valdivia, M. T., & Ureña-

López, L.A. (2018). Filtering and reranking using MetaMap named

entities recognizer. In TREC.

4. López-Úbeda, P., Díaz-Galiano, M. C., Martín-Valdivia, M. T., & Ureña-

López, L.A. (2018). Using clustering to filter results of an Information

Retrieval system. In TREC.

5. López-Úbeda, P., Díaz-Galiano, M. C., Martín-Valdivia, M. T., & Ureña-

López, L. A. (2018). Sinai en tass 2018 task 3. clasificando acciones y

conceptos con umls en medline. Proceedings of TASS, 2172.

6. López-Úbeda, P., Díaz-Galiano, M. C., Martín-Valdivia, M. T., & Jiménez-
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6.4 Research collaborations

6.4.1 Participation in projects

• REDES project (Reconocimiento de Entidades Digitales: Enriquecimiento

y Seguimiento mediante Tecnologías del Lenguaje) with reference TIN2015-

65136-C2, is funded by the Spanish Government through the program

National Programme for Research Aimed at the Challenges of Society

(Projects I+D+i 2015) of the Ministry of Economy, Industry and Compet-

itiveness.

• REC project (Reconocimiento de Entidades Clínicas para mejorar el

registro estandarizado de pacientes en el Servicio de Geriatría) with

reference 2020/042, is partially funded by the Hospital Universitario San

Ignacio (Bogotá, Colombia), Pontificia Universidad Javeriana (Bogotá,

Colombia) and University of Jaén (Spain).

• LIVING-LANG project (Tecnologías del lenguaje humano para enti-

dades digitales vivas) with reference RTI2018-094653-B-C21, is funded

by the Spanish Government through the Knowledge Generation R&D
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Projects and R&D&I Projects Research Challenges of the Ministry of

Science, Innovation and Universities.

6.4.2 Organising committee

• Organising Committee of the 36th Conference of the Spanish Society for

Natural Language Processing2.

• Organising Committee of the 3rd edition of the PLN.net award3 for the

best new line of research in Natural Language Processing.

6.4.3 Research stays

• Research stay of three months at the University of Graz (Austria). Su-

pervisor: Stefan Schulz. Position held: full professor at the Institute for

Medical Informatics, Statistics and Documentation.

• One-week research stay at the University of Wolverhampton (United

Kingdom). Supervisor: Ruslan Mitkov. Position held: Director of Re-

search Institute of Information and Language Processing (RIILP).

6.5 Research awards and recognitions

1. Buscador semántico biomédico.

Description: Finalist at "II Hackathon de Tecnologías del Lenguaje" in the

modality "Biomedicine" within Four Years From Now (4YFN) of the

Mobile World Congress (MWC).
2SEPLN 2020: http://sepln2020.sepln.org/
3PLN.net award: https://gplsi.dlsi.ua.es/pln/node/60

http://sepln2020.sepln.org/
https://gplsi.dlsi.ua.es/pln/node/60
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Granting agency: Red.es, in collaboration with Secretaría de Estado para

la Sociedad de la Información y la Agenda Digital (SESIAD).

Date: February 26, 2018.

2. Monitor de dispersión geográfica de enfermedades.

Description: Second prize at "II Hackathon de Tecnologías del Lenguaje" in

the modality "General corpus" within Four Years From Now (4YFN) of

the Mobile World Congress (MWC).

Granting agency: Red.es, in collaboration with Secretaría de Estado para

la Sociedad de la Información y la Agenda Digital (SESIAD).

Date: February 26, 2018.

3. Extracting Neoplasms Morphology Mentions in Spanish Clinical Cases

through Word Embeddings.

Description: Third prize at "CANTEMIST: CANcer TExt Mining Shared

Task" in the NER sub-task. IberLEF 2020 evaluation campaign at the

SEPLN 2020.

Granting agency: Oficina Técnica de Sanidad of the Plan de Tecnologías del

Lenguaje (Plan TL).

Date: September 22, 2020.

4. SINAI at eHealth-KD Challenge 2020: Combining Word Embeddings

for Named Entity Recognition in Spanish Medical Records.

Description: First prize at "eHealth-KD 2020: eHealth Knowledge Dis-

covery" in the sub-task A (NER). IberLEF 2020 evaluation campaign at
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the SEPLN 2020.

Granting agency: eHealth Knowledge Discovery 2020.

Date: September 22, 2020.

5. Entity extraction in Spanish applied to the biomedical domain.

Description: Research award to the best work of research initiation at

"VI Premios Ada Lovelace de Tecnologías de la Información y la Comunicación".

Granting agency: Centro de Estudios Avanzados en Tecnologías de la Infor-

mación y la Comunicación (CEATIC), Universidad de Jaén.

Date: December 2, 2020.

6. Innovation and research award.

Description: Award for innovation and research at the 7th HT médica

corporate convention.

Granting agency: HT médica.

Date: March 6, 2021.

6.6 Transfer of research results

The transfer of research results is the process of promoting and transferring

knowledge of all resources, methods and techniques obtained. In addition,

technology transfer also aims to disseminate the studies carried out.

Moreover, the knowledge created in public research institutions is an

important input for innovation in various sectors. Universities have become

an important mechanism for generating technological innovations capable
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of improving society’s quality of life. For this reason, universities have come

to play a more proactive role in innovation systems, seeking ways to interact

with the productive sector to promote technological development that can be

used in different areas.

Considering the benefits of research transfer, we have developed and

implemented a number of open access applications as detailed below:

• Detection of unexpected findings

As a result of the previous research study referenced in Section 6.3.1 item

3 [8], an API has been generated that uses a deep learning model based

on CNN. This API is responsible for receiving anonymized radiological

reports in Spanish for the detection of unexpected findings. Unexpected

findings are the set of radiological signs identified in a given imaging

modality examination that have two characteristics: they are apparently

unrelated to the a priori expected results of the radiological examination

and they imply an emergency or urgent clinical situation that must be

promptly communicated to the prescribing physician or other medical

specialist, as well as to the patient, in order to preserve life and/or

prevent dangerous events.

This API is available at https://sinai.ujaen.es/crifis/, and is cur-

rently being used by the HT médica clinic in Jaén as a decision-making

support to save time in the detection of unexpected findings. So far, this

API has received 67,932 requests from health specialists.

Given the impact of the study and the applicability of the API, it is

currently in the process of registering software with the aim of making

https://sinai.ujaen.es/crifis/
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the research results generated more valuable.

• Automatic assignment of procedure protocols

The assignment of procedure protocols in medical imaging requires

extensive knowledge of the biomedical text. Protocol assignment is

necessary prior to the acquisition of the radiological study, determining

the procedure for each patient. The automation of this process is carried

out by an API that we have developed. This API has been the result of

previous work referenced in Section 6.3.1 item 6 [239] and in Section 6.3.2

16 [6]. This process of protocol assignment could improve the efficiency

of patient diagnosis by performing it automatically, saving time for

radiology specialists. The API has been developed in order to provide

the expert decision support system for procedural protocols.

The API is based on ML approaches to several radiological techniques:

Magnetic Resonance Imaging (MRI), CT and ultrasound scans. It is also

freely available and is currently being evaluated by the HT médica clinic

in Jaén at https://sinai.ujaen.es/protocolos/. This system has been

used 33,298 times by the clinic to obtain the appropriate protocol. More-

over, this development is currently in the process of software registration

and under study for a possible U.S. patent.

• COVID-19 detection

Another study derived from this thesis and implemented for knowl-

edge transfer is a system for the detection of suspected positive cases

of COVID-19. Given the current importance of the disease, we have

https://sinai.ujaen.es/protocolos/
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conducted a study referenced in Section 6.3.1 item 5 [16] in which we

propose an automatic detection system for COVID-19 suspicions in

radiological reports in Spanish using ML approaches. In addition, to

improve the approach, a NER system was used to extract COVID-19

related disorders and include them as additional information to the

algorithm. For this purpose, we use the SNOMED-CT vocabulary in its

most current version which includes concepts related to SARS-CoV-2.

This API is currently being used, evaluated and validated by radiological

experts from the HT médica clinic in Jaén. To date, it has been used 883

times by experts. Finally, this system is available at https://sinai.

ujaen.es/covid/.

https://sinai.ujaen.es/covid/
https://sinai.ujaen.es/covid/
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