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Abstract

Natural language processing (NLP) is one of the most important technologies of the in-
formation age. Understanding complex language utterances is also a crucial part of artificial
intelligence. Many Natural Language applications are powered by machine learning models
performing a large variety of underlying tasks. Recently, deep learning approaches have ob-
tained very high performance across many NLP tasks. In order to achieve this high level of
performance, it is crucial for computers to have an appropriate representation of sentences.
The tasks addressed in the thesis are best approached having shallow semantic representations.
These representations are vectors that are then embedded in a semantic space. We present a
variety of novel approaches in deep learning applied to NLP for generating e↵ective sentence
representations in this space. These semantic representations can either be general or task-
specific. We focus on learning task-specific sentence representations, where often these tasks
have a good amount of overlap. We design a set of general purpose and task specific sentence
encoders combining both word-level semantic knowledge and word- and sentence-level syn-
tactic information. As a method for the former, we perform an intelligent amalgamation of
word vectors using modern deep learning modules. For the latter, we use word-level knowl-
edge, such as parts of speech, spelling, and su�x features, and sentence-level information
drawn from natural language parse trees which provide the hierarchical structure of a sentence
together with grammatical relations between the words. Further expertise is added with rein-
forcement learning which guides a machine learning model through a reward-penalty game.
Rather than just striving for good performance, we always try to design models that are more
transparent and explainable. We provide an intuitive explanation about the design of each
model and how the model is making a decision. Our extensive experiments show that these
models achieve competitive performance compared with the currently available state-of-the-
art generalized and task-specific sentence encoders. All but one of the tasks dealt with English
language texts. The multilingual semantic similarity task required creating a multilingual cor-
pus for which we provide a novel semi-supervised approach to make artificial negative samples
in the presence of just positive samples.

Keywords: Sequence Labelling, Long Short Term Memory, Neural Sequence to Sequence
Learning, Word Sense Disambiguation, Tree structured Long Short Term Memory, Tree Atten-
tion, Protein-Protein Interaction, Structured Attention, Tree Transformer, Multi-head attention,
Multi-branch attention, Natural language inference, Dependency parsing, Transformer, Seman-
tic Similarity, Paraphrase Identification, Question Answer Pairing, Relational Memory Core,
Multilingual Semantic Textual Similarity, Topic Modeling, Reinforcement Learning, Sentence
Representation.
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Lay Abstract

The goal of Computational Linguistics is to analyze and process human language automatically
by computers. To help achieve this goal, Natural Language Processing (NLP) based models,
actualized by Artificial Intelligence (AI) algorithms, are being incorporated in increasingly
intelligent computer applications at a rapid pace. These NLP models are being used in the lan-
guage related aspects of publishing, healthcare, banking, advertising and insurance industries
to improve their customer services and enterprise activities. Certain NLP tasks are fundamen-
tal to this thesis: paraphrase identification, sentence similarity, question answering, sentiment
analysis, and sentence compression. Deep learning, an AI technique that is being applied more
and more, improves the functionality and robustness of the solutions for these tasks. Sentence
similarity analysis and paraphrasing is often used to check the originality of a document and
prevent plagiarism as well as helping in natural language understanding. Question answering
improves customer services and can enhance administrative activities by allowing end-users to
ask and get responses about di↵erent services and products in their preferred language. The
ability of deep learning-based models to begin to handle this kind of diversity is starting to
make communication between people from various corners of the world possible in their own
language. The automated answering models advance the administrative task of the enterprises
by reducing customer service costs as well as saving o�ce time. Sentiment analysis quanti-
fies subjective information, extracts a↵ective states, and is widely used in identifying customer
feedback such as survey responses, movie reviews, and healthcare materials. Text compres-
sion tries to create a representative summary or abstract of a text piece by finding the most
informative concepts.

Research in the field of AI is currently attempting to achieve human-level performance
on these aforementioned tasks. In order to achieve this performance level, it is crucial for
computers to have an appropriate representation of the sentences. The term representation in
this case means a set of numbers (i.e., a vector). Sentences having similar meaning should
be represented by almost similar sets of numbers. This thesis develops methods to find good
representations of sentences using the modern AI techniques, deep learning and reinforcement
learning.
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Chapter 1

Introduction

1.1 Thesis Statement

Natural language processing (NLP) underlies modern approaches to natural language tasks like
document summarization, sentence similarity computation, part of speech tagging, machine
translation, named entity recognition, relationship extraction, sentiment analysis, question-
answering, and topic segmentation. A characteristic of natural language is that there are many
di↵erent ways to express a statement: several meanings can be contained in a single text and
the same meaning can be conveyed by di↵erent texts. This text can be a sentence, a paragraph,
or an entire document. Because of this characteristic of natural language, having an e↵ective
text representation is fundamental for performing these tasks at a high level. An e↵ective text
representation is one which overcomes the di�culties posed by the complexities of natural
language. For example, in the identification of paraphrase between two sentences, the second
sentence can use a completely di↵erent set of words to say the same thing as the first sentence.
An e↵ective representation of these sentences should be able to capture this semantic aspect.
For the named entity recognition task, it is very important to understand word morphology
(i.e., uppercase, alphabetic and numeric characters, etc.). For part of speech tagging, it may be
essential to know the meaning of the target word as well as its context information, because
di↵erent word senses may have di↵erent parts of speech. For the sentence similarity compar-
ison and question-answering tasks, an e↵ective sentence representation of each sentence may
benefit from information drawn from the other sentences. To sum up, an e↵ective sentence
representation should encode as much knowledge from the appropriate information sources as
is required for the specific natural language task to perform at a high level.

Machine learning models have shown some success in performing these natural language
tasks. To push the performance bar set by these machine learning models, Manning [147]
suggests that additional linguistic knowledge is needed. Some recent research works have
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shown the importance of this suggestion by carefully encoding extra linguistic knowledge in
their models and getting significant performance boosts [67, 134, 215, 227, 254].

In written language, the smallest units are its characters. Sets of these characters are put to-
gether to form words. Similarly, a set of words builds sentences, a set of sentences are grouped
into paragraphs, and a set of paragraphs form complete documents. Each of these text units
convey meaning. In this thesis we investigate text representations that capture this meaning at
the character, word, and sentence levels. Following on Manning’s sage remark, we go beyond
having our models analyze only plain text and utilize a number of linguistic features in the de-
sign of our deep learning models, such as character level information, morphological features
(su�x and spelling), part of speech, word sense, n-gram information, dependency parse infor-
mation captured as a tree, and di↵erent forms of phrase structure. In addition to incorporating
these linguistic resources, we also combine them with some important design concepts. For ex-
ample, in sentence comparison tasks, we hypothesize that an e↵ective sentence representation
needs to be a blending of the information contained in each sentence. So we introduce a novel
cross attention mechanism that can look at two sentences at a time and generate a sentence pair
representation. We adopt this design concept in a number of our works in this thesis. Another
important design concept that we suggest is adopting the actor-critic reinforcement learning
framework, where we design two types of actors: the first one deletes irrelevant words from
a sentence pair and the second one divides a sentence pair into phrases. We design a set of
models, some are capable of addressing just one task, whereas some have the potential to be
useful for many tasks.

One common strategy being followed throughout the thesis is generating e↵ective sentence
representations through a standard planning process for model design and appropriate utiliza-
tion of various natural language features. We explore a range of tasks, each accompanied by
publicly available benchmark datasets, and try to improve upon previous performances. We
adopt two learning frameworks: supervised deep learning and reinforcement learning. Deep
learning models use dataset specific labels as the supervision to solve well-defined closed form
problems. In contrast, most of the tasks proposed to a reinforcement learning methodology
are ill-defined. For deep learning, we design our models by first deciding what information is
needed, then proposing the module to introduce the information and how these modules are to
be combined, then debugging these design decisions, and finally investigating the need for each
module. For reinforcement learning, we explore the actor-critic framework. In this framework
the actor is attempting to solve an ill-defined problem. In order to evaluate actor’s perfor-
mance, the suggested solution is used by a critic to solve another well-defined problem. The
actor is trained using reward and penalty from the critic and the critic uses a supervised training
methodology employing the gold standard labels of the well-defined problem. Their learning
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objectives are di↵erent, actor wants to maximize the reward and critic wants to minimize the
loss.

1.2 Problem Statement

As introduced in the previous section, a text has di↵erent levels which can be represented as
vectors in a distributed manner. Beginning in 2003, NLP research was focussed on gener-
ating good distributed representations of words by fighting against the curse of dimension-
ality [33]. Later in 2013, this research interest refocusses on a new objective, i.e., finding
representations that are learnable in a reasonable amount of time (i.e., Word2Vec [156] and
GloVe [183]). Some leading researchers in the NLP community focused on improving dis-
tributed word representations since they recognized that every other information structure (i.e.,
sentence, paragraph and document) can be broken down into this smallest building block (i.e.,
“word”) [26, 56, 57, 160, 237]. Distributed word representation means describing a word with
a set of numbers (i.e., a vector). And one can easily accumulate these word vectors into either
sentence or paragraph level representations through some simple amalgamation of informa-
tion (i.e., addition or averaging). But this focus soon shifted as the community realized that a
higher level representation (i.e., the sentence level) is needed to generate better text represen-
tations. Recurrent Neural Networks (RNNs) [194] along with its variants, Long Short Term
Memory (LSTM) [53, 92] and Gated Recurrent Units (GRUs), are found to work very well
with text data as they can capture long distance dependencies. These RNN variants are widely
used in generating good sentence representations where sentences are analyzed sequentially
from both left to right and right to left as they are found to capture more in-depth features.
Some of the models also looked at the syntax trees of sentences to capture even more com-
plex features. Because of some builtin state dependency and parallelism issues, this trend
then shifted towards a recent architecture called “Transformer” where those aforementioned
problems are addressed with a newly introduced method named “Attention”. Recently, both
RNN and Transformer-based [240] architectures have been looked at to address problems in
the multilingual domain [51, 244, 245]. This language independent learning is interesting in
a sense that we can learn the rich language features from a highly resourced language and
apply that knowledge to get insight about a poorly resourced language. Reinforcement learn-
ing (RL), on the other hand, follows a paradigm that is completely di↵erent to deep learning.
Few works have been done in NLP with RL because it is very hard to design a reward-based
system following a continuous action as text is made of discrete elements. Following Man-
ning’s [147] suggestions, we want to enrich these well established machine learning models
with the information inherent in a variety of natural language features. We hypothesize that
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having additional linguistic knowledge can bring another level of expertise into these modern
artificial intelligence tools.

In this thesis, our goal is to obtain e↵ective representations of sentences in a vector space
by capturing both semantics and syntax. To capture the semantics we take advantage of good
pre-trained word vectors. And to incorporate sentence syntax, we look at the ordering of the
words in a plain sentence as well as the parent-child relationship in the tree structures used
to represent syntactic relationships. Our novel models designed to generate e↵ective sentence
representations utilize both of these feature spaces.

The models previously mentioned are being used to solve many NLP tasks. Most of the re-
cent works on computing sentence representations evaluate their model on the natural language
inference (i.e., textual entailment) task (NLI). Understanding textual entailment becomes cru-
cial to understanding natural language as it constitutes an e↵ective way to evaluate machine
learning algorithms. It is an interesting problem as it reflects our ability to extract and repre-
sent the meaning at the sentence level, and it takes into account several characteristics of natural
language such as scope, syntactic structure, lexical ambiguity, and semantic compositionality.
In addition to NLI, there are some other tasks that deal with sentence pairs: paraphrase iden-
tification and question-answer pairing. Recently, some research works are interested in the
multilingual version of the aforementioned problems which we also explore in this thesis. We
revisit a complex NLP task from the biomedical domain called the protein-protein interaction
problem. The task is: in a sentence describing a set of proteins and their interactions, iden-
tify the protein entities that interact and those that don’t. In addition to these, there are some
other classic NLP problems that we address in this thesis: part of speech tagging, named entity
recognition, chunking, sentiment classification, and word sense disambiguation.

1.3 Motivation

This thesis has been motivated by an interest in natural language processing using machine
learning methodologies. In particular, the investigation of distributed representations of the
previously mentioned language units is our primary objective. Recent interest in a deeper
understanding of how modern machine learning models are making their decisions has also
directed us toward exploring this aspect of the models that we design. In carrying out these
investigations, we wish to make our contributions as general as possible for a wide range of
natural language tasks. We will now look at each of these motivations in some more detail.

Natural language can be ambiguous which leads to di�culty in interpretation. An idea
can be expressed in di↵erent statements and sometimes the same statement conveys di↵erent
meanings when used in di↵erent contexts. For example, the sentences “Those who only had
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surgery lived an average of 46 months.” and “For those who got surgery alone, median survival
was 41 months.” are saying more or less the same thing even though they are using di↵erent
sets of words. Another example is “Visiting relatives can cause problems.”. This sentence
can be communicating that “Relatives who visit us can cause problems.” or “Going to visit
relatives can cause problems.”. The syntactic structure of the sentence is ambiguous, leading
to the di↵erent semantics. The two syntactic structures are dependent on the correct part of
speech (i.e., present participle modifying “relatives” or present tense finite verb) given to the
word “Visiting” which can be determined only if the sentence’s context is known. Capturing
meaning is most important when working in the text domain. It has been shown that word
embeddings can capture an e↵ective semantic meaning of a word by looking at the words that
occur together in the same context. But sentences are di↵erent. There is no fixed vocabulary for
sentences, so how these text objects are represented depends on how we appropriately utilize
the word embeddings to build up the sentence representation. We are motivated in bridging
this gap between e↵ective semantic representation of words and sentences.

A recent concern of the research community is the lack of interpretability in deep learn-
ing or machine learning models. Typical questions asked when researchers are attempting to
understand a machine learning model are: why a model is performing well, why this complex
architecture works, why not a simpler model, etc. These questions are not appropriate when
trying to interpret the decisions made by the machine learning models. We are motivated in
designing interpretable deep learning models by giving a proper justification of why this ar-
chitecture works providing in depth design principles. If something works, we want to give an
explanation why it works, and if something does not work, we want to properly explain why
it is not working and what should we do to make it work. We use the attention mechanism as
a form of explaining a model’s behavior and decision making strategy. In much of this thesis,
we debug a given model based on how it is putting attention on di↵erent parts of the input.
Our post hoc subjective analysis of this attentive focus also provides a possible interpretation
of what portion of the text is influencing the model’s decision.

And finally we want to widen the scope of our exploration. We do not want to keep our-
selves limited to solving just one NLP problem, instead we explore and study a set of problems,
revisit their solutions, and provide our own way of solving the same problems with an objec-
tive to get better performance. This motivates us to go beyond the deep learning domain and to
explore the reinforcement learning domain. We are also motivated to do a knowledge sharing
type of learning. In this scenario, the dataset can be labelled for one task (e.g., sentiment clas-
sification) and we can use the gold label (i.e., the sentiment) as a marker to solve a completely
di↵erent problem (e.g., sentence compression).
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1.4 Objectives

In order to deal with any NLP problem, it is essential to have an e↵ective representation of
the entity of study. This entity can be the word, the sentence, or the entire document. Modern
machine learning and deep learning models can extract abstract features from the data thanks
to its providing a methodology for users to create powerful designs which use well-defined
di↵erentiable objective functions that map inputs to outputs. However, we are interested in
pushing the state-of-the-art on some complex NLP tasks utilizing a combination of machine
learning models and linguistic knowledge. More specifically, we are interested in creating task-
specific sentence representations by designing machine learning models that take into account
both pre-trained word embeddings as well as inherent linguistic features hidden beneath the
text. As the thesis progresses, the reader will understand that we always keep the following
objectives in mind.
To show the e↵ect of natural language syntax trees both as an external knowledge source
as well as a primary feature space. We design a set of deep learning models that work only
with tree-structured data and need recursive traversal. We also use this tree-structured syntactic
information as an external knowledge source in aiding a few tasks.
To compare and justify the decision taking strategy of a machine learning model. We
are interested in justifying some pre-processing steps that computational linguistic researchers
always do when preparing text for some machine learning models. This will allow us to see to
what extent an algorithm can mimic human language ability.
To see the impact of additional linguistic features in a machine learning model. Other than
the plain textual features, we want to verify whether having additional linguistic features from
an external knowledge source with a di↵erent design strategy helps a machine learning model.
To push the state of the art results on some NLP tasks. We design a range of machine
learning models that can solve a set of NLP tasks. We are interested in designing models with
explainable architecture and at the same time can provide state-of-the-art performance.
To provide explainability for the decisions made by the machine learning models. Across
all the tasks, one thing is common: we provide a skeleton of how the model is taking a decision
on a particular sample. We always try to give some sort of explainability about the thought
process of a model.

1.5 Contributions

The thesis provides a number of important contributions. As we explore a large area of the
NLP domain, our contributions may seem somewhat diverse. But here, we provide the threads
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that pull them into coherent themes. This discussion also gives a short synopsis of how the
contribution is accomplished and what it provides. Details are forthcoming in later chapters.

First, we provide some insight into which linguistic features can aid task specific NLP
models. This external knowledge source realizes a qualitative change in the model design
either as a module or by providing the foundation of the design. Quantitatively, the empirical
results confirm that these additional features definitely help to give the model relevant linguistic
information when analyzing the text piece. Having these linguistic features contributes to faster
convergence of our models, as well.

The employment of attention is a strong theme in the thesis. We provide a way of making
deep learning models more explainable through the use of attention. This qualitative improve-
ment allows us to view what part of the text piece a model is focussing on when making a
decision. It also helps debugging of the model architecture and assists identifying the contri-
bution of specific modules.

We make the attention module compatible with the tree structured models. To the best of
our knowledge, no prior work encodes attention inside a tree structured LSTM cell. By encod-
ing attention inside the tree structured LSTM cell, we show which child contributes more in
computing the representation of the parent node. We also show how di↵erent design strategies
a↵ect the amount of contribution by di↵erent children.

We successfully encode natural language grammar trees solely using attention. We provide
a way of interpreting natural language grammar trees by explaining facts such as which nodes
are more important, which branch to look at, and which path to traverse. We also justify both
the correct and incorrect decision provided by the designed model.

We provide a way to generate latent trees without needing any supervision. Typically, one
of a set of common natural language parsers is used to generate the parse trees which are
then encoded by a machine learning model. Through our proposed model we show that the
automatically generated task-dependent trees work as well as the fixed linguistically generated
trees. This qualitative change means that end-to-end task learning can be performed without
the need of an external knowledge source.

We also justify a major pre-processing step (i.e., task specific stop word removal) of any
NLP task through the use of reinforcement learning. We further show that other than the stop
words, there are some content words as well that are not needed when performing certain tasks.
Our model successfully identifies them as well.

We create a multilingual semantic textual similarity (STS) corpus focused on enterprise
business content. In this multilingual STS setting, we provide a semi-supervised algorithm to
generate negative examples in the presence of only positive samples. Our generalized algorithm
can work on any business text given a few basic constraints.
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Last but not the least, our models have made significant quantitative strides. Through exten-
sive experimentation, we show the competitiveness of each of our models against the currently
available state-of-the-art models across various tasks. We push the state-of-the-art performance
boundary on a range of NLP tasks, i.e., paraphrase identification, natural language inference,
protein-protein interaction, part of speech tagging, and question answering.

1.6 Chapter Mapping

The chapters in this thesis are organized to provide the reader with a clear view of the evolution
of our ideas. At the beginning of our research we were mainly focused on adding linguistic in-
formation as an external knowledge source. This idea is reflected in Chapters 2 and 3. Then, we
decided to design machine learning models that are compatible with handling specific types of
natural language syntactic structure, i.e., dependency and constituency trees. We incorporated
an attention module inside a tree-structured long short term memory module and later on made
a significant performance improvement to a complex NLP problem in the biomedical domain,
i.e., protein-protein interaction. These are thoroughly explained in Chapters 4 and 5. Further,
in order to show the e↵ectiveness of the attention module, we design a model that is capable of
looking at a pair of sentences and providing a decision about their relatedness. To accomplish
this decision making, we suggest adding a module which provides a completely di↵erent point
of view when comparing a pair of sentences. We also enhance the memory mechanism of the
standard long short term memory module through a variable length memory pointer mecha-
nism utilizing the attention mechanism. The former idea is depicted in Chapter 6 and the latter
one is discussed in Chapter 7. Later, we became interested in using this attention module as a
composition function to encode natural language syntax trees. We also extend this work to en-
code dependency arc information. Chapters 8 and 9 explain this architecture. We also wanted
to explore applying the reinforcement learning paradigm to NLP problems. Since stop word
removal is customary for various NLP tasks, we investigate whether removing them manually
or through a machine learning model makes any di↵erence. We have chosen reinforcement
learning to do this because there is no dedicated dataset on which we can design a specialized
supervised machine learning model. Supervised learning requires an exact mapping from input
to output where the agent receives a feedback as correct set of actions. On the other hand with
reinforcement learning, the positive or negative behavior of an agent is defined by the reward
and penalty signals. We also show the power of the reinforcement learning-based framework
by having it provide artificial phrase structuring without needing any natural language grammar
tools. We use the ground truth label from the datasets specific to the semantic similarity task
in reward and penalty computation to solve the word removal and phrase generation tasks as
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mentioned above. Chapters 10 and 11 explain these ideas. Finally, we explore the e↵ectiveness
of multilingual word representations on an industry-related problem and then address a bench-
mark sentence pair matching task using the English sentence representations that were learned
in this multilingual space. This problem resulted from a Mitacs Accelerate internship. To carry
out this work, we also create our in-house multilingual sentence pair comparison dataset utiliz-
ing a mixture of a traditional model (i.e., Latent Dirichlet Allocation) and a modern large scale
language model (i.e., OpenAI-GPT). Chapters 12 and 13 explain these projects.

1.7 Thesis Organization

The thesis is organized as follows:
Chapter 1 provides an introduction to the thesis. The chapter outlines the problem, moti-

vation for doing this research, thesis objectives, and contributions to the research community.
Chapter 2 provides the e↵ect of external linguistic information in a deep learning model

and shows di↵erent ways of adding it in addressing a range of tasks like part of speech tag-
ging, named entity recognition, and chunking. It involves extracting di↵erent syntactic features
through careful investigation as well as some semantic features through an external algorithm.

Chapter 3 continues the same hypothesis of checking the e↵ect of linguistic features except
on a di↵erent problem, word sense disambiguation. It follows a well-known deep learning
paradigm, i.e., sequence to sequence learning.

In Chapter 4 we move our focus towards tree-structured deep learning models. Rather
than using natural language syntax trees as an external knowledge source, our motivation was
to somehow encode an entire tree as a representation and solve some specific tasks. We also
utilize an attention module in our design strategy. This chapter explores just the semantic
relatedness task.

In Chapter 5 we solve a complex NLP problem titled protein-protein interaction using the
tree-structured models that we explore in the previous chapter.

In Chapter 6 we wanted to explore further the e↵ect of the attention module. So, we design
a sentence pair model based solely on attention and extend our task domain to paraphrase
identification and question answer pairing.

In Chapter 7 we again follow the same principle as we did in Chapter 4 except we use the
attention module to enhance the memory mechanism of a long short term memory cell.

After doing a thorough analysis of the attention module in both sequential as well as tree-
structured recurrent neural networks, in Chapter 8 we shift our focus towards designing a
tree structured Transformer module using various attention mechanisms as the composition
function. We limit ourselves to the same set of problems that we investigate in the previous
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chapters.
Chapter 9 is an extension of Chapter 8 where we encode labels from dependency parsing

along with the tree structure.
In Chapter 10 we shift our focus to reinforcement learning as a means to distinguish the

important portions of a text from the unimportant. In contrast to the attention module which
provides a probability distribution over the input, this chapter initiates the idea of achieving a
1/0 binary distribution with the meaning whether to keep an input piece or delete it.

In Chapter 11 we continue with the reinforcement learning framework with the same ob-
jective of getting a distribution of 1s and 0s. However, the motivation is di↵erent. We explain
how we use this distribution to suggest an artificial phrase structure.

Chapter 12 explains our idea of semantic similarity across multiple languages. We explain
how we utilize multilingually aligned word embeddings to solve this problem.

Chapter 13 explains the procedure to create a corpus for the multilingual semantic simi-
larity task that we introduce in the previous chapter.

Finally, Chapter 14 briefly summarizes the thesis and explores its limitations and possible
avenues for extension.



Chapter 2

Improving Neural Sequence Labelling
using Additional Linguistic Information

This chapter is based on the paper titled “Improving Neural Sequence Labelling using Ad-
ditional Linguistic Information” co-authored with Muhammad Rifayat Samee and Robert E.
Mercer that appeared in the 17th IEEE International Conference on Machine Learning and
Applications (ICMLA 2018) [11].

Sequence labelling is the task of assigning categorical labels to a data sequence. In Natu-
ral Language Processing, sequence labelling can be applied to various fundamental problems,
such as Part of Speech (POS) tagging, Named Entity Recognition (NER), and Chunking. In
this study, we propose a method to add various linguistic features to the neural sequence frame-
work to improve sequence labelling. Besides word level knowledge, sense embeddings are
added to provide semantic information. Additionally, selective readings of character embed-
dings are added to capture contextual as well as morphological features for each word in a
sentence. Compared to previous methods, these added linguistic features allow us to design a
more concise model and perform more e�cient training. Our proposed architecture achieves
state-of-the-art results on the benchmark datasets of POS, NER, and chunking. Moreover, the
convergence rate of our model is significantly better than the previous state-of-the-art models.

2.1 Introduction

Linguistic sequence labelling is one of the first tasks focusing on natural language processing
using deep learning and it has been well examined over the past decade [56, 133, 267]. Part
of speech (POS) tagging, named entity recognition (NER), and chunking are subclasses of se-
quence labelling. They play a vital role in fulfilling many downstream applications, such as

11
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relation extraction, syntactic parsing, and entity linking [19, 190, 250]. POS tagging assigns a
tag to each word in a text, where a tag represents the lexical category of a word. NER is a sub-
task of information extraction that seeks to locate and classify named entities in text. Chunking
identifies the POS and short phrases in a sentence by doing shallow parsing and also groups
words into syntactically correlated phrases. These labelled texts can later be used for di↵er-
ent applications such as machine translation, information retrieval, word sense disambiguation,
and natural language understanding etc.

Before neural sequence models, algorithms were based on Hidden Markov Models (HMMs)
[75, 269] and Conditional Random Fields (CRFs) [121, 168]. The problem with these models
is they are dependent on manually hand-crafted features, so it becomes di�cult to apply them
in real life applications.

To overcome these drawbacks, Neural Network (NN) based models have been proposed in
which the models are responsible for extracting higher level features from the data [31, 107].
Recurrent Neural Networks (RNNs) along with its variants, Long Short Term Memory (LSTM)
[53, 92] and Gated Recurrent Units (GRUs) are found to work very well with sequence data as
they can capture long distance dependencies [53, 83, 224]. Nevertheless, considering the over-
whelming number of their parameters and the relatively small size of most human annotated
sequence labelling corpora, annotations alone may not be su�cient to train complicated mod-
els. So, guiding the learning process with extra knowledge could be a wise choice [147, 200].
For example, before tagging the word ‘flies’ as either a verb or a noun in the sentence ‘Time
flies like an arrow’, having its semantic meaning would make a correct tagging straightforward.

Knowing the sense of a word prior to sequence labelling (POS or NER) often gives the best
tag for that word. Word senses can be obtained from a variety of sources: WordNet [157], a
lexical database that can be queried for the sense of a word given its context; the simplified
LESK algorithm [25, 29] which uses the dictionary definition of each word in a sentence as
extra context to suggest the word sense; and linear algebraic methods [20] which uses a random
walk on a discourse model and represents the vector of the base word as a linear combination
of its probable sense vectors.

In this chapter, we propose a novel deep neural architecture for doing sequence labelling
incorporating not only semantic features through word senses but also the rich morphology
of the words. We provide an in depth analysis of the design of this architecture giving some
insights regarding how each feature is introduced into the architecture. Our sequence model
achieves state of the art results on the three sequence labelling tasks, POS, NER, and chunking,
and has a training time at least four times faster than the currently available state of the art
models.
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2.2 Related work

Huang et al. [96] propose a few models for the sequence tagging task. Apart from just word
embeddings, they use morphological, bigram and trigram information as their input features.
Later, they use LSTM and Bidirectional LSTM (BLSTM) with CRF to do the final tagging.
Lample et al. [123] extract character embeddings from both the left and right directions, con-
catenate these with word embeddings and use a stacked LSTM with CRF to do the tagging.
Liu et al. [138] propose a model leveraging word and character level features. It includes a
language model to represent the character level knowledge along with a highway layer to avoid
the feature collision. Finally it is trained jointly as a multitask learning.

Yu et al. [255] propose a general purpose tagger using a convolutional neural network
(CNN). First, they use CNNs to extract the character level features and then concatenate it with
word embeddings, position embeddings and binary features. Finally they use another CNN
to get the contextual features as well as to do the tagging. Ma and Hovy [145] propose an
end-to-end sequence labelling model using a combination of BLSTM, CNN and CRF. They
use a CNN to get the character level information, concatenate it with word embeddings and
then apply BLSTM to model the contextual information. Finally they generate the tags by
using a sequential CRF layer. Rei [192] trains a language model type objective function using
BLSTM-CRF to predict the surrounding words for every word in the corpus and utilizes it for
sequence labelling.

The contribution of this chapter combines the common themes found in these previous
works (morphology encoded as character embeddings, and word embeddings) with word senses
in a new architecture that integrates these embeddings and the outputs of a CNN, a BLSTM,
and a CRF in novel ways.

2.3 The Model: BLSTM-CRF

In this section, we describe our work in detail. We first explain each of the pieces of the
complete architecture and then we explain how we combine those pieces to build our model.
This section also explains the morphological and semantic features that we have added with
our model to get the improved performance that is discussed in Section 2.5.

2.3.1 Recurrent unit: Bidirectional LSTM

Recurrent neural networks (RNNs) are the best known and most widely used NN model for
sequence data as they go over the entire sequence through time and try to remember it in a
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compressed form. Although its variant, LSTM, is very good with long term dependencies,
for many sequence labelling task, it is important to keep track of these dependencies from
the future as well as from the past. But LSTM has just one hidden state from the past and
changes that hidden state recursively through time. An elegant solution to this problem is going
over the sequence in both forward and backward directions with two hidden states and finally
concatenating the output from both directions. This bidirectionality has proven to be very
e↵ective in some prior works [73, 84, 229]. The resulting network, the Bidirectional LSTM
(BLSTM), is the RNN variant that is used by the model described below.

2.3.2 Word Sense

Knowing the sense of a word prior to tagging makes the tagging task more straightforward.
Generally, polysemy is captured in standard word vectors, but the senses are not represented as
multiple vectors. So we have trained an adaptive skip gram model, AdaGram, [28] which gives
a vector for each sense of a word. It is a non-parametric Bayesian extension of the skip-gram
model and is based on the constructive definition of Dirichlet process (DP) [76]. It can learn
the required number of representations of a word automatically.

In our model, we denote a set of input words as X = {xi}Ni=1 and their context as Y = {yi}Ni=1.
The ith training pair (xi, yi) consists of words xi = oi with context yi = (ot)t2c(i), where c(i) is
the index of the context words. Then, instead of maximizing the probability of generating a
word given its contexts [156], we maximize the probability of generating the context given its
corresponding input words [28]. Our final objective function becomes,

p(Y |X, ✓) =
NY

i=1

p(yi|xi, ✓) =
NY

i=1

CY

j=1

p(yi j|xi, ✓) (2.1)

where, ✓ is the set of model parameters. The drawbacks of this objective function is that it
captures just one representation of a word which goes against a word having di↵erent senses
depending on the context [20]. To counter this, AdaGram introduces a new latent variable z
which captures the required number of senses even though the number of structure components
of the data is unknown a priori. In AdaGram, if the similarities of a word vector with all its
existing sense vectors are below a certain threshold, a new sense is assigned to that word with
a prior probability p. The prior probability of the kth meaning of word w is

p(z = k|w, �) = �wk

k�1Y

r=1

(1 � �wr), p(�wk|↵) = Beta(�wk1,↵), k = 1 . . . (2.2)

where � is a latent variable and ↵ controls the number of senses. Theoretically, it is possible
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to have an infinite number of senses for each word w. However, as long as we have a finite
amount of data, the number of senses can not be more than the number of occurrences of that
word. With more data, it can increase the complexity of the latent variables thereby allowing
more distinctive meanings to be captured. Taking all the facts into account, our final objective
function becomes,

p(Y,Z, �|X,↵, ✓) =
VY

w=1

1Y

k=1

p(�wk|↵)
NY

i=1

[p(zi|xi, �)
CY

j=1

[p(yi j|zi, xi, ✓)] (2.3)

where Z = {zi}Ni=1 is a set of senses for all the words.

2.3.3 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are good for extracting n-gram features from a sen-
tence [130]. They consist of kernels (i.e., a weight matrix) which are used to go over the input
word embedding matrix with a variable stride length and extract some higher level features. In
our model, we use a CNN to get the bigram features. First we pad the input sentence1 and pass
it to an embedding layer. This layer represents the sentence as a matrix of size (m + 1) ⇥ d,
where m is the actual sentence length and d is the embedding dimension. Next, we initialize a
kernel of size 2 ⇥ d with stride length 1 and convolve it with the input sentence matrix. This
results in a bigram embedding matrix B of size m ⇥ d using Eqn. 2.4.

Bi,: =

2X

j=1

Ii+ j,: ⇤ Kj,: (2.4)

where I is the input sentence matrix, K is the convolution kernel and n is the maximum se-
quence length for the current batch. Later, this bigram embedding is passed to a BLSTM layer
to extract more abstract features.

2.3.4 Conditional Random Field

Each of the tasks that we are modelling requires a tag to be assigned to each word. In addition
to using the current word to predict its tag, it is also possible to use the information about the
neighboring words’ tags. There are two main ways to do this. One way is to calculate the
distribution of tags over each time step and then use a beam search-like algorithm, such as
maximum entropy markov models [153] and maximum entropy classifiers [191], to find the

1To keep the size of the feature matrix uniform through the model, we padded a start token <start >at the
beginning of the input sentence.
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optimal sequence. Another way is to focus on the entire sentence rather than just the specific
positions which leads to Conditional Random Fields (CRFs) [121]. CRFs have proven to give
a higher tagging accuracy in cases where there are dependencies between the labels. Like the
bidirectionality of BLSTM networks a CRF can provide tagging information by looking at its
input features bidirectionally.

In our model we denote a generic input sequence as x = {xi}Ni=1, generic tag sequence as
y = {yi}Ni=1, and set of possible tag sequences of x as F(x). Then we use CRF to calculate the
conditional probability over all possible tag sequences y given x as

p(y|x; W, b) =
Qn

i=1 �i(yi�1, yi; x)
P

y02F(x)
Qn

i=1 �i(y0i�1, y
0
i ; x)

(2.5)

where �(.) is the score function for the transition between the tag pair (y0, y) given x. We train
this CRF model using maximum likelihood estimation (MLE) [102]. For a training pair (xi, yi)
we maximize

L(W, b) =
X

i

log p(y|x; W, b) (2.6)

where W is the weight matrix and b is the bias term. While decoding, we search for the best
tag ŷ with the highest conditional probability using the Viterbi algorithm [201].

ŷ = arg max
y2F(x)

p(y|x; W, b) (2.7)

2.3.5 Morphology: Spelling and su�x features

For the morphological features, we have focused on spelling and su�x features. We extract 14
spelling features for a given word and store it as a binary vector S V1⇥14:

• Composed only of alphabetics or not
• Contains non-alphabetic characters except ‘.’ or not
• Starts with a capital letter or not
• Composed only of upper case letters or not
• Composed only of lower case letters or not
• Composed only of digits or not
• Composed of alphabetics and numbers or not
• The starting word in the sentence or not
• The last word in the sentence or not
• In the middle of the sentence or not
• Ends with an apostrophe s (’s) or not
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• Has punctuation or not
• The sentence starts with a capital letter or not
• Composed mostly of digits or not

Apart from extracting these features, we also replace all the numbers in the corpus with the
<number>tag.

We have assembled a list of 137 su�xes from https://www.learnthat.org/pages/view/su�x.
html and have used the ten that occur most often in our corpus for this study. Then for each
of these su�xes, we have collected the words that end with that su�x and have recorded their
POSs as well as the frequency. Next, we made an assumption that if a word w with POS x ends
with a specific su�x s exceeds a frequency threshold in the training set, then s is the true su�x
of word w. We record the pair as (w, s). Finally, we create a one hot vector S UV1⇥10 for each
word where a 1 at index k means the word has the kth su�x.

2.3.6 BLSTM-CRF model

In this sub-section, we combine the BLSTM and CRF models with some feature connection
techniques to form our final BLSTM-CRF model. We divided this final model into some
modules and the description of each of these modules is as follows:

Module 1: Word Level Features This module starts with an embedding layer. In detail,
we initialize the emebedding layer randomly as well as using pre-trained embeddings (GloVe /
word2vec). Next we represent each sentence as a column vector Im⇥1 where each element of the
vector is a unique index of the corresponding word. Then we pass this vector to an embedding
layer which gives a matrix representation Wm⇥d. Here, d is the embedding dimension.

Module 2: Character Embedding In this module, first we split a word into its characters
and then transform it into a column vector Ck⇥1, where k is the word length and each element
of the vector is a unique index of the corresponding character. Next we initialize an embedding
layer randomly and pass the character vector into it. This will change the representation to a
matrix of size k ⇥ n where n represents the embedding dimension. Then we use an LSTM on
this matrix and store the last hidden state of this LSTM as the character level representation
C1⇥n of the word. Finally, for a sentence with m words, it is stored as a matrix Cm⇥n.

Module 3: Selective Pickup from Char LSTM (SP-CLSTM) In this module, we in-
troduce a new way of capturing the morphological features as well as the context features.
The word embeddings from module 1 gives the contextual features in both directions and the
character embeddings from module 2 gives the lexical information. We capture both sets of
information by first representing each sentence in terms of its characters I(k⇥m)⇥1 and then turn
this into a matrix of size k ⇥ m ⇥ d through a random embedding layer. Then we apply a
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BLSTM over this representation and finally we pick those indices from the output where each
word ends. This selective pickup provides the morphological information of a word as well as
information about the previous words in the sequence.

C̃m⇥d = SELECT(BLSTM(I(k⇥m)⇥d)) (2.8)

Module 4: Sense Features This module calculates the sense level contextual features of a
sentence. First, we initialize a sense embedding layer using the pre-trained sense embeddings
from AdaGram. Then we tag each word in the input sentence using the module disambiguate
from AdaGram (the word ‘apple’ with sense 2 is tagged as ‘apple_2’). This modified input
sentence is then passed to the embedding layer initialized before and finally the resultant output
is passed to a BLSTM layer. The output of this BLSTM layer gives the sense level contextual
feature S m⇥d.

Module 5: Bigram Features This module calculates the bigram embedding features Bm⇥d

of a sentence as described in the Subsection 2.3.3.

Module 6: The Connection Technique In this module, we combine all the features
and the modules using some novel connection techniques and build our final BLSTM-CRF
model as shown in Figure 2.1. First we concatenate the word embedding from module 1
with the character embedding from module 2 and the su�x vector from Subsection 2.3.5 as
[Wm⇥d,Cm⇥n, SUVm⇥10]. Following this, we apply a BLSTM on this new embedding matrix,
calling this output O1

m⇥d. The outputs of modules 3, 4 and 5 are called O2
m⇥d, O3

m⇥d, and O4
m⇥d,

respectively. Then we initialize four scalar weights w1, w2, w3 and w4 with initial value 1.0 and
add them as model parameters. We form a linear combination of the wi weighted Ois to form
the final output.

O =
4X

i=1

Oiwi (2.9)

The final output (Om⇥d) have pieces of information from all the features that we calculated
above. We choose linear addition rather than concatenation of these output features, because
concatenation will result in a very large feature matrix and the network have to tune each of
the cell of this matrix during back-propagation. Following this, we initialize an LSTM layer
where we pass the final output from Eqn. 2.9 at each time step Õi

1⇥z = LSTM(O
i
1⇥d, h

i�1
1⇥d) and

store the outputs separately Õm⇥z = [Õ1, Õ2, . . . , Õm]. This LSTM layer unfolds at each time
step taking the hidden state of the previous time step to initialize the hidden state of the current
time step. The previous hidden state has the information about the previous tag and initializing
the current hidden state with the previous one explicitly gives this information. Next we pass
the output from each time step to a tanh layer T1⇥d = tanh(Õi), which squeezes the values
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Figure 2.1: BLSTM-CRF model architecture
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between [�1, 1]. Then we concatenate this tanh output T1⇥d with the spelling features S F1⇥14

calculated in subsection 2.3.5 and pass this to a fully connected (FC) layer. This FC layer maps
the output to the number of tag classes Y1⇥c = FC([T1⇥d, S UV1⇥14]), where c represents number
of classes. We do this for each time step and concatenate the results to make a final tensor Ym⇥c.
Finally, we pass this tensor to the CRF layer and calculate the possible tag sequence for the
given input sequence.

2.4 Experimental Setup

In this section, we describe the detailed experimental setup for the evaluation of our study. We
first explain the dataset statistics for each tagging task. Following this, we explain the working
environment details along with the hyper-parameter settings of our architecture.

2.4.1 Dataset Description

We test our BLSTM-CRF model on three NLP tagging tasks: Penn TreeBank (PTB) POS
tagging [149], CoNLL 2000 chunking [232], and CoNLL 2003 NER [233]. Table 2.1 shows
the number of sentences in the training, validation and test sets respectively for each corpus.
We utilize the BIO2 explanation standard for the chunking and NER tasks.

Table 2.2 shows the detailed hyper-parameter settings of our model and some of the hyper-
parameters for AdaGram (the remaining parameters are set to their default values [27]). We
train our model on Nvidia GeForce GTX 1080 GPU with both the ‘Adam’ and ‘SGD’ optimiz-
ers. All of the results in the next section are reported using ‘SGD’ as it was giving the best
results. The ‘Learning rate decay’ parameter was only used with the ‘SGD’ optimizer. We used
PyTorch 0.3.1 to implement our model and Julia 0.4.5 for running AdaGram under the Linux
environment.

2.5 Experimental Results

In this section, we describe in detail the results obtained with our proposed architecture. As
the evaluation metrics, we use accuracy for the WSJ corpus and F score (micro averaged) for
the CoNLL00 and CoNLL03 tasks. This section also contains the results of the top performing
models for all three sequence labelling tasks. Additionally, we show the rate of convergence of
our model compared to the state of the art one. Finally, we conclude this section by giving an
ablation study by removing certain modules as well as features and mixing them in di↵erent
combinations.
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WSJ CoNLL00 CoNLL03
Train 39831 8936 14987
Valid 1699 N/A 3466
Test 2415 2012 3684

Table 2.1: Dataset description

BLSTM-CRF
Hyper-parameter Range Selected
Learning rate 0.001 / 0.015 / 0.01
Batch size 10 / 50 / 100
No. of LSTM layers 1 / 2 / 3
Momentum 0.9
Dropout 0.5 / 0.2 / 0.1
Word embedding size 300 / 200 / 100
Character embedding size 50 / 30
Initial scalar weight value 1.0
Gradient clipping 5 / 20 / 50
Weight decay 10�5

Learning rate decay 0.05
CNN kernel size 2 ⇥ (300/200/100)

AdaGram
Epoch 1000
Window size 5 / 7 / 10
No. of prototypes 5
Sense embedding size 300
Prior prob. of new sense 0.1
Initial weight on first sense -1
Word embedding size 300 / 200 / 100

Table 2.2: Hyper-parameters used for the experiments (in boldface) and the ranges that were
searched during tuning.

Table 2.3 shows the performances of all of the chunking systems. An SVM based classi-
fier [119] won the CoNLL 2000 challenge with an F score of 93.48%. However, later they im-
proved their result up to 93.91% [118]. Recently, most of the models incorporate CRF in their
architecture to capture the tag dependencies and achieve very good performance [154,201,223].
However, none of them surpass the performance of [203] which uses an HMM to capture the
dependencies and a voting scheme to increase the confidence interval of the model. Our model
outperforms all the existing models and achieves a state of the art F score of 96.76%.

Table 2.4 shows the results of the existing models on the NER task. Huang et al. [96]
did many experiments using random and pre-trained embeddings on their model. For random
embeddings, they achieved a very low score of 84.26%. However, when they use pre-trained
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Model F-score
SVM classifier [119] 93.48
SVM classifier [118] 93.91
BI-LSTM-CRF [96] 94.13
Second order CRF [154] 94.29
Second order CRF [201] 94.30
Conv. network tagger [57] 94.32
Second order CRF [223] 94.34
BLSTM-CRF (Senna) [96] 94.46
HMM + voting [203] 95.23
BLSTM-CRF (Ours) 96.76

Table 2.3: Comparison of F scores of di↵erent models for chunking

Model F-score
Conv-CRF [57] 81.47
BLSTM-CRF [96] 84.26
MaxEnt classifier [52] 88.31
HMM +Maxent [77] 88.76
Semi-supervised [18] 89.31
Conv-CRF + Senna [57] 89.59
BLSTM-CRF [96] 90.10
CRF + LIE [178] 90.90
BLSTM-CRF (Ours) 91.63

Table 2.4: Comparison of F scores of di↵erent models for NER

Model Accuracy
Conv-CRF [57] 97.29
5wShapesDS [147] 97.32
Structure regularization [222] 97.36
Multitask learning [192] 97.43
Nearest neighbor [217] 97.50
LSTM-CRF [123] 97.51
LSTM-CNN-CRF [145] 97.55
LM-LSTM-CRF [138] 97.59
BLSTM-CRF (Ours) 97.51
BLSTM-CRF (Ours) without CNN 97.58

Table 2.5: Comparison of accuracy of di↵erent models for POS tagging

SENNA embeddings [57] along with a gazetteer feature, their F-score jumped up to 90.10%
surpassing the Conv-CRF model [57] which uses window and sequence approach networks to
do the tagging. Our model achieves a state of the art result of 91.63%.

Table 2.5 shows the performance of our architecture in comparison with some top perform-
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Model Acc. Time

[138]

LSTM-CRF 97.35 37
LSTM-CNN-CRF 97.42 21
LM-LSTM-CRF 97.53 16
LSTM-CRF 97.44 8
LSTM-CNN-CRF 96.98 7

Ours BLSTM-CRF 97.51 4
BLSTM-CRF without CNN 97.58 3.5

Table 2.6: Training time (hours) of our BLSTM-CRF model on the WSJ corpus compared
with all models of [138] using the same hardware configuration (GPU: Nvidia GTX 1080)

Word Sense SP Bigram Su�x Spelling Char Embed Prev. Acc.emb CLSTM CW CO R CW CO CW CO POS
Rand. x x x - - - - - - - x 95.42
Glove x x x - - - - - - - x 96.13
Glove x x - - - - - x 97.08
Glove x - - - - x 97.15
Glove x - - - - x 97.22
Glove x x - - - - x 97.32
Glove x - - - - - x 97.45
Glove x - - - - x 97.48
Glove - - - - x 97.50
Glove x - - - - 97.58

Table 2.7: Ablation study of our BLSTM-CRF model for POS tagging. (R - Residual con-
nection, CW - Concatenate with word embedding, CO - Concatenate with second last output
layer)

Module 100th 200th 300th 400th 500th
epoch epoch epoch epoch epoch

Word emb 0.91 0.84 0.80 0.77 0.78
Sense 0.85 0.76 0.69 0.64 0.65
SP-CLSTM 0.81 0.66 0.48 0.35 0.34
Bigram 0.75 0.49 0.27 0.01 0.01

Table 2.8: Change in w’s for each module with epochs.

ing ones for the POS tagging task. As can be seen, a number of models use Convolution or
LSTM or BLSTM to get the contextual features and CRF to do the tagging. They achieve very
good accuracies of 97.29% [57], 97.51% [123] and 97.55% [145]. Some of the models use
multitask learning, doing two or more tasks at the same time. They also achieve very good
accuracies: 97.43% [192] and 97.59% [138]. Our model achieves an accuracy of 97.58%
which is higher than all of the existing models except LM-LSTM-CRF [138] which leverages
a language model for the tagging tasks. LM-LSTM-CRF, however, has a mean accuracy of
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97.53% (reported accuracy: 97.53 ± 0.03) which is lower than the our model’s mean accuracy
(97.57 ± 0.01). Also, as shown in Table 2.6, our model’s training time is one quarter that of
LM-LSTM-CRF with on par performance.

Table 2.7 gives the ablation study of our model where we show how we apply di↵erent
combinations of features in di↵erent parts of our BLSTM-CRF architecture to get an optimal
configuration. With so many features and parameters, these sequence models are very much
prone to overfit. But with careful tuning as well as with proper feature connections, it is possi-
ble to leverage those features. We extract a set of morphological as well as semantic features
from our dataset such as spelling, su�x and char-level features. We experiment on applying
various combinations of these features in di↵erent segments of our model. Our extensive ex-
perimentation shows that optimal results are achieved when these features are added in the
model through residual connection (R), concatenation with word embeddings (CW) and con-
catenation with the second last output layer (CO). Focusing on which segment to connect each
feature, our experiments found that the spelling feature works best when concatenated with
the second last output layer, and the su�x feature as well as the character embeddings work
well when concatenated with the word embeddings. This configuration is what is kept in our
final model. We further continue our experiments by turning on / o↵ di↵erent modules such
as word embedding, sense embedding, selective pickup from LSTM and bi-gram embedding.
We found significant contribution of word embeddings, sense embeddings and selective pickup
from LSTM compared to the bigram modules as shown by the weights at the 500th epoch in
Table 2.8. The bigram module gives better performance without considering previously gen-
erated POS and vice versa. However, linguistically, the information about the previous tag has
a huge influence in generating the current one. So we kept the first three modules along with
the previously generated POS and discarded the bigram module from our final model. Our best
model as shown in the last row of Table 2.7 gives state of the art results.

2.6 Conclusion

In this chapter, we propose an improved neural sequence labelling architecture by leveraging
from additional linguistic information such as polysemy, bigrams, character level knowledge
and morphological features. Benefitting from such adequately captured linguistic information,
we can assemble a considerably more compact model, hence yielding much better training time
without loss of e↵ectiveness. To avoid feature collision we performed an extensive ablation
study where we produced an optimal model structure along with an optimal set of features. Our
best model achieved state of the art results on the POS tagging, NER and chunking benchmark
datasets and at the same time remains four times faster to train than the best performing model
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currently available. Our experimental results show that multiple linguistic features and their
proper inclusion significantly boosted our model performance.



Chapter 3

A Novel Neural Sequence Model with
Multiple Attentions for Word Sense
Disambiguation

This chapter is based on the paper titled “A Novel Neural Sequence Model with Multiple At-
tentions for Word Sense Disambiguation” co-authored with Muhammad Rifayat Samee and
Robert E. Mercer that appeared in the 17th IEEE International Conference on Machine Learn-
ing and Applications (ICMLA 2018) [12].

Word sense disambiguation (WSD) is a well-researched problem in computational linguis-
tics. Various research works have approached this problem in di↵erent ways. Some state-of-
the-art results that have been achieved for this problem in terms of accuracy use supervised
models, but they often fall behind flexible knowledge-based solutions which use engineered
features as well as human annotators to disambiguate every target word. This chapter focuses
on bridging this gap using neural sequence models incorporating the well-known attention
mechanism. The main gist of our work is to make a weighted combination of multiple atten-
tions on di↵erent linguistic features and to provide a unified framework to accomplish this. This
weighted attention allows the model to easily disambiguate the sense of an ambiguous word
by attending to a suitable portion of a sentence. Our extensive experiments show that weighted
multiple attention enables a more versatile encoder-decoder model leading to state-of-the-art
results.

26
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3.1 Introduction

Word sense disambiguation (WSD) is the task of assigning an appropriate meaning to a target
word when the target word sense is clearly distinguishable from its other word senses subject
to the attributes of the target word’s context. As one of the challenging problems in the field
of computational linguistics, WSD has received considerable attention over the past decade [1,
165] due to its various application potentials such as information retrieval, text mining, machine
translation, speech synthesis as well as question answering. Some of the classical approaches
are the LESK algorithm, which uses the overlap of the words in the dictionary definition sense
and the words in the target sentence; Naive Bayes, which looks at the conditional probability
of each word sense along with the contexts with the assumption that word order as well as
inclusion in a bag of words is independent; and Neural Networks, where nodes representing
the senses of words in a sentence stabilize on one sense more than the others.

Much research has attempted to solve this classic WSD problem, evaluating new algorithms
[43,236,256] on some of the well-known benchmarks [161,166,206]. This recent work focuses
on two known WSD di�culties: order of the words in the context and the use of handcrafted
features. Most of the traditional supervised WSD methods are based on extracting features
from the surrounding words and then training a classifier for each of the ambiguous words
[268].

Recently, deep neural network-based approaches have gained state of the art results in many
widely examined classical problems in computational linguistics. In this chapter, we propose a
new neural network architecture for WSD by taking linguistic features of the surrounding con-
text words into account. WSD has been viewed as assigning the correct word sense to a word
as the task of translating the target sentence to a sentence containing the sense-tagged words.
The neural architecture developed here is a variant of the sequence to sequence (Seq2Seq) ar-
chitecture that has been successfully applied to machine translation. As candidate features,
we investigate three: surrounding word vectors, surrounding context bigrams and the parts
of speech (POS) sequence of the whole sentence. Although Raganato et al. [189] show that
Seq2Seq is sub-optimal for doing WSD, this chapter revisits this finding and explores the ef-
fectiveness of various attentive encoder-decoder architectures for this task. The novelty of our
method is that we use multiple attentions to decide the significance of each of the three fea-
tures and amalgamate these features in a vector as a weighted linear combination where the
weights either scale up or scale down every dimension of the corresponding features accord-
ingly. Even though we haven’t been able to take the entire corpus into account because of
resource limitations, our Seq2Seq architecture with multiple attentions have obtained state of
the art performance on some of the benchmarks.
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3.2 Related Work

WSD can be viewed as a machine translation task. Neural machine translation (NMT) is a
recently proposed approach for the translation task [24, 106, 224]. Unlike the conventional
phrase-based translation framework [114] which comprises numerous small sub-segments that
are tuned independently, NMT uses a vast encoder-decoder based neural network that takes a
sentence and yields a translation. Bahdanau et al. [24] proposed the attention mechanism, a
breakthrough in NMT, to do translation as well as alignment jointly. It calculates how much
attention the network should give to each source word to generate a specific translated word.
Luong et al. [144] then proposed two new attention mechanisms: one looks for the global con-
text and the other one looks for the local context, i.e., a subset of the words in the sentence.
Although these Seq2Seq models capture word level features very well, Sennrich et al. [200]
achieved better results by adding some linguistic features such as part-of speech tags, morpho-
logical features, and syntactic dependency.

A number of recent works have adopted the Seq2Seq concept for WSD. Among them,
Raganato et al. [189] have experimented with some neural sequence models which include a
bidirectional long short term memory (BLSTM) based architecture in a many to many format
with and without attention for sequence tagging. They also experimented on Seq2Seq architec-
tures with attention to do multitask learning where the words in a sentence are tagged with their
sense as well as their parts of speech. Their best performing model is an attentive BLSTM tag-
ger rather than the Seq2Seq architecture. Melamud et al. [155] trained a BLSTM architecture to
get the context representation of each sense annotation on an unlabeled corpus. Kaageback et
al. [105] relied on a BLSTM-based approach where they divided the sentence into two pieces,
the left and right contexts, based on the position of the target word. They applied two long
short term memories (LSTMs) from opposite directions on these contexts, concatenated their
last hidden states and used a multi-layer perceptron to classify the target word sense. Yuan et
al. [256] proposed a powerful neural language model to obtain a latent representation for an
entire sentence containing a target word w. They then compare this representation with those
sentences which have other candidate senses of word w. Ahmad et al. [184] suggested an archi-
tecture to calculate the cosine similarities between the sense embedding of the center word and
the word embedding of every other word in a sentence. Then they applied two LSTMs on this
vector of similarities, one from the left direction and one from the right, concatenated them and
finally applied a fully connected layer to classify the word sense as a one class classification
problem.

In this chapter, we incorporate ideas from this previous work in a few encoder-decoder
architectures for WSD by taking linguistic features of the surrounding context words into ac-
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Figure 3.1: Encoder-decoder architecture for sequence-to-sequence WSD with attention on
bigrams. (S = Sentence length, B = Batch size, E = Embedding dimension, and <s>= Start
token)

count, combining them and at the same time capturing the order of the context words as well.

3.3 The model

In this section, we describe our work in detail. The Seq2Seq architecture is being used as a
sequence tagger and the attention mechanism is being used to inform the network how much
attention needs to paid on each linguistic feature to identify the specific meaning of an ambigu-
ous word. We use this supervised attention-based method to generate a linear combination of
di↵erent features as well as to generate a final linguistic feature based attention matrix. Three
linguistic features, surrounding word vectors, surrounding context bigrams and the POS se-
quence of the whole sentence, have been added to these models to improve their performance.
We first explain our basic Seq2Seq model having attention on bigrams. Following this, we ex-
plain a way of doing multiple attentions on di↵erent features and finally, we describe a way of
combining these multiple attentions using some weighted value in the latter part of this section.
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Figure 3.2: Encoder-decoder architecture for sequence-to-sequence WSD, taking point-wise
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= Embedding dimension, and <s>= Start token)

3.3.1 Attention on Bigrams

Our first architecture is based completely on the attention based Seq2Seq model with encoders
and decoders as shown in Figure 3.1. The encoder inputs the source sentence as a sequence
[x1, x2, . . . , xt, . . . , xS ], with xt as the ambiguous word. The decoder tries to generate a sequence
[y1, y2, . . . , yt, . . . , yS ], where xi = yi for all i, except the target word at index t is replaced by
the corresponding sense-tagged word. Adding an attention mechanism with this architecture
allows the model to take one word at a time from the decoder and look for which of the words
in the input sentence are useful for generating this target word. However, rather than using
word by word attention, we use bigram attention. This makes sense because to generate a
particular sense of a word, the contribution of the context words matters most [126]. Next, we
pad a start token <s> at the beginning of this sentence and then pass this modified sentence
to an embedding layer. The embedding weights are initialized randomly as well as using pre-
trained word vectors and both are trained along with other parameters of the network. Next is a
convolution layer with a kernel of size 2 ⇥ embedDim which goes over the bigram embedding
with a stride length of 1 as shown in Eqn. 3.1.

Bt,: =

2X

j=1

Et+ j,: ⇤ Kj,: (3.1)
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where E is the embedding matrix, K is the convolution kernel and S is the maximum sequence
length for the current batch. This will generate a convolved embedding of bigrams, B, which
is then fed to the bi-directional gated recurrent unit (BiGRU) layer.

ht = BiGRU(Bt, ht�1) (3.2)

The last hidden state hS is the encoded representation of the sentence and we term this as henc.
Next, in the decoder section, a uni-directional GRU is initialized with henc as the hidden state
and <s> as input. This generates a new hidden state h̃t.

h̃t = GRU(<s>, henc) (3.3)

This h̃t and the encoder output O at each time step is passed to an ‘Attention’ model which
returns an attention matrix A of size 1 ⇥ S .

A = Attention(O, h̃t) (3.4)

Next, batch-wise matrix multiplication is applied on A and O and the context C1⇥d is computed.

C = A.bmm(O) (3.5)

The h̃t and C are concatenated and passed to an MLP followed by a Softmax layer which maps
the result back to the vocabulary size.

Ỹt = MLP([h̃t,C])

Yt = Softmax(Ỹt)
(3.6)

In the next time step, the decoder GRU again unfolds. But this times it takes the hidden state
and the word generated from the previous time step into account as shown in Eqn. 3.7.

h̃t = GRU(Ỹt�1, h̃t�1) (3.7)

The rest of the training is done in an end-to-end fashion.

3.3.2 Attention on Words and Parts of Speech (POS)

In this model, we introduce a multiple attention mechanism where individual attention is ap-
plied on di↵erent features of the data which are later combined through point-wise multiplica-
tion. We start with a traditional Seq2Seq architecture having an encoder and decoder at both
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Figure 3.3: Encoder-decoder architecture for sequence-to-sequence WSD with weighted com-
bination of multiple attentions. (S = Sentence length, B = Batch size, E = Embedding dimen-
sion, and <s>= Start token)

ends. As shown in Figure 3.2, the encoder has a GRU layer which takes word embeddings as
well as POS embeddings as input. Rather than having a di↵erent GRU layer for words and
POS, we use a single GRU layer whose weights are shared for both of these inputs. This also
allows the gradients to be shared as well during back-propagation. Next, using Eqn. 3.2, the
encoded word and POS features are calculated as given by Eqn. 3.8.

hw
t = GRU(Wt, ht�1)

hp
t = GRU(Pt, ht�1)

(3.8)

where hw and hp represent the hidden state for the word and the POS, respectively. From each
of these hidden state vectors, we consider the one at the last index as the encoded version.
Following this, Eqns. 3.3 and 3.4 are applied to these encoded hidden state vectors giving two
attention matrices Aw and Ap for the word and the POS, respectively. The final attention matrix
Ã is obtained with the point-wise multiplication of Aw and Ap in Eqn. 3.9.

Ã = Aw ⇤ Ap (3.9)

The point-wise multiplication changes the amplitude of each dimension of these vectors and
also allows encoding the positions of the target word neighbors according to their vector ampli-
tude. If the word POS attention matrices both put more focus on the ith word then the magnitude
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of the final attention vector at the ith dimension becomes very large. And if two attention vec-
tors put focus on two di↵erent words, then the final attention gets distributed over those two
possible words. This makes it similar to a soft-hard attention model, where the model decides
which one gets activated and when. Next, to make the final attention matrix A as a probability
distribution, a Softmax layer is applied as shown in Eqn. 3.10.

A = Softmax(Ã) (3.10)

Finally, Eqn. 3.5 is used to calculate the context followed by Eqn. 3.6 to generate the next
predicted word. Similar to the method in Subsection 3.3.1, Eqn. 3.3 is replaced by Eqn. 3.7
from the second time step to generate the hidden state vector for the decoder. The decoder
continues to decode until it generates all words in the target sentence or an EOS token is
encountered. The rest of the training is done in an end-to-end manner.

3.3.3 Attention on Words, POS and Bigrams with weighting

In this model, we combine the concept of both bigrams and POS attention architecture from
Subsections 3.3.1 and 3.3.2 and introduce a term called weighted attention. As shown in Fig-
ure 3.3, the input GRU in the encoder takes word embeddings, POS embeddings and bigram
embeddings. Similar to our previous model, the GRU weights are shared among these three
inputs. Eqn. 3.2 is used on the three inputs independently and three encoded vectors hw, hp

and hb are calculated for the word, POS and bigram, respectively. Then, Eqns. 3.3 and 3.4 are
applied on these encoded vectors independently and three attention vectors Aw, Ap and Ab are
calculated. Next, three weights w1, w2 and w3 are generated and a weighted linear addition of
the three attention vectors is performed as shown in Eqn. 3.11.

A = (Aw ⇤ w1) + (Ap ⇤ w2) + (Ab ⇤ w3) (3.11)

Following this, Eqn. 3.10 is used to turn these attention weights into probabilities. Finally,
calculating the context and generating the next probable word is similar to the one described in
Subsections 3.3.1 and 3.3.2. The decoder continues to generate until an EOS token is found or
the entire sequence is generated.

Generating weight values Currently, most research uses attention to decide which portion
of a feature the model needs to pay more attention to. To the best of our knowledge, none has
investigated putting attention on attentions. In this study, we propose a few ways to do this.
Firstly, if a model has multiple features with a separate attention for each, the simplest method
is to combine all the attentions and perform a Softmax on them. Another way, formalized
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in Eqn. 3.12, is to apply a local gating mechanism, where each of the individual attention
vectors is first passed to a Sigmoid layer. This generates a value in [0, 1] for each attention
vector. Then a point-wise multiplication is performed on these individual attention vectors and
their sigmoid values. Finally, a Softmax is applied on their sum, and the result is used as the
attention vector.

Apart from local gating, it is also possible to apply a global gating mechanism, formalized
in Eqn. 3.13. First, the attention vectors are concatenated and then Softmax is applied on
individual columns of this concatenated matrix. The best features for each position are chosen
via argmax applied on each column and then concatenate them to create a vector. Following
this, Softmax is applied on this vector to get the final attention vector of probabilities.

Ã1 = Sigmoid(A1)

Ã2 = Sigmoid(A2)

Ã3 = Sigmoid(A3)

W = (Ã1 ⇤ A1) + (Ã2 ⇤ A2) + (Ã3 ⇤ A3)

A = Softmax(W)

(3.12)

Another way to generate the weights is to scale each of the attention vectors with a scaling
factor and then add them. The factor can be a vector or a scalar. To do this, the factor is
first initialized with some random values. Then it is added to the model parameters where
its gradient is calculated based on loss. If the factor is a vector then we can choose an MLP
without a bias for doing the transformation. In this study, we choose scalar factors as weights,
initialize them to 1.0 and then perform a linear weighted addition of the attention vectors.
After the addition, a Softmax is applied on the resultant vector in order to make it a vector of
probabilities. In the next section we show that even though we start with weight values of 1.0,
by taking gradients during training, the model adjusts the values accordingly and we end up
with a di↵erent set of values.

Â = [A1; A2; A3]

Ã:,i = Softmax(Â:,i),8i

Wi = argmax(Ã:,i),8i

A = Softmax(W)

(3.13)
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3.4 Experimental Setup

In this section we detail the experimental setup used for evaluation. We first describe our
training corpora as well as all of the benchmarks used in other standard WSD studies. Fol-
lowing this, we explain the technical details of our proposed architectures along with their
hyper-parameter settings.

Training and Evaluation Benchmarks: SemCor 3.0, MASC and Senseval task 3 corpora
are used for evaluating our models. Many existing works have used these corpora as their
benchmark [86, 105, 128, 219, 226, 256]. As our models are configured to work with WordNet
senses, we use the mapping algorithm proposed by [256] to map the SemCor and MASC
corpora from NOAD senses to WordNet senses. We have evaluated our architectures in the
normal way using standard splits of these corpora for the training-testing sets. As well, we
performed a cross domain evaluation—training on one corpus and testing on another. For this
evaluation, the whole corpus from one domain is used for training and the entire corpus from
another is used for testing.

Model selection is done using the validation set of each corpus. The best model is then
trained on a combined training and validation set and evaluated on the test set. As we have not
found any standard splits for SemCor and MASC corpora, we perform a manual split: train,
test and validation with a ratio of 80%, 10%, and 10%, respectively. The hyper-parameters are
tuned on the validation set only.

During testing, our models calculate the probability distribution over the output words O
given a target word w. The output O at each time step is given to a Softmax layer which gives
the probability for each class. It is then used to rank the candidate senses of w and the top
ranked candidate is selected as the output of the model.

Architecture details and network parameters: For all three architectures, we use GRU
as the basic building block. For the first architecture we use single attention. For the other
two architectures we use multiple attentions. We use the ‘dot’, ‘concat’, and ‘linear’ attention
models from [144] to calculate the attention energies. As all of the models were giving the
best results with the ‘dot’ attention model, we report our final experimental results in the next
section only with the ‘dot’ attention model.

Table 3.1 shows the detailed hyper-parameter settings used during the evaluation for all
three of our architectures. We trained our models on a GeForce GTX 1080 GPU with both
‘Adam’ and ‘SGD’ optimizers. All the results in the next section are reported using ‘SGD’ as it
was giving comparatively better results. We used PyTorch 0.3.1 for implementing our models
under the Linux environment.
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Hyper-parameter Range Selected
Learning rate 0.01 / 0.02 / 0.001
Context size 50 (25 on each side)
Batch size 10 / 50 / 100

No. of GRU layers Encoder - 2 / 3 / 4
Decoder - 2 / 3 / 4

Type of GRU layer Encoder - bi-directional
Decoder - uni-directional

Dropout 0.1 / 0.2 / 0.3
Word embedding size 100 / 200 / 300
Initialization of scalar
weights on Attentions

Random number 2
uniform (-0.1, 0.1)

Decoder learning ratio 5.0
Gradient clipping 50 / 25 / 10

Table 3.1: Hyper-parameters used for the experiments (in boldface) and the ranges that were
searched during tuning.

Model SE03 nn. vb. adj. adv.
Seq2Seq 66.3 47.2 45.1 59.2 68.1
Seq2Seq + Convolution (bigrams) 59.2 - - - -
Seq2Seq + Part of Speech (point-wise multiply) 57.1 - - - -
Seq2Seq + Part of Speech (weighting) 67.5 49.1 58.3 61.2 68.1
Seq2Seq + Convolution + Part of Speech (weighting) 73.9 58.2 70.4 71.3 85.4
BLSTM + Attention [189] 70.2 71.0 58.4 75.2 83.5
Seq2Seq + Attention [189] 69.6 69.5 57.2 74.5 81.8
Seq2Seq + Attention + Semantic Label + POS [189] 68.5 70.1 55.2 75.1 84.4
Context to Vectors (Context2Vec) [155] 69.1 71.2 57.4 75.2 82.7
It makes sense + Embedding (IMS+emb) [97] 70.4 71.9 56.6 75.9 84.7
RandomWalk + Knowledge Base (UKBgloss-w2w) [2] 55.4 64.9 41.4 69.5 69.7
Babelfy [162] 67.0 68.9 50.7 73.2 79.8
BLSTM [105] 73.4 - - - -
It makes sense + Adaptive ContextWidth [226] 73.4 - - - -
Htsa3 [86] 72.9 - - - -
IRST-kernels [219] 72.6 - - - -
Nusels [128] 72.4 - - - -

Table 3.2: F-scores (%) for the English all-words coarse-grained WSD on the Senseval-3
corpus. Best performing models are given in boldface. POSs: nn. = Noun, vb. = Verb, adj. =
Adjective, and adv. = Adverb.

3.5 Experimental Results

In this section, we describe the evaluation of our models. For the Senseval-3 corpus, a compar-
ison with the previously best performing models in terms of F(%) score is provided in Table
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3.2. We show the consistency of our models across di↵erent part of speech by reporting F
scores on four major classes in Table 3.3. We show which linguistic feature has more impact
on determining the sense of a word through the weights described in Table 3.4. Finally, we
conclude this section by showing how multiple attention can penalize feature collision in the
model by doing a controlled amalgamation of the scaled attention vectors in Figure 3.4. For a
more complete evaluation, we implemented Seq2Seq with word attention as a baseline model.
Also, to see the impact of a weighted combination of di↵erent linguistic features, we imple-
mented Seq2Seq+POS(weighting) model which is similar to the model described in Subsection
3.3.3 with the bigram attention module removed.

Table 3.2 compares the F score achieved by our proposed models against some of the exist-
ing state of the art models on the Senseval-3 task. Our Seq2Seq+conv+POS(weighting) is the
best performing among the five models that we experimented with. It outperformed the previ-
ously top performing neural sequence model from [105] on the Senseval-3 task and achieves
a state of the art F score of 73.9%. An interesting aspect is that when the POS feature is
added through point-wise multiplication, the performance drops (from 66.3% to 57.1%) be-
cause it causes inconsistent scaling of di↵erent dimensions of the attention vectors. However,
adding the same feature through weighted addition causes a performance boost (from 66.3%
to 67.5%) as each dimension of the final attention vectors now is stretched uniformly based
on the two individual attention vectors. Table 3.2 also reports the F scores of individual POS
classes for the Senseval-3 task. Our best model achieves state of the art results on vb. and adv.
classes with F scores of 70.4% and 85.4%, respectively. The best results on nn. (71.9%)
and ad j. (75.9%) are achieved with an IMS framework along with word embeddings to gen-
erate features and classification with a support vector machine (SVM) [97]. Apart from that,
it can easily be seen that the Seq2Seq architectures perform very well against the statistical
and knowledge-based methods like IMS+adapted CW [226], Htsa3 [86], UKBgloss-w2w [2],
Babelfy [162] as well as IRST-kernels [219] achieving results that are superior or equivalent
to the best models mentioned above. One interesting evaluation is that the Seq2Seq baseline
from [189] is 69.6% while our Seq2Seq baseline performance is 66.3%. When [189] added
POS, where it is meant to be learned as one of their tasks, their performance degrades from
69.6% to 68.5%. When we added POS as a feature, our performance jumped from 66.3% to
67.5% which clearly shows that adding POS information as a feature has an influence on iden-
tifying polysemy of a word. It is to be noted that the variation in baseline model performance
may be due to di↵erent hyper-parameter settings or di↵erent hardware configuration.

Table 3.3 shows an extensive evaluation of our models on the SemCor and MASC corpora
with various training and testing environments. It also shows our model performance on di↵er-
ent parts of speech classes on these two corpora. It is clear that whenever testing on the same
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Model Train Test nn. vb. adj. adv. all

Seq2Seq

MASC MASC 38.2 57.1 60.8 66.5 66.4
SemCor SemCor 36.1 45.2 41.3 49.6 70.1
SemCor MASC 23.2 44.1 48.1 48.9 60.3
MASC SemCor 22.2 36.6 32.4 53.7 59.0

Seq2Seq + MASC MASC 39.9 59.7 57.5 68.8 68.1

Part of Speech(weighting) SemCor SemCor 37.7 47.6 41.5 50.9 76.4
SemCor MASC 26.6 43.3 48.3 49.0 62.6
MASC SemCor 24.1 37.0 35.2 52.8 63.5

Seq2Seq + Convolution + MASC MASC 46.5 65.2 67.0 74.1 72.7

Part of Speech(weighting) SemCor SemCor 42.1 52.1 53.9 72.5 76.3
SemCor MASC 29.2 45.7 42.8 53.4 65.2
MASC SemCor 26.1 40.0 38.2 53.6 65.8

Table 3.3: F-scores (%) of our top performing models for di↵erent parts of speech with di↵er-
ent settings of SemCor and MASC corpus. POSs: nn. = Noun, vb. = Verb, adj. = Adjective,
and adv. = Adverb.

Attention Initial 1000 2000 4000 5000 3200
weights value epoch epoch epoch epoch epoch

On words ( w1) 0.41 0.74 0.48 0.35 0.34 0.32
On bigrams ( w2) 0.33 2.02 2.69 3.12 3.65 3.45
On POS ( w3) 0.20 2.14 2.23 3.38 3.37 3.58

Table 3.4: The change in di↵erent attention weights with epochs for Seq2Seq + conv + POS
(weighting).

domain (Train-MASC, Test-MASC and vice versa), all the models perform quite well with
maximum F-scores up to 72.7% and 76.4% for MASC and SemCor, respectively. However,
while testing on di↵erent domains (Train-MASC, Test-SemCor and vice versa), performance
of all the models decreases. It does make sense because even though we are in di↵erent do-
mains, we are not tuning any of the hyper-parameters; instead it’s been set according to their
prior training environment. Table 3.3 also depicts how well our best models perform on some
frequent parts of speech classes. For almost all of the POS classes, our top performing model,
Seq2Seq+conv+POS(weighting), outperforming the other models by a good margin. Variance
in the performance on di↵erent parts of speech is mainly due to some statistically significant
di↵erences between the models. However, one certainty is that the results for training and
testing in di↵erent domains is very much correlated with what is shown in Table 3.2. We
have not included the results for the comparatively weak models, Seq2Seq+conv(bigrams) and
Seq2Seq+POS(point-wise multiply).

Table 3.4 depicts the pattern of change across epochs in scalar weights on di↵erent atten-
tions which shows how the model decides the amount of attention it needs to pay on di↵erent
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Figure 3.4: The e↵ect of di↵erent attention weights on final attention matrix. (Numbers on the
left of each Figure indicates a unique sense id of the corresponding true word on that position)

linguistic features. We start with random scalar weights on three possible features as shown in
the first column of Table 3.4. It can easily be seen that as the model sees more data, it gives
more importance to POS with weight 3.58 compared to the other two (0.32 for words and 3.45
for bigrams). The weight on word attention is not stable but the weights on the others are
increasing monotonically until the loss gets very small. We randomly sample 10% of the data
and use this as our development set. Our model achieves the highest development set F score
at the 3200th epoch. Evaluation of our model uses these weights.

Figure 3.4 shows how the model has di↵erent attentions on di↵erent linguistic features. It
is clearly evident that with just word attentions, the model is confused and gives attention to
more than one word at a given time. This makes sense for a translation model as one particular
word in one language at a specific index position can depend on more than one word of another
language. But as we are dealing with the same language at both ends, the decoded word
attention has to be on the same word from the encoder; in other words, it should be a one to one
mapping. The deviation is due mainly to the lack of context. By making a new attention matrix
with the linear weighted combination of multiple attentions on di↵erent linguistic features, we
penalize this lack of context. This linearly combined attention matrix is finally passed through
a Softmax layer to make each attention weight a probability.

3.6 Conclusion and Future Work

In this chapter, we adopted a new approach for doing WSD using neural sequence models by
applying multiple attentions on di↵erent linguistic features of a sentence. The single attention
approach with sequence models is very e↵ective with machine translation however this study
focuses on using multiple attentions and taking their linear weighted combinations. By making
these weights a network parameter, the model can easily fit itself to a suitable combination
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of them. Our best model achieves state of the art results on Senseval-3 corpus. Also our in
depth analysis on POS classes of all the corpora gives us insight into how polysemy relates to
POS. The multiple attention approach largely impacts the model by giving it more flexibility
to choose the right combination of the suitable features.

This approach can easily be applied to other applications of neural sequence models such
as question answering. The most related fact can be chosen through an attention over all the
fact sentences. The answer is predicted through another attention on the question. As future
research, we are currently working on this idea.



Chapter 4

Improving Tree-LSTM with Tree
Attention

This chapter is based on the paper titled “Improving Tree-LSTM with Tree Attention” co-
authored with Muhammad Rifayat Samee and Robert E. Mercer that appeared in the 13th
International Conference on Semantic Computing (ICSC 2019) [13]. The paper was awarded
"Best Paper Award" and "Best Student Paper Award".

In Natural Language Processing (NLP), we often need to extract information contained
in the topology of trees. Sentence structure can be represented via a dependency tree or a
constituency tree. For this reason, a variant of LSTM, named Tree-LSTM, was proposed to
work on tree topology. In this chapter, we design a generalized attention framework for both
dependency and constituency trees by encoding variants of decomposable attention inside a
Tree-LSTM cell. We evaluate our models on a semantic relatedness task and achieve notable
results compared to Tree-LSTM-based methods with no attention as well as other neural and
non-neural methods, and good results compared to Tree-LSTM-based methods with attention.

4.1 Introduction

Long Short Term Memory (LSTM) units are very e↵ective when working on sequential data
[81, 92]. For some Natural Language Processing (NLP) tasks, we often need to find a dis-
tributed representation of phrases and sentences [62, 125, 135]. One obvious way of doing this
is to use a sequential LSTM which captures word order in a sentence [172, 262]. But we can
also have information about sentence structure from a dependency parse tree or about phrase
structure from a constituency tree [112]. Despite the fact that RNN based models work well
with sequence information, they frequently neglect to catch any sort of semantic composition-
ality if the information is structured rather than in the sequential frame [213]. For example, the

41
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syntactic principles of natural language are known to be recursive, with noun phrases contain-
ing relative clauses that themselves contain noun phrases, e.g., “I went to the church which has
nice windows” [210]. The term compositionality can also be explained in terms of a car. A
car can be recursively decomposed into smaller car parts, for example, tires and windows and
these parts can occur in di↵erent contexts, like tires on airplanes or windows in houses.

Attention [24,144,240] was first introduced for doing machine translation where the target
word generated by the decoder at each time step is aligned with all the words in the source
sentence. In its general form, attention allows a model to put importance on certain parts
of the sentence for doing any specific downstream task [71, 247]. In a dependency tree, the
relationship between the entities (head and dependent) are organized as a structure where a
head word can have multiple dependents under it. In the case of a constituency tree, a phrase
is represented by one of the subtrees with the root being the phrase type and words or subtrees
being the children. In both tree structured LSTMs, the derivation of the vector representation of
the entire tree does not depend on all of the subtree components uniformly. Some parts of the
tree have a larger influence on the root vector and some parts may have less. This contribution
from subtrees for the building of the whole tree depends on the underlying task that the model
is performing. For example, in a sentiment analysis task the sentiment of a tree depends on the
sentiment of all of its children and how this information propagates. There may be scenarios
where a single word (such as “not”) flips the sentiment of the whole subphrase. These words
should get more attention when deciding the sentiment of a subphrase containing them. On the
other hand, when the problem is a regression problem with the task of assigning a score based
on the semantic similarity of two sentences, this attention can be calculated as a cross sentence
attention. In this case the representation of one sentence can guide the structural encoding of
the other sentence on the dependency as well as constituency parse tree [270].

Capturing semantic relatedness means recognizing the textual entailment between the hy-
pothesis and the premise [152]. The general approach of modeling sentence pairs (i.e., mea-
suring the relatedness between sentences) using neural networks includes two steps: represent
both of the sentences as vectors via a sentence encoder and then initializing a classifier with
these vectors to do the classification. The sentence encoder can be viewed as a compositional
function which maps a sequence of words in a sentence to a vector. Some of the common
compositional functions are sequential LSTM [270], Tree-LSTM [227, 270] and CNN [89].

In this chapter, we propose two models to encode attention inside tree structured LSTM
cells and verify their e↵ectiveness by evaluating them on the semantic relatedness task where
the model needs to give a score depending on how similar two sentences are. The tree data
structure allows a set of dependents in the dependency tree or constituents in the constituency
tree to be children of an immediately higher level (parent) tree node. Our tree attention model
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applies attention over the set of children in a subtree and decides which of them are important
to reconstruct their parent node vector. We apply this attention with respect to four pieces of
information: the vector representation of the sentence currently being represented as a tree,
the vector representation of the sentence being compared with, dependent vectors (dependency
tree) or phrase vector (binary constituency tree), and concatenated vectors of the dependents or
the constituents. Our extensive evaluation proves the e↵ectiveness of our attentive Tree-LSTM
with respect to the plain Tree-LSTM models as well as some top performing models on the
benchmark dataset.

4.2 Related work

Socher et al. [213] propose a number of recursive neural network (rNN) based models which
take phrases as input rather than entire sentences. Phrases are represented as a vector as well
as a parse tree. Vectors for higher level nodes in the tree are computed using a tensor-based
composition function. Their best model was Matrix Vector rNN (MVrNN) where each word is
represented as a vector as well as a matrix. In this model the children in a subtree interact more
through their vectors rather than being influenced by some weights during the calculation of
the parent’s vector and matrix representation.

Tai et al. [227] developed two di↵erent variants of standard linear chain LSTMs: child sum
Tree-LSTM and N-ary Tree-LSTM. The underlying concept of using input, output, update and
forget gates in these variants is quite similar to how these gates are used in standard LSTMs,
however there are few important changes. The standard LSTM works over the sequence data
whereas these variants are compatible with tree structured data (constituency tree or depen-
dency tree). Also, unlike standard LSTMs, the hidden and cell states of a word at the current
time step does not depend on the entire sequence seen before. Instead, the hidden and cell state
of a parent node depends only on its children hidden and cell states. Recently, Chen et al. [50]
combined LSTM with Tree LSTM for natural language inference task and empirically proved
that these two models complement each other very well.

Zhou et al. [270] extend the concept of standard Tree-RNNs and propose a number of
attention based Tree-RNN models to perform the semantic relatedness task. Their insight was
quite novel: in order to compute the semantic similarity of two sentences, one can encode
attention in the tree structure of one sentence with respect to the vector representation of the
other sentence. However, their proposed attention model only works with child sum Tree-
LSTMs and GRUs. Attention with Tree LSTM has also been studied by Liu et al. [140] for
text summarization task where they use two di↵erent kinds of alignment : block alignment for
aligning phrases and word alignment for aligning inter-words within phrases.
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Turning to machine translation, the attention mechanism is used to align the source and
target sentences in the decoding phase. More formally, the attention mechanism allows the
model to attend to some elements with the intention of emphasizing di↵erent elements. The
well-known attention models from [24] and [144] use recurrent models to attend over a set of
source words during the generation of each target word. Using recurrent models to generate an
attention score incorporates a memory mechanism inside the network which helps the model
at run time to traverse and decide what to attend over. Also, this recurrency allows some
positional information in the sequence to help ordering the generated words.

Parikh et al. [176] propose a decomposable attention model for natural language inference
tasks by removing the modules with recurrent behavior during the calculation of attention.
First, they pick a single vector from a set of vectors representing the source sentence and then
compare its point-wise similarity with every element of each word vector from the target sen-
tence. Following this, they compare these alignments using a function which is a feed forward
neural network and finally perform an aggregation through summation before doing the final
classification. Gehring et al. [80] propose a sequence to sequence learning framework utiliz-
ing a convolutional neural network which completely avoids recurrent models allowing their
architecture to be parallelizable. In order to capture the positional information, they include
a positional embedding layer which gives their model a sense of the portion of the sequence
in the input or output it is currently dealing with. They encode sine and cosine frequencies
for each dimension of every position in the sentence to create the positional embeddings and
finally combine them with word embeddings. Vaswani et al. [240] combine the previous two
works and propose a powerful machine translation framework utilizing attention without re-
currence and positional embeddings. They also extend the decomposable attention mechanism
by attending over the input sequence multiple times stating it as a multi-head attention where
the target is to extract di↵erent features by di↵erent attentional heads.

4.3 The Model

In this section, we describe our work in detail. We first explain how the two variants of Tree-
LSTM work. Following this, we describe our universal attention mechanism that is applicable
for these two Tree-LSTM variants. Additionally, we give an in-depth analysis of adding this
attention with respect to various information as discussed in Section 4.2.

Recurrent neural networks (RNNs) are the best known and most widely used neural net-
work (NN) model for sequence data as they sequentially scan the entire sequence and generate
a compressed form of it. Although in theory RNNs are capable of remembering long distance
dependencies, practically, as the sequence becomes longer, RNNs su↵er from the vanishing
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gradient problem [34, 177]. To overcome this drawback some RNN variants have been intro-
duced such as Long Short Term Memory (LSTM) [92] and Gated Recurrent Unit (GRU) [53].
These variants use a gating mechanism to propagate new information further and at the same
time to forget some previous information allowing the gradients to propagate further.

4.3.1 Incompatibility of standard LSTM and Tree structured data

Recurrent neural networks (RNNs) are the best known and most widely used neural network
(NN) model for sequence data as they sequentially scan the entire sequence and generate a com-
pressed form of it. Although in theory RNNs are capable of remembering long distance depen-
dencies, practically, as the sequence becomes longer, RNNs su↵er from the vanishing gradient
problem [34, 177]. To overcome this drawback some RNN variants have been introduced such
as Long Short Term Memory (LSTM) [92] and Gated Recurrent Unit (GRU) [53]. These vari-
ants use a gating mechanism to propagate new information further and at the same time to for-
get some previous information allowing the gradients to propagate further. Performance-wise,
LSTMs are superior to GRUs because they have more parameters but in terms of computational
complexity GRUs often surpass LSTMs.

Even though these gating variants e↵ectively solve the RNN vanishing gradient problem,
they are limited to linear data; however, a natural language sentence encodes more than a
sequence of words. This extra information is usually represented in a tree structure. The tree
structure shows how the words combine through di↵erent sub-phrases to reflect the overall
meaning. If a sentence gets traversed by a standard LSTM, the latter part of the sentence gets
more importance comparatively as the traversal moves left to right. But if the tree structure of
the sentence gets traversed from bottom to top then the information from di↵erent constituent
or dependents first gets combined to represent the root at the upper level and then this roots
gradually gets traversed as children and combined to represent the root at next level and so
on. So in both cases an LSTM cell will forget previous information which for plain LSTM,
is related to the length of the sentence and for Tree-LSTM, is related to the depth of the tree.
Also in plain LSTM, the hidden and cell state of a word at time step t depends on hidden and
cell state of all the words from time step 1 . . . t � 1. But in Tree-LSTM, the hidden and cell
state of a root word depends only on the hidden and cell state of all of its children rather than
all the words before it.

4.3.2 Tree-LSTM

There are two possible tree representations of a sentence: Dependency tree and Constituency
tree [49]. As previously presented, the standard linear chain LSTM and BLSTM cannot cor-
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(b) Binary Tree-LSTM
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(c) Attentive Child Sum Tree-LSTM
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Figure 4.1: Illustrations of di↵erent Tree-LSTM architectures

rectly analyze this structured information. To properly deal with this structured data, Tai et
al. [227] proposed two LSTM models which can analyze a tree structure preserving every prop-
erty of the standard LSTM gating mechanisms. They called the first one child sum Tree-LSTM
and the second one N-ary Tree-LSTM. Child sum Tree-LSTM fits well with dependency trees
as it is well suited for high branching child-unordered trees. On the other hand N-ary Tree-
LSTM (with n = 2) works better with the binarized (Chomsky Normal Form) constituency
trees.

Traditional LSTM generates a new hidden and cell state from the previous hidden state
ht�1, previous cell state ct�1 and current sequential input xt. In the child sum Tree-LSTM, a
component node state is generated based on the states of its children in the tree as shown in
Figure 4.1(a). To do this, the internal gates (i.e., the input, output and intermediate cell states)
are updated using the sum of the hidden states of the children of the component node as follows:

h̃ j =
X

k2C( j)

hjk (4.1)

where C( j) denotes the children of node j. Next, using this modified hidden state, h̃, the input,
output and intermediate cell states are calculated as follows:

i j = �(W(i)x j + U(i)h̃ j + b(i)) (4.2)

o j = �(W(o)x j + U(o)h̃ j + b(o)) (4.3)
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c̃ j = tanh(W(c)x j + U(c)h̃ j + b(c)) (4.4)

where W (i), W (o), W (c), U (i), U (o), U (c), b(i), b(o), and b(c) are the parameters to be learned. Instead
of having just a single forget gate, child sum Tree-LSTMs have k forget gates where k is the
number of children of the target node. This multiple forget gate allows child sum Tree-LSTM
to incorporate individual information from each of the children in a selective manner. Each
forget gate is calculated as follows:

f jk = �(W( f )x j + U( f )hjk + b( f )) (4.5)

Next, the individual forget gate outputs are multiplied with corresponding cell state values and
then combined to get a single forget vector which is used to get the final cell state of the model
as follows:

f̃ j =
X

k2C( j)

f jk · ck (4.6)

c j = i j · c̃ j + f̃ j (4.7)

Finally, the update equation for the hidden state of a child sum Tree-LSTM cell is similar to
the traditional LSTM:

h j = oj · tanh(c j) (4.8)

Each of the parameter matrices represents a correlation among the component vector, input
x j and the hidden state hk of the kth child of the component unit. For example, the sigmoid
function at the input gate represents semantically important words at input by giving values
close to 1 (e.g., a verb) and relatively unimportant words by giving values close to 0 (e.g., a
determiner). Since the hidden state and cell state values of the parent node are generated based
on the hidden state and the cell state of its children, child sum Tree-LSTM is well suited for
dependency trees.

The N-ary Tree-LSTM is used where there are at most N ordered children. Unlike the
child sum Tree-LSTM, it has a di↵erent set of parameters for each child having its own cell
and hidden state, shown in Figure 4.1(b). The update equations for deriving input, output and
update gate values are as follows:

i j = �(W(i)x j +

NX

l=1

U(i)
l h jl + b(i)) (4.9)

o j = �(W(o)x j +

NX

l=1

U(o)
l h jl + b(o)) (4.10)
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c̃ j = tanh(W(c)x j +

NX

l=1

U(c)
l h jl + b(c)) (4.11)

where W (i), W (o), W (c), U (i)
l , U (o)

l , U (c)
l , b(i), b(o), and b(c) are the parameters to be learned. As

can be seen, for each gate, the N-ary Tree-LSTM has a set of N parameter matrices associated
with the N hidden states whereas the child sum Tree-LSTM has just one. Next, for each of the
children, forget gate values are calculated separately, as done in the child sum Tree-LSTM as
follows:

f jk = �(W( f )x j +

NX

l=1

U( f )
kl h jl + b( f )) (4.12)

Similar to the child sum Tree-LSTM, these new forget gate values are multiplied with
corresponding cell state values and then summed to get the final values for the forget gate:

f̃ j =

NX

l=1

f jl · c jl (4.13)

Finally, the cell state and new hidden state values are updated using Equations 4.7 and 4.8.

4.3.3 Attention

The two tree structured LSTM models described in Section 4.3.2 treat every word within a sub-
tree with equal probability. More specifically, in an N-ary Tree-LSTM, every word contributes
uniformly to the building of the higher-level constituent. Likewise, the child sum Tree-LSTM
architecture suggests that, within a dependency tree branch, a head word influences all of its
dependent words in a similar way. When viewing the tree as a semantic representation of a
sentence, this may not be the case in many scenarios. For a constituency tree, if a sub-tree
contains some negative sentiment words, then it is not always the case that the sentiment of
that particular constituent is negative. If the negative sentiment word is preceded by a nega-
tion, then the higher-level constituent becomes semantically positive because of the location of
the negation word. To capture this type of information, attention is applied over the sub-tree
components to apportion the importance of each sub-tree component when building the entire
tree either semantically or syntactically. In this study, we are interested in applying semantic
attention over the sub-tree components to see how they contribute to building a sub-tree.

Attentive Tree-LSTM was proposed by [270] for doing the semantic relatedness task. They
state that the e↵ect of semantic relevance could be implemented as part of the sentence rep-
resentation construction process using a Tree-LSTM where each child should be assigned a
di↵erent weight. In their proposed model, a soft attention mechanism assigns an attention
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weight on each child in a subtree. Given a collection of hidden state h1, h2, · · · , hn and an
external vector s, their proposed attention mechanism assigns a weight ↵k on each of these
hidden states and produces a weighted vector g. To achieve this, first they perform an a�ne
transformation on each of the child hidden states and calculate a vector mk as follows:

mk = tanh(W(m)hk + U(m)s), (4.14)

where W (m) and U (m) are the parameter matrices of size d ⇥ d and s is the vector representation
of the sentence learned by a sequential LSTM. Next, using this transformed hidden states mk,
the attention probabilities ↵k are calculated as follows

↵k =
wT mkPn
j=1 w

T mj
(4.15)

where w is a parameter vector of size 1 ⇥ d. Following this, a weighted combination of the
hidden states is calculated using,

g =
X

1kn

↵khk (4.16)

This g is of size 1 ⇥ d. Finally, an a�ne transformation is applied on this g to get the new
hidden state h̃ as follows:

h̃ = tanh(W(a)g + b(a)) (4.17)

This soft attention mechanism from [270] introduces four new parameters to derive the
final attentive hidden state; two matrices in Eqn. 4.14, one vector in Eqn. 4.15 and one matrix
in Eqn. 4.17. This attention mechanism is only applicable to the child sum Tree-LSTM. It is
not possible to apply this attention on N-ary Tree-LSTMs since the structure of the N-ary Tree-
LSTM is such that it needs N separate hidden states to work with whereas a child sum Tree-
LSTM collapses all the hidden states to a single vector through summation. In this study, we
develop two generalized attention models by adopting the decomposable attention framework
proposed by [176] and the soft attention mechanism proposed by [270].

Model 1: Our first model is based on the self attention mechanism where we make some
subtle changes to calculate the attention probability with respect to di↵erent segments of the
sentence. Calculating attention in this way involves three matrices key, query, and value. The
key matrix represents on which child to attend over, the query matrix represents “with respect
to what” is attention to be applied and the value matrix extracts the final attention-able vector
using attention probability. The key matrix is calculated as follows:

key =W(k)M(k) (4.18)
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where, W (k) is a parameter matrix of size d ⇥ d and M(k) is the matrix on which to attend over.
For child sum Tree-LSTMs, this matrix is the concatenation of the vectors of all the words
under a particular head word. For N-ary Tree-LSTMs, it is the concatenation of all the word
vectors in a constituent. So in both cases the formal representation is M(k) = [h1; h2; . . . ; hn]. In
order to encode self attention in the sub-tree, the query and value matrices also get calculated
with respect to M(k) (M(k) = M(q) = M(v)) but with a di↵erent set of parameter matrices W (q)

and W (v) as follows:
query =W(q)M(q) (4.19)

value =W(v)M(v) (4.20)

Once the key and query get calculated, the next step is to align each of them by looking at
the similarity at each dimension of their representation. This is done using:

align = (query)T key · 1p
d

(4.21)

where the align matrix is of size n ⇥ n with n representing the number of children within this
sub-tree. The d is being used here as a normalizing factor. Finally, the attention probability is
calculated by applying softmax over it as follows:

↵ = softmax(align) (4.22)

Here ↵ is the matrix of attention probabilities where each row represents how much atten-
tion needs to be given on each of the children within that sub-tree according to the word at
that row. As there are n children within a sub-tree, the size of this matrix is n ⇥ n. Finally, we
calculate a new attention encoded hidden state h̃ through a batch-wise matrix multiplication
between the ↵ and value matrices as follows:

h̃ = bmm(↵, value) (4.23)

The shape of this new h̃ is n ⇥ d. It contains attention encoded hidden state values of all
the children sequentially one on top of another. So in order to locate a specific hidden state
value, the row number corresponding to the position of that child in the sub-tree is used. For
child sum Tree-LSTMs, all of the hidden state vectors are summed to get a single vector and
for N-ary Tree-LSTMs, one row of h̃ is selected as the hidden state of a child.

For the semantic relatedness task, where the objective is to assign a score based on the
similarity between two sentences, it is better to calculate the query matrix with respect to
the vector representation of the second sentence. Specially, given a pair of sentences, our
generalized attentive encoder uses the representation of one sentence generated via a sequential
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LSTM to guide the structural encoding of the other sentence on both the dependency as well
as the constituency tree. In that case, M(q) is a vector rather than a matrix thus changing the
shape of query from Eqn. 4.19 into 1⇥d. This results in an alignment vector from Eqn. 4.21 of
size 1 ⇥ n. When softmax is applied over this vector, a vector of probabilities, ↵, is produced.
Finally, instead of doing a matrix multiplication as in Eqn. 4.23, a point-wise multiplication
h̃ = ↵ ⇤value is performed resulting in a new hidden state vector. For child sum Tree-LSTMs,
we use this new hidden state vector in place of the one generated in Eqn. 4.1 and for N-
ary Tree-LSTMs, we use this hidden state vector as the hidden state of both the left and right
children. This way of calculating self attention requires three additional matrices as parameters
from Eqn. 4.18, 4.19 and 4.20, a smaller number of parameters than found in [270]. We further
continue our experiments by calculating a phrase vector representation using an additional
LSTM cell and use it as the query vector. Then, we adopt the same procedure as above to
calculate the attention probability ↵ and the final hidden state vector h̃. However, this requires
more parameters than what is required in [270].

Model 2: In our second model, we combine the concepts of decomposable attention mech-
anism with a soft attention layer. Here, we have two matrices key and query and their derivation
are the same as Eqns. 4.18 and 4.19. We further align and transform these matrices into prob-
abilities using the same set of equations, Equations 4.21 and 4.22. We again make some subtle
changes which result in four di↵erent versions of this model. In Eqn. 4.19, when M(q) = M(k),
the dimension of the attention probability becomes n⇥n and when M(q) is either a sentence vec-
tor M(q) = LSTM(sentence2) or phrase vector M(q) = LSTM(M(k)), the dimension of this attention
probability changes to 1 ⇥ n. Then, h̃ is calculated as follows,

h̃ =

8>>><
>>>:
bmm(↵,M(k)), if ↵ is a matrix

↵ ⇤M(k), if ↵ is a vector
(4.24)

Next we perform an a�ne transformation of this h̃ by multiplying it with a parameter matrix
W and passing it through a tanh layer as follows:

ĥ = tanh(Wh̃ + b) (4.25)

In the case of child sum Tree-LSTMs, if ĥ is a matrix, we do a summation of all the rows
and use that as the final vector and if ĥ is a vector. we use that as it is. In the case of N-ary
Tree-LSTMs, if ĥ is a matrix, then each row corresponds to the hidden state of a child and if ĥ
is a vector, then we just copy this vector as the hidden states of the children.
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Hyper-parameter Range Selected
Learning rate 0.01 / 0.025 / 0.05
Batch size 10 / 25 / 30
Momentum 0.9
Memory dimension 150
MLP hidden dimension 50
Attention layer dimension 150
Dropout 0.5 / 0.2 / 0.1
Word embedding size 300
Gradient clipping 5 / 20 / 50
Weight decay 10�5

Learning rate decay 0.05

Table 4.1: Hyper-parameters used for the experiments (in boldface) and the ranges that were
searched during tuning.

4.4 Experimental Setup and Analysis

In this section, we describe the detailed experimental setup for the evaluation of our study. We
first explain the dataset statistics for evaluating our generalized attention frameworks. Follow-
ing this, we explain the working environment details along with the hyper-parameter settings
of our architecture.

We evaluated our model for the semantic similarity task on the Sentences Involving Com-
positional Knowledge (SICK) dataset [152]. The task is to give a likeness score for a pair of
sentences and then compare it to a human produced score. The SICK dataset contains 9927
sentence pairs configured as: 4500 training pairs, 500 development pairs and 4927 test pairs.
Each sentence pair is annotated with a similarity score ranging from 1 to 5. A high score shows
that the sentence pair is strongly related. All sentences are derived from existing image and
video comment datasets. The assessment measures are Pearson’s ⇢ and mean squared error
(MSE).

Table 4.1 shows the detailed hyper-parameter settings of our model. We trained our model
on an Nvidia GeForce GTX 1080 GPU with ‘Adam’, ‘SGD’ and ‘Adagrad’ optimizers. All of
the results in the next section are reported using ‘Adagrad’ as it was giving the best results. The
‘Learning rate decay’ parameter was only used with the ‘SGD’ optimizer. We used PyTorch
0.4 to implement our model under the Linux environment.

Table 4.2 shows the overall evaluation of our model in terms of Pearson’s ⇢ and Mean
Squared Error (MSE). This table also contains the results of some top performing models on
the SICK dataset. Among these models, [227] and [270] did their evaluation with plain Tree-
LSTMs, whereas the rest of the models use some di↵erent composition functions such as CNN
[111], ECNU [264] and Combine-skip + COCO [89]. However [270] also experimented with
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Previous Models

Model r MSE
ECNU [264] 0.8414 —
Combine-skip+COCO [111] 0.8655 0.2561
ConvNet [89] 0.8686 0.2606
Seq-GRU [270] 0.8595 0.2689
Seq-LSTM [270] 0.8528 0.2831
Dep. Tree-GRU [270] 0.8672 0.2573
Dep. Tree-GRU + Attn. [270] 0.8701 0.2524

Const. Tree-LSTM [227] 0.8582 0.2734
0.8460 † 0.2895 †

Dep. Tree-LSTM [227] 0.8676 0.2532
0.8663 † 0.2612 †

Dep. Tree-LSTM + Attn. [270] 0.8730 0.2426
0.8635 † 0.2591 †

Child Sum Tree LSTM

Model 1

Self 0.7466 0.4545
Sentence 1 0.7305 0.4849
Sentence 2 0.7939 0.3801

Phrase 0.7889 0.3877

Model 2

Self 0.8577 0.2695
Sentence 1 0.8620 0.2634
Sentence 2 0.8686 0.2518

Phrase 0.8623 0.2615

Binary Tree LSTM

Model 1

Self 0.8648 0.2567
Sentence 1 0.8692 0.2486
Sentence 2 0.8686 0.2507

Phrase 0.8676 0.2517

Model 2

Self 0.8698 0.2476
Sentence 1 0.8698 0.2476
Sentence 2 0.8720 0.2435

Phrase 0.8696 0.2479

Table 4.2: Test set results on the SICK dataset. The first group lists previous results, and the
remainder are the results of our models. We mark models that we re-implemented with a †.

attentive Tree-LSTMs and GRUs, but they have only been able to design models compatible
with the child sum variant. On the other hand, among our two proposed models, Model 2
performs very well on both Tree-LSTM variants showing significant improvements with every
configuration. For both child sum as well as binary Tree-LSTMs, our second model with cross
sentence attention has superior performance compared to the plain Tree-LSTM variants getting
MSE of 0.2518 and 0.2435 respectively. For the child sum Tree-LSTM, Model 1 performs
poorly compared to all the other models. This poor performance is due to the hard attention that
it applies. If a subtree has n children, this hard attention forces n�1 children to have probability
close to 0 which causes the domination of just one child hidden state in the summation. The
rest will not contribute at all. On the other hand, the reason behind Model 2 performing better
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Figure 4.2: Probability of each node being selected by attentive child sum Tree-LSTM Model
2 with cross sentence attention (Left: A man is exercising Right: A man is doing physical
activity Label: Entailment ).

in every configuration with both variants is that even though a hard attention causes one of
the children to get close to 0, the normalization of N-ary tree into binary tree causes much
more flexibility for the information to flow from bottom to top. During normalization, a branch
with n children gets split up to n � 1 full binary trees resulting in (n � 1)/2 nodes that are
always chosen. Our best performing attentive child sum Tree-LSTM model with cross sentence
attention achieves a better result (0.2518 MSE) than the plain child sum tree variant from [227]
(0.2532 MSE). Our score did not surpass the reported result (0.2426 MSE) of the attentive child
sum variant from [270]. However, our implementation of their model with their reported hyper-
parameters gave a 0.2591 MSE which is significantly worse than their claimed MSE. This
suggests to us that the implementation environment has a strong impact on model performance.
Our child sum Tree-LSTM Model 2 with cross sentence attention achieves better performance
than our implementation of [270] using their hyper-parameter settings. To the best of our
knowledge, our work is the first to encode attention inside a binary Tree-LSTM cell. In terms
of binary tree LSTM, our best performing model with cross sentence attention achieves 0.2435
MSE which is significantly better than the one reported in [227] (0.2734 MSE) for the non-
attentive version. In our implementation of plain binary Tree-LSTM without attention from
[227] we were not able to reproduce their reported result and ended up with 0.2895 MSE
which is much worse than the one we got with every configuration of our Model 1 and Model
2. This performance analysis does show the e↵ectiveness of our generalized attention model.

Figure 4.2 depicts the probability assigned to each node in the dependency tree by our
Model 2 with cross sentence attention. Unlike standard child sum Tree-LSTM, where the hid-
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Figure 4.3: Probability of each node being selected by attentive binary Tree-LSTM Model 2
with cross sentence attention (Left: A man is playing a violin Right: A man is harping on
about a play Label: NEUTRAL ).

den states of all the children nodes are combined with a plain summation, our attentive child
sum Tree-LSTM assigns a weight to each node and then does a weighted summation. The
example used in this Figure has “A man is exercising" as the left sentence, “A man is doing
physical activity” as the right sentence and “Entailment" as their relationship. As usual, the
main verb from both of the sentences is selected as the root node. The auxiliary verb (is) gets
high attention in both the left and right trees because of the word similarity. However, their ab-
solute influence varies because of the presence of semantically related words in other branches
as discussed above. Both of these trees share the same nominal subject (nsubj) however with
di↵erent probabilities (in the left tree its probability is significantly lower). The reason behind
this is the cross sentence attention allows the word man from the left sentence to align with two
words man and physical from the right sentence. As they share a similar semantic meaning in
the vector space, the branch in the left sentence that contains man is diminished because the
right sentence divides the attention between two branches (left sentence: exercising

nsubj���! man;
right sentence: doing

nsubj���! man and doing
dobj���! activity).
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Figure 4.3 depicts the probability assigned to each node in a binary (Chomsky Normal
Form) constituency tree using an attentive binary Tree-LSTM with cross sentence attention. In
this setting, the attention on the structure of the left sentence is computed with respect to the
vector representation of the right sentence and vice versa. As a result, the words in a specific
phrase from the left sentence are aligned with very high attention probability if the same words
appear anywhere in the right sentence. However, as softmax was operating with small values
from Eqn. 4.21, it forced both children to have the same probabilities (0.5). In order to verify
whether this probability has any e↵ect or not, we have confirmed that replacing ↵ in Eqn. 4.23
with pairs of the same value other than (0.5) results in the model giving comparatively poor
performance. Finally, for the inference of attention probabilities, we replaced softmax from
Eqn. 4.22 with plain normalization. For the example in Figure 4.3, we have “A man is playing
a violin” as the left sentence, “A man is harping on about a play” as the right sentence and
“Neutral” as their relationship. The phrase NP gets almost the same probabilities in both the
left (0.49) and right (0.55) trees because of having the same set of words: “A man”. The sub-
phrase VBZ under VP in both trees gets very high attention due to having the same word “is” at
exactly the same position. Due to the Chomsky normalization, the tree on the right side gets an
extra dummy node X which contains VBG and RP as the child nodes. In the vector space, the
words “playing” and “harping” are semantically connected which allows both of the models to
align them with moderately high as well as equal probabilities. The left tree does not have any
particle (“RP”) words which causes the model to put low attention probability when it appears
on the right tree. The left tree has NP as the right child of VP at level 3 with probability 0.55
which is quite close to the amount of attention PP gets (0.63) as the right child of VP at the same
level in the right tree. Again in both of these trees, at the right most branch, the words “play”
and “violin” share the same semantic space which causes them to get aligned with almost the
same probabilities. The DT in this branch gets the same high probability because of appearing
in both sentences at relatively similar positions.

4.5 Conclusion

Previous attempts to encode the attention mechanism in Tree-LSTMs were only successful for
the child-sum tree variant as the techniques used are not easily adaptable to binary trees like
the Chomsky Normal Form constituency tree. In this chapter, we have introduced two di↵erent
ways of applying attention on tree structures. The second of these two methods gives superior
performance for both tree variants. The proposed techniques can be used on both dependency
as well as constituent tree structure. Our experimental results verify the superiority of the
attentive variant of Tree-LSTMs over traditional Tree-LSTMs and linear chain LSTMs on the
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semantic relatedness task. With our extensive in depth analysis, we showed that our proposed
attention models provide a good representation of how a sentence builds semantically from the
words. Our generalized attention framework is adaptable to any tree like structures.



Chapter 5

Identifying Protein-Protein Interaction
using Tree LSTM and Structured
Attention

This chapter is based on the paper titled “Identifying Protein-Protein Interaction using Tree
LSTM and Structured Attention” co-authored with Jumayel Islam, Muhammad Rifayat Samee
and Robert E. Mercer that appeared in the 13th International Conference on Semantic Com-
puting (ICSC 2019) [6].

Identifying interactions between proteins is important to understand underlying biological
processes. Extracting a protein-protein interaction (PPI) from the raw text is often very di�cult.
Previous supervised learning methods have used handcrafted features on human-annotated data
sets. In this chapter, we propose a novel tree structured long short term memory network with
structured attention architecture for doing PPI. Our architecture achieves state-of-the-art results
(precision, recall, and F-score) on the AIMed and BioInfer benchmark data sets. Moreover, our
models achieve a significant improvement over previous best models without any explicit fea-
ture extraction. Our experimental results show that traditional recurrent networks have inferior
performance compared to tree recurrent networks for the supervised PPI problem.

5.1 Introduction

With extensive ongoing research currently happening in the bio-medical field, there is an expo-
nentially growing amount of information available in textual form requiring expert knowledge
to extract the important information contained therein. As doing this manually with human
expertise only is time consuming and expensive, there has been a lot of interest in develop-

58
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ing computational approaches for automatically inferring some hidden information from this
vast source of knowledge such as protein-protein interactions (PPIs), drug-drug interactions
(DDIs) and chemical-disease relation information. Researchers have successfully applied nat-
ural language processing (NLP) techniques and machine learning (ML) methods for doing
these tasks [95, 127, 182, 205].

The task of identifying protein-protein interactions (PPIs) is to extract relations between
protein entities mentioned in a document [117]. While PPI relations can cross over sentences
and even across corpora, current work is centered mostly on PPIs in single sentences [185,231].
For example, in the sentence “LEC induces chemotaxis and adhesion by interacting with CCR1
and CCR8.”, LEC–CCR1 and LEC–CCR8 are in PPI relations, whereas there is no relation
between CCR1 and CCR8.

Whereas previously, pattern-based methods have been very popular for doing this bio-
medical relation extraction, in this chapter, we propose a novel neural net architecture for
identifying protein-protein interactions from bio-medical text using a Tree LSTM [227] with
Structured Attention [234]. We provide an in depth analysis of traversing the dependency tree
of a sentence through a child sum tree LSTM and at the same time learn this structural infor-
mation through a parent selection mechanism by modeling non-projective dependency trees.
We also provide an extensive evaluation of our model by doing a detailed comparison with
the currently available state of the art methods applied on the standard PPI corpora (AIMed,
BioInfer, IEPA, HPRD50, and LLL). Our architecture achieves state of the art results on four
of the five corpora. Our experiments suggest that our model is more generalized and is better
capable of capturing long distance information than existing feature and kernel based methods.

5.2 Related Work

In previous work, pattern-based methods have been very popular for doing PPI relation extrac-
tion, where patterns as well as rules were crafted and defined based on lexical and syntactic
features [61, 129, 199]. For example, Leeuwenberg et al. [129] propose the syntactic tree pat-
tern structure (STPS) for DDI extraction from a sentence in bio-medical text based on the
syntax tree of the sentence. Also much research has been done on bio-medical relation ex-
traction using Kernel-based methods which allow learning rich structural data in the form of
syntactic parse trees and dependency structures [15, 48, 108, 158]. Miwa et al. [158] propose a
system which embeds rich feature vectors in a Support Vector Machine with corpus weighting
where the weights are learned from one corpus and the other corpora are used for support.
Kim et al. [108] propose a walk-weighted sub-sequence kernel for the extraction of PPIs. It
captures the non-contiguous syntactic structures by matching the v-walk and e-walk on the
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shortest dependency path. Chang et al. [48] propose an interaction pattern tree kernel method
in which they extract PPIs by integrating the PPI patterns with a convolution tree kernel. Airola
et al. [15] propose a method to extract PPIs by looking at the information from both depen-
dency as well as linear subgraphs. For this they adopted an all-path kernel approach where
they weighted all the edges on the shortest paths by a high value and all other edges with a low
value. Peng et al. [180] propose an Extended Dependency Graph (EDG) based approach by
incorporating a few simple linguistic features beyond syntax information. Finally they evalu-
ated this EDG approach with edit distance and an APG kernel on the five benchmark corpora.
Zhang et al. [260] propose a neighborhood hash kernel based method for PPI extraction. They
started by transforming each node label of the dependency graph for two target sentences into a
bit label and then replaced this bit label by a new label produced by order-independent logical
operations on the bit labels of the current node and its neighboring nodes. They continued this
process for the two target sentences and finally ended up with a high order substructures over
the dependency graph. Finally, they computed the similarity of the two dependency graphs
based on the intersection ratio of the updated label sets.

Recently, deep neural network (DNN) based methods have successfully applied and
achieved promising results in bio-medical relation extraction from bio-medical literature
[139,187,257,266]. Mikolov et al. [156] propose an approach which gives a distributed repre-
sentation (i.e., embeddings) of words capturing both the syntactic and the semantic similarity.
Nowadays almost all of the DNN-based approaches in linguistics have this embedding layer at
the top either in a pre-trained or randomly initialized form.

Peng et al. [181] adopt a convolutional neural network (CNN) based approach in which
they utilize two channels of CNN for high level feature extraction. In one channel, they use raw
words along with some syntactic features such as parts-of speech, chunk parsing information,
named entities, syntactic dependencies and two distance vectors for each word representing the
distance from the word to the two proteins being considered as interacting. In another channel
they use parent word information for each word and pass this to an embedding layer to get a
distributed representation of the sentence in terms of parent words. Following this, they apply
convolution on these two channels separately and map them via a fully connected layer to the
required number of classes.

Zhang et al. [261] also utilize a multi-channel CNN for this task. In the first channel, they
use a sequence of raw words along with positional embedding features. In the second channel,
they use shortest dependency path information: the arcs visited in the shortest paths from the
first protein to the root and the second protein to the root. This information is arranged as a
sequence and passed to an embedding layer. In the third channel, they use dependency relation
embedding, storing the embedding of the words encountered in the shortest dependency path.
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Figure 5.1: Standard LSTM (a) vs Tree LSTM (b)

Finally they apply convolution on it and map the extracted features to two classes using multi-
layer perception (MLP) followed by a softmax layer.

Zhao et al. [266] propose a greedy layer-wise unsupervised learning-based approach to
extract PPIs from bio-medical literature. They first divided their corpus into train, validation
and unlabelled set and applied an auto encoder (AE) on the unlabelled set of data to initialize
the parameters of a deep multi-layer neural network. Finally they applied a gradient descent
method using back propagation to train their whole model.

Hsieh et al. [93] utilize recurrent neural network (RNN) for extracting the PPI form bio-
medical literature. Without doing any additional feature extraction, they used long short term
memory (LSTM) (a variant of RNN) to encode the dependency information through time from
forward and backward direction over the sentence. Finally, they took the left most and right
most output vector of LSTM, concatenated them and applied MLP followed by softmax for the
classification.
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5.3 The Model

In this section, we describe our work in detail. We first explain the working mechanism of a tree
LSTM cell. Then we explain the Structured Attention mechanism for learning the dependency
tree through Kirchho↵’s Matrix-Tree Theorem. Finally we explain how we combine the tree
LSTM architecture with structured attention to obtain a performance boost that we describe in
the next section.

5.3.1 Recurrent unit: Bidirectional LSTM

In this chapter, we use recurrent neural network (RNN) which is the best known and most
widely used NN model for sequence data. Its long-short term memory variant (LSTM) gives
all of the advantages of the basic RNN with an elegant solution to RNN’s vanishing gradient
problem. Figure 5.1(a) shows a sample LSTM cell and the construction of its internal gates are
as follows:

it = �(W(i)xt + U(i)ht�1 + b(i))

ot = �(W(o)xt + U(o)ht�1 + b(o))

ft = �(W( f )xt + U( f )ht�1 + b( f ))

c̃t = tanh(W(c)xt + U(c)ht�1 + b(c))

ct = it · c̃t + ft · ct�1

ht = ot · tanh(ct)

(5.1)

Although LSTMs are very good with sequence data, most often it is important to have
information from the past as well as from the future. However, LSTM allows only one hid-
den state from the past and changes that hidden state recursively through time. An elegant
resolution to this problem is going over the sequence in both forward and backward direc-
tions using two hidden states and finally concatenating the output from both directions. This
method, called Bidirectional LSTM (BLSTM), has proven to be very e↵ective in some prior
works [73,84,229]. BLSTM has the same internal structure as LSTM except one of the output
dimensions is twice that of the LSTM output.

5.3.2 Tree LSTM

The main limitation of the basic LSTM is that it can only be used for analyzing sequential
information. However, a natural language sentence encodes more than a sequence of words.
This extra information is usually represented in a tree structure. One such structure is the
dependency tree [49]. LSTM and BLSTM cannot analyze this structured information correctly.
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A variant of standard LSTM cell, called tree LSTM (tLSTM) [227], traverses the sentence by
following a tree-structured network topology rather than going over the sequence as a linear
chain. The underlying idea of an LSTM cell remains the same except here each tLSTM unit is
capable of incorporating information from multiple child units as well. Figure 5.1(b) shows a
sample tLSTM cell. In this study, we use child sum version of tree LSTM, as it is more suitable
with dependency trees.

Traditional LSTM takes the previous hidden state ht�1, the previous cell state ct�1 and the
current time step input xt into account and generates a new hidden state and cell state. However
in the child sum tree LSTM, the main gist remains the same except component node states are
now generated based on the states of its all possible children in the tree structure. To do
this, first, the hidden states at the previous time step is summed up for all of the children of
the component node and the internal gates (i.e., input, output and intermediate cell state) are
updated using this new hidden state.

h̃ j =
X

k2C( j)

hjk (5.2)

where C( j) denotes the set of children of node j. Next using this modified hidden state h̃, input,
output and intermediate cell states are calculated as follows,

i j = �(W(i)x j + U(i)h̃ j + b(i)) (5.3)

o j = �(W(o)x j + U(o)h̃ j + b(o)) (5.4)

c̃ j = tanh(W(c)x j + U(c)h̃ j + b(c)) (5.5)

where W (i), W (o) and W (c) are the parameters to be learned. Instead of having just a single forget
gate, tLSTMs have k forget gates where k is equal to the number of children of the target node.
This multiple forget gate allows tLSTM to incorporate individual information from each of the
children in a selective manner. Each forget gate is calculated as follows:

f jk = �(W( f )x j + U( f )hjk + b( f )) (5.6)

Next, the individual forget gate outputs are multiplied with corresponding cell state values and
then combined to get a single forget vector which is further used to get the final cell state of
the model as follows:

f̃ j =
X

k2C( j)

f jk · ck (5.7)

c j = i j · c̃ j + f̃ j (5.8)
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Finally, the update equation for the hidden state of a child sum tree LSTM cell is similar to the
one used in traditional LSTM,

h j = oj · tanh(c j) (5.9)

Each of the parameter matrices represents a correlation among the component vector, input
x j and the hidden state hk of the kth child of the component unit. For example, the sigmoid
function at the input gate represents semantically important words at input by giving values
close to 1 (e.g., a verb) and relatively unimportant words by giving values close to 0 (e.g., a
determiner). Since the hidden state and cell state values of the parent node are generated based
on the hidden state and the cell state of its children, child sum Tree LSTM is well suited for trees
with a high branching factor or whose children are unordered. Because of this phenomenon,
it is a good choice for dependency trees where the number of dependents of a parent can be
highly variable.

5.3.3 Structured Attention

The attention mechanism [24] has been a breakthrough in neural machine translation (NMT)
in recent years. This mechanism calculates how much attention the network should give to
each source word to generate a specific translated word. The context vector calculated by
the attention mechanism mimics the syntactic skeleton of the input sentence precisely given a
su�cient number of examples. Recent work suggests that incorporating explicit syntax alle-
viates the burden of modeling grammatical understanding and semantic knowledge from the
model [234]. However, these features are designed by evaluating the model on some down-
stream tasks without having any representation [136].

Sentences in bio-medical texts can be comparatively quite complex. For instance, informa-
tion about a protein relation sometimes extends over more than one syntactic constituent, or a
modifier following a protein name sometimes names a new protein. As a consequence, most of
the research uses dependency graph information as an external feature or carefully engineers
more compact features extracted from the dependency tree arcs [181, 261]. On the other hand,
some research adopts input latent graph parsing [87] as the syntax representation. Inducing the
dependency tree in a principled manner while training allows the model to learn the internal
representation of the sentence very well [115, 234].

In our structured attention model, the input sentence is first fed to a BLSTM which gives
output at each time step for each word in the sentence.

S = BLS T M(x) (5.10)
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Figure 5.2: Work flow of a child sum tree LSTM on part of a dependency tree

where the term S is the content annotation. Next, this S is transformed into a structured an-
notation as a matrix through structured attention. To do this, first, we initialize three matrices
Wq, Wk, Wv 2 Rd⇥d and add them as trainable model parameters. Here d is the hidden dimen-
sion of the BLSTM. Then using these matrices we map S into query, key and value matrices
S q = WqS, S k = WkS, S v = WvS 2 Rn⇥d respectively. Here n is the length of the source sen-
tence. Next we use Kirchho↵’s matrix-tree theorem for computing marginals of non-projective
dependency parsing and calculate a structured attention matrix on BLSTM output S [238]. At
first, we multiply the query and key matrices to get an intermediate score matrix .

scorei = S qS k
T (5.11)

Next, we initialize a query matrix Rq 2 R1⇥d for the root node and add it as a model parameter.
Following this, we multiply this Rq with the key matrix S k to get a vector of length n

root = S kRq
T (5.12)

Next we pick the diagonal elements of scorei and add it with the root vector to get a final score
and then we normalize it using a partition function. Finally, we arrange this vector in the form
of a block-diagonal matrix of size n ⇥ n. We call this matrix �. The cell �i j means how likely
the word xi is to be the parent of word x j as it captures all pairwise word dependencies.
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We are interested in selecting a soft parent word for each word and to do this we can
transform the matrix � into an attention matrix A where each cell Ai j is the posterior probability
p(xi = parent(x j)|x). We define an adjacency matrix z 2 {0 ⇥ 1}n⇥n in order to encode the
source’s dependency tree. We can transform our posterior into a marginal by defining it as
p(zi j = 1|x;�) which is interpreted as the probability of word xi to be the parent of word x j

given the input x and matrix �. So the term A becomes

Ai j = p(zi j = 1|x;�) =
X

z:zi j=1

p(z|x;�) (5.13)

Next, we calculate the marginal of non-projective dependency structures using a framework
proposed by [115] which utilizes Kirchho↵’s Matrix-Tree Theorem [238]. In order to fill all
the cells of the attention matrix A, we need to calculate the spanning tree from each source
word in the sentence along with the probability of reaching every target node. To do this we
first define a Laplacian matrix L 2 Rn⇥n as follows:

Li j(�) =

8>>>>><
>>>>>:

nP
k=1
k, j

exp(�k j), if i = j

� exp(�i j), otherwise
(5.14)

Next we define another matrix L̃ for root word selection as follows:

L̃i j(�) =

8>>><
>>>:

exp(� j j), if i = 1

Li j(�), if i > 1
(5.15)

The marginals are then calculated as,

p1 = (1 � �1 j)
⇢

exp(�i j)
h
L̃�1(�)

i
j j

�

p2 = (1 � �i1)
⇢

exp(�i j)
h
L̃�1(�)

i
ji

� (5.16)

Ai j = p1 � p2 (5.17)

where �i j is the Kronecker delta. Finally the marginals for the root node is calculated as,

Ak,k = exp(�k,k)

L̃�1(�)

�

k,1
(5.18)

This marginal computation is fully di↵erentiable, thus we can train the model with the standard
back-propagation algorithm [82].
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5.3.4 Combining the modules

In this subsection, we combine tLSTM and structured attention as discussed above to build our
final model. To the best of our knowledge no work has combined the independently produced
gold standard dependency structure information with learning the structure through the model
without accessing the actual dependency tree. The method described below accomplishes this
fusion.

For the tree LSTM module, we first take the raw sentence and apply the Stanford depen-
dency parser to represent it as a vector of parents where the value j at index i means word
x j is the parent of word xi in the dependency tree. We call this vector P. Next, using this P
we compute a tree for each sentence and as an attribute we store all of its child information.
This allows us to recursively traverse the entire tree if we start from the root. Apart from
this, we have another matrix W which is the embedded representation of each of the words in
the sentence. Next, we pass the root of this tree and W to a recursive module which returns
a hidden state and a cell state value for the entire sentence by traversing in a tree-structured
manner. Figure 5.2 shows the work flow of tLSTM model on the dependency tree of a sen-
tence. Figure 5.2(a) shows a sample dependency tree of one of the sentences from the corpus
and Figure 5.2(b) shows how the hidden state and cell state of the root node of a sub-tree gets
calculated. As shown in Figure 5.2(b), for a sub-tree with two children, the work flow is as
follows:

While doing a traversal from the root, the tLSTM calculates the hidden state and the cell
state of a node using its child hidden state, child cell state which have already been calculated
recursively,

H,C = tLSTM(W, (Hi)c, (Ci)c) (5.19)

here, i represents the ith child, H is the hidden state and C is the cell state. H and C marked
with c refers to the child hidden and cell state. For our example, Eqn. 5.19 gets called for
the word ‘and’ and for the word ‘PROTX0’ as leaf nodes and returns two sets of hidden state
and cell state vectors. Next we concatenate the two hidden state vectors and the two cell state
vectors and again apply Eqn. 5.19 on the resulting vector. But as a parameter, this time we pass
the word vector for ‘PROTX1’, the concatenated hidden state vector and the concatenated cell
state vector. This gives us a new hidden state and cell state vectors for the word ‘PROTX1’.
We continue to traverse the whole dependency tree in this manner, finally finishing with an
encoded hidden state value He 2 R1⇥n and a cell state value Ce 2 R1⇥n for the entire tree.

For the structured attention module, we use W as input and apply a BLSTM on it to get an
output vector, O, which contains the LSTM output for each time step. Next, we pass this to the
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Corpus #Positive #Negative #Sentences
AIMed 1, 000 4, 834 1, 955
BioInfer 2, 534 7, 132 1, 100
IEPA 335 482 486
HPRD50 163 270 145
LLL 164 166 77

Table 5.1: Basic statistics of the corpora

structured attention (sAttn) module which gives an attention matrix � 2 Rn⇥n as output.

� = sAttn(O) (5.20)

Next we use this � with value matrix Sv to calculate the syntactic context Cs 2 Rn⇥d as follows.

Cs = �Sv (5.21)

Following this, we take the vectors only at the first and last index of Cs which has the entire
left context as well as right context information respectively and concatenate them. We term
this as C̃s. Then we concatenate this C̃s with He to get the final context M. Next, we use an
MLP followed by sigmoid over this M to generate a non-linear version M̃. Finally, our model
predicts a corresponding label y from this M̃ as follows,

p(y|x, ✓) = sigmoid(MLP(M))

yi = arg max
y

p(y|x, ✓) (5.22)

5.4 Experimental Analysis and Results

In this section, we describe the results obtained with our proposed architecture. We use pre-
cision, recall and F-score as our evaluation metrics. This section also contains the detailed
statistics of all of the five PPI corpora, the preprocessing steps applied to convert the problem
into classification domain as well as the hyper-parameter settings of our models. In addition
to that, it contains the results of the top performing models for all the corpora and extensive
comparative analysis with our models. Finally, we conclude this section by giving cross cor-
pus evaluation statistics of our architecture where we train our model on one corpus and test
on another.

We evaluate our tLSTM model on five publicly available PPI corpora: AIMed [42], BioIn-



5.4. Experimental Analysis and Results 69

fer [186], IEPA [68], HPRD50 [79] and LLL [167]. In our experiments, we use the converted
version of these corpora1 and details about these along with the conversion characteristics can
be found in [185]. The statistics of the five PPI corpora are given in Table 5.1.

In order to generalize the learned model, we have modified the corpora slightly. Pro-
tein names are replaced with special symbols in each sentence, i.e., PROTX0, PROTX1
and PROTX2. Here, PROTX1 and PROTX2 are the proteins of interest and all other non-
participating proteins are marked as PROTX0. For example, the following sentence “PROTX1
induces chemotaxis and adhesion by interacting with PROTX2 and PROTX0” indicates that
PROTX1 and PROTX2 have a positive interaction. Similarly, the sentence “PROTX0 induces
chemotaxis and adhesion by interacting with PROTX1 and PROTX2” indicates that PROTX1
and PROTX2 have a negative interaction. In this example there are three possible pairs of pro-
teins and hence three variants of the sentence is possible. Two of them have positive interaction
and one has negative interaction. In general, if a sentence has n protein references, there are

⇣
n
2

⌘

protein pairs and hence
⇣

n
2

⌘
variants of the sentence.

We evaluated our model with 10-fold cross validation on each corpus allowing us to com-
pare our results with relevant earlier works. In k-fold cross validation, the corpus is divided into
k parts, (k � 1) parts are training data and the other part is testing data, and is repeated k times.
We used StratifiedKFold from Python’s Scikit-learn package which preserves the percentage
of samples for each class in each fold [179].

Table 5.2 shows the detailed hyper-parameter settings used for our model. We trained our
model on a GeForce GTX 1080 GPU with the ‘Adam’ and ‘SGD’ optimizers. All the results in
the next section are reported using ‘SGD’ as it was giving the best results. The ‘Learning rate
decay’ parameter was only used with the ‘SGD’ optimizer. We used PyTorch 0.4 to implement
our model under the Linux environment.

Table 5.3 shows the overall evaluation of our model in terms of precision, recall and F-
score for the five PPI corpora and compares these results with the currently available state of
the art models. Among these five corpora, AIMed is the most di�cult as it has more noise,
the sentences have nested named entities and there are many inaccurate annotations. With
the AIMed corpus, we achieved a highest F-score of 81.6% with a significant 4.7 percentage
points improvement over the previous best model. The tLSTM + tAttn model also achieved the
best precision and recall scores of 81.4% and 81.9%, respectively. Our tLSTM model without
attention also surpassed all of the existing models with a significant improvement in precision,
recall and F-score achieving 80.5%, 80.8% and 80.6%, respectively. The previous best model
[93] uses just the raw words and a BLSTM to capture the word context from the forward
and backward directions. The second corpus that we evaluated our model on is BioInfer, the

1http://mars.cs.utu.fi/PPICorpora/
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Hyper-parameter Values
Number of layers 1/2
Embedding dimensions 200
Hidden dimensions 300/400/500
Batch size 10/16/20
Number of epochs 30/40/50
Dropout rate 0.5/0.1
Learning rate 0.001/0.015
Learning rate decay 0.05

Table 5.2: Hyper-parameters used for the experiments (in boldface) and the ranges that were
searched during tuning.

Methods AIMed BioInfer IEPA HPRD50 LLL
P R F P R F P R F P R F P R F

GK [15] 52.9 61.8 56.4 56.7 67.2 61.3 69.6 82.7 75.1 64.3 65.8 63.4 72.5 87.2 76.5
CK [159] 55.0 68.8 60.8 65.7 71.1 68.1 67.5 78.6 71.7 68.5 76.1 70.9 77.6 86.0 80.1
WWSK [108] 61.4 53.3 56.6 61.8 54.2 57.6 66.7 69.2 67.8 73.7 71.8 72.9 76.9 91.2 82.4
NHGK [260] 54.9 68.5 60.2 59.3 68.1 63.4 72.4 79.8 75.3 67.8 85.3 74.6 86.2 92.1 89.1
EDG [180] 57.3 65.3 61.1 57.6 59.9 58.7 69.9 76.2 72.9 76.7 83.3 79.9 92.1 78.2 84.6
PIPE [48] 57.2 64.5 60.6 68.6 70.3 69.4 62.5 83.3 71.4 63.8 81.2 71.5 73.2 89.6 80.6
Bi-LSTM [93] 78.8 75.2 76.9 87.0 87.4 87.2 � � � � � � � � �
RNN+CNN [261] 52.9 61.8 56.4 56.7 67.2 61.3 69.6 82.7 75.1 64.3 65.8 63.4 72.5 87.2 76.5

tLSTM 80.5 80.8 80.6 88.3 87.9 88.1 77.0 76.7 76.4 82.4 82.8 82.0 85.3 84.9 84.8
tLSTM + tAttn 81.4 81.9 81.6 88.9 89.3 89.1 78.6 78.7 78.5 81.7 82.3 81.3 84.8 84.3 84.2

Table 5.3: Results (in %) of our model (tLSTM) from 10-fold cross-validation against other
methods. Bold text indicates the best performance in a column. GK: Graph Kernel (Airola et
al., 2008). CK: Composite Kernel (Miwa et al., 2009). WWSK: Walk-weighted Subsequence
Kernel (Kim et al., 2010). NHGK: Neighborhood Hash Graph Kernel (Zhang et al., 2011).
EDG: Extended Dependency Graph (Peng et al., 2015). PIPE: Protein-protein Interaction
Passage Extraction (Chang et al., 2016). Bi-LSTM: Bidirectional Long-Short Term Mem-
ory (Hsieh et al., 2017). RNN + CNN: Combination of Recurrent and Convolutional Neural
Network (Zhang et al., 2018).

corpus with the most (9666) annotated interactions among the five. It has fewer sentences but
more annotated examples than AIMed indicating that the sentences are significantly longer
and contain a large number of proteins in a single sentence. With BioInfer, our tLSTM +
tAttn model achieves a highest precision, recall and F-score of 88.1%, 89.3% and 89.1%,
respectively. Our tLSTM model without attention is the second best with precision – 88.3%,
recall – 87.9% and F-score – 88.1%. It is to be noted that we achieved state of the art results
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AIMed BioInfer IEPA HPRD50 LLL
AIMed † � 47.0 38.6 41.5 34.6
AIMed ‡ � 45.0 37.9 39.1 33.5
BioInfer † 50.8 � 40.8 43.7 35.0
BioInfer ‡ 50.0 � 40.0 45.5 33.5

Table 5.4: Cross-corpus results (F-score in %). Rows correspond to training corpora and
columns to testing. Models marked with † represent tLS T M and ‡ represent tLS T M + tAttn

with all evaluation metrics on these two large and complex corpora without any manual feature
engineering. With the IEPA corpus, our tLSTM + tAttn model achieves a highest precision
and F-score of 78.6% and 78.5%, respectively. Our model’s recall score is 78.7% which is
behind only the 83.3% of [48] which combines PPI with a convolution tree kernel. However,
their precision and F-score is low compared to both of our tLSTM and tLSTM + tAttn models.
Regarding the HPRD50 corpus, our tLSTM model without attention achieves the best precision
and F-score of 82.4% and 82.0% respectively. Our tLSTM + tAttn model is the second best in
terms of precision and F-score. However, none of our models reached the best recall score of
85.3% by [260] which is based on extracting the higher order substructure of the dependency
graph by bit label operations on dependency graph nodes. Again, their precision and F-score
is low compared to both of our models. With the LLL corpus, none of our models achieve best
scores. Instead the tLSTM model without attention achieves the second best F-score of 84.8%
and the third best precision score of 85.3%. The best recall and F-score of 92.1% and 89.1% is
achieved by [260] which uses a neighbourhood hash graph kernel whereas [180] achieves the
best precision score of 92.1% using an extended dependency graph. However, [260] and [180]
both perform poorly for the other four datasets in comparison with our models. An interesting
aspect of our evaluation is that whenever the number of training data samples is large, no matter
how complex the samples are, deep learning based methods perform very well compared to the
feature based methods. With a small number of training data samples, the performance can
fall short of other methods. This is what happens with LLL, the smallest corpus. Also a
large number of training data samples allows the structured attention mechanism to extract
the dependency information very well. That is why for comparatively large corpora, AIMed,
BionInfer and IEPA, our model with attention performs best and achieves state of the art results,
whereas for the two small corpora, tLSTM without attention performs better.

The cross corpus evaluation is inspired by the work [239] to answer the fundamental ques-
tion of practical PPI extraction – “which corpus to be trained on in real life?”. Table 5.4 shows
this cross corpus evaluation. Rows correspond to the training corpora and columns correspond
to the test corpora. We only used AIMed and BioInfer as the training corpora and ignored
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the small ones because there is no point in training on small simple corpora and test on large
complex corpora as suggested in [181]. It is clearly visible that the performance degrades on
all of the corpora as the training and testing sets are not from the same distribution which goes
against the fundamental machine learning theory about training and test sets being identically
distributed. Being larger in size, the models that are trained on BioInfer perform better than
the models trained on AIMed. One more interesting aspect of our evaluation is that the mod-
els without attention perform better than the models with attention. The main reason is that
our structured attention captures the syntactic dependencies in the sentences and because of
the two di↵erent distributions between the training and testing sets, the attention mechanism
fails to capture these dependencies. Overall our cross corpus evaluation is close to the one
from [181] with a slight improvement when training on BioInfer and testing on AIMed.

5.5 Conclusions

In this chapter, we propose a tree recurrent neural network architecture with structured attention
mechanism for the supervised PPI extraction problem. Our model gets significant improvement
on two largest public PPI corpora, AIMed and BioInfer. Addition to that, our model gets state
of the art result for several other small corpora too. Our experimental result shows that our tree
LSTM model with structured attention is more suitable compared to traditional recurrent neural
network based approaches for extracting useful features from dependency tree information of
a given bio-medical text. Moreover, we believe that other linguistics features that are already
proven to be useful for PPI can be included to improve the model. In future, we would like to
explore the idea of leveraging other features to make our model more accurate.



Chapter 6

E�cient Transformer-based Sentence
Encoding for Sentence Pair Modelling

This chapter is based on the paper titled “E�cient Transformer-based Sentence Encoding for
Sentence Pair Modelling” co-authored with Robert E. Mercer that appeared in The 32nd Cana-
dian Conference on Artificial Intelligence (CAI 2019) [7]. The paper was awarded “Best Stu-
dent Paper Award”.

Modelling a pair of sentences is important for many NLP tasks such as textual entailment
(TE), paraphrase identification (PI), semantic relatedness (SR), and question answer pairing
(QAP). Most sentence pair modelling work has looked only at the local context to generate
a distributed sentence representation without considering the mutual information found in the
other sentence. The proposed attentive encoder uses the representation of one sentence gen-
erated by a multi-head transformer encoder to guide the focussing on the most semantically
relevant words from the other sentence using multi-branch attention. Evaluating this novel
sentence encoder on the TE, PI, SR and QAP tasks shows notable improvements over the stan-
dard Transformer encoder as well as other current state-of-the-art models.

6.1 Introduction
Modelling the relationship of sentence pairs typically involves some comparison of the sen-
tences: semantic relatedness [151], textual entailment between premise and hypothesis [39],
true-false question-answer selection [251] and paraphrase identification [89]. Previous work
tends to use the representation of each sentence separately overlooking the impact of combin-
ing the information from the two sentences. It is contrary to what humans do, we usually look
at the keywords of both sentences when doing a comparison. For example, when comparing
the sentence “There is no biker jumping in the air” with the sentence “A lone biker is jumping
in the air” for the semantic relatedness task, attention should be given on the word “no” if we

73
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consider both sentences at the same time, whereas if we look at them independently, then the
attention shifts to the most important portion of the sentences, “biker is jumping in the air”,
which may not have any contribution to the semantics. This example shows the need for an
architecture that builds a representation of one sentence by looking at both.

Recurrent neural networks (RNNs) [194] are the most widely used neural network model
for sequence data. To overcome issues such as the “vanishing gradient problem”, variants
have been proposed: LSTM [92] and GRU [55]. They have been successful in a variety of
applications such as machine translation, sequence labelling, speech recognition, and question
answering. These models are di�cult to parallelize because of a built-in state dependency and
they are also inclined to overfit.

A popular LSTM framework is the sequence-to-sequence model using an encoder-decoder
architecture where the encoder encodes the entire source sequence and the decoder gener-
ates the target sequence. For longer sequences, this model tends to generate asymmetrical
sequences. To solve this, “Attention” was proposed, especially for the machine translation
task: the decoder looks at each encoder word before generating a single output at each time
step [24, 144]. However this kind of Attention has a high computational overhead and it is af-
fected by the state dependency problem. As a variant to this, Parikh et al. [176] proposed a de-
composable attention mechanism which first decomposes the entire problem into sub-problems
and then calculates attention via a soft alignment. Utilizing this, Vaswani et al. [240] proposed
the “Transformer” model, which doesn’t have any state dependencies, for the machine trans-
lation task. The main building blocks of their model are positional encoding [80], multi-head
attention, and layer normalization [21].

In this chapter, we propose an improved “Transformer Encoder” model to encode a pair
of sentences for the sentence pair modelling task. To model a sentence pair, each sentence is
viewed individually via multi-head attention. The semantic keywords in both sentences are
looked at using a multi-branch cross attention which takes the representation of one sentence
to put attention on the words of the other sentence. Evaluation done on the four aforemen-
tioned tasks shows notable improvements over the standard Transformer encoder on all of the
tasks and best results on the textual inference and question-answer pair tasks when compared
against all state-of-the-art encoder models including the best models especially designed for
the specific tasks.

6.2 Related Work

Cer et al. [45] propose a sentence encoder model based on the encoder portion of Trans-
former [240] and perform an element-wise sum of the encoded representations at each word
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position to get a fixed length sentence representation. They evaluate their model mostly on
sentence classification tasks and proved the e↵ectiveness of transfer learning at the sentence
level compared to the word level. Conneau et al. [58] also propose a universal sentence rep-
resentation model based on LSTMs where it is first trained on the Stanford Natural Language
Inference task and then uses transfer learning. Evaluation is on a range of tasks including
QAP, PI, and SR. Zhou et al. [270] propose a sentence pair ranking model where they encode
attention in the tree structure of the hypothesis based on the sequential representation of the
premise. Lin et al. [135] propose a self-attentive sentence encoding model where they replace
the pooling block with a self attention block on top of an LSTM encoder. Instead of extracting
a vector representation, the authors use a matrix as the sentence representation where each row
attends to di↵erent portions of the sentence. Zhao et al. [263] propose a self-adaptive hierarchi-
cal model which first extracts an intermediate representation of all possible phrases and finally
takes the convex combination of them through gating. Yang et al. [247] use a hierarchical atten-
tion network for document classification where the first BiLSTM gets the word level attention
and the second BiLSTM extracts the sentence level attention. Socher et al. [208] propose a
recursive auto-encoder-based paraphrase identification model that first reconstructs each of the
phrases from the tree representation of both sentences. Finally, this model extracts the sentence
representation by doing a min-pooling operation over the transformed di↵erences between the
sentences. Yin et al. [251] propose an attention based convolutional sentence encoding model
where they infer the attention matrix over a sentence pair through a simple matching function
and then apply weighted pooling followed by another set of convolutions to get the final sen-
tence representation. Mueller et al. [163] first encode the sentence pair to be compared using a
siamese BiLSTM encoder and then use a simple Manhattan distance based matching function
to infer the similarity score. Finally, they use an additional non-parametric regression block to
further calibrate their model’s prediction.

6.3 The Model

The standard pipeline architecture for sentence pair modelling starts with encoding both the
hypothesis and premise sentences as vectors using a neural sentence encoder followed by a
matching layer where the corresponding vector representations are compared with a similarity
metric. Our sentence encoder architecture for modelling pairs of sentences is based on the
“Transformer” [240] and the “Universal Sentence Encoder” [45]. Unlike LSTMs where the
information at the current time step is dependent on the previous one, Transformer can encode
all the words of a sentence using only linear tensor multiplications making it easily paralleliz-
able. Figure 6.1 shows a sketch of our Transformer based sentence encoder which is built using
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stacked self-attention, point-wise fully connected layers, and branch attention for both of the
encoders, respectively.

First our encoder inputs both the hypothesis and premise as sequences, H = [h1, h2, . . . , ha]
and P = [p1, p2, . . . , pb] respectively where a denotes number of words in the hypothesis and
b denotes number of words in the premise. We then initialize a pre-trained word embedding
layer which transforms each of the words in those sequences into vectors and gives a new
input representation in terms of tensors Ha⇥d and Pb⇥d. However, these tensors only have
bag of words information without any explicit knowledge of the word positions. In order
to encode the positional information with the input, we initialize a positional encoding layer,
where the positions are assigned by a unique 300 dimensional vector with each dimension being
a sinusoid. Out of many possible initialization, we choose to initialize the odd dimensions by
a sine function and the even dimensions by a cosine function as follows,

PE (pos, 2i) = sin(pos/10000(2i/dmodel))

PE (pos, 2i + 1) = cos(pos/10000(2i/dmodel))
(6.1)

where pos denotes the position and i denotes the dimension. These wavelengths form a geo-
metric progression from 2⇡ to 10000 ·2⇡ having an interesting property that for any fixed o↵set
k, sin(k/z) and cos(k/z) are constant and PEpos+k can be represented by some linear function
of PEpos. Following this, we add a deep “Multi-Head Self Attention” layer which allows each
position of our encoder to attend to all relative positions in the previous layer enabling it to eas-
ily learn long-range dependencies. In order to avoid repetition, we will explain this layer only
for the hypothesis as for the premise it is exactly same. We start by initializing three learned
parameters Wq, Wk, Wv 2 Rn⇥d⇥l where n denotes the number of heads and d and l represent
the hidden dimensions having the constraint d = n ⇥ l. Next, we copy the hypothesis tensor,
H, n times creating a new tensor H̃ of size n ⇥ p ⇥ d and multiply it with the three parameter
tensors Wq, Wk, Wv independently as follows,

Q = H̃TWq K = H̃TWk V = H̃TWv (6.2)

This produces three new tensors called query (Q), key (K), and value (V) with each of them
having dimension n ⇥ p ⇥ l. Next we apply batch-wise tensor multiplication on query and key,
normalize it and pass the result through Softmax which gives us the attention probabilities,
An⇥p⇥p as follows,

A = Softmax
 

QKT

p
d

!
(6.3)

Following this, we multiply this attention A with value V which gives us the transformed
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Figure 6.1: Model architecture

hypothesis tensor Ĥn⇥p⇥l (Ĥ = AV) where each of the n heads captures how much attention
should be given on di↵erent phrases within the sentence and finally, we combine all the deci-
sions by doing a concatenation over the cardinal dimension of the resulting tensor. Next we
add a residual block followed by a layer normalization block where we do the normalization of
inputs across the features. This permits each input to have a di↵erent normalization operation
thereby allowing arbitrary mini-batch sizes to be used easily. This gives the final self atten-
tive representation of the hypothesis. We follow the same procedures as above and derive the
self attentive representation of the premise P̂q⇥d. Instead of passing these representations to a
matching layer we utilize the mutual information between the sentences through another layer
of attention. Our idea is inspired by Rocktaschel et al. [193], Hermann et al. [91] and Zhou et
al. [270]. Contrary to choosing “Multi-Head Attention”, we choose “Multi-Branch Attention”
as the composition function of this layer. According to Ahmed et al. [3], these branches mimic
the same principles of multiple heads with an additional advantage of inferring a di↵erent
representation at a time and the model automatically learns to combine these representations
during training. Next, we explain this layer in terms of the hypothesis only in order to avoid
needless repetition. Initially, we utilize the same equations as above from Multi-Head attention
with the exception that the query is calculated on the hypothesis whereas the key and value are
calculated on the premise as follows,

Q̂ = ĤTŴq K̂ = P̂TŴk V̂ = P̂TŴv (6.4)
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Here Ŵq, Ŵk, Ŵv are new model parameters defined especially for this layer. Next we apply
Eqn. 6.3 with these new Q̂ and K̂ to get a cross attention probability matrix Ân⇥p⇥q and following
this, we extract an intermediate representation through Ĥ = ÂV̂ . We then initialize a learned
parameter Wz 2 Rn⇥d⇥d and perform a batch-wise tensor multiplication with Ĥ to get a cross
attentive hypothesis representation Hn⇥p⇥d as follows,

H = ĤWz (6.5)

Here n depicts the branch id. Intuitively, this H contains n di↵erent transformed representations
of its input where each of them resides in its individual branch. Following this, we scale each of
these branch representations with a new learned parameter  2 Rn and add a layer normalization
block on top of it,

Hi = layerNorm(Hii) (6.6)

However, we require
P
i = 1.

Next we add a separate and identical position-wise feed forward module on each position.
Vaswani et al. [240] use two convolutions with kernel size 1 and a RELU activation function.
However, in this work we use two feed forward layers with feature expansion dimension of
size 2048. Eqn. 6.7 summarizes these as follows,

FFN(x) = max(0, xW1 + b1)W2 + b2, where x 2 {H1,H2 . . . ,Hn} (6.7)

This gives a new set of transformed hypothesis tensors ¯̄H1, ¯̄H2, . . . , ¯̄Hn 2 Rp⇥d. Finally we
perform another scaling operation on this set of tensors with a new learned parameter ↵ 2 Rn

and then add all these resulting tensors to get the final attentive hypothesis representation as
follows,

H f =

nX

i=1

¯̄Hi↵i (6.8)

Again, we require
P
↵i = 1. We use the same procedures as above with slightly changed

notation to get the final attentive premise representation Pf . Specifically, to achieve this, in Eqn.
6.4, query is calculated on the premise whereas key and value are calculated on the hypothesis
and following this all instances of H are replaced with P. Next, we add a matching layer
where both of these representations are compared and a class decision is made according to the
underlying task. In this layer, both the hypothesis (H f ) and premise (Pf ) representations are
passed through a position-wise feed forward block as depicted in Eqn. 6.7. Next, these self- and
cross-context-aware word representations are converted to a fixed length sentence encoding
vector by computing the element-wise sum of the representations at each word position. A
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nonlinearity, tanh, is introduced in order to make this vector compatible with the underlying
objective functions.

a = tanh(elementwiseSum(H f ))

b = tanh(elementwiseSum(Pf ))
(6.9)

Next, we compute a range of features such as di↵erence, element-wise product and average
for the tuple < a, b >. We anticipate that such an operation could help to capture the inference
between components in the tuples and catch induction relationships such as logical inconsis-
tency. These features are then concatenated with the original representations, a and b, and we
create a new tensor representation from this as follows,

F = makeTensor([a, b, |a � b|, a ⇤ b,
(a + b)

2
]) (6.10)

Next, we perform an element-wise multiplication of this feature tensor with a learned pa-
rameter vector � 2 Rn having the constraint

P
�i = 1. The final inference relationship vector

results from an element-wise weighted addition of each feature position is as follows,

F =
4X

i=1

Fi�i (6.11)

Next, an MLP maps this F to the required number of classes Y1⇥c = MLP(F), where c rep-
resents the number of classes. Finally we use Softmax to turn this into class probabilities and
our model predicts a corresponding label y⇤ as follows,

p(y|x, ✓) = Softmax(MLP(F))

y⇤ = arg max
y

p(y|x, ✓) (6.12)

6.4 Experimental Setup

In this section, we detail the experimental setup used for evaluation. We first describe our
training corpora as well as all of the benchmarks used in other standard sentence pair modelling
studies. Following this, we explain the technical details of our proposed architectures along
with their hyper-parameter settings.

First, we conduct our experiment on the Sentences Involving Compositional Knowledge
(SICK) dataset [151]. The sentences are derived from video and image annotations. The first
task is to classify a given sentence pair into three classes: Entailment, Neutral and Contradic-
tion. The standard evaluation metric used for this inference task is accuracy. In addition to this,
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SICK MSRP AI2-8grade
Train 4500 4076 12689
Valid 500 N/A 2483
Test 4927 1725 11359

Table 6.1: Dataset description. Number of sentences in each split.

Config Value Config Value
Learning rate 0.1 / 0.05 / 0.001 Max Norm 5
Batch size 10 / 15 / 25 Learning rate decay 0.99
No. of layers 1/ 2 / 3 Dropout FC 0.1
Hidden dimension 300 No. of Head / Branches 8
Word embedding Glove 300D Wq,Wk,Wv dimension 64

Table 6.2: Hyper-parameters used for the experiments (in boldface) and the ranges that were
searched during tuning.

each of the SICK sentence pairs is also annotated with a relatedness label 2 [1, 5] corresponding
to the average relatedness as judged by di↵erent individuals. The standard evaluation metrics
used for this relatedness measurement task are Pearson’s r and mean squared error (MSE). We
experiment with two di↵erent forms of this problem. While treating it as a regression problem,
we use Manhattan distance similarity metric [163], and when converting it into a distribution
mapping task, we measure the continuous distance between the predicted and ground truth dis-
tribution [227, 270]. We use weighted cross entropy as the loss function for the inference task
and for the relatedness task, we use MSE when it’s a regression problem and KL divergence
loss when it’s a distribution mapping problem. The next task used for evaluation is paraphrase
identification using the Microsoft Research Paraphrase Corpus (MSRP) [69]. Given a pair of
sentences, the task is to identify whether or not they are paraphrases of each other. As it is a
classification task, we use accuracy as the evaluation metric. Since the sentences in this dataset
are mostly stock market related and contain many numbers, during preprocessing we replace
all these numbers with a <number> tag. The final task on which we evaluate our model is the
true-false question selection task from the AI2-8grade dataset [30]. Each data sample consists
of a pair of sentences with one being the question and the other being the evidence formed
by replacing the wh in the question by the answer. These evidence sentences in the sentence
pairs are mainly collected from CK12 textbooks. As it is a binary classification task, we use
accuracy as the evaluation metric. Detailed statistics for each of these datasets are summarized
in Table 6.1.

Table 6.2 shows the hyper-parameter settings used during the experiments. We train our
models on a GeForce GTX 1080Ti GPU with ‘Adam’, ‘AdaDelta’, ‘AdaGrad’ and ‘SGD’ op-
timizers. Results in the next section are reported using ‘SGD’ as it was giving comparatively
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better results. We use PyTorch 0.4.1 for implementing the models under the Linux environ-
ment.

6.5 Experimental Results and Analysis

In this section, we present the detailed results obtained with our Transformer encoder and
compare with some of the top performing models for the four sentence pair modelling tasks.
Additionally, we give a qualitative analysis by showing the predictions of our models on some
random test samples for all of the tasks. Finally, we conclude this section by giving an in-
sight about the performance of our model by analyzing the attention weights through heatmap
visualization.

Table 6.3 displays our model’s overall evaluation on the four corpora in terms of task spe-
cific evaluation metrics. The first group contains the results of our model in two di↵erent
configurations, each one having two semi versions: 1. Head attention for both self and cross, 2.
Head attention for self and Branch attention for cross. In configuration 1, we keep the self and
cross attention blocks separate for the hypothesis and premise whereas in the siamese version,
we have only one copy of self and cross attention block for both hypothesis and premise as we
keep the parameters shared. In order to analyze the potency of our model, we implement some
currently available top performing sentence encoders with our fixed hyper-parameter settings
and report their results in the second group of this table. The last group contains the results of
some preeminent models on each task as well as the ones that report their evaluation on one or
more corpora. For the paraphrase identification task on the MSRP dataset, our model achieves
the second best accuracy falling just short of RAE [208] which is specifically designed for this
task. However, our model with head attention outperforms all the SOTA sentence encoders by
quite a good margin of 1.94%. We also get better accuracy than all of the tree structured models
from [263] which have an implicit advantage of having access to the sentence structure as parse
trees. For the true-false question-answer pairing task, our model with head attention achieves
the best results. It clearly exceeds all of the tree structured models [263] by a very good margin
of approximately 5-7 percentage points, but it ties with InferSent [58] on accuracy: 77.29%
However, it achieves better results on two other tasks. It is to be noted that the standard RNN
and CNN based methods [30] perform very poorly on this dataset. One reason could be there is
a lot of repetitiveness in the questions which makes the number of unique samples to be around
1/7th of the real data. For the SICK entailment task (SICK-E), the siamese version of our
model with branch attention achieves the best result among all of the reported results as well
as the ones that we re-implemented. Among the reported ones, Illinois-LH performs the best,
but it employs many task specific features such as the count of words like ‘no’, and ‘not’ and
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Model MSRP AI2-8grade SICK-E SICK-R
Acc. Acc. Acc. r/MSE

Transformer Head - Head 75.90 75.29 83.17 72.75/0.5129
Non Siamese Head - Branch 75.80 74.78 82.63 73.04/0.5042
Transformer Head - Head 76.40 77.29 84.80 72.78/0.5127

Siamese Head - Branch 75.29 74.20 85.22 73.18/0.4969
InferSent [58] † 74.46 77.29 84.62 85.63/0.2732
LSTM [58] † 70.74 76.97 76.80 82.91/0.3244
BiLSTM Projection Layer [58] † 74.24 74.88 85.20 80.37/0.3667
BiGRU Last Encoder [58] † 70.46 74.76 81.47 83.17/0.3147
Inner Attention [135] † 69.74 74.77 72.01 78.63/0.3944
ConvNet Encoder [263] † 73.96 75.43 83.82 85.20/0.2806
Seq-LSTMs [270] 71.70 63.30 - 0.8528/0.2831
Seq-GRUs [270] 71.80 62.40 - 0.8595/0.2689
Tree LSTM [270] 73.50 69.10 - 0.8664/0.2610
Tree LSTM + Attn. [270] 75.80 72.50 - 0.8730/0.2426
Tree GRU [270] 73.96 70.60 - 0.8672/0.2573
Tree GRU + Attn. [270] 74.80 72.10 - 0.8701/0.2524
RAE [208] 76.80 - - -
Combine-skip + feats [111] 75.80 - - -
RNN [30] - 36.1 - -
CNN [30] - 38.4 - -
RNN-CNN [30] - 37.6 - -
Attn1511 [30] - 35.8 - -
Ubu.RNN [30] - 44.1 - -
Illinois-LH [122] - - 84.60 -
UNAL NLP [101] - - 83.10 -
SNLI-Transfer 3-class LSTM [39] - - 80.80 -
MaLSTM features + LSTM [163] - - 84.20 -
ECNU [264] - - 83.60 0.8414/-
Child sum Tree LSTM [227] - - - 0.8676/0.2532
combine skip + COCO [111] - - - 0.8655/0.2561
ConvNet [89] - - - 0.8686/0.2606

Table 6.3: Performance comparison of our model on di↵erent tasks against some existing top
performing models. We mark models that we implemented as †.

also hypernyms. Among the models that we re-implemented, BiLSTM with a projection layer
comes very close to our results but could not surpass. For SICK relatedness task (SICK-R), our
model performs very badly compared to all others. To overcome this, we replace our matching
layer with a Manhattan distance similarity function [163] but got almost the same results. One
reason could be that the vectors produced by Transformer based models have to go through a
linear summation followed by a normalization at the end which shrinks the norms of the vector
drastically. This transformation makes it unsuitable for regression as well as the distribution



6.5. Experimental Results and Analysis 83

Dataset Sentence 1 Sentence 2 GT Pr

SICK-E

A biker is riding away from a
fence A man is dancing on the road N N

Two white dogs are quickly
running together

Two white dogs are running
together E E

The man is going into the water The person is going into the sea E N

SICK-R

A few men in a competition are
running outside

A few men are running
competitions outside 3.9 3.7

A girl in white is dancing A girl is wearing white clothes
and is dancing 4.9 4.5

A man is talking on the radio A man is spitting 1.7 1.4

MSRP

I’m never going to forget this
day

I am never going to forget this
throughout my life 1 1

You can reach George Hunter
at (313) 222-2027 or
ghunter@detnews.com

Reach her at (248) 647-7221 or
email lberman@detnews.com 0 0

Orange shares jumped as much
as 15 percent

France Telecom shares dropped
3.6 percent while Orange
surged 13 percent

0 1

AI2-8grade
Venus has a warmer average
surface temperature than
Earth?

Even though it is farther from
the Sun , Venus is even much
hotter than Mercury

1 1

As a result , Venus is the hottest
planet 1 1

Venus’s clouds are a lot less
pleasant 1 0

Clouds on Earth are made of
water vapor 1 0

Table 6.4: Example predictions from the test set. GT: ground truth, Pr: predicted.

mapping problem. However, for classification problems, another linear transformation with a
tanh activation overcomes this.

Table 6.4 displays some example predictions produced by our Transformer encoder model.
The SICK-E examples show that our model is very good at predicting the textual entailment
class given a sentence pair. However on the same dataset but with a di↵erent task (SICK-R),
we noticed some deviation between our model’s predicted score and the actual score. We argue
that this behavior is incongruous because the sentences in the SICK dataset are fairly simple
and there are fewer named entities and uncommon words in the vocabulary. We observe that
our model is able to grasp the word ordering deviation correctly as in the first example, but
fails in cases where both sentences do not share the same words as happened in the second and
third examples. The third group displays the example predictions on the MSRP dataset. We
find that our model is able to predict the correct paraphrases in most of the cases even though
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(a) (b) (c) (d)

Figure 6.2: Visualization of attention weights. (a) Q=H, K=V=H (b) Q=P, K=V=P (c) Q=H,
K=V=P (d) Q=P, K=V=H (H = Hypothesis and P = Premise)

the sentence pairs have di↵erent numbers but sometimes gives false positive predictions as
happens in the third example where both sentences are talking about share prices. The AI2-
8grade group shows that our model is very good at selecting false questions in almost every
case and true questions in most of the cases but sometimes it makes false negative predictions
if the evidence is quite di↵erent.

Figure 6.2 visualizes the amount of attention our model gives on di↵erent segments of the
sentence pair when doing the comparison. As our model involves two self attentions and two
cross attentions it outputs four attention vectors with di↵erent combinations of key, query, and
value matrices. In the self attention case where the key, query, and value matrices are the same,
our model puts more attention on keywords such as activities like ‘playing’ and ‘smiling’ and
places like ‘outdoors’ and ‘nearby’. However the e↵ectiveness of our model is more discernible
with the results of cross attention. When we have the hypothesis as query, the premise as key,
and the relationship being Contradiction, our model gives all of its attention to the word ‘no’
from the premise. On the other hand, when we have the premise as query and the hypothesis
as key, our model puts all the attention on “young boys are playing outdoors” and ‘smiling’
which contain all of the information from the hypothesis, showing that adding multi-branch
cross attention makes our model think more like a human when comparing two sentences thus
making it very e↵ective for any sentence pair modelling task.
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6.6 Conclusion

Being able to independently model the context aware representations of words in a sentence
with correct orderings, Transformer-based encoders are perfect candidates for parallelization.
We have introduced a way to incorporate cross attention in the Transformer-based sentence
encoders capturing the shared mutual information between sentences much like humans do.
The attention heatmap clearly shows where attention is put when comparing two sentences.
We evaluate our proposed models on four sentence pair modelling tasks, achieving state-of-
the-art performance on two of them. Our sentence encoders do not take any task specific
features into account making it more generalized. A thorough comparison against the available
SOTA sentence encoders shows that, for classification tasks, Transformer-based encoders are
superior to the LSTM and CNN-based ones. Adding cross attention on top of self attention
usually makes it more robust in identifying the underlying relationship between the sentence
pairs.



Chapter 7

Investigating Relational Recurrent Neural
Networks with Variable Length Memory
Pointer in Sentence Pair Modelling Tasks

This chapter is based on the paper titled “Investigating Relational Recurrent Neural Networks
with Variable Length Memory Pointer in Sentence Pair Modelling Tasks” co-authored with
Robert E. Mercer that appeared in The 33rd Canadian Conference on Artificial Intelligence
(CAI 2020) [8].

Memory based neural networks have the ability to remember information for a longer pe-
riod of time while modelling temporal data. The interaction of memories in these networks
allows them to capture fairly complex linkages between data entities. To further improve
LSTM’s information storage capability to extract good sentence representations, we encode
a novel Relational Memory Core (RMC) inside it using the standard multi-head self attention
mechanism with variable length memory pointer. The RMC replaces the cell states of the
LSTM, which we now call LSTMRMC, by creating new memories. Two claims are made about
our improvement: It is important to expand the area on which the RMC operates to create the
new memory as more data is seen with each time step, and the expanded area can be treated
as a fixed size kernel having shared weights in the form of query, key, and value projection
matrices. We design a novel sentence encoder using this LSTMRMC and test our hypotheses on
four NLP tasks: textual entailment, semantic relatedness, paraphrase identification, and ques-
tion answer pairing. Our evaluation shows improvements over the standard LSTM and the
Transformer encoder as well as state-of-the-art general sentence encoders.

86
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7.1 Introduction

Humans use their memory system to access and retrieve important information irrespective
of when they are actually perceived [113, 196, 198]. This memory is often understood as an
informational processing system with explicit and implicit functioning that is made up of a
sensory processor, short-term (or working) memory, and long-term memory [23]. In recent
neural network based research, many successful attempts have been made to encode memory
inside the LSTM cell [92, 196] and even designing core memory augmented neural networks
[85, 195]. These memory based networks provide e�cient information storing and retrieval
capabilities reinforced by bounded computational cost, augmented memory capacities and able
to surpass the vanishing gradient problem.

Recurrent neural networks (RNNs) [194] are the most widely used neural network for mod-
elling sequence data having successors in the form of LSTM [92] and GRU [55] which have
been successfully used in a variety of applications such as machine translation, sequence la-
belling, speech recognition, and question answering. However, these models have a locality
bias present inside it because of its built-in state dependency nature. Also, a single cell state
in LSTM should never be enough to crawl and store the information flowing through a se-
quence [196]. Convolutional neural networks (CNNs) [78] somehow mitigate this drawback
using its kernels by computing a relation of the entities in a local receptive field. This is good
for computing spatial correlations but to deal with temporal data one needs to built up memory
which the CNNs cannot provide.

In terms of NLP temporal domain, it is necessary to analyze and compare phrases as well as
sentence constituents seen at di↵erent time steps to extract the meaning. Attention mechanism
[240] implicitly provides this by computing a weighted combination of sentence constituents
which also helps in extracting good relational reasoning. It has been proved that, allowing
vanilla LSTM’s common hidden memory to access more of the previous representations using
a relational memory core (RMC) gives good performance boost in tasks demanding particular
types of temporal relational reasoning [196]. This RMC is designed using the standard multi-
head self attention framework. Furthermore, this type of encoding of attention cell inside the
tree version of LSTM also proved to be beneficial in building up semantically focussed phrase
representations [13].

In this chapter, we design an improved relational memory core (RMC) having access to
previously seen representations through a variable length memory pointer. Our idea is that
the memory created at each time step should reflect the previously created representations
whereas the LSTM gates should be updated only with the last one. We encode this new RMC
as the cell state inside an LSTM cell and design a sentence encoder model to encode a pair of
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sentences for the sentence pair modelling task. Evaluation done on textual entailment (TE),
semantic relatedness (SR), paraphrase identification (PI), and question answer pairing (QAP)
shows improvements over standard LSTM encoder on all of the tasks and best results on the
textual inference and second best on question-answer pair tasks when compared against all
state-of-the-art encoder models including the best models especially designed for the specific
tasks.

7.2 Related Work

Memory based models are good at creating new memories based on attention. These have
been used to modify standard and tree LSTMs. Sukhbaatar et al. [220] train a memory based
neural network in an end-to-end fashion to solve a compartmentalization problem with a slot-
based memory matrix. Linear addition of input and output at layer k as the input to layer
k + 1 allows the memories to interact or relate with one another. Santoro et al. [197] propose
a plug-and-play neural network to perform relational reasoning task. It involves two MLPs
as the composition functions. The first one computes a representation of each of the existing
relations and the second operates on the linear addition of these prior representations. Ahmed
et al. [13] encode a single head dot product attention block inside a tree-LSTM cell where a
weighted combination of child hidden states is assigned as the parent hidden state in a bottom
up recursive traversal of natural language grammar trees to obtain the sentence representation.

General purpose sentence encoders have been state-of-the-art on the four tasks of interest
in this chapter. Cer et al. [46] propose a sentence encoder model based on the encoder portion
of Transformer [240] and perform an element-wise sum of the encoded representations at each
word position to get a fixed length sentence representation. They evaluate their model mostly
on sentence classification tasks and prove the e↵ectiveness of transfer learning at the sentence
level compared to the word level. Conneau et al. [58] also propose a universal sentence rep-
resentation model based on LSTMs where it is first trained on the Stanford Natural Language
Inference task and then uses transfer learning. Evaluation is on a range of tasks including QAP,
PI, and SR. Zhou et al. [270] propose a sentence pair ranking model where they encode atten-
tion in the tree structure of the hypothesis based on the sequential representation of the premise
and vice versa. Lin et al. [135] propose a self-attentive sentence encoding model where they
replace the pooling block with a self attention block on top of an LSTM encoder. Instead of ex-
tracting a vector representation, the authors use a matrix as the sentence representation where
each row attends to di↵erent portions of the sentence. Zhao et al. [263] propose a self-adaptive
hierarchical model which first extracts an intermediate representation of all possible phrases
and finally takes the convex combination of them through gating. Socher et al. [208] propose
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a recursive auto-encoder-based paraphrase identification model that first reconstructs each of
the phrases from the tree representation of both sentences. Finally, they extract the sentence
representation by doing a min-pooling operation over the transformed di↵erences between the
sentences.

7.3 The Model

We are motivated to improve the design principle of the current RMC [196] so that the model
can e↵ectively learn to categorize information and to perform better interactions among them.
To achieve this, we extend the scope of the memory pointer in RMC by giving the self attention
module more to explore. In this section we first explain how this modified RMC can be used
as a module inside the standard LSTM cell. Following this, we explain the general working
principle of an RMC and present the variation that we propose in terms of a variable length
memory pointer. Finally, we conclude this section by designing a sentence pair modelling
architecture using an RMC encoded LSTM (LSTMRMC).

Generally, in LSTM the gating mechanisms handle the storage of information from the
input sequence into the cell state. All the gates inside an LSTM cell operate on this cell state
to add, delete, or modify the already stored information. It starts with an input gate which
selects what to update using a sigmoid layer using Eqn. 7.1. The forget gate stores how much
information the network is allowed to forget from the previous cell state using Eqn. 7.2. Next,
a tanh layer creates new candidate values to be added to the existing cell state using Eqn. 7.3.
Finally, the new candidate values are scaled by the input gate values and summed with a filtered
version of the candidate cell state values where the forget gate is working as the filter as shown
in Eqn. 7.4. Finally, the next hidden state is just a tanh squashing of the cell state as shown in
Eqn. 7.5.

it = �(W(i)xt + U(i)ht�1 + b(i)) (7.1)

f t = �(W( f )xt + U( f )ht�1 + b( f )) (7.2)

c̃t = tanh(W(c)xt + U(c)ht�1 + b(c)) (7.3)

ct = it · c̃t + ft · ct�1 (7.4)

ht = tanh(ct) (7.5)

It is evident that the cell state is the one on which all the gates operate whenever a new
input comes into play at each time step. Relational recurrent neural networks encode this cell
state value as a memory designed using the Relational Memory Core (RMC). The RMC uses
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multi-head self attention to allow memories to interact with each other. Below, we first
explain the standard RMC pipeline which uses a fixed length memory pointer. Following this,
we explain how we extend this memory interaction with a variable length memory pointer.

7.3.1 Using a Fixed Length Memory Pointer

In the classic setting [196], the network maintains a fixed length memory pointer which begins
with a random memory M1⇥b⇥d which is then iteratively updated at each time step. The starting
memory is initialized as either an identity matrix or a trivial random seed. It is to be noted that
this initial memory size is dependent on the batch size b. At each time step t, it creates a new
tensor eM by concatenating the previous memory and a linear projection of the current input as
follows,

eMt
2⇥b⇥d = [Mt�1

1⇥b⇥d; Wxt
1⇥b⇥d] (7.6)

Following this, the multi-head self attention block is applied on this eM to produce a
new scaled tensor according to the self attention weights. These attention weights indicate how
much information to take from the current input and the previous memory to create the next
memory. This multi-head self attention block consists of three projection matrices Wq,
Wk and Wv as network parameters. It first creates query, Q(= MWq), and key, K(= MWk),
tensors by projecting eM using the corresponding weight matrices. Following this, it applies the
standard dot product attention A (= softmax( QKT

p
dk

)) on this Q and K to get the scalar weights.
Finally, the value, V(= MWv), tensor gets scaled using these weights and the resultant tensor
represents the weighted average of the original memory tensor eM.

A residual connection is then added to the resultant tensor eM with its prior version M
(= eM + M). This residual connection allows the network to decide whether to carry forward
the previous memory as the next memory at time step t + 1 or to continue with the weighted
version of the memory created using the multi-head self attention block. This resultant
tensor is then passed through a Layer-Normalization block where the activations of neurons
in the current layer are normalized to get a comparatively faster training. This normalization
process starts by first calculating the mean and the standard deviation of the input at the current
time step as follows,

µt =
1
H

HX

i=1

xt
i �t =

vt
1
H

HX

i=1

(xt
i � µt)2 (7.7)

Following this, we use this mean µ and standard deviation � to normalize the given input
x and further scale each dimension of the resultant tensor with two new parameters � and �.
However, unlike the original implementation, we do not use separate versions of these new
parameters according to the cardinal dimension of eM. Instead we maintain the same parameter
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Figure 7.1: Sample encoding of a sentence using RMC with variable length memory pointer
(from left to right direction). Rightmost M represents the sentence representation. In order to
be aligned with BLSTM working principle and get a right to left representation, the word order
can be flipped (wn,wn�1, . . . ,w1).

over all the dimensions. The justification for doing this is provided in Section 7.3.2. We
summarize these steps using Eqn. 7.8 as follows,

ht = � �
✓ xt � µt

�t + ✏

◆
+ � (7.8)

Here, ✏ is a hyperparameter. Next, n non-linear projections of ht are taken followed by a
residual connection. Eqn. 7.9 summarizes this step for n = 2.

X = f(W(1)f(htW(2))) + ht (7.9)

Here, f is an activation function and we use ReLU as f for our experiments. The resultant tensor
X from Eqn. 7.9 has shape 2 ⇥ b ⇥ d. We then extract the new memory by splitting out this
tensor at the cardinal dimension and take the first item as follows,

Mt
1⇥b⇥d = X1

1⇥b⇥d (7.10)

This new memory can act as the candidate cell state as in Eqn. 7.3. This allows us to discard
Eqn. 7.3 and modify Eqn. 7.4 as follows,
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ct = it · Mt + f t · Mt�1 (7.11)

Returning to the LSTM equations 7.1–7.3, xt is replaced with the projected input (= Wxt)
from Eqn. 7.6.

7.3.2 Using a Variable Length Memory Pointer

Unlike Eqn. 7.6 from Section 7.3.1 where the previous memory is always concatenated with
the projected input at time step t, in this setting, we continually expand the area on which the
multi-head self attention operates as shown in Figure 7.1. At time step t, we perform
this memory expansion by concatenating all the projected inputs from time step t to 1 with the
previous memory as follows,

eMt
(t+1)⇥b⇥d = [Mt�1

1⇥b⇥d; Wxt
1⇥b⇥d; Wxt�1

1⇥b⇥d; · · · ; Wx1
1⇥b⇥d] (7.12)

It is to be noted that the weight (W) is shared for projecting all the words that have been seen
until the current time step t. The resulting tensor eMt has shape (t + 1) ⇥ b ⇥ d. Following
this, we apply multi-head self attention, Layer-Normalization and the necessary
projections to get a new transformed representation X as in Eqn. 7.9. As we keep concatenating
the inputs all the way to time step t = 1 at the end of the tensor and keep the memory always
at the first index, we can easily use Eqn. 7.10 and extract the new memory as before. Finally,
as done in Section 7.3.1, we use Wxt as xt in the LSTM equations 7.1–7.3.

Although it is possible to give the attention block access to everything from time step t to
1 during each input, access is limited to a maximum window size in the experiments. As the
attention block sees a variable length tensor at each time step, a fixed set of � and � in the
LayerNormalization block cannot be maintained as this makes the gradient accumulation
of few parameters unstable.

7.3.3 Modelling Sentence Pairs using RMC

The standard pipeline for sentence pair modelling starts with encoding both the hypothesis
and premise sentences as vectors using a neural sentence encoder followed by a matching
layer where the corresponding vector representations are compared with a similarity metric.
Proceeding in this way, our model first traverses each sentence as a sequence of T words
{xt}t=1,...,T from both left to right and right to left and generates two memory representations at
the last time step,

�!
hT and

 �
hT . During input, it considers the vector representation of each word,
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xt, in the sentence from a pre-trained word embedding model and these representations are not
further trained with the network parameters.

�!
ht =

���������!
LSTMRMC(x1, . . . , xT )

 �
ht =

 ���������
LSTMRMC(x1, . . . , xT )

(7.13)

Next we create two vectors, one represents the encoded hypothesis sentence a and one repre-
sents the encoded premise sentence b. In each case, the vector is a concatenation of

�!
hT and

 �
hT of the respective encoded sentence. We compute a range of features such as di↵erence,
element-wise product, and average for the tuple < a, b >. These features are intended to cap-
ture the inference between components in the tuples and catch induction relationships such as
logical inconsistency. These features are then concatenated with the original representations, a
and b, and we create a new tensor representation from this as follows,

F = makeTensor([a; b; |a � b|; a ⇤ b; (a + b)/2]) (7.14)

Next, we perform an element-wise multiplication of this feature tensor with a learned pa-
rameter vector � 2 Rn having the constraint

P
�i = 1. The final inference relationship vector

results from an element-wise weighted addition of each feature position as follows,

x =
5X

i=1

Fi�i (7.15)

The resultant vector is then projected into the space of classes y, through a series of fully
connected layers as follows,

P(y|X) = �(W1�(W2x + b2) + b1) (7.16)

P(.) represents the model’s predicted scores over classes using the feature vector x. W’s and
b’s are the weights and biases of the classifier network. The model is trained by optimizing a
task specific loss function as follows,

H(p, q) = �
NX

i=1

Q(yi) log(P(yi)) (7.17)

Q(.) is a one hot vector representation of the true probability distribution of the actual label.
The multiplication of P(.) and Q(.) indicates how close the model’s decision over the actual
class is with respect to the true distribution. Finally, this objective is negated and minimized
rather than maximized.
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For the classification tasks, the aforementioned loss function works fine but for the regres-
sion task, to predict a score, we first compute a target distribution eQ as a function of the actual
score y as follows,

eQi(y) =

8>>>>>>><
>>>>>>>:

y � byc, if i = byc + 1

byc � y + 1, if i = byc
0, otherwise

(7.18)

The distance between the predicted distribution P(.) and the distribution of the ground truth
eQ(.) is minimized using the KL-divergence loss function as follows,

H(p,eq) =
1
N

NX

k=1

KL(eQ(yk)||P(yk)) +
�

2
||✓||2 (7.19)

7.4 Experimental Setup

In this section, we detail the experimental setup used for evaluation. We first describe our
training corpora as well as all of the benchmarks used in other standard sentence pair modelling
studies. Following this, we explain the technical details of our proposed architectures along
with their hyper-parameter settings.
Datasets: Model evaluation uses the following datasets:

• MSRP: Paraphrase identification: given a pair of sentences, the task is to identify
whether or not they are paraphrases of each other [69]. Train: 4076, Valid: N/A, Test:
1725.

• SICK: Natural language inference and semantic relatedness: the dataset contains sen-
tences derived from video and image annotations and it comes with two tasks. The first
task is to classify a given sentence pair into three classes: Entailment, Neutral and Con-
tradiction. The second task is to assign a score between 1 and 5 for a sentence pair based
on their semantic relatedness [151]. Train: 4500, Valid: 500, Test: 4927.

• AI2-8grade: Question-answer pair modelling: this true-false question selection task
consists of sentence pairs with one being the question and the other being the evidence
formed by replacing the wh in the question by the answer [30]. Train: 12689, Valid:
2483, Test: 11359.

Experimental Setup: Word vectors are initialized with the 300 dimension GloVe embeddings
[183] and are not updated during training. To smooth the update, the gradients are divided by B2
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Config Value Config Value
Initial learning rate 0.1 / 0.05 / 0.001 maxNorm 5
Batch size 10 / 16 / 25 Learning rate decay 0.99
No. of Attention lay-
ers

1/ 2 / 3 Dropout FC 0.0375 -
0.5

Hidden dimension 256, 512, 1024 No. of Heads 8
Word embedding Glove 300D Wq,Wk,Wv dimension 128

Table 7.1: Hyper-parameters used for the experiments (in boldface) and the ranges that were
searched during tuning.

where B is the batch size. The learning rate decays proportional to maxNormpPk
i=1kr✓2i k

if
qPk

i=1

���r✓2i
���

is more than maxNorm.
Table 7.1 shows the hyper-parameter settings used during the experiments. We train our

models on a GeForce GTX 1080Ti GPU with ‘Adam’, ‘AdaDelta’, ‘AdaGrad’ and ‘SGD’ op-
timizers. Results in the next section are reported using ‘SGD’. Models are implemented in
PyTorch 0.4.1 under the Linux environment.

7.5 Experimental Results and Analysis

In this section, we present the detailed results obtained with our RMC based sentence encoder
and compare with some of the top performing models for the four sentence pair modelling
tasks. Finally, we conclude this section by giving some insight into the performance of our
model by analyzing the attention weights.

Table 7.2 displays our model’s overall performance on the four corpora in terms of task
specific evaluation metrics. The first group contains the results of LSTMRMC in the classic
fixed pointer (FLMP) and our variable pointer (VLMP) configurations. In order to analyze
the strength of our model, the second group of this table reports the results of some currently
available top performing sentence encoders with their best hyper-parameters. The last group
contains the results of some preeminent but less general models. Notably, on the MSRP task,
the VLMP model is only behind RAE [208]. It is specifically designed, using additional gram-
matical information, for this task. Our VLMP model achieves better accuracy (75.89%) than
the FLMP model (74.67%). This indicates that for paraphrase identification, it is more im-
portant to see the word overlap in a local context than looking at everything right from the
beginning. On AI2-8grade dataset, it is standard to report both the development and test set
accuracy as we also do so. On development set, we are only behind InferSent which uses an
additional pooling block and BiLSTM with additional projection Layer [58] by a margin of
1.45% and 0.28% respectively However, on test set, our model is only behind BiLSTM projec-
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Model MSRP AI2-8grade SICK-E SICK-R
Acc. Dev Acc. Test Acc. Acc. r/MSE

LSTMRMC + FLMP 74.67 76.65 74.72 85.38 0.8107/0.3452
LSTMRMC + VLMP (window size=5) 75.89 76.21 74.72 84.28 0.8440/0.2925
InferSent [58] † 74.46 78.10 74.10 84.62 0.8563/0.2732
LSTM [58] † 70.74 76.33 74.24 76.80 0.8291/0.3244
BiLSTM Projection Layer [58] † 74.24 76.93 75.15 85.20 0.8037/0.3667
BiGRU Last Encoder [58] † 70.46 76.25 74.46 81.47 0.8317/0.3147
Inner Attention [135] † 69.74 76.61 74.32 72.01 0.7863/0.3944
ConvNet Encoder [263] † 73.96 76.29 75.15 83.82 0.8520/0.2806
Transformer Encoder [46] 74.96 - - 81.15 -/0.5241
Seq-LSTMs [270] 71.70 71.80 63.30 - 0.8528/0.2831
Seq-GRUs [270] 71.80 72.10 62.40 - 0.8595/0.2689
Tree LSTM [270] 73.50 74.60 69.10 - 0.8664/0.2610
Tree LSTM + Attn. [270] 75.80 76.20 72.50 - 0.8730/0.2426
Tree GRU [270] 73.96 75.20 70.60 - 0.8672/0.2573
Tree GRU + Attn. [270] 74.80 76.40 72.10 - 0.8701/0.2524
RAE [208] 76.80 - - - -
Combine-skip + feats [111] 75.80 - - - -

Table 7.2: Performance of our model on di↵erent tasks compared to some top performing
models. We mark models that we implemented as †. FLMP = Fixed length memory pointer,
VLMP = Variable length memory pointer

tion Layer [58] and ConvNet Encoder [263] by a margin of 0.43%. As we can see, we manage
to close the performance gap on test set which is more aligned with the real world samples. Our
application of classic FLMP on the SICK-E task achieves state of the art accuracy of 85.38%
going past the better models on AI2-8grade dataset by quite a good margin (Infersent - 0.76%,
BiLSTM projection Layer - 0.18%, and ConvNet Encoder - 1.56%). On SICK-R task, we are
getting, 0.8440 Pearson’s r and 0.2925 MSE, which puts us on the top three sequential models
on this task. It is to be noted that, although the tree based models are doing much better than
the sequential models on this dataset, both versions of our proposed model are superior to these
tree based models on the other tasks. Finally, these scores clearly tell that, our model is always
at the top three general purpose sentence encoders on all of the four di↵erent corpora.

Figure 7.2 visualizes the amount of attention our model gives on di↵erent segments of the
sentence pair when doing the comparison. As we keep the window size to 5, at each time
step, our model puts attention on a 5-gram and a memory. It is clear that, every time, the
model reads a stop-word, it puts less attention on it and the probability gets distributed over the
other content words inside the window. It is to be noted that, in the left sentence, the phrase
“Virginia attorney general’s o�ce” is the content phrase and because of this at the last time
step, the attention on the memory is less significant compared to the attention on the 5-grams.
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Figure 7.2: Change in attention weights as the attention window shifts over time (memory
pointer length / window size = 5).

On the other hand, in the right sentence, the reading of the content phrase gets done at the
second last time step. This is why the memory gets comparatively higher weight at the last
time step. However, the content words in the window still gets quite a good amount of weights.

7.6 Conclusion and Future Work

In this chapter, we have modified the classical RMC with the concept of a variable length
memory pointer so it uses a non-local context to compute an enhanced memory during input
of each word in a sentence. We encode this improved RMC inside an LSTM cell and design a
sentence pair modelling architecture where we evaluate our proposed model on four di↵erent
tasks. We show that our model achieves on par performance on most of the tasks and state-
of-the-art performance on one of them. Our sentence encoder does not take any task specific
features into account making it more general. Being equipped with this new memory, our
model interprets very well how the attention shifting is done as we gradually read and compare
two sentences side by side. Our limited experiments show that the memory pointer length does
not follow a uniform pattern across all datasets, making it an interesting area to investigate for
our future studies.



Chapter 8

You Only Need Attention to Traverse
Trees

This chapter is based on the paper titled “You Only Need Attention to Traverse Trees” co-
authored with Muhammad Rifayat Samee, and Robert E. Mercer that appeared in the 57th
Annual Meeting of the Association for Computational Linguistics (ACL 2019) [14].

In recent NLP research, a topic of interest is universal sentence encoding, sentence repre-
sentations that can be used in any supervised task. At the word sequence level, fully attention-
based models su↵er from two problems: a quadratic increase in memory consumption with re-
spect to the sentence length and an inability to capture and use syntactic information. Recursive
neural nets can extract very good syntactic information by traversing a tree structure. To this
end, we propose Tree Transformer, a model that captures phrase level syntax for constituency
trees as well as word-level dependencies for dependency trees by doing recursive traversal only
with attention. Evaluation of this model on four tasks gets noteworthy results compared to the
standard transformer and LSTM-based models as well as tree-structured LSTMs. Ablation
studies to find whether positional information is inherently encoded in the trees and which type
of attention is suitable for doing the recursive traversal are provided.

8.1 Introduction

Following the breakthrough in NLP research with word embeddings by [156], recent research
has focused on sentence representations. Having good sentence representations can help ac-
complish many NLP tasks because we eventually deal with sentences, e.g., question answering,
sentiment analysis, semantic similarity, and natural language inference.

Most of the existing task specific sequential sentence encoders are based on recurrent neural

98
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nets such as LSTMs or GRUs [59, 135, 141]. All of these works follow a common paradigm:
use an LSTM/GRU over the word sequence, extract contextual features at each time step,
and apply some kind of pooling on top of that. However, a few works adopt some di↵erent
methods. [111] propose a skip-gram-like objective function at the sentence level to obtain the
sentence embeddings. [143] reformulate the task of predicting the next sentence given the
current one into a classification problem where instead of a decoder they use a classifier to
predict the next sentence from a set of candidates.

The attention mechanism adopted by most of the RNN based models require access to the
hidden states at every time step [120, 248]. These models are ine�cient and at the same time
very hard to parallelize. To overcome this, [174] propose a fully attention-based neural network
which can adequately model the word dependencies and at the same time is parallelizable.
[240] adopt the multi-head version in both the encoder and decoder of their Transformer model
along with positional encoding. [3] propose a multi-branch attention framework where each
branch captures a di↵erent semantic subspace and the model learns to combine them during
training. [46] propose an unsupervised sentence encoder by leveraging only the encoder part
of the Transformer where they train on the large Stanford Natural Language Inference (SNLI)
corpus and then use transfer learning on smaller task specific corpora.

Apart from these sequential models, there has been extensive work done on the tree struc-
ture of natural language sentences. [212, 214, 216] propose a family of recursive neural net
(RvNN) based models where a composition function is applied recursively bottom-up on chil-
dren nodes to compute the parent node representation until the root is reached. [228] propose
two variants of sequential LSTM, child sum tree LSTM and N-ary tree LSTM. The same gat-
ing structures as in standard LSTM are used except the hidden and cell states of a parent are
dependent only on the hidden and cell states of its children.

Recently, [204] propose a Parsing-Reading-Predict Network (PRPN) which can induce
syntactic structure automatically from an unannotated corpus and can learn a better language
model with that induced structure. Later, [94] test this PRPN under various configurations and
datasets and further verified its empirical success for neural network latent tree learning. [242]
also validate the e↵ectiveness of two latent tree based models but found some issues such as
being biased towards producing shallow trees, inconsistencies during negation handling, and a
tendency to consider the last two words of a sentence as constituents.

In this chapter, we propose a novel recursive neural network architecture consisting of a
decomposable attention framework in every branch. We call this model Tree Transformer as
it is solely dependent on attention. In a subtree, the use of a composition function is justified
by a claim of [212, 214]. In this work, we replace this composition function with an attention
module. While [212,214] consider only the child representations for both dependency and con-
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Figure 8.1: Attention over the tree structure

stituency syntax trees, in this work, for dependency trees, the attention module takes both the
child and parent representations as input and produces weighted attentive copies of them. For
constituency trees, as the parent vector is entirely dependent on the upward propagation, the at-
tention module works only with the child representations. Our extensive evaluation proves that
our model is better or at least on par with the existing sequential (i.e., LSTM and Transformer)
and tree structured (i.e., Tree LSTM and RvNN) models.

8.2 Proposed Model

Our model is designed to address the following general problem. Given a dependency or
constituency tree structure, the task is to traverse every subtree within it attentively and infer
the root representation as a vector. Our idea is inspired by the RvNN models from [212, 214,
216] where a composition function is used to transform a set of child representations into one
single parent representation. In this section, we describe how we use the attention module as a
composition function to build our Tree Transformer. Figure 8.1 gives a sketch of our model.

A dependency tree contains a word at every node. To traverse a subtree in a dependency
tree, we look at both the parent and child representations (Xd in Eqn. 8.1). In contrast, in a
constituency tree, only leaf nodes contain words. The non-terminal vectors are calculated only
after traversing each subtree. Consequently, only the child representations (Xc in Eqn. 8.1) are
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considered.
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(8.1)

Here, pv is the parent representation and the civ’s are the child representations. For both of
these trees, Eqn. 8.2 computes the attentive transformed representation.

P̃ = f(x), where x 2 {Xd,Xc} (8.2)

Here, f is the composition function using the multi-branch attention framework [3]. This multi-
branch attention is built upon the multi-head attention framework [240] which further uses
scaled dot-product attention [174] as the building block. It operates on a query Q, key K and
value V as follows

Attention(Q,K,V) = softmax
 
QKT
p

dk

!
V (8.3)

where dk is the dimension of the key. As we are interested in n branches, n copies are
created for each (Q, K, V), converted to a 3D tensor, and then a scaled dot-product attention is
applied using

Bi = Attention(QiWQ
i ,KiWK

i ,ViWV
i ) (8.4)

where i 2 [1, n] and the Wi’s are the parameters that are learned. Note that WQ
i ,WK

i and
WV

i 2 Rdm⇥dk . Instead of having separate parameters for the transformation of leaves, internal
nodes and parents [212], we keep WQ

i ,WK
i and WV

i the same for all these components. We then
project each of the resultant tensors into di↵erent semantic sub-spaces and employ a residual
connection [90, 218] around them. Lastly, we normalize the resultant outputs using a layer
normalization block [22] and apply a scaling factor  to get the branch representation. All of
these are summarized in Eqn. 8.5.

Bi = LayerNorm(BiWb
i + Bi) ⇥ i (8.5)

Here, Wb
i 2 Rn⇥dv⇥dm and  2 Rn are the parameters to be learned. Note that we choose

dk = dq = dv = dm/n. Following this, we take each of these B’s and apply a convolutional
neural network (see Eqn. 8.6) consisting of two transformations on each position separately
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and identically with a ReLU activation (R) in between.

PCNN(x) = Conv(R(Conv(x) + b1)) + b2 (8.6)

We compute the final attentive representation of these subspace semantics by doing a lin-
early weighted summation (see Eqn. 8.7) where ↵ 2 Rn is learned as a model parameter.

BranchAttn(Q,K,V) =
nX

i=1

↵iPCNN(Bi) (8.7)

Lastly, we employ another residual connection with the output of Eqn. 8.7, transform it non-
linearly and perform an element-wise summation (EwS) to get the final parent representation
as in Eqn. 8.8.

P̃ = EwS(tanh((x̃ + x)W + b)) (8.8)

Here, x and x̃ depict the input and output of the attention module.

8.3 Experiments

In this section, we present the e↵ectiveness of our Tree Transformer model by reporting its
evaluation on four NLP tasks. We present a detailed ablation study on whether positional
encoding is important for trees and also demonstrate which attention module is most suitable
as a composition function for the recursive architectures.
Experimental Setup: We initialize the word embedding layer weights with GloVe 300-
dimensional word vectors [183]. These embedding weights are not updated during training.
In the multi-head attention block, the dimension of the query, key and value matrices are set to
50 and we use 6 parallel heads on each input. The multi-branch attention block is composed
of 6 position-wise convolutional layers. The number of branches is also set to 6. We use two
layers of convolutional neural network as the composition function for the PCNN layer. The
first layer uses 341 1d kernels with no dropout and the second layer uses 300 1d kernels with
dropout 0.1.

During training, the model parameters are updated using the Adagrad algorithm [72] with
a fixed learning rate of 0.0002. We trained our model on an Nvidia GeForce GTX 1080 GPU
and used PyTorch 0.4 for the implementation under the Linux environment.
Datasets: Evaluation is done on four tasks: the Stanford Sentiment Treebank (SST) [214] for
sentiment analysis, Sentences Involving Compositional Knowledge (SICK) [150] for semantic
relatedness (-R) and natural language inference (-E), and the Microsoft Research Paraphrase
(MSRP) corpus [70] for paraphrase identification.
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The samples in the SST dataset are labelled for both the binary and the 5-class classifica-
tion task. In this work we are using only the binary classification labels. The MSRP dataset
is labelled with two classes. The samples in the SICK dataset are labelled for both the 3-class
SICK-E classification task and the SICK-R regression task which uses real-valued labels be-
tween 1 and 5. Instead of doing a regression on SICK-R to predict the score, we are using the
same setup as [228] who compute a target distribution p as a function of the predicted score y
given by Eqn. 8.9.

p̃i =

8>>>>>>><
>>>>>>>:

y � byc, if i = byc + 1

byc � y + 1, if i = byc
0, otherwise

(8.9)

The SST dataset includes already generated dependency and constituency trees. As the
other two datasets do not provide tree structures, we parsed each sentence using the Stanford
dependency and constituency parser [148].

For the sentiment classification (SST), natural language inference (SICK-E), and para-
phrase identification (MSRP) tasks, accuracy, the standard evaluation metric, is used. For the
semantic relatedness task (SICK-R), we are using mean squared error (MSE) as the evaluation
metric.

We use KL-divergence as the loss function for SICK-R to measure the distance between
the predicted and target distribution. For the other three tasks, we use cross entropy as the loss
function.

Table 8.1 shows the results of the evaluation of the model on the four tasks in terms of task
specific evaluation metrics. We compare our Tree Transformer against tree structured RvNNs,
LSTM based, and Transformer based architectures.

To do a fair comparison, we implemented both variants of Tree LSTM and Transformer
based architectures and some of the RvNN and LSTM based models which do not have re-
ported results for every task. Instead of assessing on transfer performance, the evaluation is
performed on each corpus separately following the standard train/test/valid split.

For SICK-E, our model achieved 82.95% and 82.72% accuracy with dependency and con-
stituency tree, respectively, which is on par with DT-LSTM (83.11%) as well as CT-LSTM
(82.00%) and somewhat better than the standard Transformer (81.15%). As can be seen, all of
the previous recursive architectures are somewhat inferior to the Tree Transformer results.

For SICK-R, we are getting .2774 and .3012 MSE whereas the reported MSE for DT-LSTM
and CT-LSTM are .2532 and .2734, respectively. However, in our implementation of those
models with the same hyperparameters, we haven’t been able to reproduce the reported results.
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Types of Models Model SICK-E SICK-R SST MSRP
(Acc.) (MSE) (Acc.) (Acc.)

Tree Structured

SDT-RNN [212] - .3848 - -
RAE [209] - - 82.40 76.80
MV-RNN [211] 58.14 † - 82.90 66.91 †
RNTN [216] 59.42 † - 85.40 66.91 †
DT-RNN [212] 63.38 † .3822 86.60 67.51 †
DT-LSTM [228] 83.11 † .2532/.2625 † 85.70/85.10 † 72.07 †
CT-LSTM [228] 82.00 † .2734/.2891 † 88.00/87.27 † 70.07 †

LSTM

LSTM [228] 76.80 .2831 84.90 71.70
Bi-LSTM [228] 82.11 † .2736 87.50 72.70
2-layer LSTM [228] 78.54 † .2838 86.30 69.35 †
2-layer Bi-LSTM [228] 79.66 † .2762 87.20 70.40 †
Infersent [59] 84.62 .2732 86.00 74.46

Transformer
USE_T [46] 81.15 .5241 † 85.38 74.96 †
USE_T+DAN [46] - - 86.62 -
USE_T+CNN [46] - - 86.69 -

Tree Transformer DTT 82.95 .2774 83.12 70.34
CTT 82.72 .3012 86.66 71.73

Table 8.1: Performance comparison of the Tree Transformer against some state-of-the-art sen-
tence encoders. Models that we implemented are marked with †.

Instead we ended up getting .2625 and .2891 MSE for DT-LSTM and CT-LSTM, respectively.
On this task, our model is doing significantly better than the standard Transformer (.5241
MSE).

On the SST dataset, our model (86.66% Acc.) is again on par with tree LSTM (87.27%
Acc.) and better than Transformer (85.38% Acc.) as well as Infersent (86.00% Acc.)1.

On the MSRP dataset, our dependency tree version (70.34% Acc.) is below DT-LSTM
(72.07% Acc.). However, for the constituency tree version, we are getting better accuracy
(71.73%) than CT-LSTM (70.07%). It is to be noted that all of the sequential models, i.e.,
Transformer, Infersent and LSTMs, are doing better compared to the tree structured models on
this paraphrase identification task.

Since positional encoding is a crucial part of the standard Transformer, Table 8.2 presents
its e↵ect on trees. In constituency trees, positional information is inherently encoded in the tree
structure. However, this is not the case with dependency trees. Nonetheless, our experiments
suggest that for trees, positional encoding is irrelevant information as the performance drops
in all but one case. We also did an experiment to see which attention module is best suited as
a composition function and report the results in Table 8.3. As can be seen, in almost all the

1The o�cial implementation available at https://github.com/facebookresearch/InferSent is used. Reported
hyperparameters are used except LSTM hidden state, 1024d is chosen due to hardware limitations.
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Model PE SICK-E SICK-R SST MSRP

DTT On 78.58 .3383 83.03 69.01
O↵ 82.28 .2774 83.12 70.34

CTT On 81.83 .3088 83.96 71.73
O↵ 82.72 .3012 86.66 68.62

Table 8.2: E↵ect of positional encoding (PE).

Model S/M/B SICK-E SICK-R SST MSRP

DTT
S 82.95 .3004 81.71 68.62
M 82.86 .2955 82.97 69.07
B 82.28 .2774 83.12 70.34

CTT
S 80.17 .4657 84.58 69.35
M 79.66 .4346 83.74 70.01
B 82.72 .3012 86.32 71.73

Table 8.3: E↵ect of di↵erent attention modules as a composition function. S: single-head
attention, M: multi-head attention, B: multi-branch attention.

Doug Liman the director of Bourne directs the traffic well gets a nice wintry look from his locations 
absorbs us with the movie 's spycraft and uses Damon 's ability to be focused and sincere

Root

NP VP

.21 .79

+1

0 +1

X

VP

.13 .87

+1

0 +1

VP

.34 .66

+1

0 +1
X JJ

.23 .77

+1

0 +1

well sincereus

ADJP

VBZ PRPADVP

Figure 8.2: Attentive tree visualization (CTT)

cases, multi-branch attention has much better performance compared to the other two. This
gain by multi-branch attention is much more significant for CTT than for DTT.

Figure 8.2 visualizes how our CTT model puts attention on di↵erent phrases in a tree to
compute the correct sentiment. Space limitations allow only portions of the tree to be visu-
alized. As can be seen, the sentiment is positive (+1) at the root and the model puts more
attention on the right branch as it has all of the positive words, whereas the left branch (NP)
is neutral (0). The bottom three trees are the phrases which contain the positive words. The
model again puts more attention on the relevant branches. The words ‘well’ and ‘sincere’ are
inherently positive. In the corpus the word ‘us’ is tagged as positive for this sentence.
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8.4 Conclusion

In this chapter, we propose Tree Transformer which successfully encodes natural language
grammar trees utilizing the modules designed for the standard Transformer. We show that
we can e↵ectively use the attention module as the composition function together with grammar
information instead of just bag of words and can achieve performance on par with Tree LSTMs
and even better performance than the standard Transformer.



Chapter 9

Encoding Dependency Information inside
Tree Transformer

This chapter is based on the paper titled “Encoding Dependency Information inside Tree Trans-
former” co-authored with Robert E. Mercer that is going to appear in The 34th Canadian Con-
ference on Artificial Intelligence (CAI 2021) [10].

Representing a sentence in a high dimensional space is fundamental for most natural lan-
guage processing (NLP) tasks at present. These representations depend on the underlying
structures upon which they are built. Two scenarios are possible: one is to view the sentence
as a sequence of words and another is to consider its inherent grammatical structure. It is pos-
sible to equip the first way with some external grammatical knowledge, but to capture a proper
syntax would be close to impossible. Therefore, we investigate the second one by extending
the design of an existing dependency tree transformer (DT-Transformer). We propose adding a
novel edge encoding mechanism to this prior architecture. Experiments show that in sentence
encoding, having access to information about the relationships between “head” words and their
“dependent” words and how the heads are influenced by the dependent words achieves better
sentence representation. Evaluation on the four tasks shows noteworthy results compared to
the existing DT-Transformer, standard Transformer, LSTM-based models, and tree-structured
LSTMs. Extensive experimentation with representing the edge embeddings as di↵erent distri-
butions (mean and standard deviation), encoding the edges in di↵erent ways, and an ablation
study to find where to place each module in the architecture and which modules to use in the
design is also provided.

107
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9.1 Introduction

Following the breakthrough in natural language processing (NLP) research with word embed-
dings [156], recent research has had its focus shifted to developing e↵ective sentence embed-
dings [46, 59]. Having good generalized sentence representations is fundamental for solving
a range of NLP tasks because they eventually involve sentences, e.g., question answering,
sentiment analysis, semantic similarity, and natural language inference. Encoding a sentence
requires word level information either as a sequence or in a structured form. Large scale mod-
els can a↵ord to overlook sentence structure as they deal with lots of data and have access to
large computing power for training [65,132,246], whereas on a smaller scale, having access to
structural information gives a great boost even when training with less data.

In traditional linguistics, dependency parses are used to understand the grammatical struc-
ture of a sentence as they are morphologically rich and free of word order [47,63]. For example
in the sentence “I prefer the morning flight through Denver”, the word “prefer” is the root word
and its dependents are “I” and “flight”. In phrase-based parsing, the connection prefer! flight
is more distant. Similarly, “morning” and “Denver”, modifiers of “flight”, are linked to it di-
rectly in the dependency structure, which is not the case in the phrase structure tree. Therefore
there is more flexibility in using a dependency tree for getting the semantic representation of a
sentence as the grammatical information will come with it as well.

In this chapter, we propose a novel edge encoding mechanism of a dependency parse tree
and extend the design of one of the existing dependency tree transformer models from Chap-
ter 8 using very few extra parameters. To the best of our knowledge, no work has been done
on encoding these head-dependent relations into a dependency tree edge. We share the same
composition function across word level encoding and edge level encoding, allowing the at-
tention module to transfer knowledge across these two levels. Unlike existing tree structured
models [212, 214], the number of parameters in our model is not dependent on the number of
dependents under a head node. We present visualizations showing how our model makes a
classification decision by observing the attention probabilities in the tree. Our extensive eval-
uation shows that the edge label encoding information certainly helps to improve our model
or to be at least on par compared to the existing sequential (i.e., LSTM and Transformer) and
tree-structured (i.e., Tree LSTM, RvNN and Tree Transformer) models.

9.2 Related Work

Most recent sentence encoders utilize deep learning-based encoding to obtain a dense semantic
representation. These encoders treat the sentence either in the raw form just as a sequence of
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words or look at its tree representation generated from a dependency or constituency parser.

The attention mechanism adopted by most of the RNN based models requires access to the
hidden states at every time step [120, 248]. This introduces a wait time as all hidden states
have to be generated prior, making it hard to parallelize. To overcome this, [174] propose a
query and key-based fully attentive neural network which depends on matrix multiplication
to calculate the attention probability and is easily parallelizable. Later, [240] adopt this and
build a state of the art machine translation model called Transformer. The encoder portion of
transformer operates using the multi-head version of the attention module. Following this, [3]
propose a multi-branch version of transformer where they claim that it is important to allow
di↵erent heads to operate to their required extent rather than to make all of them contribute
uniformly. [46] propose an unsupervised sentence encoder by leveraging only the encoder part
of Transformer. They train on the large Stanford Natural Language Inference (SNLI) corpus
and then use transfer learning on smaller task-specific corpora.

Large scale language models have proven to be very e↵ective in providing good sentence
representations. [65] propose a general-purpose NLP architecture by stacking several trans-
former encoders where a special token padded at the beginning of the sentence contains the
sentence representation. [188] uses multilayer transformer decoders where multi-head self-
attention is applied over the input followed by a softmax to get the output distribution over the
target tokens. In this series, [132] combines the prior two methods and proposes a machine
translation model where the former one reconstructs the [MASK] tokens at the encoder and the
latter one performs an auto-regressive prediction at the decoder.

[212, 214, 216] propose a family of recursive neural net (RvNN) based models, where a
composition function is applied recursively bottom-up on child nodes to compute the parent
node representation until the root is reached. [228] propose two tree-structured LSTMs, where
the hidden and cell state of a parent node depends only on its children, allowing the connec-
tion between a head and its dependent (dependency Tree LSTM) or on the words within a
phrase (constituency tree LSTM) to remain intact. [13] further encodes attention inside these
tree version LSTMs showing the degree to which di↵erent children contribute to generate the
parent node representation. [14] propose a tree version of transformer where they replace the
composition function with an attention module and test it on four di↵erent NLP tasks.

Unlike the models which require precomputed structures, some recent works automatically
extract structure from a sentence as part of an end-to-end design. [258] propose an actor-critic
based reinforcement learning framework where the critic evaluates an actor-generated structure
and provides feedback as a reward or penalty to train the actor. [9] utilize a similar framework
for sentence pair modelling tasks and at the same time encodes a cross lookup mechanism
inside the actor. Recently, [204] propose a Parsing-Reading-Predict Network (PRPN) which
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can induce syntactic structure automatically from an unannotated corpus and can learn a better
language model to that induced structure. Later, [94] verify the empirical success of neural
network latent tree learning by testing this PRPN under various configurations and datasets.
However, [242] find some issues with this latent tree learning, such as inconsistencies during
negation handling, being biased towards producing shallow trees, and a tendency to consider
the last two words of a sentence as constituents. Unlike all these models which can only
induce syntactic trees, [235] generate task-specific latent dependency trees without having any
knowledge from a gold standard parser utilizing Kirchhof’s matrix tree theorem [41] to mimic
the latent grammatical association between words as N ⇥ N matrix.

9.3 Model

In this section, we describe the model in detail. We are motivated to traverse a dependency tree
using the attention module designed for a standard Transformer. Unlike the tree transformer
[14] that we are extending, we leverage both word and edge information. First, we describe the
design components which include a novel edge encoding mechanism followed by an in-depth
exposure to the general architecture of our edge encoded Tree Transformer model. Finally, we
conclude this section by suggesting some task-specific modifications.

9.3.1 Design Components

We start by first extracting the dependency tree of a given sentence using the Stanford CoreNLP
3.9.1 parser using Universal Dependencies version 1 [148] and traversing it as shown in Figure
9.1(a). A dependency tree has word information (R ! {B,C}; B ! {D, E}; C ! {F,G})
on every node and we represent this information with word vectors X 2 R1⇥d initialized by
some standard word embeddings. In addition to this, each edge is marked with dependency
information of which no standard representation is available. We initialize an edge embedding
layer with a normal distribution having a mean (µ) and a standard deviation (�) to represent
the N unique dependency labels from the Stanford parser [63].

ai 2 N(µ,�);8i 2 [1 . . .N] (9.1)

We propose a novel encoding mechanism of the dependency tree edges as shown in Figure
9.1(b). It is to be noted that there exist other encoding mechanisms but this one gives com-
paratively better results. We hypothesize that representing an edge in both the forward and
backward directions conveys more information than representing in just one direction. Each
edge has three participants: parent (q), child (x) and edge label (y). Our extensive experiments
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Figure 9.1: Design components.

indicate that q, x, and y can be in any permutation as long as the orders for the forward (f)
and backward (b) directions are unique. We create an edge representation by concatenating the
participants and create two large vectors as follows,

f1⇥3d = [q; y; x] b1⇥3d = [q; x; y] (9.2)

Next, we project these edge representations into a lower dimension d just to be consistent
with the dimension of the word embedding as follows,

f
1⇥d
=W1f b

1⇥d
=W2f (9.3)

We use multi-head self-attention [240] as the composition function of a sub-tree as shown
in Figure 9.1(c). It starts by projecting the input into a lower dimension n times (n being the
number of heads) and applies a self-attention (SA) block on top of them. This SA block is
equipped with three projection matrices: WQ,WK and WV . It considers the input tensor as
query, key, and value matrices. First, it transforms the query and key matrices as WQQ and
WKK. Next, it uses a dot-product for the alignment followed by softmax to get the attention
probabilities. Finally, it multiplies these probabilities with the transformed value matrix WVV
to get a scaled representation. All of these computations are summarized in Eqn. 9.4. The pi’s
are concatenated to get the final attentive representation.

pi = softmax
 
(WQQ)(WKK)T

p
dk

!
(WVV) (9.4)
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9.3.2 General Architecture

As shown in Figure 9.2, our general architecture involves traversing the tree twice: once using
the word information and another using the edge label information. However, the composition
function (F) remains the same for both cases. We now explain what is used as input to this
composition function for both cases. Later in this subsection we explain how we can extract
the final parent representation utilizing the transformed input.

Word Traversal: Dependency trees contain a word at every node. To traverse a subtree in a
dependency tree, we look at both the parent and child representations by concatenating them
as a tensor u as follows,

u = [q; x1; . . . ; xn] (9.5)

Here, q is the parent representation and the xi’s are the child representations. Finally, we apply
F over u to get the attentive transformed representation of a subtree as pu = F(u).

Edge Traversal: Given a subtree, we traverse it in two di↵erent ways: one with forward edges
and one with backward edges. We create two new tensors vf and vb representing the forward
and backward edge versions, respectively,

vf = [f1; f2; . . . ; fn] (9.6)

vb = [b1; b2; . . . ; bn] (9.7)
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Here, the f’s and b’s are the forward and backward edge representations as defined above.
Finally, we apply the composition function to them as follows,

pvf = F(vf) pvb = F(vb) (9.8)

Parent Representation: As mentioned before, we use a multi-head self-attention block as the
composition function (F) [240]. For each of the representations, u, vf and vb, after transforming
the inputs using this F, we apply a residual connection, transform it non-linearly and perform
an element-wise summation (EwS) to get the three hidden representations of the subtree. The
computations for word traversal and edge traversal are shown in Eqn. 9.9.

p̃u = tanh(EwS((pu + u)W + b))

p̃vf = tanh(EwS((pvf + vf)W + b))

p̃vb = tanh(EwS((pvb + vb)W + b))

p̃v = p̃vf + p̃vb

(9.9)

Finally, at the root, we concatenate p̃u and p̃v to get the final tree representation (R = [p̃u; p̃v]).

9.3.3 Dataset Specific Design Details

For most tasks, both the word and edge traversals are done independently and the resultant
representations are concatenated as shown above. We tried performing both of these traversals
concurrently but it did not give good performance. Some tasks require predicted labels for each
node. For these tasks we perform the two traversals in the same way as before but in paral-
lel, and perform classification at each node. Also needed is the computation of an additional
representation (r) at each node which is used for the classification with the edge label y (from
Section 9.3.1) as follows,

r =

8>>><
>>>:

tanh(WI(p̃u + p̃v)), if current node is an intermediate node

tanh(WL(p̃u + y)), if current node is a leaf node
(9.10)

9.4 Datasets and Experimental Setup

In this section, we present the dataset details along with the experimental setup. We first
describe our task corpora as well as their statistics in terms of the number of samples: train, test,
and validation. Following this, we explain the technical details of our proposed architecture
along with its hyper-parameter settings.



114 Chapter 9. Encoding Dependency Information inside Tree Transformer

Datasets: We wanted to test our model on data from di↵erent domains as well as on di↵erent
tasks. The tasks are: the Stanford Sentiment Treebank (SST) [214] for sentiment analysis,
Sentences Involving Compositional Knowledge (SICK) [150] for semantic relatedness (-R) and
natural language inference (-E), and the Microsoft Research Paraphrase (MSRP) corpus [70]
for paraphrase identification.

• MSRP: Given a pair of sentences, the task is to identify whether or not they are para-
phrases of each other [70]. Train: 4076; Test: 1725; Validation: N/A. We randomly
sample and exclude 10% of the training data and use that as the validation set.

• SICK: The dataset contains sentences derived from video and image annotations. The
samples are labelled for both the 3-class SICK-E classification task and the SICK-R
regression task which uses real-valued labels between 1 and 5 [150]. We use the same
setup as [228] who compute a target distribution p as a function of the predicted score y
given by Eqn. 9.11. Train: 4500; Test: 4927; Validation: 500.

p̃i =

8>>>>>>><
>>>>>>>:

y � byc, if i = byc + 1

byc � y + 1, if i = byc
0, otherwise

(9.11)

• SST: The samples in this dataset are labelled for both the binary and the 5-class classifi-
cation task. In this work, we are using only the binary classification labels. Train: 6920;
Test: 1821; Validation: 872.

We use accuracy as the standard evaluation metric for SICK-E, MSRP and SST and mean
squared error (MSE) along with Pearson’s r as the evaluation metric for SICK-R. We use KL-
divergence as the loss function for SICK-R and cross entropy as the loss function for the other
three tasks.
Experimental Setup: We use GloVe 300-dimensional word vectors [183] to initialize the word
embedding layer weights. We use a normal distribution with a cross-validated mean and stan-
dard deviation to initialize the edge embedding layer weights. We keep these layers frozen
during training. In the multi-head self-attention block, the dimensions of the query, key and
value matrices are set to 50 and we use 6 parallel heads on each input. We use a dropout
probability of 0.1. During training, the model parameters are updated using the Adagrad algo-
rithm [72] with a fixed learning rate of 0.0002. We train our model on an Nvidia GeForce GTX
1080Ti GPU and use PyTorch 1.3 for the implementation under the Linux environment.
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Model Types Model SICK-E SICK-R SST MSRP
(Acc.%) (MSE) (Acc.%) (Acc.%)

LSTM

LSTM [228] 76.80 .2831 84.90 71.70
Bi-LSTM [228] 82.11 † .2736 87.50 72.70
2-layer LSTM [228] 78.54 † .2838 86.30 69.35 †
2-layer Bi-LSTM [228] 79.66 † .2762 87.20 70.40 †
Infersent [59] 84.62 .2732 86.00 74.46

Transformer
USE_T [46] 81.15 .5241 † 85.38 74.96 †
USE_T+DAN [46] - - 86.62 -
USE_T+CNN [46] - - 86.69 -

Tree Structured

SDT-RNN [212] - .3848 - -
RAE [209] - - 82.40 76.80
MV-RNN [211] 58.14 † - 82.90 66.91 †
RNTN [216] 59.42 † - 85.40 66.91 †
DT-RNN [212] 63.38 † .3822 86.60 67.51 †
DT-LSTM [228] 83.11 † .2532/.2625 † 85.70/85.10 † 72.07 †
CT-LSTM [228] 82.00 † .2734/.2891 † 88.00/87.27 † 70.07 †
CTT [14] 82.72 † .3012 † 86.66 † 71.73 †
DTT [14] 82.95 † .2774 † 83.12 † 70.34 †

Ours DTT + edge label 83.32 .2627 83.75 71.96

Table 9.1: Performance comparison of the DT-Transformer + edge label against some state-
of-the-art LSTM, transformer and tree-structured models. Models that we implemented are
marked with †.

9.5 Results and Discussion

In this section, we present the e↵ectiveness of equipping a dependency tree transformer with
edge label information by evaluating on four NLP tasks. We show that initializing the edge em-
bedding layer weights with a normal distribution having various means and standard deviations
impacts the model’s performance. We also present how di↵erent permutations of the depen-
dency tree edge encoding a↵ect the model’s e↵ectiveness. A detailed ablation study reveals the
design that led to the best performance. Finally, we conclude this section by visualizing the
dependency trees of two test set samples from the SST dataset, one is predicted correctly and
the model mistakenly predicts the other.

Table 9.1 compares our model’s performance on four tasks using task-specific evaluation
metrics. To do the comparison, we implement both variants of Tree LSTM and Transformer-
based architectures and some of the RvNN and LSTM-based models which do not have re-
ported results for all tasks. We only include models that have a comparable number of param-
eters to ours and do not compare with large language models like BERT [65], BART [132],
XLNet [246], and OpenAI-GPT [188]. The evaluation is performed on each corpus separately
following the standard train/test/validation split instead of assessing on any transfer perfor-
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Mean STD SICK-E SICK-R SST MSRP
(Acc.%) (Pearson’s r/MSE) (Acc.%) (Acc.%)

0 .025 81.65 85.89/.2763 81.22 71.57
0 .050 82.97 86.02/.2648 82.32 71.79
0 .075 82.18 85.90/.2684 82.54 71.07
0 .100 81.98 85.91/.2666 81.93 71.18
0 .125 82.24 85.95/.2656 81.37 71.18
0 .150 81.95 85.72/.2698 81.48 71.79
0 .175 82.30 85.84/.2679 81.55 71.96
0 .200 81.17 86.11/.2627 81.60 71.23
0 .225 81.79 85.81/.2682 83.75 71.96
0 .250 82.44 85.61/.2726 81.16 71.23
0 .275 81.79 85.94/.2663 81.49 71.35
0 .300 81.29 85.93/.2663 81.22 71.07
0 .325 81.81 85.92/.2669 81.93 70.91
0 .350 81.65 85.34/.2769 81.11 71.40
0 .375 81.61 85.85/.2693 82.10 71.35
0 .400 82.24 85.70/.2703 82.08 71.24

-.0014 .381 81.77 85.97/.2667 - 71.01
-.0066 .373 - - 82.10 -

Table 9.2: E↵ect of initializing edge embeddings with a fixed mean (0) and changing stan-
dard deviation (STD). The last two rows have the respective word embedding mean and STD
for SICK-E, SICK-R, MSRP, and SST together with the performance when used as the edge
embedding mean and STD.

mance. On SICK-E, our model is achieving 83.32% accuracy, which is on par with DT-LSTM
(83.11%) as well as CT-LSTM (82.00%) and much better than the DT-Transformer (82.95%)
as well as the standard Transformer (81.15%). On SICK-R, our .2627 MSE is almost the same
as the best performed DT-LSTM evaluated in the same settings as ours. On this task, our
model is doing significantly better than the standard Transformer (.5241 MSE) and compara-
tively better than the DT-Transformer having no edge label information. On the SST dataset,
our model is getting 83.75% accuracy which is not as good as most of the tree-structured and
sequential models. However, it is doing much better than RAE (82.40% Acc.) which is the
best performing model on the MSRP dataset. The performance gap between our model and
the constituency tree-based models can at least be partially attributable to the fact that these
latter ones are trained on more labeled data (150K vs. 319K). On the MSRP dataset, our model
(71.96% Acc.) is much better than DT-Transformer (70.34% Acc.), CT-Transformer (71.73%
Acc.) as well as CT-LSTM (70.07% Acc.) and almost similar to DT-LSTM (72.07% Acc.). It
is to be noted that almost all the sequential models, i.e., Transformer, Infersent, and LSTMs,
are doing better compared to the tree-structured models on this task.

Table 9.2 shows the e↵ect of changing the edge embedding layer weights on the final model
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Forward Backward SICK-E SICK-R SST MSRP
Edge Edge (Acc.%) (Pearson’s r/MSE) (Acc.%) (Acc.%)
xyq xqy 82.97 86.11/.2627 83.58 71.29
xyq qyx 81.20 85.71/.2700 82.32 71.96
yxq yqx 81.12 85.48/.2741 82.10 70.63
qyx yqx 81.14 85.37/.2786 83.75 68.57
qyx ⇥ 83.32 85.31/.2781 79.68 69.35
qxy ⇥ 81.65 84.90/.2848 81.65 69.02
xyq ⇥ 81.71 85.69/.2702 82.92 71.68
xqy ⇥ 82.10 84.91/.2839 81.93 71.79
yqx ⇥ 81.33 85.13/.2825 81.11 68.07
yxq ⇥ 81.81 85.12/.2819 82.32 69.29

Table 9.3: E↵ect of di↵erent ways to form forward and backward edges. q: parent; x: child; y:
edge label.

performance. We explore this phenomenon by initializing the edge embedding layer weights
with a normal distribution having a fixed mean and varying standard deviation. We also experi-
ment with initializing the edge embedding layer weights following the same distribution as the
word embedding layer. As can be seen, the best performances across the datasets are achieved
with mean 0 and standard deviation in the range of 0.175� 0.225, except for SICK-E. The best
performance is with standard deviation 0.05. Similar to the word embedding layer weights, we
keep the edge embedding layer weights frozen by not including them in the training.

Table 9.3 shows the e↵ect of di↵erent ways to encode forward and backward edges on
the final model performance. Together, there are 3! + (3! ⇥ 3!) ways to encode forward and
backward edges, but here we only report some of the noteworthy results as the others are giving
similar or comparatively poorer performance. We do not experiment with only backward edges
as it seemed similar to having forward edges only. Of our four tasks, having both forward and
backward edges together gives better performance as opposed to having them alone. As can
be seen, there is no fixed pattern for encoding the edges. Instead, it is dataset specific and can
only be determined through a brute force experiment.

We also perform an ablation study on our model by plugging in and out di↵erent modules.
We report the results in Table 9.4. We show only the 5 best performing settings on each dataset.
For better readability, we provide default settings and then override them by turning on and o↵
di↵erent modules and changing their values as well. As can be seen, the default settings are
giving the best performance only for the SICK-R and MSRP datasets. For SICK-E, forward
edges only (see Table 9.3), multi-branch attention as the composition function, and a linear
classifier gives the best performance. For the SST dataset, we use the default settings for the
tree traversal and the settings defined in Eqn. 9.10 for the node-wise classification.
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SICK-E
Model Settings Accuracy (%)

fc_layer = linear 82.97
fc_layer = linear, final_activation = softmax 80.55
backward_edge = False, word_attention = multi-head,
edge_attention = multi-head 81.88

backward_edge = False, word_attention = multi-head,
edge_attention = multi-head, fc_layer = linear 82.87

backward_edge = False, word_attention = multi-branch,
edge_attention = multi-branch, fc_layer = linear 83.32

SICK-R
Model Settings Pearson’s r/MSE

Default 86.11/.2627
pooling_type = mean 82.21/.3451
word_attention = multi-branch 82.21/.3451
word_attention = single-head, edge_attention = single-head 81.00/.3507
word_attention = multi-branch, edge_attention = multi-branch 84.83/.2872

SST
Model Settings Accuracy (%)

Default + word traversal to classify both leaf and intermediate nodes 80.89
Default + word and edge traversal to classify both leaf and
intermediate nodes 81.60

Default + word traversal to classify leaf, word and edge traversal to
classify intermediate nodes 81.99

Default + word and edge traversal to classify leaf, word and edge
vectors to classify intermediate nodes 83.75

Default + word and edge vectors to classify leaf, word and edge
traversal to classify intermediate nodes 82.70

MSRP
Model Settings Accuracy (%)

Default 71.96
projection_residual = True 71.07
optimizer = SGD, backward_edge = False 71.18
word_attention = single-head, edge_attention = single-head 70.74
word_attention = multi-branch, edge_attention = multi-branch 70.68

Table 9.4: Ablation study. (Default settings: word_embedding_train = False, edge_embed-
ding_train = False, pooling_type = maxpool, word_attention = multi-head, edge_attention =
multi-head, optimizer = Adagrad, fc_layer = non-linear, word-edge_projection = not-shared,
forward_edge = True, backward_edge = True, projection_residual = False, final_activation =
log-softmax)

Figure 9.3 shows how the model puts attention on di↵erent parts of a dependency tree and
computes the final sentiment. The visualization also shows whether the model is making a cor-
rect decision or not on each of the nodes. As can be seen in Figure 9.3(a), our model gets the
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(b) Perhaps no picture ever made has more literally showed that the road to hell is paved with good intentions .
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Figure 9.3: Attentive tree visualization (DT-Transformer + edge label). 0-Negative; 1-Neutral;
2-Positive. X/Y: X-Predicted label; Y-True label. The blue squares indicate attention proba-
bilities.

final sentiment of the sentence correctly and it also correctly classifies the sentiment of each of
the nodes except the word “wasabi”. At the first level, the word “like” is getting 14% attention
which gets its positive sentiment from the subtree go! to, to, have which itself is getting high-
est attention (29%) among its siblings. Also, in the subtree have ! to, fun, the edge “fun” is
getting a comparatively higher probability which is a positive sentiment word. In the second ex-
ample shown in Figure 9.3(b), our model is making correct predictions for almost all nodes but
getting some of the key ones wrong. The sentiment of the subtree paved! that, road, is, with
is predicted as negative, which propagates and makes the final decision wrong. However, the
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misprediction in subtree picture ! no, made does not have any e↵ect because this entire sub-
tree is getting almost equal attention as its siblings. Overall, having these attention probabilities
provides transparency to the model and tells how it is thinking about a specific example and
helps us to relate to how we as a human would treat it. We have not visualized the output for
SICK and MSRP datasets since the attention weights were equal or almost equal, respectively.
The reasons could be the very short sentences in the SICK dataset and the syntactic similarity
between the two sentences in the SICK and MSRP datasets.

9.6 Conclusion

In this chapter, we propose a novel way to include edge label information inside a dependency
tree transformer which encodes natural language grammar trees utilizing the modules designed
for the standard Transformer. We show that having edge label information definitely helps and
gives a significant boost compared to not having it. We conduct a series of in-depth exper-
iments, which explore the distribution of the edge embeddings along with di↵erent ways of
forming them. We also provide an ablation study to get the optimal performance with minimal
settings. Our study shows that having edge label information complements a dependency tree
transformer by putting it on par with Tree LSTMs and making it even better compared to the
standard Transformer.



Chapter 10

Modelling Sentence Pairs via
Reinforcement Learning: An Actor-Critic
Approach to Learn the Irrelevant Words

This chapter is based on the paper titled “Modelling Sentence Pairs via Reinforcement Learn-
ing: An Actor-Critic Approach to Learn the Irrelevant Words” co-authored with Robert E.
Mercer that appeared in the 34th AAAI Conference on Artificial Intelligence (AAAI 2020) [9].

Learning sentence representation is a fundamental task in Natural Language Processing.
Most of the existing sentence pair modelling architectures focus only on extracting and using
the rich sentence pair features. The drawback of utilizing all of these features makes the learn-
ing process much harder. In this chapter, we propose a reinforcement learning (RL) method to
learn a sentence pair representation when performing tasks like semantic similarity, paraphrase
identification, and question-answer pair modelling. We formulate this learning problem as a
sequential decision making task where the decision made in the current state will have a strong
impact on the following decisions. We address this decision making with a policy gradient RL
method which chooses the irrelevant words to delete by looking at the sub-optimal represen-
tation of the sentences being compared. With this policy, extensive experiments show that our
model achieves on par performance when learning task-specific representations of sentence
pairs without needing any further knowledge like parse trees. We suggest that the simplicity of
each task inference provided by our RL model makes it easier to explain.
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10.1 Introduction

In natural language processing (NLP), most of the tasks require a transformation from an input
space to some high dimensional vector space where each dimension captures some aspect of
the underlying structure about the data. Learning this kind of representation is a fundamental
challenge in NLP and is extensively explored by many recent works [32], [125]. In order
to make correct decisions, the well-studied mainstream tasks, such as comparing a pair of
sentences in terms of semantics or paraphrasing, depend heavily on the quality of the learned
representation of each sentence since the comparison is made in this representation space [58],
[45], [163] and [227].

Mainstream sentence pair comparing models look only at the sentences being compared
individually while overlooking the information they share between them [58], [45]. This is
contrary to what humans do, we usually look at the key words of both sentences while com-
paring them and ignore most of the irrelevant information. For example, while comparing the
sentence “A boy is lying in the snow and is making snow angels” with the sentence “Two people
wearing snowsuits are on the ground making snow angels” for the natural language inference
task, we can just consider that whether the actors in both of these sentences are “making snow
angels” or not and take a decision based on that.

Almost all the sentence pair modelling architectures follow a uniform framework: repre-
sent the sentences to compare in some high dimensional space using an encoder and compare
these representations using a matching module. The encoding section of these models can be
classified into four types: Bag of words based models which ignore the ordering of the words,
Recurrent and Convolutional neural network based models which take into consideration the
contexts surrounding each word, Transformer based models where the complex attention mod-
ule does the summarizing and finally, the models that work on predefined structures like parse
trees.

[98] and [104] propose bag of words type models where they ignore the word ordering and
instead rely on taking the average of word vectors followed by some linear projection layers.
[137] also ignore the structure as well as context but relies on an auto-encoder to generate the
representation by adapting domain and sentiment supervision.

[163] use just one copy of an LSTM to encode the entailment task sentences followed by
a Manhattan distance based similarity function for the inference. [247], [58], and [141] follow
the same framework utilizing LSTM followed by a pooling block to summarize the represen-
tation even more. [227] and [215] utilize predefined dependency as well as constituency tree
structures and use tree based recurrent networks as the composition function to extract the
representation. Furthermore, to get more powerful representations, [270] encode attention in-
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side the dependency tree variant of tree LSTM whereas [50] extract local and global inference
composition by jointly utilizing both standard LSTM as well as tree LSTM.

Recently, Transformer [240] is getting the spotlight for doing machine translation where
the recurrence is mimicked by positional encoding and a series of multi-head attention blocks
[175]. [45] utilize the encoder portion of the Transformer to project the input into a represen-
tation space and then use a matching block as the inference layer. [65] create a generalized
language representation model using a multi-layer bidirectional Transformer encoder which
also provides very good sentence representation.

Unlike most of the existing works which looks at the predefined structures, there are some
works which uses automatically optimized structures for learning a representation. [252] pro-
pose a very complex and overly deep model to compose binary tree structures from the super-
vised downstream task which sometimes gives tree structures that are very di↵erent from the
standard English syntactic trees. [54] propose a hierarchical multi-scale recurrent neural net-
work which can capture the latent hierarchical structure in the sequence by encoding the tem-
poral dependencies with di↵erent timescales. [235] propose a model to compose the English
syntactic tree structures without even looking at the gold standard label utilizing Kirchhof’s
matrix tree theorem [41].

In this work, we propose a sentence representation building model using reinforcement
learning (RL) for doing the sentence pair modelling task. We devise a training strategy in-
corporating a policy based actor which takes decision based on the previous context, current
input and structure of the counterpart sentence. We use a delayed reward to guide the structure
discovery and the reward is computed based on the performance of a sub-optimal critic. [230].
We use Monte Carlo sampling for exploring the decision space and the final representation is
available when all the sequential decisions are made [88]. We fuse the representation module
with a policy and critic network where the policy network performs structure discovery based
on the response of a sub-optimal critic and the critic gets further tuned on this structured pair
representation to adapt itself more on the response of the actor. Even without any explicit struc-
ture annotation, our policy based actor builds pretty good sentence representations by filtering
out some irrelevant words allowing the critic to get on par or even better performance on these
possibly optimal structures.

10.2 Model

In this section, we describe our model in detail. We first explain how the critic is trained in a
delayed manner with and without the actor response. Following this, we explain how we train
the actor using the response of a trained critic. We conclude this section by giving a high level
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view of the workflow of our model.

Training the Critic: As the critic, we have chosen to use InferSent [58], an LSTM based
model, to compute the representations of a pair of sentences and then compare them for an
underlying task. It first traverses each sentence as a sequence of T words {xt}t=1,...,T from left to
right and generates a hidden representation at each time step

�!
ht , 8t 2 [1, . . . ,T ] .

�!
ht =

������!
LSTMt(x1, . . . , xT ) (10.1)

Following this, it employs a max (or mean) pooling block to summarize the hidden states in
one dense representation.

�!
h = maxpool(

�!
h1, . . . ,

�!
hT ) (10.2)

The next steps are to infer the similarity between the two representations (
�!
ha,
�!
hb) using standard

matching methods and to project the resultant vector into the space of classes, y, through a
series of fully connected layers as follows

x = (
�!
ha,
�!
hb, |
�!
ha �

�!
hb|,
�!
ha ⇤
�!
hb) (10.3)

P(y|X) = �(W1�(W2x + b2) + b1) (10.4)

Finally, it is trained by optimizing a task specific loss function as follows

H(p, q) = �
nX

i=1

Q(yi) log(P(yi)) (10.5)

However, in order to have a sub-optimal critic, we do not train it in the standard fash-
ion. Instead, we initialize two copies: final and active. We perform all of the steps above
using the final version of the critic, compute the gradients with respect to its parameters
(✓ f = {✓ f1 , . . . , ✓ fk}) and store them.

@H
@✓ f
= [
@H
@✓ f1
, . . . ,

@H
@✓ fk

] (10.6)

Generally, in batch-wise training, an average loss is calculated for all of the samples in the
batch and the network is updated based on that loss. To mimic this behavior, first the final
version of critic computes loss for each sample in the batch and stores gradients with respect
to its parameters for that loss. Next, all of these gradients are accumulated 1 and we update the

1We also tried averaging the gradients but the addition works better.
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active version (✓a = {✓a1 , . . . , ✓ak}) of critic as follows.

✓a j = ✓a j +
X

i2batch

@Hi

@✓ f j

(10.7)

This kind of updating allows us to get a sub-optimal critic and we can utilize it later when we
train an optimal critic in a weighted fashion based on the actor response. This type of training
paradigm is di↵erent from training with batch size 1, since here, for each sample in a batch, the
loss gets calculated with respect to a fixed set of parameters and the corresponding gradients
are applied once the traversal over the entire batch is done, whereas in training with batch size
1, for each batch, a loss is calculated with respect to a new set of parameters because of the
continual updating. Finally, after going over an entire batch, the parameters of the final version
of the critic gets updated by its active version parameters as ✓ f = ✓a.

Apart from this, we adopt another way for training the critic as mentioned before which
we use during the fine tuning phase based on the actor response. Instead of doing a straight
assignment as above (✓ f = ✓a), the final version gets updated in a weighted fashion as follows

✓ f = ✓a ⇥ ↵ + ✓ f ⇥ (1 � ↵),

where ✓a 2 {✓a1 , . . . , ✓ak}, ✓ f 2 {✓ f1 , . . . , ✓ fk}
(10.8)

Here, the hyperparameter ↵ is set to 0.1 for all experiments.

Training the Actor: We adopt the policy gradient method [225] to update the actor. The
policy network guides the policy learning using a stochastic policy ⇡✓(at|st; ✓) along with a
delayed reward. At each time step t, an action at is sampled from the policy following a
probability distribution as follows

⇡✓(at|st; ✓) = �(stW + b) (10.9)

where ⇡✓(at|st; ✓) denotes the probability of choosing at and {W,b} is the set of parameters of
the actor policy network. Since, we want our policy network to consider the representation of
the counterpart sentence, we include it along with the current input and previous context as
state. Formally, the state is defined as

st = [ct�1; ht�1; xt; h̃T ] (10.10)

Here, ct�1, ht�1 denotes the cell state and hidden sate of critic LSTM at time step t�1, xt denotes
the input at time step t and h̃T is the summary vector of the counterpart sentence generated by
the critic LSTM. We use the same policy network to sample actions for both the sentences to
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be compared. Using this state and policy, we perform action sampling for the whole sequence
to obtain the delayed reward [259] as follows

action =

8>>>>>>>>>>><
>>>>>>>>>>>:

1, if P(Y) > ✏ and P(Z) > ⇡✓

0, if P(Y) > ✏ and P(Z) < ⇡✓

1, if P(Y) < ✏ and P(Z) < ⇡✓

0, if P(Y) < ✏ and P(Z) > ⇡✓

(10.11)

where Y and Z are uniform random variables, the hyperparameter ✏ is set to 0.05 and ⇡✓ is
the policy from Eqn. 10.9. Our action space is limited to produce binary actions which in a
sense can be used as a representation selection model. Once all of the actions are sampled
for both the sentences, we get a new representation for both of them which is further used by
the critic to compute P(y|X) and estimate the reward to guide the policy learning. Formally,
for a given sentence X = x1, x2, . . . , xL, there is a corresponding sampled action sequence
A = a1, a2, . . . , aL obtained from the policy where ai = 1 means to keep the word and ai = 0
means to discard it as it has no contribution in the final representation when compared with its
counterpart sentence. Using this hypothesis, the critic states are updated as follows

ct,ht =

8>>><
>>>:

ct�1,ht�1, action = 0

f (ct�1,ht�1, xt) action = 1
(10.12)

where f denotes all the gate and update functions from the critic, and ct, ht and xt denote the
cell state, hidden state and input at time step t, respectively. In summary, if a word gets deleted
at time step t, the cell state and hidden state are just copied from time step t � 1, otherwise it is
generated using the standard LSTM gates of critic.

The parameters of our policy net are optimized using the REINFORCE algorithm [243]
with an objective being maximizing the expected delayed reward as follows

J(✓) = E(st,at)sP✓(st,at)r(s1a1 . . . sTaT )

=
X

s1a1...sTaT

P✓(s1a1 . . . sTaT )RT

=
X

s1a1...sTaT

P✓(s1)
Y

t

⇡✓(at|st)P✓(st+1|st, at)RT

(10.13)

The delayed reward RT is computed using the logarithm of the output probability distribution
of the critic log P(y|X) over just one sample. Since our state at time step t+1 is fully determined
by the state and action at time step t, we can make P✓(s1) = P✓(st+1|st, at) = 1 in Eqn. 10.13.
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Also as we perform the action sampling for both sentences to be compared, we change the
objective function as follows

J(✓) =
X

s1a1...sTaT

Y

t2l
⇡✓(at|st)RT +

X

s1a1...sTaT

Y

t2r
⇡✓(at|st)RT (10.14)

where l denotes the left sentence and r denotes the right sentence. By applying the likelihood
ratio trick, we update the policy network with the following gradient

@J(✓)
@✓
=

X

t2l
RT
@

@✓
log ⇡✓(at|st, ✓t) +

X

t2r
RT
@

@✓
log ⇡✓(at|st, ✓t) (10.15)

The policy network controls the number of deleted words by using a unimodal function f (x) =
x + �/x with the reward and maximize them jointly. The reward RT is defined as

RT = log P(y|X) � �Z
2

⇣
abs(

Ll
0

Ll
+
�Ll

Ll
0 ) + abs(

Lr
0

Lr
+
�Lr

Lr
0 )

⌘
(10.16)

where L0l and L0r are the number of words with corresponding action value 1, and Ll and Lr are
the actual lengths for the left and right sentences respectively. � is a hyper-parameter, Z is the
number of classes and � is the proportion of words we want deleted.

Like the critic, we initialize two versions of the actor: final and active. For each sample in
a batch, the active version of the actor policy network is updated by the gradient of the final
version of the actor policy network parameters

✓a j = ✓a j +
X

i2batch

@J(✓)i

@✓ f j

(10.17)

Once a batch is finished, the final version of the actor policy is updated in a similar way as the
critic using Eqn. 10.8.

Workflow: We now give a high level view of the work flow of our entire model. An algorithmic
presentation detailing these steps is provided in Algorithms 10.1 and 10.2. We start by training
a sub-optimal critic in a delayed manner by first initializing two versions of it (final and active).
For each sample in a batch, we update the active version using the gradients of the final version.
While doing this, we keep the parameters of the final version fixed. Once the entire batch
is looked at, the active version is used to update the final version through a straightforward
assignment.

After training this sub-optimal critic, we use its response to train an actor with a policy
gradient method. To accomplish this, we again start by having two versions of actor (final and
active). With each sample in the batch, Eqn. 10.10 gets an st for each word in the two sentences
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Algorithm 10.1 Overall Training
Initialize two copies of Critic network C f and Ca
Denote the LSTMs of Critic network as L f and La
Set of Critic Parameters {✓ f1 . . . ✓ fk } [ {✓a1 . . . ✓ak }
Discount factor ↵ 2 [0, 1] and Learning rate � 2 [0, 1]
for batch 2 Batches do

for sample 2 batch do
x, y sample
r✓ f  rP✓ f (out⇤|x, y, ✓ f ), 8✓ f 2 {✓ f1 . . . ✓ fk }
✓a j = ✓a j + � ⇥ r✓ f j , j 2 {1 . . . k}

end for
✓ f j = ✓a j , j 2 {1 . . . k}

end for
Train Actor on Critic (C f ) response using Algorithm 10.2
Initialize {✓a1 . . . ✓ak } by {✓ f1 . . . ✓ fk }
for batch 2 Batches do

for sample 2 batch do
x, y sample, x̃ ;, ỹ ;
h̃Tx  L f (y), h̃Ty  L f (x)
Calculate stx using word vector xt, sentence vector h̃Tx , cell and hidden states of L
at previous time step with Eqn. 10
Calculate sty using word vector yt, sentence vector h̃Ty , cell and hidden states of L
at previous time step with Eqn. 10
Calculate ⇡✓x using stx , ⇡✓y using sty with Eqn. 9
Sample actions ax using policy ⇡✓x and ay using policy ⇡✓y with Eqn. 11
for action in ax do

if action = 1 at index t then
keep the word at index t and add it to x̃

end if
end for
for action in ay do

if action = 1 at index t then
keep the word at index t and add it to ỹ

end if
end for
r✓ f  rP✓ f (out⇤|x̃, ỹ, ✓ f ), 8✓ f 2 {✓ f1 . . . ✓ fk }
✓a j = ✓a j + � ⇥ r✓ f j , j 2 {1 . . . k}

end for
✓ f j = ✓ f j ⇥ (1 � ↵) + ✓a j ⇥ ↵, j 2 {1 . . . k}
Initialize {✓a1 . . . ✓ak } by {✓ f1 . . . ✓ fk }

end for
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Algorithm 10.2 Actor Training
Start with a pre-trained Critic C having an LSTM cell L
Number of random sampling N 2 [1, n]
Initialize two copies of Actor policy networks ⇡✓ f , ⇡✓a
Set of Actor Parameters {✓ f1 . . . ✓ fk } [ {✓a1 . . . ✓ak }
Discount factor ↵ 2 [0, 1], Learning rate � 2 [0, 1]
Function to calculate the length F(.)
No. of classes Z 2 [1, n]
Proportion of the words to be deleted � 2 [1, n]
for batch 2 Batches do

for sample 2 batch do
x, y sample
Left Summary x0  L(x), Right Summary y0  L(y)
States sX  ; , sY  ;
Actions aX  ; , aY  ;
Loss l ;, j 0
while j < N do

x̃ ;, ỹ ;
Calculate stx using word vector xt, sentence vector h̃Tx , cell and hidden states of L
at previous time step with Eqn. 10
Calculate sty using word vector yt, sentence vector h̃Ty , cell and hidden states of L
at previous time step with Eqn. 10
Calculate ⇡✓x using stx , ⇡✓y using sty with Eqn. 9
Sample actions ax using policy ⇡✓x and ay using policy ⇡✓y with Eqn. 11
aX j  aX j + atx , aY j  aY j + aty
sX j  sX j + stx , sY j  sY j + sty
for action in ax do

if action = 1 at index t then
keep the word at index t and add it to x̃

end if
end for
for action in ay do

if action = 1 at index t then
keep the word at index t and add it to ỹ

end if
end for
l l +C(x̃, ỹ) + �Z2

���� F(x̃)
F(x) +

�⇤F(x)
F(x̃)

��� +
��� F(ỹ)

F(y) +
�⇤F(y)

F(ỹ)

����

j j + 1
end while
la  (

PN
i=1 li)/N

Initialize the gradients r✓ f 2 {r✓ f1 . . .r✓ fk } by 0
j 0
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Algorithm 10.2 Actor Training (continued)
while j < N do

i 0
while i < F(aX) do

RL  (l j,i � la) ⇥↵
r✓ f  r✓ f + RLr log ⇡✓ f (a⇤X j,i

|sX j,i , ✓ f ), 8✓ f 2 {✓ f1 . . . ✓ fk }
i i + 1

end while
i 0
while i < F(aY ) do

RL  (l j,i � la) ⇥↵
r✓ f  r✓ f + RLr log ⇡✓ f (a⇤Y j,i

|sY j,i , ✓ f ), 8✓ f 2 {✓ f1 . . . ✓ fk }
i i + 1

end while
j j + 1

end while
✓a j = ✓a j + � ⇥ r✓ f j , j 2 {1 . . . k}

end for
✓ f j = ✓ f j ⇥ (1 � ↵) + ✓a j ⇥ ↵, j 2 {1 . . . k}
Initialize {✓a1 . . . ✓ak } by {✓ f1 . . . ✓ fk }

end for

in the sample. Next, we use these two sets of st’s in Eqn. 10.9 to calculate the policies (⇡✓’s)
for each word in the two sentences. We then use each policy with the sampling strategy as
defined in Eqn. 10.11 to get the corresponding action (at) associated with each word in the two
sentences. Each action represents whether to delete or keep a word. Next, we modify both
of the sentences according to these sampled actions. These modified sentences are used with
the trained critic to calculate a reward. This reward is modified with a term that reflects the
ratio of the number of words that we delete from both of the sentences (the subtrahend in Eqn.
10.16). We store all of the st’s, at’s as well as the associated reward and repeat this strategy
N times. We then calculate an average reward. The objective function in Eqn. 10.14 and the
gradients in Eqn. 10.15 are calculated N times using the N sets of the logarithm of policies and
the N di↵erences between the N rewards and the average reward. We again adopt the delaying
strategy in updating the actor parameters.

For each sample in the batch, the just calculated gradients of the parameters of the final
version of the actor are used to update the active version. We keep the final version parameters
constant until all the samples in the batch are looked at. Eqn. 10.8 is used to update the param-
eters of the final version of actor by its active version in a weighted fashion. The active version
is then set to this new final version. We continue this updating of actor until all the batches are
looked at.

After the actor is trained, the previously trained sub-optimal critic is further tuned using
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the response of this trained actor. Rather than looking at the real sentence pairs, now the critic
looks at the actor-modified sentences. A loss is calculated based on the critic response and the
active version is updated through the gradients of the parameters of the final version. Eqn. 10.8
updates the final version of the critic once an entire batch is looked at.

Ensemble Method: In order to verify the contribution and structure selection ability of actor,
we also perform an ensemble decision check by combining the responses of two critics (i.e.,
InferSent), one trained just on the raw words without any actor and one trained on the response
of an actor. We hypothesize that the raw InferSent model should get more importance than
the one which needs an actor. Both model weights are initialized to 0.5 weight. The weight
of the one without any actor goes from 0.5 to 1.0 and the one with an actor goes from 0.5 to
0. The final decision Fd is taken by doing a weighted average on the response of both of the
participating entities: Cd (critic decision) and ACd (actor-critic decision).

Fd = Cd ⇥ w + ACd ⇥ (1 � w) (10.18)

Here, w and (1�w) are the weights on the critic and actor-critic decisions and they are selected
through a grid search over the validation set.

10.3 Datasets, Experimental Setup, Results and Analysis

In this section, we explain the experimental setup along with the results obtained and a thorough
analysis. We first describe our training corpora as well as all of the benchmarks used in other
standard sentence pair modelling studies. Following this, we explain the technical details of
our proposed architecture along with its hyper-parameter settings. We also present the detailed
results obtained with our RL model and compare with some of the top performing models on
their selected datasets. Additionally, we give a qualitative analysis by showing the predictions
of our models on some random test samples for all of the tasks. Finally, we conclude this
section by giving some insight into the performance of our model by analyzing the generated
structures.
Datasets: Model evaluation uses three datasets: paraphrase identification, natural language
inference, and question-answer pair modelling.

• MSRP: Given a pair of sentences, the task is to identify whether or not they are para-
phrases of each other [69].

• SICK: The dataset contains sentences derived from video and image annotations and
the task is to classify a given sentence pair into three classes: Entailment, Neutral and
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Contradiction [151].

• AI2-8grade: The task is to do a true-false question selection where each data sample
consists of a pair of sentences with one being the question and the other being the evi-
dence formed by replacing the wh in the question by the answer [30].

Experimental Setup: The LSTM hidden state dimension is set to 1024. Word vectors are ini-
tialized with the 300 dimension GloVe embeddings [183] and are not updated during training.
To smooth the update during critic training, the gradients are divided by B2 where B is the

batch size which is 5. The learning rate is reduced by a factor of 2 if
qPk

i=1

���r✓2i
��� is more than

a threshold, which is 5 for our experiments. To smooth the policy gradient update, we add a �,
�, and Z scaled regularized reward as shown in Eqn. 10.16. The values of � and � are 0.1 and
0.15, respectively, and Z is the number of classes.

During training, the critic parameters are updated using stochastic gradient descent [38]
with an initial learning rate of 0.1, whereas for training actor, we use Adam [109] to update the
parameters with a fixed learning rate of 0.01.

Results and Analysis: Table 10.1 compares the performance of our two models on the three
tasks to some top performing generalized sentence encoders and some designed for a specific
task using accuracy as the evaluation metric. To do a fair comparison, we used the o�cial
implementation of InferSent, LSTM, BiGRU Last encoder, Inner attention, ConvNet encoder
with the same settings as ours2. On the MSRP task, our ensemble model achieves 76.12%
accuracy which is better than all of the sequential and tree based sentence encoders. It is
noteworthy that these tree based models have access to parse trees which are expensive to
compute. We get better performance without this information. On the AI2-8grade dataset,
performance (73.84% for InferSent + RL and 74.91% for InferSent + RL (Ensemble)) is below
the existing models; however, it is still on par. Later, we show that our model (InferSent +
RL) is removing around 90% of the content from this dataset yet is still able to achieve this
comparable performance. Finally, state of the art performance (86.12% accuracy) is achieved
on the natural language inference task on the SICK dataset. Even though our critic model is
much simpler having just a unidirectional LSTM, it is doing much better than [39] with 80.80%
accuracy who use transfer learning and [135] with 72.01% accuracy who use an attention block
on top of a bidirectional LSTM. Lastly, our version of InferSent with an actor is better than the
standard InferSent suggesting that our actor has been able to correctly remove the irrelevant
words.

Table 10.2 gives the ensemble method’s final w values and final results. Adding RL alone
improves InferSent slightly on two of the three datasets. Carefully re-introducing the e↵ect

2Available at https://github.com/facebookresearch/InferSent.
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Model MSRP AI2-8grade SICK
Acc. Acc. Acc.

InferSent [58] † 74.46 74.71 84.07
LSTM [58] † 70.74 74.93 76.80
BiGRU Last Encoder [58] † 70.46 74.61 81.47
Inner Attention [135] † 69.74 74.73 72.01
ConvNet Encoder [263] † 73.96 75.26 83.82
InferSent + RL 74.74 73.84 84.57
InferSent + RL (Ensemble) 76.12 74.91 86.12
Seq-LSTMs [270] 71.70 63.30 -
Seq-GRUs [270] 71.80 62.40 -
Tree LSTM [270] 73.50 69.10 -
Tree LSTM + Attn. [270] 75.80 72.50 -
Tree GRU [270] 73.96 70.60 -
Tree GRU + Attn. [270] 74.80 72.10 -
RNN [30] - 36.10 -
CNN [30] - 38.40 -
RNN-CNN [30] - 37.60 -
Attn1511 [30] - 35.80 -
Ubu.RNN [30] - 44.10 -
Illinois-LH [122] - - 84.60
UNAL NLP [101] - - 83.10
SNLI-Transfer 3-class LSTM [39] - - 80.80
MaLSTM features + LSTM [163] - - 84.20
ECNU [264] - - 83.60

Table 10.1: Performance comparison of our model on di↵erent tasks against some existing top
performing models. We mark models that we implemented as †.

Dataset w 1 � w Acc.
MSRP 0.53 0.47 76.12

AI2-8grade 0.76 0.24 74.91
SICK 0.65 0.35 86.12

Table 10.2: The w values that give the best results when combining the critic (w) with the
trained actor-critic (1 � w).

of an actor-free InferSent with an ensemble technique further improves the InferSent + RL to
being state of the art on the MSRP and SICK datasets. On the AI2-8grade dataset, only one
model is doing better than our ensemble model.

Table 10.3 shows the performance of our InferSent + RL model on some examples from
the test sets of the three corpora. For the SICK dataset, our RL model removes prepositions,
articles, and adjectives like colours, which seem not to have any impact on the semantics. It
also removes the common phrases like “a piece of”, “There is” and “of the”. On the MSRP
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Dataset Sentence 1 Sentence 2 GT Pr

SICK

A brown dog is attacking another
animal in front of the man in
pants

There is no dog wrestling and
hugging N N

A cat is crawling under a piece of
furniture

An animal is crawling under a piece
of furniture E E

A blonde boy in green is sitting
on a swing

A blonde boy in green is standing
on a swing C E

MSRP

They did not read footnotes in a
document said the o�cial
referring to the section that
contained the State Departments
dissent

They did not read footnotes in a
document he said referring to the
annex

1 1

The company didn’t detail the
costs of the replacement and
repairs

But company o�cials expect the
costs of the replacement work to
run into the millions of dollars

0 0

We are piloting it there to see
whether we roll it out to other
products

Macromedia is piloting this product
activation system in Contribute to
test whether to roll it out to other
products

1 0

AI2-8grade

cell wall structure is found in a
plant cell but not in an animal cell

The cell wall provides structural
support and protection 1 1

Pores in the cell wall allow water
and nutrients to move into and out
of the cell

1 1

The cell wall also prevents the plant
cell from bursting when water
enters the cell

1 1

positive e↵ect of recycling
aluminum cans to manufacture
new beverage containers is
warming

also maintains the ozone layer
that helps protect life from
damaging UV

0 0

The layered mixture of gases
surrounding Earth is called the
atmosphere

Without it Earth would be a harsh
barren world 1 0

Table 10.3: Example predictions from the test set. GT: ground truth, Pr: predicted.

dataset, our model again removes articles and prepositions which seem not to be of concern
when checking for paraphrasing. We notice that our model tries to keep the same subset of
words from both sentences in most of the cases and removes the words interspersed among
those shared words. For example, in the first example in this group, our model deletes the
phrase “to the section that” from the left sentence and some smaller phrases like “in a” and
“to the” from both of the sentences. This reduction makes the sentences quite similar and
eventually the predicted decision is 1. On the other hand, our model makes a wrong prediction
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Dataset Left Right
Before After Before After

MSRP 18.55 12.11 18.51 12.10
AI2-8grade 21.52 2.37 15.34 2.02

SICK 9.68 5.02 9.52 4.93

Table 10.4: The original average length and the average length after filtering through RL.

on the third example. It tries to do the same thing by removing phrases, but as it does not have
any world knowledge about “Macromedia Contribute” being a product, it fails to map it to the
word “product” in the left sentence. Finally, on the AI2-8grade dataset, our model removes
most of the words from the answer sentence and ends up keeping just the key words to match
with the corresponding question. In the first example, our model keeps the word “wall” in all
of the answer sentences making the mapping easier with the question. In the second example,
our model keeps the key words like “protect”, “damaging” and “UV” in the answer sentence
making it clear that the question and the answer topics are completely di↵erent and as a result
the prediction is 0. Finally, in the third example, our model incorrectly removes the word
“Earth” from the answer sentence which makes it di�cult for the critic to correctly map it to
the question.

Table 10.4 exhibits how much information is removed and how much is kept for each task
by our InferSent + RL model. For the paraphrase identification task, about 33% of the original
content is removed giving better results than the sequence based models. For the question-
answer selection task on the AI2-8grade dataset, our model removes around 90% of the original
content and still achieves on par performance. In this dataset, the question-answer pairs are
selected from 2nd to 8th grade books. To increase their readability [131], some easy to read
words are added around the key words of those sentences. Our model suggests that the easy to
read words are not important for the inference. Finally, to do natural language inference (NLI)
on the SICK dataset, our model removes about 45% of the content and gets better performance
than all of the existing models. These results indicate that the three tasks can be done with
more condensed and purified information without losing too much generalizability.

We also analyze the type of words deleted from each corpus with the InferSent + RL model
and report the results in Table 10.5. We use the harmonic mean of the ratio of the number
of times a word is deleted to its frequency in the corpus (as a percentage) and the number of
occurrences of that word to sort the list. It is clear that in two corpora, non-content words (i.e.,
prepositions, articles) are deleted most of the time. However, in the SICK dataset, there are
words like “black”, “white”, “blue” and “red” which are deleted most often because for doing
the NLI task, these words contribute very little and can be ignored. For the other two corpora,
our model also deletes words like “this”, “have”, “likely”, “has”, “than” and “they” quite often
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MSRP AI2-8grade SICK
Word HM Word HM Word HM Word HM Word HM Word HM

a 184.38 at 105.56 a 197.30 this 105.56 a 197.14 another 108.09
<num> 184.03 would 102.58 the 196.92 two 102.58 is 194.75 two 107.42
and 181.79 not 97.923 of 196.12 likely 97.923 the 194.07 for 100.49
the 179.23 this 95.864 to 195.07 used 95.864 of 184.80 are 93.080
in 162.63 one 92.516 that 194.90 cells 92.516 white 167.67 has 86.587
for 160.63 out 86.473 in 193.43 energy 86.473 black 167.37 near 84.682
to 160.30 about 85.469 are 192.99 will 85.469 in 159.06 next 84.642
is 156.13 which 84.511 <num> 192.76 example 84.511 and 153.53 that 83.274
with 151.28 into 78.881 by 192.48 best 78.881 blue 147.53 other 81.547
on 147.49 over 73.781 most 191.74 and 73.781 red 146.91 purple 77.008
it 138.55 had 73.705 for 191.57 di↵erent 73.705 brown 146.32 top 69.342
of 134.14 her 72.263 is 190.94 than 72.263 an 144.27 orange 69.281
was 133.29 who 70.566 an 190.83 they 70.566 on 137.38 some 66.847
be 126.91 could 69.592 can 190.53 other 69.592 at 135.94 oil 66.524
an 126.19 she 68.012 on 190.42 has 68.012 green 131.74 each 63.945
as 124.75 down 67.791 water 189.17 cell 67.791 with 129.84 big 60.107
he 120.40 all 67.752 as 188.95 student 67.752 yellow 128.57 colored 59.712
will 118.72 than 66.384 be 188.66 not 66.384 group 126.00 to 56.275
or 114.89 when 65.907 it 187.76 organism 65.907 small 125.67 colorful 52.941
up 113.90 some 65.753 with 187.60 do 65.753 large 122.48 field 51.923
that 113.77 I 65.262 Earth 186.39 sound 65.262 its 120.63 three 51.851
its 110.12 first 63.965 The 186.03 This 63.965 one 118.38 golden 49.624
his 108.11 they 63.897 have 185.78 would 63.897 pink 116.86 from 48.457
but 107.83 have 63.358 one 184.53 more 63.358 little 111.07 family 48.422
also 106.21 can 59.299 force 184.49 body 59.299 which 109.16 grey 47.614

Table 10.5: Top 50 deleted words from the test set of all three corpora. HM: Harmonic Mean
of percentage of a word gets deleted and number of times that word appears.

Figure 10.1: E↵ect of RL sample counts on validation accuracy.

but the rate of deleting them is not as high as the ones reported in Table 10.5.

Table 10.5 might suggest that stop words be removed in a preprocessing step. For tasks like
semantic relatedness our research suggests not. Stop words with semantic polarity, like “no”
and “not”, are very important as they control the overall sentiment of the sentence [7]. We
have trained InferSent on the SICK dataset with stop words removed. The evaluation indicates
a poorer performance (79.95%) than InferSent with stop words (84.07%). Similar results are
obtained for the other two datasets.

In RL, the search space is huge making it hard to find the best action with the maximum
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Figure 10.2: Change in gradient norm with training iterations while training with and without
delay.

reward. To explore a larger region of this space, we choose to experiment with changing the
number of sample counts and storing the average reward based on each possible action. Figure
10.1 depicts the e↵ect of di↵erent sample counts on validation accuracy. We choose the range
of sample counts to be from 1 to 20, train the actor based on the number of sample counts and
record the validation accuracies. We further train as many critics as the number of actors and
also record the validation performances. Finally, sample count 5 was selected, as our model
was obtaining the best validation performance with this number.

In this study, we adopt a delayed update mechanism in training both actor and critic. This
framework allows us to fine tune critic partially without relying on all that actor suggests. To
check the e↵ectiveness of this type of training compared to the standard batch gradient descent,
we have plotted the gradient norm changes at each epoch in Figure 10.2. As evidenced, change
is initially quite drastic but eventually becomes much smoother with the number of iterations
and convergence is much quicker compared to standard training.

10.4 Conclusion

We have proposed a reinforcement learning method to train a sentence pair modelling archi-
tecture using an actor-critic framework. With the help of an actor, our critic model learns to
compare two sentences by looking more at content words rather than all words in the sentence,
similar to how humans do it. To take an action, our actor model looks not only at the content of
just one sentence, it also considers the mutual information shared between the two sentences.
Results show that our model gets on par or better performance compared to the existing models
by overlooking the irrelevant content.



Chapter 11

Learning to Compare Sentence Pairs at
the Phrase Level: An Actor-Critic
Approach

This chapter is based on the paper titled “Learning to Compare Sentence Pairs at Phrase Level:
An Actor-Critic Approach” co-authored with Robert E. Mercer. We are preparing the paper for
a journal submission.

Learning sentence representation is a fundamental task in Natural Language Processing.
One application that uses sentence representations is sentence pair modelling. Most of the ex-
isting sentence pair modelling architectures focus only on word relationships and extract rich
features conditioning on that from the sentences to be compared. Apart from just looking at
the plain word level information, sometimes it is easy to inspect a phrase chunk and make
decisions based on that. In this study, we propose a reinforcement learning (RL) method to
automatically generate phrase level structure from a sentence and then compare a pair of sen-
tences based on that. We formulate this automatic phrase generation task using the actor-critic
paradigm, where the job of the actor is to come up with an optimal phrasal structure and the
critic decides the quality of that structure through a discrete regularized reward. We address
this decision making with a policy gradient RL which decides whether to consider a word either
as “inside a phrase” or as the “end of a phrase” by looking at the sub-optimal representations
of the sentences being compared. We evaluate our learning framework by experimenting on
three tasks: semantic similarity, paraphrase identification, and question-answer pair modelling.
Our extensive experiments show that our model achieves on par or better performance when
learning task-specific representations of sentence pairs.

138
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11.1 Introduction

In natural language processing (NLP), a fundamental task is to transform the input to some
high dimensional space where each dimension tells something significant about the underlying
structure of data. A number of research works have been conducted to solve this challenging
problem [32,125]. Mainstream tasks like paraphrase identification, natural language inference,
and question-answer pair modelling depend heavily on the quality of these learned represen-
tations as the inference is done in the representation space [45, 58, 163, 227, 247]. To enhance
these pre-learned representations, we can build a hierarchically higher level representation with
or without the help of an external knowledge base [235, 253]. This method can be either task
specific or generalized depending on the problem being solved.

Mainstream sentence pair comparison models check only for word level associations [45,
58] and ignore higher level information like phrases. This seems to be contrary to what humans
do: we tend to look first for the higher level structures and then investigate whether those
structures talk about the same thing or not in the two sentences. For example, when comparing
the sentence “A boy is lying in the snow and is making snow angels” with the sentence “Two
people wearing snowsuits are on the ground making snow angels” for the natural language
inference task, we can just look at the content portion “making snow angels” as a phrase chunk
and check if it exists in both the sentences or not to come to a decision.

In this work, we propose an actor-critic-based reinforcement learning (RL) framework to
generate phrase level sentence structures whilst solving the sentence pair modelling task. Our
RL framework involves three stages of training. In the first stage, we train a hierarchical
attention based critic where the hierarchy looks at the word level association within a phrase
and the phrase level association within a sentence. In the second stage, we train a policy-based
actor where the policy is to decide whether a word represents “inside a phrase” or “end of
a phrase”. This policy update [225] is dependent on the performance of a sub-optimal critic
and is influenced by a delayed reward to guide the structure discovery [230]. We limit the
decision space to be either 0 or 1 and use a simple sampling strategy to explore it. In the third
stage, the pre-trained critic is fine-tuned further in order to adapt itself with the actor-generated
task specific structures. Our RL model learns to generate reasonably good task specific phrase
structures for the underlying sentence pair comparison tasks. The involvement of task specific
loss in the reward portion of actor allows us to achieve on par or better performance and the
possibly optimal structures at the same time.
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11.2 Related Work

Generally, sentence pair modelling architectures follow a uniform framework. The sentences
to be compared are first projected into a high dimension vector space. A classification module
then generates a decision by comparing the vector representations. This projection is done
with various types of encoders. 1. Bag of words models: represent a text as a multiset of its
words, disregarding grammar and word order but keeping multiplicity intact, 2. Recurrent and
Convolutional neural network models: which take into consideration the word ordering and
word contexts, 3. Transformer models: where each word gets a↵ected by all the other words
through a complex attention module and 4. Tree Structured models: that use parse trees as their
knowledge base.

[98] and [104] propose bag of words type models where they take the average of word
vectors in a sentence followed by a series of linear projection layers. Their intuition was that
the depth of the series of projection layers can capture the subtle variations in the input or-
der. [137] suggest the use of an auto-encoder with sentiment and domain supervision where
they combine sentiment label loss and domain loss in their objective. Their model ignores sen-
tence structure and local context. [163] encode both the hypothesis and premise using one copy
of an LSTM and then apply a Manhattan distance based similarity function on top of that for
the inference. [141], [247], and [58] follow almost the same framework but after the encoder
they have a matching layer followed by a pooling block at the inference stage. [215] and [227]
apply tree-based recurrent neural networks as the composition function on the dependency and
constituency trees to extract the representation. [270] encode attention inside the dependency
tree LSTM using a cross attention mechanism whereas [13] encode attention inside both de-
pendency and constituency tree-LSTMs using a dot-product attention mechanism. [50] extract
local and global inference compositions by jointly utilizing both standard and tree-LSTMs.

Recently, fully attention-based models are achieving state of the art performance for many
of the complex NLP problems, such as Transformer for the machine translation task [240].
Inside Transformer, the encoder blocks are composed of a stack of multi-head attention mod-
ules and the recurrence behavior of an LSTM is replaced by a positional encoding module.
These multi-head attention modules use a number of single head dot-product attention mod-
ules [175] as the composition function. Most recently, [65] created BERT, a generalized lan-
guage representation model, using a multi-layer bidirectional Transformer encoder which also
provides very good sentence representations. The advantage is that any task specific layer can
be plugged in as the final layer without designing any substantial architecture modifications.

Apart from looking at just the raw word level association, some research takes the underly-
ing grammatical structure of sentences into account as well. It is possible for these structures
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to be pre-defined or task specific. [227], [270], and [13] work with the tree structures generated
by a standard parser whereas [54], [252], and [235] generate task specific latent trees with-
out having any knowledge from a gold standard parser. Most of the works in this category
use Kirchhof’s matrix tree theorem [41] to mimic the latent grammatical association between
words as an N ⇥ N matrix. The idea is to learn a square attention matrix where each row
represents the probability distribution of one word being the head word of other words.

Unlike [146], [221], [249], and [170] our motivation is not doing any phrasal alignment.
Instead our goal in this work is to generate meaningful sentence constituents that can aid with
solving a downstream task. Of these research works, only [170] is neural network based, where
the authors first compute preliminary scores of a source chunk vs. all possible target chunks.
These chunks are formed from sentence constituents and siblings extracted from a constituency
tree. Finally, a voting mechanism is employed to calculate the aligned source/target token pair
scores. This is done by summing the preliminary alignment values for all source/target chunk
pairs.

11.3 Model

In this section, we describe our model in detail. We first explain how the critic is trained in a
delayed manner with and without the actor response. Following this, we explain how we train
the actor using the response of a trained critic. We conclude this section by giving a high level
view of the workflow of our model.

Training the Critic: As critic, we design a two level hierarchical structured model with
each level containing a gated recurrent unit (GRU). The word level GRU handles the phrase
structures as word sequences whereas the phrase level GRU amalgamates the phrase level infor-
mation and turns that into a final sentence representation. Using this hierarchically structured
model we compute the representations of a pair of sentences and then compare them for an
underlying task. As our model is capable of handling phrases, apart from just taking raw word
information, it also takes a sequence of words representing a phrase of a certain length existing
in a sentence.

In order to extract the phrase level structure we use the Stanford constituency [148] to
first come up with a constituency tree of each sentence. Following this, we perform a depth-
first traversal of this tree (summarized in Algorithm 11.1) in such a way that if the number
of children in a subtree (F(.) gives this count) is less than a threshold U, we record a certain
number of 0’s ending with a single 1 for that subtree. As the threshold, we use

p
L+0.5, where

L is the length of the sentence. At the start, an empty list A is passed to the algorithm. This list
will store the stream of 0’s and 1’s, called the action sequences (at’s).
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Algorithm 11.1 Phrase Sequence Generation: PSG(tree, A, U)
if F(tree)  U then:

A A + (F(tree) - 1) ⇥ 0
A A + 1

else
PSG(Left Child, A, U)
PSG(Right Child, A, U)

end if

Figure 11.1: Sample example of extracting phrases from a sentence given a stream of 0’s and
1’s.

at�1 at Structure type
0 0 Phrase continues at xt
0 1 Phrase ends at xt
1 0 Phrase starts at xt
1 1 xt is a single-word phrase

Table 11.1: Type of structure according to at�1 and at.

Next, from this sequence of 0’s and 1’s, gold label phrase structures are extracted as illus-
trated in Figure 11.1. During this step, we keep track of the beginning and end of a phrase
using the constraints designed in Table 11.1. Once the sentence is divided into phrase chunks,
the word-level GRUw traverses each phrase as a sequence of T words {xt}t=1,...,T from left to
right and generates a hidden representation at each time step hw

t , 8t 2 [1, . . . ,T ].

hw
t = GRUw

t (xt, . . . , xT ) (11.1)

The transition of the word-level GRUw depends upon action at�1. If action at�1 is End, the
word at position t is the start of a phrase and the word-level GRUw starts with a zero-initialized
state. Otherwise, the action is Inside and the word-level GRUw continues from its previous
state. We summarize this entire step as follows,

hw
t =

8>>><
>>>:

f (0, xt), at�1 = 1(End)

f (hw
t�1, xt) at�1 = 0(Inside)

(11.2)

where f denotes all of the gate and update functions from critic GRUw. After this, it applies an
attention layer which scales each of the hidden states hw

t according to a scalar weight ↵w
j . This
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weight resembles the importance of words within a phrase. It is to be noted that the attention
spans over the phrases are independent with respect to each other,

↵w
j =

eWW tanh(hw
j )

Pk
j=1 eWH tanh(hw

j ) + 0.0001
(11.3)

h̃w
t = ↵

w
t hw

t (11.4)

where k represents the phrase length and WW is a parameter of this attention layer. Following
this, it employs a max (or mean) pooling block within a phrase chunk to summarize the scaled
hidden states in one phrase-level dense representation as follows,

zp
t = maxpool(h̃w

1 , . . . , h̃
w
k ) (11.5)

Next, the phrase-level GRUp traverses each z as a sequence of P phrases {zt}t=1,...,P from left
to right and generates a hidden representation at each time step hp

t , 8t 2 [1, . . . , P].

hp
t = GRUp

t (zt, . . . , zP) (11.6)

Following this, it scales these phrase-level hidden representations hp
t using a set of attention

weights ↵p
j . These attention weights are coming from an attention layer having its own set

of parameters (WP). Finally it employs a max (or mean) pooling block to summarize these
scaled hidden states in one dense sentence representation. The entire process is summarized as
follows,

↵p
j =

eWPtanh(hp
j )

PP
j=1 eWPtanh(hp

j ) + 0.0001
(11.7)

h̃p
t = ↵

p
t hp

t (11.8)

�!
h = maxpool(h̃p

1 , . . . , h̃
p
P) (11.9)

The next steps are to infer the similarity between the two representations (
�!
ha,
�!
hb) using

standard matching methods and to project the resultant vector into the space of classes, y,
through a series of fully connected layers as follows,

x = (
�!
ha,
�!
hb, |
�!
ha �

�!
hb|,
�!
ha ⇤
�!
hb) (11.10)

P(y|X) = �(W1�(W2x + b2) + b1) (11.11)
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Finally, it is trained by optimizing a task specific loss function as follows,

H(p, q) = �
nX

i=1

Q(yi) log(P(yi)) (11.12)

Instead of doing the standard training, we initialize two copies of critic: final and active.
This is required in order to make the model adaptable with a delayed update paradigm which
is described in the following section. We perform the forward pass using Eqns. 11.1–11.12
with the final version of the critic, compute the gradients with respect to its parameters (✓ f =

{✓ f1 , . . . , ✓ fk}), and store them.
@H
@✓ f
= [
@H
@✓ f1
, . . . ,

@H
@✓ fk

] (11.13)

In order to mimic the behavior of standard batch-wise training, first a loss with respect to
the final version of critic gets computed and the corresponding gradients are stored for each
sample in the batch. Following this, the active version parameters (✓a = {✓a1 , . . . , ✓ak}) of critic
are updated using the following update mechanism.

✓a j = ✓a j +
X

i2batch

@Hi

@✓ f j

(11.14)

Finally, the parameters of the final version of the critic are updated with its active version
parameters using a straight assignment (✓ f = ✓a) once an entire batch is looked at.

We adopt another paradigm of training which turns a sub-optimal critic into an optimal
one. It involves weighted updating instead of doing a straight assignment as above. We use
this paradigm during the fine tuning phase. The update mechanism is as follows,

✓ f = ✓a ⇥ ↵ + ✓ f ⇥ (1 � ↵) (11.15)

where ✓a2 {✓a1 , . . . , ✓ak}, ✓ f 2 {✓ f1 , . . . , ✓ fk}. Hyperparameter ↵ is set to 0.1 in all experiments.

Training the Actor: We adopt the policy gradient method [225] to update the actor along
with a delayed reward. We use the following policy to sample an action at at each time step t,

⇡✓(at|st; ✓) =

max(e�5,min(�(stW + b), (1 � e�5)))
(11.16)

Here ⇡✓(at|st; ✓) denotes the probability of choosing at and {W,b} is the set of parameters
of the actor policy network. We include the representation of the counterpart sentence, the
current input, the hidden representation of word-level GRUw and the hidden representation of
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phrase-level GRUp as state. Formally, it is defined as

st = [h̃T , xt; hw
t ; hp

t�1] (11.17)

Here, h̃T is the summary vector of the counterpart sentence generated by the critic GRU. We
use the same policy network to sample actions for the two sentences being compared. Using
this state and policy, we perform action sampling for the whole sequence to obtain the delayed
reward [259] as follows,

action =

8>>><
>>>:

1, if P(Y) > ⇡✓

0, if P(Y) < ⇡✓
(11.18)

where Y is a uniform random variable and ⇡✓ is the policy from Eqn. 11.16. For each sentence
in the pair, the parameters of our policy net are optimized using the REINFORCE algorithm
[243] defined as follows,

J(✓) = E(st,at)sP✓(st,at)r(s1a1 . . . sTaT )

=
X

s1a1...sTaT

P✓(s1a1 . . . sTaT )RT

=
X

s1a1...sTaT

P✓(s1)
Y

t

⇡✓(at|st)P✓(st+1|st, at)RT

(11.19)

Since our states are fully deterministic, we can make P✓(s1) = P✓(st+1|st, at) = 1 in Eqn.
11.19. The final objective function involves two terms to cover the action sampling for both of
the sentences,

J(✓) =
X

s1a1...sTaT

Y

t2l
⇡✓(at|st)RT +

X

s1a1...sTaT

Y

t2r
⇡✓(at|st)RT (11.20)

where l denotes the left sentence and r denotes the right sentence. By applying the likelihood
ratio trick, we update the policy network with the following gradient

@J(✓)
@✓
=

X

t2l
RT
@

@✓
log ⇡✓(at|st, ✓t) +

X

t2r
RT
@

@✓
log ⇡✓(at|st, ✓t) (11.21)

The objective is to maximize the expected delayed reward which is computed using the
logarithm of the output probability distribution of the critic, log P(y|X), over just one sample.
The policy network controls the number of deleted words by jointly maximizing a unimodal
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function f (x) = x + 0.1/x and the reward. The final reward RT is defined as

RT = log P(y|X) � �Z
2

⇣
(Ll
0/Ll + 0.1Ll/Ll

0 � 0.6 + (Lr
0/Lr + 0.1Lr/Lr

0 � 0.6)
⌘

(11.22)

where L0l and L0r denotes the number of phrases predicted by the actor, and Ll and Lr are the
actual lengths for the left and right sentences, respectively. � is a hyper-parameter and Z is the
number of classes. The minimum of f (x) is 1/

p
10 = 0.316 which encourages the actor to

predict 3 ⇠ 4 phrase for a sentence with length 10.

Like the critic, we initialize two versions of the actor: final and active. For each sample in
a batch, the active version of the actor policy network is updated by the gradients of the final
version of the actor policy network parameters

✓a j = ✓a j +
X

i2batch

@J(✓)i

@✓ f j

(11.23)

Once a batch is looked at, the final version of the actor policy is updated in a similar way as
the critic using Eqn. 11.15.

Workflow: We now give a high level view of our entire model’s workflow which has been
strongly influenced by the two algorithms found in Chapter 10.

We start by training the critic in a delayed strategy to get a sub-optimal version by first
initializing two copies of it (final and active). The active version gets updated by the final
version gradients computed for each sample in a batch. During this, we keep the parameters of
the final version fixed. Once the entire batch is looked at, we use the active version parameter
values to update the final version parameters through a straightforward assignment.

After training this sub-optimal critic, we use a weighted delayed strategy to train an actor
with a policy gradient method. We start by initializing two copies of actor (final and active).
For each sample in the batch, a state is calculated using Eqn. 11.17 and later used in Eqn. 11.16
to obtain the policies (⇡✓’s) for every word appearing in the two participating sentences in a
sample. Next, a set of actions (at’s) are calculated using the sampling strategy in Eqn. 11.18
using the prior calculated policies. As mentioned before, these actions represent whether a
word belongs to the inside (0) or is the end (1) of a phrase. Each action in the current as well as
the previous time step jointly represents a type of structure according to Table 11.1. Next, the
sentences in a data sample along with these sampled actions are used with a trained critic to
calculate a reward (RT ). This reward is then regularized with a term that reflects the percentage
of the number of phrases that the actor predicts from both of the sentences (the subtrahend
in Eqn. 11.22). We are not only motivated to get the predicted sample correct but also to get
around 3 or 4 phrases in a sentence of length 10. It is to be noted that unlike st’s and at’s,
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these rewards (RT ’s) are calculated for each sample in the batch rather than for every word of
a sentence in a sample. We repeat this strategy N times and store all of the st’s, at’s and RT ’s.
Next, we calculate an average reward. We compute the gradients of Eqn. 11.21 N times using
the N sets of the logarithm of policies and the N di↵erences between the N rewards and the
average reward. Finally, for each actor parameter, we add its N gradients and update it using a
weighted delayed strategy (Eqn. 11.15).

After the actor is trained, the previously trained sub-optimal critic is further tuned using the
response of this trained actor. Rather than looking at the sentence pairs and their real phrase
structure, now the critic looks at the actor-predicted phrase structures of those sentences. For
each sample in the batch, a loss is calculated based on the critic response and the active version
is updated through the gradients of the parameters of the final version as before. It should be
mentioned that sometimes the actor can err by generating a weird phrase structure due to the
random sampling strategy. To counteract this, the update of the critic should not rely entirely
on the actor’s decision during this fine-tuning phase. So with the active version parameter
values, instead of using a straight assignment as before, we use Eqn. 11.15 to update the final
version of the critic once an entire batch is looked at.

11.4 Datasets, Experimental Setup, Results and Analysis

In this section, we explain the experimental setup along with a thorough analysis of the results
obtained. We first describe our training corpora as well as their statistics in terms of number
of samples: train, test and validation. Following this, we explain the technical details of our
proposed architecture along with its hyper-parameter settings. We also present a comparison
between the results obtained with our RL model and some of the top performing models on
these aforementioned datasets. Additionally, we give a qualitative analysis by showing the
predictions of our models on some random test samples for all of the tasks. Finally, we con-
clude this section by giving some insight into the performance of our model by analyzing the
generated structures.
Datasets: We use three datasets for our model evaluation: paraphrase identification, natural
language inference, and question-answer pair modelling.

• MSRP: Given a pair of sentences, the task is to identify whether or not they are para-
phrases of each other [69]. Train:4076; Test:1725; Valid:N/A.

• SICK: The dataset contains sentences derived from video and image annotations and
the task is to classify a given sentence pair into three classes: Entailment, Neutral and
Contradiction [151]. Train:4500; Test:4927; Valid:500.
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• AI2-8grade: The task is to do a true-false question selection where each data sample
consists of a pair of sentences with one being the question and the other being the evi-
dence. The evidences are formed by replacing the wh in the question with an answer [30].
Train:12689; Test:11359; Valid:2483.

Experimental Setup: The GRU hidden dimension is set to 650 for the MSRP dataset, 700 for
the SICK dataset and 400 for the AI2-8grade dataset. Word vectors are initialized with the 300
dimension GloVe embeddings [183] and are not updated during training. To smooth the update
during critic training, the gradients are divided by B2 where B is the batch size which is 5.

Next, we add the gradient norms of all the parameters as L =
qPk

i=1

���r✓2i
���. The learning rate

is reduced by a factor of 5L if L is more than 5. To smooth the policy gradient update, we add
a � and Z-scaled regularized reward as shown in Eqn. 11.22. The value of � is set to 0.1 and
Z is the number of classes. During training, the critic parameters are updated using stochastic
gradient descent [38] with classification layer dropout values and learning rates ranging from
0.01 to 0.50. For training the actor, we use Adam [109] to update the parameters with a varying
range of classification layer dropout values and learning rates (i.e., 0.01-0.50). During random
sampling, the sample count N is set to 5 by validating on the validation sets.
Results and Analysis: Table 11.2 shows the performance of our model on the three datasets
compared against some of the top performing models. It is to be noted that we limit our
comparison to CNN, LSTM and Transformer based models which are of similar size. We do
not compare with very large models such as BERT, OpenAI GPT and XLNet as they have
billions of parameters and leverage almost the entire internet text in their training. Some of the
models that we are comparing against are designed for a specific task [30,39,101,122,163,264]
and some of them are designed for general purpose [9, 58, 135, 263]. Apart from these, we
also compare against InferSent, LSTM, BiGRU Last Encoder, Inner Attention and ConvNet
Encoder using the o�cial implementations1 but with the same settings as ours. As can be
seen, our Critic + RL is getting a fair amount of boost on the MSRP and SICK datasets but
not a significant gain on the AI2-8grade dataset. Also our Critic + RL model is getting better
performance than all the other models on MSRP (75.35% Acc.) and SICK (85.10% Acc.)
datasets and is only behind ConvNet Encoder [263] (75.26% Acc.) on the AI2-8grade dataset
(74.78% Acc.). These results indicate that our actor has generated some good task specific
phrase structures which allows our Critic to perform even better than what it was doing with
the standard parser generated phrase structures.

Table 11.3 shows how our model is performing on some examples from the held out test
set of the three datasets. In the first two examples from the SICK dataset, the phrase cuto↵

1Available: https://github.com/facebookresearch/InferSent



11.4. Datasets, Experimental Setup, Results and Analysis 149

Model MSRP AI2-8grade SICK
Acc. Acc. Acc.

ConvNet Encoder [263] † 73.96 75.26 83.82
Inner Attention [135] † 69.74 74.73 72.01
BiGRU Last Encoder [58] † 70.46 74.61 81.47
LSTM [58] † 70.74 74.93 76.80
InferSent [58] † 74.46 74.71 84.07
InferSent + RL [9] † 74.74 73.84 84.57
Critic 75.07 74.74 84.43
Critic + RL 75.35 74.78 85.10

Seq-LSTMs [270] 71.70 63.30 -
Seq-GRUs [270] 71.80 62.40 -
Tree LSTM [270] 73.50 69.10 -
Tree LSTM + Attn. [270] 75.80 72.50 -
Tree GRU [270] 73.96 70.60 -
Tree GRU + Attn. [270] 74.80 72.10 -
RNN [30] - 36.10 -
CNN [30] - 38.40 -
RNN-CNN [30] - 37.60 -
Attn1511 [30] - 35.80 -
Ubu.RNN [30] - 44.10 -
Illinois-LH [122] - - 84.60
UNAL NLP [101] - - 83.10
ECNU [264] - - 83.60
SNLI-Transfer 3-class LSTM [39] - - 80.80
MaLSTM features + LSTM [163] - - 84.20

Table 11.2: Performance comparison of our model on di↵erent tasks against some existing
top performing models. We mark models that we implemented as †. We only compare against
those models that are similar in terms of the number of parameters to ours, ignoring large
models such as BERT, OpenAI GPT and XLNet.

point is at the same place for both the hypothesis and the premise. In the first example, “slicing
an onion” gets compared against “cutting an onion” whereas in the second example “putting
a baby in a waste bin” gets compared against “putting a child in a waste bin”. In the third
example, even though we are getting di↵erent cuto↵ points, the phrase structures from both
sentences are similar (i.e. “on a park”-“on a bench”, “people”-“men” and “sitting”-“dressed”).
Sometimes the actor generates single word phrases because if that word is placed inside a
phrase, attention on it will be distributed over the other participant words. This behavior is
very dominant in the samples from the MSRP dataset. In the first two examples from MSRP
dataset, most of the phrases are single worded. However, in the third example we see larger
structures as well as a correct prediction: “Venture Exchange composite gained N points” and
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Dataset Sentence 1 Sentence 2 GT Pr

SICK

A person | is slicing an onion One person | is cutting an onion E E
A woman is | putting a baby in a
waste bin

A woman is | putting a child in a
waste bin E E

Two | people | are | sitting | on a
park | bench | on a sunny day

Two | men | dressed | in | white and
| black | are | sitting | on a bench N N

MSRP

There | are | N Democrats in the |
Assembly | and N Republicans|

Democrats | dominate | the |
Assembly | while | Republicans |
control | the | Senate

0 0

Licensing | revenue | slid | N |
percent | however | to | N million

License sales a | key | measure of
demand | fell | N percent to N
million

1 1

The composite rose N points on
the week while | the | TSX |
Venture Exchange composite
gained N points

On | the | week | the | Dow Jones
industrial average rose | N points
while | the | Nasdaq Stock Market
gained N points

0 0

AI2-8grade

Abnormal | cell division may
result in | cancer

Mutations | in | and tumor
suppressor genes may lead | to |
cancer

1 1

Heat | energy | from the | Sun | is
transferred to | Earth | primarily by
| conduction processes

The bonfire from the opening |
image has a lot of thermal energy 0 0

The | growth | of Trees | usually
occurs first | in | primary
succession on a bare rock

This is the species that first | lives
in | the | habitat 0 0

Table 11.3: Example predictions from the test set. GT: ground truth, Pr: predicted.

Two people are in the snow wearing clothes that provide camouflage 

The presentation isnt being watched by a classroom of students

.06 .04 .51 .04 .35

1 1 .04 .01 .95 1 .01 .01 .02 .96

The presentation is being watched by a classroom of students

.08 .05 .36 .04 .46

1 1 .04 .01 .95 1 .01 .01 .02 .96

.004 .014 .004.003 1 1 .92 .07 .01 .003 .98

.35 .38 .12 .15

Two people are in the snow holding two dogs with golden coats

.40 .30 .21 .09

.014 .004 .003 1 .003 .98.004 1.002 .31 .001 0.69

Figure 11.2: Attention weights assigned by our critic. Red indicates attention over the words
within a phrase. Blue indicates attention over the phrases within a sentence.

“Nasdaq Stock Market gained N points”. In the AI2-8grade dataset, the sentences are quite
long and we get very good phrase structures compared to the other two datasets. If the class
label is 1, the phrase structures from both sentences are very much similar, whereas for class
label 0, the model first provides a meaningful phrase chunk from both sentences and then does
the comparison based on that.

Figure 11.2 shows the amount of attention our critic is putting over the raw words and the
actor predicted phrases in some examples. In the first example, the phrase structures of the
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Dataset w 1 � w Acc.
MSRP 0.12 0.88 75.40

AI2-8grade 0.07 0.93 74.78
SICK 0.35 0.65 85.81

Table 11.4: The w values that give the best results when combining the Critic (w) with the
trained ritic + RL (1 � w).

hypothesis and premise are exactly the same and phrases like “isn’t being watched” and “a
classroom of students” from hypothesis and “is being watched” and “a classroom of students”
from the premise are getting high attention as their contents should be focussed on. The class
decision of this example is contradiction and our Critic + RL model correctly predicts it. In the
second example, our actor provides reasonably good phrase structures, too. Some of them are
single word phrases (i.e., “wearing”, “clothes”, “holding”) and some are longer phrases (i.e.,
“Two people are in the snow” and “that provide camouflage”). As can be seen, the generated
phrases from the hypothesis and premise are getting similar attention weights (i.e., the first two
phrases have the major contents and they are getting 73% attention weight in both sentences).
Finally, our Critic + RL model predicts the class decision as neutral which is correct.

We also perform an ensemble experiment involving both our Critic and Critic + RL models
where we take the weighted average of their decisions. We assign a weight w over Critic’s
decision and 1 � w over Critic + RL’s decision. Table 11.4 reports the w values along with the
performance of this experiment. Accuracy jumped from 74.35% to 75.40% for MSRP, 85.10%
to the 85.81% for SICK and there is no jump for the AI2-8grade dataset. However, as seen
before, the phrase structures of the samples from AI2-8grade dataset are comparatively better
than the other two datasets, so a significant improvement with an ensemble approach should
not be expected.

As our actor training involves exploring the action space using random sampling, we per-
form an additional experiment to verify whether by giving some random phrase structure can
the critic perform better or not. We also create additional phrase structures (trigram, fourgram,
fivegram and sixgram) assuming the actor produces these perfect n-grams. Finally, we also
consider two extreme conditions: 1) every word in the sentence is a phrase itself (all 1s), and
2) all the words in the sentence fall under just one phrase (n � 1 0s, single 1). The four ran-
dom experiments, all with di↵erent seeds, give us some indication of baselines. We do not
analyze AI2-8grade dataset because the default constituency structure is already giving almost
all single word phrases. Table 11.5 summarizes all these experiments.
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Phrase Structure Model MSRP SICK
Acc. Acc.

all 1s Critic 75.18 85.02
Critic + RL 74.46 85.18

n � 1 0s, single 1 Critic 74.79 84.78
Critic + RL 75.12 85.06

Random 1 and 2 Critic 73.74 81.06
Random 3 and 4 Critic 72.79 82.77
Trigram Critic 74.63 84.01
Fourgram Critic 75.01 82.95
Fivegram Critic 75.01 83.28
Sixgram Critic 75.01 82.12

Table 11.5: Comparison on artificial phrase structures.

11.5 Conclusion

In this chapter, we propose an actor-critic-based reinforcement learning framework to train a
sentence pair modelling architecture. We divide our learning framework into three stages. In
the first stage, our critic looks at the real (i.e., parse tree generated) phrase level view of a
sentence pair when comparing them to solve a specific task. In the second stage, our actor
learns to generate task specific artificial phrase structures using a policy gradient method. To
do that, it not only takes just the phrase and word level information of each sentence but it also
considers the mutual information shared between the two sentences. Finally, in the third stage,
the already trained critic gets fine-tuned to adapt with the actor generated artificial structures
without compromising the actual performance. Results show that our model generates some
meaningful phrase structures and gets on par or better performance compared to the existing
models.



Chapter 12

Multilingual Semantic Textual Similarity
using Multilingual Word Representations

This chapter is based on the paper titled “Multilingual Semantic Textual Similarity using Mul-
tilingual Word Representations” co-authored with Chahna Dixit, Robert E. Mercer, Atif Khan,
Muhammad Rifayat Samee, and Felipe Urra that appeared in the 14th International Conference
on Semantic Computing (ICSC 2020) [5].

In Natural Language Processing, doing the semantic textual similarity (STS) task between
monolingual sentences is itself taxing. In this chapter, we extend this problem to the mul-
tilingual STS scenario, making it even more challenging. We approach this problem using
a multilingual representation of words where words having similar meaning across di↵erent
languages are aligned. We prepare a very large multilingual STS dataset by scraping several
multilingual government, insurance, and bank websites. Because these websites have only
positive examples for doing multilingual STS we develop an algorithm for generating negative
examples using latent Dirichlet allocation and OpenAI-GPT. We are able to train well perform-
ing models for datasets combining English, French, and Spanish. We get very good transfer
performance across languages as well as domains. We also show our model’s state-of-the-art
paraphrase detection performance on the Microsoft Research Paraphrase Corpus.

12.1 Introduction

Semantic textual similarity (STS) is a task that determines the extent to which two given con-
tent pieces are similar in meaning. It is considered one of the most important natural language
processing (NLP) tasks. Similar to most other NLP tasks, a fundamental challenge in this task
is to learn meaningful and high-quality input representations by transforming the input space
to a high dimensional vector space where each dimension captures important aspects of the
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underlying structure of the data [32, 125]. The task is already a challenging one in the mono-
lingual setting, i.e., when computing similarity for two content pieces in the same language. In
this work, we focus on the more di�cult case of multilingual semantic textual similarity which
deals with estimating the similarity of two content pieces in di↵erent languages.

Traditional approaches for the STS problem [264] using Wordnet [157] and latent seman-
tic analysis [64] to generate sentence representations have recently been overtaken by neural
network-based approaches [58], [45], and [163]. But these latter works focus on a single lan-
guage. Previous works on handling multilingual STS problems include the use of machine
translation (MT) systems limiting the model scope to the monolingual space [142]. Adding an
MT system causes a severe increase in model complexity. One other approach applies bilingual
word representations that bypasses the complexity induced by an MT system but fails to take
advantage of the increasing amount of data available for more than one language pair [16].

A large amount of research exists to produce e�cient word embeddings for multiple lan-
guages. But, for most of them, the embeddings are not aligned across di↵erent languages.
However, two works [60, 103] that are interested in aligning word representations across mul-
tiple languages are widely used. The first work [60] uses an adversarial training strategy where
a discriminator learns to discriminate between mapped source and target embeddings and the
mapping. The second work [103] maps two independently trained monolingual embeddings
using a linear projection matrix with constraints.

In this chapter, we approach multilingual STS as a binary classification task and learn a
language-agnostic, scalable model by utilizing multilingual word representations. We limit the
scope of our problem to enterprise business content which led us to collect large multilingual
corpora from di↵erent domains (government, insurance, and banks). For cases where only
positive pairs are available, we propose an algorithm to generate realistic negative samples by
including knowledge from topic modelling [37] and OpenAI-GPT [188] representations. Our
experimental results show that the learned model can be used for other languages or domains
irrespective of the language or domain used for training. We further show the value of our work
by achieving state-of-the-art transfer learning (along with minor fine-tuning) performance on
the publicly available Microsoft Research Paraphrase corpus [69].

12.2 The Model

In this section, we describe our model in detail. At first we briefly explain our model’s archi-
tecture and how it gets trained. Following this, we give an overview of the dataset collection
followed by negative examples generation without having any prior knowledge about them.
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12.2.1 Model

We have chosen to use Infersent [58], an LSTM based model, to compute the representations
of a pair of sentences, a and b, and then compare the representations for an underlying task.
LSTMs are a standard tool to encode a sentence. They maintain contextual information of the
input by integrating a loop allowing information to flow from one word to the next. The model
first traverses each sentence as a sequence of T words {xt}t=1,...,T from both left to right and
right to left and generates two hidden representations at each time step

�!
ht ,
 �
ht 8t 2 [1, . . . ,T ].

During input, it considers the vector representation of each word (xt) in the sentence from a
pre-trained word embedding model and these representations are not further trained with the
network parameters.

�!
ht =

������!
LSTMt(x1, . . . , xT )
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ht =

 ������
LSTMt(x1, . . . , xT )

ht = [
�!
ht ,
 �
ht]

(12.1)

After this, the model employs a max (or mean) pooling block to summarize the hidden states
in one dense representation.

h = maxpool(h1, . . . , hT ) (12.2)

The next steps are to infer the similarity between the two representations (ha, hb) using standard
matching methods and to project the resultant vector into the space of classes (which is two in
our case), y, through a series of fully connected layers as follows

x = (ha, hb, |ha � hb|, ha ⇤ hb) (12.3)

P(y|X) = �(W1�(W2x + b2) + b1) (12.4)

In Eqn. 12.3, x represents the concatenation of all of the feature vectors that we have calculated.
As feature vectors, we used the two representations as is, the absolute value of their di↵erence,
and their componentwise product. The absolute value tells the distance between the vectors in
the representation space. The componentwise product provides an elementwise comparison of
the signs of the input representations: positive if the signs are the same, negative if di↵erent.
In Eqn. 12.4, P(.) represents the model’s predicted probability distribution over classes using
the feature vector x. W’s and b’s are the weights and biases of the classifier network. Finally,
the model is trained by optimizing a task specific loss function as follows

H(p, q) = �
nX

i=1

Q(yi) log(P(yi)) (12.5)
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Dataset Domain Language pairs #Sentence pairs
EN-FR-G Government English-French 158,639
EN-FR-IB Insurance, Banking English-French 24,616
EN-ES-IB Insurance, Banking English-Spanish 27,907

Table 12.1: Details of collected datasets.

Here, Q(.) is a one hot vector representation of the true probability distribution of the actual
label. The multiplication of P(.) and Q(.) indicates how close the model’s decision over the ac-
tual class is with respect to the true distribution. Finally, rather than maximizing this objective,
we put a negative sign in front and minimize it.

12.2.2 Dataset Collection and Preprocessing

We scraped several bilingual websites containing webpages with similar content but in two
languages. The four essential steps in data collection are: data scraping, HTML parsing, text
translation and text alignment. Data scraping yields a set of parallel HTML files which are
parsed to extract clean raw text using the Python library inscriptis [241]. We retain only those
parallel text files that have an equal number of lines as this is important for our text alignment
step. Our data collection approach is designed for the English language; hence, we translate all
of the text files for the counterpart language into English using the Python library mtranslate
[17]. After translating the non-English text files, we align the corresponding lines based on the
hypothesis that the contents of two parallel text files should be somewhat in the same order. For
a given pair of parallel text files, we use word frequency based cosine distance to measure the
distance between the lines in each corresponding line pair. The line pairs with cosine distance
greater than 0.6 are considered to be misaligned. The parallel text files with misaligned lines are
manually aligned by rearranging or discarding certain lines. We extract the semantically similar
sentence pairs (called positive pairs) from the final set of aligned parallel text files. As part of
the preprocessing, each sentence is tokenized using the NLTK sentence tokenizer and unique
sentence pairs are used to form the dataset. We restrict the minimum and maximum length of
sentences (total words) to 4 and 200, respectively. The minimum was chosen to remove the non
sentences (e.g., titles) and the maximum was chosen because of LSTM’s learning limitations.

We have chosen websites in the government, insurance, and banking domains, but this type
of data collection approach can be adopted for any other industry vertical that has a bilingual
website. The languages of interest here are English, French, and Spanish and we end up cre-
ating three datasets based on the language and domain. Details of these datasets are shown in
Table 12.1. A more detailed explanation of these steps can be found in Chapter 13.

The above mentioned procedure yields positive pairs; however, in order for the model to
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Figure 12.1: Topic coherence score vs number of topics.

di↵erentiate between similar and not similar pairs, we also need sentence pairs that are not
semantically similar (i.e., negative pairs). In the next subsection, we explain the approach for
generating negative sample pairs.

12.2.3 Negative Sample Pairs Generation

We define a negative sample pair as the sentence pair having similar topic, but describing
some di↵erent aspect of the topic. For a given query sentence from the positive sample pairs,
its corresponding negative sentence is formed by sampling from di↵erent webpages having
similar topic as that of the query sentence.

We start by training a range of unsupervised LDA [37] models on the English versions of
the three datasets. Each webpage is considered as a single document. The LDA model with
maximum coherence score is chosen as the best topic model. Figure 12.1 shows the coher-
ence score vs. number of topics plot for the EN-FR-G, EN-FR-IB, and EN-ES-IB datasets
where the optimal number of topics are 74, 17 and 41, respectively. We use the following pa-
rameters for training LDA: random_state=100, update_every=1, chunksize=100, passes=300,
alpha=auto, per_word_topics=True.

After training and selecting the best LDA model, we infer the vector representation of
each English document in the dataset with a document vector. Next, we use a pre-trained
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Algorithm 12.1 Negative sample selection with LDA-LM
Pretrained LDA model: L
Pretrained OpenAI-GPT model: M
Input English document: D
Topic of D according to L: T
Set of negative samples: N
List of documents with same topic as T : A
Number of sentences to be selected: n
Input sentence from document D: S
N  ;
for i < n do

x NULL
for document d 2 A do

for sentence s 2 document d do
if 0.80 < Cosine(M(S ),M(s)) < 0.90 then

x s
break

end if
end for
if x , NULL then

break
end if

end for
N  multilingual counterpart of x
i i + 1

end for

OpenAI-GPT model [188] to get the vector representation of each sentence in each English
document. Then, for each sentence S in an English document, its most relevant topic T is
obtained according to the topic distribution of the document. Next, in the set of documents A
having the same topic T , we collect the sentences (and their multilingual counterparts) having
cosine similarity with sentence S in the range 0.8-0.9. Based on our definition of the negative
samples, we choose the similarity threshold range to be 0.8-0.9 by experimenting with di↵erent
range of values; which gives us samples that belong to a similar topic. However, this threshold
range can be adjusted based on the application requirements.

Then, we generate n such sentences to create the n negative sample pairs in the multilingual
space by pairing S with the appropriate multilingual counterparts of each of these sentences.
Note that we have chosen n to be 10 in order to obtain su�cient negative samples, but not all of
these 10 pairs are used for creating the final corpus. Algorithm 12.1 makes precise the above
steps. A more detailed explanation of these steps can be found in Chapter 13.



12.3. Experimental Setup and Analysis 159

Dataset Train Validation Test
EN-FR-G 195,303 48,826 61,033
EN-FR-IB 29,546 7,389 9,237
EN-ES-IB 34,447 8,613 10,766

Table 12.2: Sentence pair counts for dataset partitions.

12.3 Experimental Setup and Analysis

In this section, we explain the experimental setup and provide the results obtained together with
a thorough analysis. We first describe our training corpora as well as the public benchmark
dataset [69] used in other standard sentence pair modelling studies. Following this, we explain
the technical details of our proposed architecture along with its hyper-parameter settings. We
also present the detailed results obtained with our model and compare with some of the top
performing models on our selected public dataset.

12.3.1 Dataset Preparation

For each of the three datasets, we use the positive and negative sample pairs, described earlier,
to create a balanced 10-fold training and validation partition for 10-fold cross validation ex-
periments. We also create a test set for testing. The dataset partition details are given in Table
12.2. For evaluation on a public dataset, we chose the Microsoft Research Paraphrase corpus
where the task is to do paraphrase identification. Because of the way we prepare our corpus, it
aligns well with this kind of task. This dataset has 9, 877 sentence pairs, 8, 152 in the training
set and 1, 725 in the test set.

12.3.2 Model Parameters and Training Details

The LSTM hidden state dimension is set to 600. Multilingual word vectors are initialized with
the 300 dimension MUSE embeddings [60] and are not updated during training. To smooth
the update, the gradients are divided by B2 where B is the batch size which is set to 512. The

learning rate is decaying proportional to maxNormpPk
i=1kr✓2i k

if
qPk

i=1

���r✓2i
��� is more than maxNorm,

which is 5 for our experiments. We use Adam as the optimization algorithm and the dropout
in the classification layer is set to 0.5.

12.3.3 Results and Analysis

Table 12.3 shows a few examples from our dataset and our model’s predictions for them. The
pairs which are tagged as negative are created using Algorithm 12.1 whereas the positively
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Dataset Sentence 1 Sentence 2 GT Pr

EN-FR

The Cannabis Act proposes many
rules that would protect youth from
accessing cannabis.

Le projet de loi sur le cannabis
prévoit de nombreuses dispositions
pour empêcher les jeunes d’avoir
accès au cannabis.

1 1

The authorized health care
practitioner’s licence information

Numéro de téléphone et adresse
électronique de la personne morale 0 0

What can be deducted from an
employee’s pay cheque?

Quand l’employeur doit-il verser
l’indemnité de congé annuel? 0 0

EN-ES

Use window sheet kits Usa kits de aislamiento para ventanas 1 1
It will only take a minute and won’t
impact your credit score

Díganos quién es y qué le gusta, para
ver qué ofertas están 0 0

List out your debt Fíjate un presupuesto semanal,
empezando el lunes 0 0

Table 12.3: Example predictions from the test set. GT: ground truth, Pr: predicted.

Model Validation set Accuracy
Mean Max voting Avg. voting

EN-FR 95.41±0.39 95.76 95.97
EN-ES 96.35±0.57 97.07 97.22
EN-FR-ES 95.03±0.24 95.40 95.59

Table 12.4: 10-fold cross validation performance of di↵erent models (mean includes standard
deviation).

tagged pairs are provided from the English-French and the English-Spanish aligned sentences
from the appropriate web pages. It can be seen in EN-FR, the two negative sentences talk
about the same topics as their counterpart English sentences, but the content di↵ers. In EN-
ES’s second pair, the English sentence talks about a credit score while the Spanish sentence
talks about some o↵ers which are somehow related. Here in the third pair, the English sentence
talks about debt whereas the Spanish sentence talks about budget, which are not exactly related
but somehow gets used in the same context.

Table 12.4 shows the 10-fold cross validation performance of three models trained with
di↵erent data based on the language pairs and domains. The model EN-FR is trained on the
government domain, whereas EN-ES and EN-FR-ES are trained on the insurance and bank
domains. We summarize the performances over all the folds in three di↵erent ways. Firstly,
we report the mean and standard deviation of all performances. Following this, we report
the results of the ensemble experiment where we use max voting and average voting as our
ensemble methods. It can be seen that the average voting achieves the better performance
among all of these methods getting 95.97%, 97.22% and 95.95% accuracy for EN-FR, EN-ES
and EN-FR-ES, respectively.



12.3. Experimental Setup and Analysis 161

Model Test set accuracy
en-fr en-es en-en (MSRP)

EN-FR 95.64 95.91 76.05
EN-ES 87.15 97.25 75.07
EN-FR-ES 94.91 98.34 76.00

Table 12.5: Cross corpus performance on test set (Accuracy). Rows indicate training language
pairs, and columns indicate testing language pairs.

Model Accuracy
InferSent [58] 74.46
LSTM [58] 70.74
BiGRU Last Encoder [58] 70.46
Tree LSTM [227] 73.50
ConvNet Encoder [263] 73.96
Ours (Transfer + Finetuning) 76.05

Table 12.6: Performance comparison of our model on the MSRP dataset against some existing
top performing models.

Table 12.5 reports the cross corpus performance of the three models (models are in upper-
case and datasets are in lowercase). We have not included en-fr-es for the test purpose because
samples in this dataset are taken from both en-fr and en-es. The performance scores are re-
ported over the test set that we create for each of these datasets as shown in Table 12.2. We
have chosen to use the best model on each of these language pairs out of the 10 models that we
create during the 10-fold cross validation. It can be seen that EN-FR shows very good perfor-
mance on en-es (95.91%) and it is doing better than its own test set (95.64%). However, when
we test the EN-ES model on en-fr dataset, the performance drops with respect to when the test
set is en-es; the relatively smaller size of training data for EN-ES as compared to EN-FR can
be one of the reasons for this performance drop. When trained on en-fr-es the performance
on the other two language pairs compare well. We also report the performance of the models
when tested on MSRP which is an en-en corpus. The performance on this dataset is elaborated
in Table 12.6.

Table 12.6 reports the performance of our model on the MSRP task compared to some of
the existing top performing models. As we can see, Infersent trained on the MSRP training
set from scratch yields an accuracy of 74.46% [58], whereas transferring the weights from
the model pre-trained on the data created using Algorithm 12.1 gives an accuracy of 76.05%.
We are also doing better than Tree LSTM [227] (73.50% accuracy) which uses additional
parse information and ConvNet Encoder [263] (73.96%) which uses a complex and expensive
convolution operation over multiple channels.
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12.4 Conclusion

In this chapter, we develop a multilingual semantic textual similarity extraction (STS) model
leveraging multilingual word representations. We also propose an algorithm using LDA and
OpenAI-GPT for generating realistic negative examples where the generated sentence talks
about the same topic but in a di↵erent context. Our algorithm generates very good negative
examples in the presence of only positive examples. We show that given good multilingual
word representations, the language dependency barrier can be easily removed without harm-
ing the performance on multilingual semantic textual similarity task. Our experiments prove
that having adequate data in one language pair certainly helps in other language pairs when
performing a downstream task.



Chapter 13

Multilingual Corpus Creation for
Multilingual Semantic Similarity Task

This chapter is based on the paper titled “Multilingual Corpus Creation for Multilingual Seman-
tic Similarity Task” co-authored with Chahna Dixit, Robert E. Mercer, Atif Khan, Muhammad
Rifayat Samee, and Felipe Urra that appeared in Proceedings of the 12th Language Resources
and Evaluation Conference (LREC 2020) [4].

In natural language processing, the performance of a semantic similarity task relies heavily
on the availability of a large corpus. Various monolingual corpora are available (mainly En-
glish); but multilingual resources are very limited. In this work, we describe a semi-automated
framework to create a multilingual corpus which can be used for the multilingual semantic sim-
ilarity task. The similar sentence pairs are obtained by crawling bilingual websites, whereas
the dissimilar sentence pairs are selected by applying topic modeling and an Open-AI GPT
model on the similar sentence pairs. We focus on websites in the government, insurance, and
banking domains to collect English-French and English-Spanish sentence pairs; however, this
corpus creation approach can be applied to any other industry vertical provided that a bilingual
website exists. We also show experimental results for multilingual semantic similarity to verify
the quality of the corpus and demonstrate its usage.

13.1 Introduction

Semantic similarity, one of the important natural language processing (NLP) tasks, aims to
measure the distance between two given content pieces in terms of their meaning. Traditionally,
WordNet-based similarity measures such as Lin, Resnik, Jiang and Conrath [40] as well as
statistical approaches including Latent Semantic Analysis (LSA) [124] and Pointwise Mutual
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Information (PMI) [265] have been used to solve this problem. Recently with the advent of
deep learning, the use of deep neural networks has gained popularity in solving this task; for
example Siamese recurrent networks [164] and convolutional neural networks [202]. However,
a major factor a↵ecting the success of deep networks is the availability of substantially large
and good quality corpora [66, 110].

The most popular benchmark dataset for semantic similarity is the Semantic Textual Simi-
larity (STS) dataset from SemEval tasks. The latest STS17 dataset [44] includes monolingual
as well as cross-lingual sentence pairs for English, Arabic and Spanish languages. Nonethe-
less, the STS corpus requires a classification score ranging from 0 to 5 measuring the degree
of similarity between the sentence pairs. We approach multilingual semantic similarity as a
binary classification problem which has required us to collect a large corpus of our own based
on the domain and language requirements of our application.

The collection of an entirely new and large corpus in itself is a challenging task; more
specifically, textual data for NLP problems require human expertise and domain knowledge
of the application. Above all, the acquisition of a multilingual corpus also demands some
amount of linguistic knowledge. This leads to an increasing interest in developing an automated
or semi-automated approach for building a multilingual corpus. Several corpus creation ap-
proaches have been published focusing on multiple languages and application domains. [173]
proposed a web crawler to acquire parallel language resources for European languages. [207]
developed a parallel corpus of scientific articles in English, Portuguese and Spanish languages
by first acquiring documents from the Scielo database [171] and then aligning sentences from
document pairs of di↵erent languages. Few other approaches exist, but in all of these works
the generated corpus is meant to be utilized for machine translation. Apart from this, existing
techniques focus on curating similar sentence pairs, but rarely talk about dissimilar sentence
pair generation.

Bilingual sentence alignment lies at the heart of collecting similar pairs for a multilingual
corpus. Maligna, a bilingual sentence alignment tool [99] does this by using statistical machine
translation and a few sentence alignment algorithms to align sentences from document pairs.
The tool is mainly used to align text for a machine translation dataset. While the corpus for
machine translation requires perfect alignment among the sentence pairs, this is not true for
the semantic similarity task since we are not looking for an exact translation of a sentence with
another.

Considering all of the aspects discussed above for multilingual corpus creation specific
to the semantic similarity problem, in this work, we describe a semi-automated approach to
build a large corpus of English-French and English-Spanish sentence pairs that can be used for
the multilingual semantic similarity task. The approach is based on scraping documents from
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Sentence pairs Label
We will get back to you by next week PositiveWe will contact you soon
We will get back to you by next week PositiveNous vous contacterons la semaine prochaine
You must pay your taxes NegativeOntario has high tax rate

Table 13.1: Positive and negative sentence pair examples

bilingual websites and aligning the document pairs at the sentence and/or paragraph level. We
have considered websites from government, insurance, and banking domains; but the advantage
of this approach is that it can be applied for any language and domain or industry that has a
website with bilingual content. We also plan to open-source the collected multilingual corpus
for use by other researchers.

13.2 Architecture

Multilingual semantic similarity as a binary classification task requires a dataset consisting of
bilingual sentence pairs labelled as either semantically similar or dissimilar. For simplicity,
we will term the similar sentence pairs as positive samples and dissimilar pairs as negative
samples. In this section, we provide detailed information on collecting the positive and nega-
tive samples for the corpus. The positive sample selection is a semi-automated approach that
involves crawling multiple websites followed by bilingual sentence alignment along with an
additional filtering process. It is to be noted that, these positive sample pairs are obtained from
the same webpage of two di↵erent languages. On the other hand, the hypothesis for negative
samples is that the sentence pairs should have similar topics determined by some automatic
means but talk about a di↵erent aspect of this topic. Hence, the negative sentence pairs are
formed by sampling from di↵erent webpages having a similar topic. To do this, we utilize a
well-known topic modelling algorithm, LDA [37] and a sentence representation model, Open-
AI GPT [188] on top of the positive samples. Table 13.1 shows some examples of positive and
negative sentence pairs.

13.2.1 Positive Sample Selection

The positive sample selection approach consists of four main steps: data crawling, HTML
parsing, text translation and text alignment. Each of these steps is explained in detail in the
following subsections.
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13.2.1.1 Data Crawling
In the first step we give the base URL of a bilingual (or multilingual) website of interest as
input to a web crawler built using a Python library called Scrapy [116]. Scrapy is a fast high-
level framework that crawls websites to extract structured data. The web crawler finds all the
URLs from a given webpage URL and crawls each of those URLs recursively to extract the
data. This process goes on in an iterative fashion where the input to a particular iteration is the
list of URLs obtained from the previous iteration. We run the crawler for as long as no new
webpages are being crawled.

For a given webpage URL, the key point is finding the corresponding parallel webpage URL
in the counterpart language. This can be searched by finding a pattern in the HTML code of
several webpages of that website. The crawler outputs several HTML files where each HTML
file corresponds to a single webpage. In the end, these HTML files undergo post-processing to
delete the webpages that do not have a parallel webpage in the counterpart language.

We denote the parallel sets of HTML files as Hl1 (HTML files for language l1) and Hl2

(parallel HTML files for counterpart language l2), where Hl1 and Hl2 have an equal number of
files after post-processing.

13.2.1.2 HTML Parsing
We use the Python library inscriptis [241] to extract all of the text content from the HTML
files. The extracted text is then split into lines where each line can be a word, a sentence or a
paragraph. We then discard those lines that do not contain at least one alphabetic character as
well as the lines containing just one word. Next, a text file is generated for each HTML file
which contains the parsed and clean raw text from that HTML. In order to build the corpus,
we retain only those pairs of parallel text files that have equal numbers of lines. The reason for
this step is that our text alignment approach is based on the line order of the file. More details
on the alignment process can be found in Subsection 13.2.1.4. We term Tl1 as the set of text
files corresponding to Hl1 and Tl2 as the set of text files from Hl2, where Tl1 and Tl2 have an
equal number of files but may not be the same as the number of files in Hl1 and Hl2 due to the
refinement process.

The HTML tags in the parallel HTML files can also be leveraged to extract more text
content and remove additional noise of headers, footers, titles, etc. from the webpage. We
experimented with extracting text content based on the class attribute of parallel <div> tags
which helped to retain more files when applying post-processing based on the length of text
files.

13.2.1.3 Text Translation
Our text alignment approach works on parallel text files in the same language. So, any one
set from the parallel set of text files must be translated to another language. We translate all
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of the text files in any other language into English using the Python library mtranslate [17]
which implements the Google Translate API. Now, if l1 represents the English language and l2
represents any language other than English, then each text file tk

l1 in Tl1 will correspond to two
parallel files – tk

l2 from Tl2 in the counterpart language and tk
l20

from Tl20 which consists of text
files from Tl2 translated into English. Here, k represents the kth file in the set of text files.

13.2.1.4 Text Alignment
The alignment of text is the most important step in the framework of selecting positive samples.
The approach is based on the hypothesis that the contents of two parallel bilingual webpages
appear in somewhat the same order. So most of the parallel text files should be aligned; how-
ever, there will be exceptions in some cases. Hence, we devise the text alignment approach in
such a way that the alignment check for a particular pair of text files is line-based and one-to-
one. This means that a line at a given position in tk

l1 is checked against a single line at the same
position in tk

l20
.

We use word frequency-based cosine distance as a distance measure between each line in
the files tk

l1 and tk
l20

. This basic measure seems to work well in aligning semantically similar
content pairs. The positions (or indices) of line pairs with cosine distance greater than 0.6 are
recorded as being misaligned. The set of indices for misaligned lines Ik is refined further such
that if a particular index in the set does not have a consecutive misaligned line, then that index
is discarded from Ik. The intuition behind this step is that the translation may have a↵ected the
cosine distance to record it as misaligned.

Finally, the files having empty Ik are considered to be aligned and the remaining files are
aligned manually based on the indices in Ik. The manual alignment of files involves rearranging
certain lines or discarding lines that do not have a match in the corresponding parallel file. The
manual alignment is only done for the files that have the number of misaligned lines under a
certain threshold. The aligned set of parallel text files containing semantically similar positive
sample pairs are denoted as Pl1 and Pl2. Here, pk

l1 2 Pl1 and pk
l2 2 Pl2 are the kth parallel files

obtained after alignment of files tk
l1 and tk

l2. Each corresponding line pair from the parallel files
is considered as a positive sample pair.

13.2.2 Negative Sample Selection

In this subsection we explain our negative sample selection approach which is applied over each
language pair and domain individually. For the three domains i.e., government, insurance, and
banking, we divide our aligned parallel files into three sets: English-French Government EN-
FR-G, English-French Insurance Banking EN-FR-IB, and English-Spanish Insurance Banking
EN-ES-IB. A detailed description of these partitions is given in Section 13.3.
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Figure 13.1: Topic coherence score vs number of topics.

Our negative sample selection approach starts by training a range of unsupervised LDA [37]
models on Pl1 where l1 is constrained to be the English language. Each file pk

l1 in Pl1 is
considered as a single document D. The LDA model with the maximum coherence score is
chosen as the best topic model. Figure 13.1 shows the coherence score vs. number of topics
plot for EN-FR-G, EN-FR-IB and EN-ES-IB where the optimal number of topics are 74, 17
and 41, respectively. We use the following parameters for training LDA: random_state=100,
update_every=1, chunksize=100, passes=300, alpha=auto, per_word_topics=True.

Using the best LDA model, we represent each English document as a document vector
which is a probability distribution over all the topics. Then, for an input sentence S , its domi-
nant topic T is obtained according to this topic distribution. Next, we use a pretrained OpenAI-
GPT model [188] to get the vector representation M(s), where s represents sentences from all
of the English documents. We then extract a set of documents A having the same topic T , and
collect the sentences (and their multilingual counterparts) having cosine similarity with input
sentence S in the range 0.8-0.9. The cosine similarity between the two sentences is calculated
from the vector representations M(.) of those sentences. Based on our definition of the nega-
tive samples, we choose the similarity threshold range to be 0.8-0.9; which gives us samples
that belong to a similar topic. However, this threshold range can be adjusted based on the
application requirements.

Following the above mentioned steps, we select n sentences for each S and then create n
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Algorithm 13.1 Negative sample selection with LDA-LM
Pretrained LDA model: L
Pretrained OpenAI-GPT model: M
Input English document: D
Topic of D according to L: T
Set of negative samples: N
List of documents with same topic as T : A
Number of sentences to be selected: n
Input sentence from document D: S
N  ;
for i < n do

x NULL
for document d 2 A do

for sentence s 2 document d do
if 0.80 < Cosine(M(S ),M(s)) < 0.90 then

x s
break

end if
end for
if x , NULL then

break
end if

end for
N  multilingual counterpart of x
i i + 1

end for

negative sentence pairs in the multilingual space by pairing S with the appropriate multilingual
counterparts of each of these sentences. Algorithm 13.1 makes precise the above steps. For
our experiments we choose the value of n to be 10. This yields a su�cient number of negative
samples for the corpus. However, not all the samples are used to build the corpus. In the end,
the negative sentence pairs are sampled in order to create a balanced dataset with respect to the
total number of positive sentence pairs.

13.3 Corpus Details

We scraped 11,156 bilingual webpages pairs in total, out of which approximately 9.25% were
discarded based on the filtering and alignment process described in Subsections 13.2.1.2 and
13.2.1.4. Hence, 10,124 text file pairs were used to create the positive and negative sentence
pairs.

The final corpus consists of 351,334 English-French (EN-FR) sentence pairs and 53,826
English-Spanish (EN-ES) sentence pairs summing up to a total of 405,160 sentence pairs with
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Language Sentence 1 Sentence 2 Label

EN-FR

There are minimum and maximum
permissible withdrawals from the
plan each year.

Les retraits sont soumis à des
minimums et à des maximums
annuels admissibles.

Positive

At the eye of a hurricane there is a
clam area of blue sky.

Dans l’oeil d’un ouragan, il y a une
zone calme de beau temps. Positive

Guide T4002, Business and
Professional Income

Formulaire T4A, État du revenu de
pension, de retraite, de rente ou
d’autres sources

Negative

What can be deducted from an
employee’s pay cheque?

Quand l’employeur doit-il verser
l’indemnité de congé annuel? Negative

EN-ES

To focus on the love and fun a pet
can bring, instead of the extra cost,
all pet parents should consider
purchasing pet insurance from a
reputable, caring company.

Con el fin de enfocarse en el amor
y la alegría que una mascota puede
ofrecer, y no en los costos
adicionales, todos los "papás" de
mascotas deberían pensar en
comprar un seguro de mascotas de
una compañía de reputación que se
preocupe por sus clientes.

Positive

Don’t stress if you lose track of
your phone—all mobile wallet
transactions require the verification
you set up, like a fingerprint scan.

No se estrese si pierde su teléfono,
todas las transacciones de la
billetera móvil requieren la
verificación que usted haya
establecido, como una huella
digital.

Positive

Use these tips to get your bike in
top shape for the new riding season.

Si los carros deportivos son una
pérdida total o son robados,
normalmente cuesta más
reemplazarlos.

Negative

All coverages are subject to the
terms, provisions, exclusions, and
conditions in the policy itself and in
any endorsements.

Ésta es sólo una descripción
general de las coberturas de los
tipos de seguros disponibles y no
representa una declaración de
contrato.

Negative

Table 13.2: Examples from collected multilingual corpus

202,580 sentence pairs for each class – positive and negative. Some examples from the col-
lected corpus are shown in Table 13.2.

As mentioned before, we created our multilingual corpus by scraping from 5 di↵erent bilin-
gual websites. Three had content in English and French, while the remaining two were in
English and Spanish. The topics of these website contents were government, insurance, and
banking. In order to do an extensive evaluation, we divided the entire corpus based on lan-
guage pairs and domain. The government domain was only available for English-French pair,
so we created one dataset – EN-FR-G. The insurance and banking domains were available for
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Dataset Train Validation Test
EN-FR-G 195,303 48,826 61,033
EN-FR-IB 29,546 7,389 9,237
EN-ES-IB 34,447 8,613 10,766

Table 13.3: Sentence pair counts for dataset partitions

both English-French and English-Spanish pairs. So we created two more datasets using these
– EN-FR-IB and EN-ES-IB.

For each of the three datasets, we used the positive and negative sample pairs, described
earlier, to create a balanced 10-fold training and validation partition for doing 10-fold cross
validation experiments. We also created a test set for testing.

The dataset partition details are given in Table 13.3. In order to verify the quality of our
corpus we have evaluated our model on a benchmark dataset that has been supplemented with
our corpus. We chose the well known Microsoft Research Paraphrase Corpus (MSRP) where
the task is to do paraphrase identification [69]. Because of the way we prepared our corpus, it
aligns well with this kind of task. The original MSRP dataset has 5, 801 sentence pairs, 4, 076
in the training set and 1, 725 in the test set. Adding our corpus to the MSRP training set shows
an increase in performance on the MSRP test set. We hypothesize that this indicates that our
corpus is of good quality.

13.4 Evaluation Experiments

In this section, we present a thorough analysis of all the evaluation experiments that we did
to validate our corpus. We first describe the model architecture which we used to solve the
multilingual semantic similarity task. Following this, we explain the training details of the
model along with its hyper-parameter settings. We also present the detailed results obtained
with our experiments and compare the transfer performance of our selected model with some
of the top performing models on the MSRP dataset.

13.4.1 Model Architecture, Parameters and Training Details

We have chosen to use InferSent [58], an LSTM based model, to compute the representations
of a pair of sentences, a and b, and then compare the representations for an underlying task.
The model first traverses each sentence as a sequence of T words {xt}t=1,...,T from both left
to right and right to left and generates two hidden representations at each time step

�!
ht ,
 �
ht 8t 2

[1, . . . ,T ]. During input, it considers the vector representation of each word (xt) in the sentence
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from a pre-trained word embedding model.

�!
ht =

������!
LSTMt(x1, . . . , xT )

 �
ht =

 ������
LSTMt(x1, . . . , xT )

ht = [
�!
ht ,
 �
ht]

(13.1)

After this, the model employs a max (or mean) pooling block to summarize the hidden states
in one dense representation.

h = maxpool(h1, . . . , hT ) (13.2)

The next steps are to infer the similarity between the two representations (ha, hb) using standard
matching methods and to project the resultant vector into the space of classes y (which is two
in our case) through a series of fully connected layers as follows

x = (ha, hb, |ha � hb|, ha ⇤ hb) (13.3)

P(y|X) = �(W1�(W2x + b2) + b1) (13.4)

Finally, the model is trained by optimizing a task specific loss function as follows

H(p, q) = �
nX

i=1

Q(yi) log(P(yi)) (13.5)

The LSTM hidden state dimension is set to 600. Multilingual word vectors are initial-
ized with the 300 dimension MUSE embeddings [60] and are not updated during training. To
smooth the update, the gradients are divided by B2 where B is the batch size which is set to

512. The learning rate is reduced by a factor of 2 if
qPk

i=1

���r✓2i
��� is more than a threshold,

which is 5 for our experiments. We use Adam as the optimization algorithm and the dropout in
the classification layer is set to 0.5. The number of topics parameter is described in Subsection
13.2.2.

13.4.2 Results and Analysis

We train three di↵erent models with di↵erent combinations of training data depending on the
language pairs and domain. The models EN-FR and EN-ES use EN-FR-G and EN-ES-IB
datasets respectively, whereas the EN-FR-ES model uses all three datasets. Table 13.4 shows
the 10-fold cross validation performance of all of these models. We summarize the perfor-
mances over all the folds in three di↵erent ways. Firstly, we report the mean accuracies along
with the standard deviation over all the folds for all three models. Following this, we report
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Model Validation set Accuracy
Mean Max voting Avg. voting

EN-FR 95.41 ± 0.39 95.76 95.97
EN-ES 96.35 ± 0.57 97.07 97.22
EN-FR-ES 95.03 ± 0.24 95.40 95.59

Table 13.4: 10-fold cross validation performance of di↵erent models (mean includes standard
deviation)

Model Test set accuracy
en-fr en-es en-en (MSRP)

EN-FR 95.64 95.91 76.05
EN-ES 87.15 97.25 75.07
EN-FR-ES 94.91 98.34 76.00

Table 13.5: Cross corpus performance (Accuracy). Rows indicate training language pairs, and
columns indicate testing language pairs

the results of the ensemble experiment where we use max voting and average voting as our en-
semble methods. It can be seen that the average voting achieves the better performance among
all of these methods getting 95.97%, 97.22% and 95.95% accuracy for EN-FR, EN-ES and
EN-FR-ES, respectively.

Table 13.5 reports the cross corpus performance of the three models (models are in upper-
case and datasets are in lowercase). We have not included en-fr-es for test purposes because
samples in this dataset are taken from the English-French (en-fr) and English-Spanish (en-
es) pairs. The performance scores are reported over the test set that we create for each of
these datasets as shown in Table 13.3. It is to be noted that the models EN-FR, EN-ES and
EN-FR-ES are trained on the English-French (en-fr), English-Spanish (en-es) and English-
French-Spanish (en-fr-es) datasets, respectively. We have chosen to use the best model on
each of these datasets out of the 10 models that we create during the 10-fold cross validation.
It can be seen that the EN-FR model shows very good performance over en-es (95.91%) and it
is doing even better than its own test set (95.64%). When tested on en-fr, the performance of
the EN-ES model drops with respect to en-es being the test set; the relatively smaller size of
training data for EN-ES as compared to EN-FR can be one of the reasons for this performance
drop. When trained on en-fr-es the performance of EN-FR-ES on the two language pairs
compare well. We also report the performance of the models when tested on MSRP which
is a en-en corpus. We believe that this good cross corpus performance is because the word
embeddings are aligned in the same semantic space.

Table 13.6 reports the performance of the model on the MSRP task compared to some of
the existing top performing models. As we can see, InferSent trained on the MSRP training
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Model Accuracy
InferSent [58] 74.46
LSTM [58] 70.74
BiGRU Last Encoder [58] 70.46
Tree LSTM [227] 73.50
ConvNet Encoder [263] 73.96
Ours (Transfer + Finetuning) 76.05

Table 13.6: Performance comparison on the MSRP dataset against some existing top perform-
ing models.

Dataset Sentence 1 Sentence 2 GT Pr

EN-FR

The Cannabis Act proposes many
rules that would protect youth from
accessing cannabis.

Le projet de loi sur le cannabis
prévoit de nombreuses dispositions
pour empêcher les jeunes d’avoir
accès au cannabis.

1 1

The authorized health care
practitioner’s licence information

Numéro de téléphone et adresse
électronique de la personne morale 0 0

What can be deducted from an
employee’s pay cheque?

Quand l’employeur doit-il verser
l’indemnité de congé annuel? 0 0

EN-ES

Use window sheet kits Usa kits de aislamiento para
ventanas 1 1

It will only take a minute and won’t
impact your credit score

Díganos quién es y qué le gusta,
para ver qué ofertas están 0 0

List out your debt Fíjate un presupuesto semanal,
empezando el lunes 0 0

Table 13.7: Example predictions from the test set. GT: ground truth, Pr: predicted.

set from scratch yields an accuracy of 74.46% [58], whereas transferring the weights from
the model pretrained on our dataset gives an accuracy of 76.05%. It is to be noted that we
are also doing better than Tree LSTM [227] (73.50% accuracy) which uses additional parse
information and ConvNet Encoder (73.96%) which uses a complex and expensive convolution
operation over multiple channels.

Table 13.7 shows the models’ predictions on a few examples from our dataset. It can be
seen in EN-FR that the two negative sentences talk about the same topics as their counterpart
English sentences, but the contents di↵er. In EN-ES’s second pair, the English sentence talks
about a credit score while the Spanish sentence talks about some o↵ers which are somehow
related. Here in the third pair, the English sentence talks about debt whereas the Spanish
sentence talks about budget, which are not exactly related but somehow gets used in the same
context. This justifies our hypothesis of choosing topic related negative examples.

Our discussion on the experimental results shows that the semantic similarity models
trained using the collected multilingual corpus perform well across di↵erent languages and
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domains. It is important to understand that like any other curated dataset, this corpus may have
some amount of noise in terms of alignment. However, the results of transfer learning on the
MSRP benchmark dataset verifies the quality of the dataset.

13.5 Conclusion

In this chapter, we develop a multilingual corpus for doing the multilingual semantic simi-
larity task. We investigate this similarity problem as a binary classification task. To obtain
the positive examples, we adopt web crawling of bilingual sentence pairs followed by a set
of careful preprocessing steps to align them. We focus on websites in the government, in-
surance, and banking domain to collect English-French and English-Spanish sentence pairs.
To create the bilingual sentence pairs of the negative class, we propose an algorithm utilizing
LDA and OpenAI-GPT. Using this algorithm, we can create synthetic non-similar bilingual
sentence pairs, where the participating entities talk about the same topic with some di↵ering
content. Our corpus creation approach can be applied to any other industry vertical provided
that a bilingual website exists. To evaluate the quality of the corpus, we create a pre-trained
multilingual version of InferSent and show that we obtain better transfer learning performance
over a well known public dataset – MSRP.
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Conclusions

This thesis presents some state-of-the-art deep learning architectures to address a range of
classical and complex natural language processing (NLP) problems. We present each of these
works as a chapter and at the same time have made them self-contained. All of the works have
presented a thorough investigation, have good theoretical foundations, have provided extensive
experimentation, and have been published in some of the top tier conferences. Readers are
presented with good insight in how to look at a natural language problem, think intuitively,
and gradually build a model that addresses that problem. Throughout this thesis we have been
consistent in blending the cutting edge deep learning models with classical natural language
knowledge. In this chapter we summarize all of our key findings along with our major contribu-
tions. We compare our models with other like models and show which model is best suited on
which type of task through some empirical results and provide an explanation. We also present
the limitations of this thesis and will complete the discussion by giving future directions for
this research and what are the possible areas for improvement.

14.1 Key Findings

This study provides a wide research scope to the reader. We explore a range of NLP prob-
lems and provide models to address them. There are five overlapping problems that we use to
evaluate the e↵ectiveness of most of the deep learning models that we design. Four of them
deal with a pair of sentences (i.e. SICK-E, SICK-R, MSRP and AI2-8grade), so we term them
sentence pair modelling tasks. The remaining one (i.e. SST) deals with sentiment classifica-
tion tasks. A quick summary of the performances of our models on these problems is given in
Table 14.1. On the SICK-E task, sequential models perform much better compared to the tree
structured models and the Infersent + RL ensemble was the best among all. However, on the
SICK-R task, the tree structured models are much superior compared to the sequential models.

176
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Model SICK-E SICK-R SST MSRP AI2-8grade
Dependency Tree Transformer 82.95 0.2774 83.12 70.34 -
Constituency Tree Transformer 82.72 0.3012 86.66 71.70 -
Dependency Tree Transformer + edge label 83.32 0.2627 83.75 71.96 -
Dependency Tree LSTM + attention - 0.2518 - - -
Constituency Tree LSTM + attention - 0.2435 - - -
Transformer Non Siamese 83.17 0.5042 - 75.90 75.29
Transformer Siamese 85.22 0.4969 - 76.80 77.29
LSTMRMC + FLMP 85.38 0.3852 - 74.67 74.72
LSTMRMC + VLMP (window size = 5) 84.28 0.2925 - 75.89 74.72
Infersent + RL 84.57 - - 74.74 73.84
Infersent + RL Ensemble 86.12 - - 76.12 74.91
Infersent + RL version 2 84.43 - - 75.07 74.74
Infersent + RL Ensemble version 2 85.10 - - 75.35 74.78
Transfer Learning - - - 76.05 -

Table 14.1: Summary of all of the model performances on the overlapping datasets.

On the SST task, the constituency tree transformer is best among all. This task has not been
extensively explored in our study as we are mainly interested in the sentence pair modelling
task. On the paraphrase identification task, the Siamese Transformer, which is from the family
of sequential models, is doing better than all of the other models. Finally, on the AI2-8grade
dataset, again the Siamese Transformer stands out, giving the best performance. Looking at
the overall scenario, we can conclude that sequential models perform much better compared to
the tree structured models in sentence pair modelling tasks.

Apart from that, we also explored some classical NLP problems (i.e., part of speech tag-
ging, named entity recognition and chunking) as a sequence tagging problem where a plain
LSTM based tagger is getting a state-of-the-art result. We revisit the word sense disambigua-
tion problem as a sequence to sequence learning problem and show that it can also be a potential
solution to this problem. Finally, for the protein-protein interaction problem, we find that the
tree version models are superior to the sequential models.

14.2 Major Contributions

This study explores a wide variety of NLP problems and tries to solve them using some novel
deep learning models with intuitive architectures. We try to give a clear explanation about
the type of modules used in these architectures and why they were used, to make things more
intuitive and interpretable. Apart from this intuitive design, we also achieved state-of-the-art
performance on some tasks at the time those models were published. We now summarize all
of the major contributions of this study as follows:
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• Introduce a multitask model that addresses a set of classical NLP tasks using only one
training strategy. The tasks are part of speech tagging, named entity recognition, and
chunking.

• Address another classical NLP problem named word sense disambiguation by utilizing
a well-known NLP paradigm called sequence to sequence learning.

• Provide a way of encoding the attention module inside a tree structured long short term
memory cell.

• Introduce a cross attention mechanism when designing a sentence pair modelling task.

• Increase the memory depth of relational recurrent neural network through a variable
length memory pointer.

• Design a tree version of the transformer encoder that can encode an entire grammar tree.

• Use the reinforcement learning algorithm to compress a sentence using the label as a
reward marker.

• Utilize the reinforcement learning algorithm to generate a phrase representation of a
sentence without having any specific knowledge source.

• Provide a way of creating negative samples when only positive samples are available.

• Provide a multilingual sentence comparison model compatible with English, French, and
Spanish languages.

14.3 Limitations of the Study

In this thesis, we carefully look at all aspects of an architecture, analyze the pros and cons
of every linguistic feature that were added, and achieve consistently good results all the time.
However, there still are a few limitations which need to be considered.

This study considers only one level of hierarchy, word level to sentence level. However,
there are more levels, i.e., phrase level and document level. The document level hierarchy is out
of the scope of this thesis as the datasets that we explored all deal with sentences. However,
we believe that we failed to encode phrase level information in most of the tasks except for
SST which is already tagged at the phrase level and the task is to classify the sentiment of each
phrase. It is possible to rethink some of the models with additional modules that can capture
the phrase structure of a text piece.
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Another constraint that we want to mention here is the hardware limitation. In a few mod-
els, we saw a pattern that the performance gradually improves with increasing batch size. But
for each task, we were limited to a maximum batch size because of the GPU memory limitation.
This problem is not associated just with the batch size, we faced some other design constraints
as well, i.e., number of layers, dimension of each layer, etc. For example, in Chapters 1 and 2,
we only use bigrams, but it is possible to use trigrams, 4-grams, and 5-grams as well. However,
in the later chapters we overcome some of these problems by training our models on Compute
Canada clusters.

Most of the models that are designed specifically for SICK-E, SICK-R, MSRP and AI2-
8grade tasks take around 4 to 8 minutes per epoch and a maximum 50 epochs to converge. Hy-
perparamter tuning on these models are performed using grid search and random search. How-
ever, when we perform the tasks using the reinforcement learning paradigm, it takes around
15 to 20 hours for training. And because of the hardware limitations as mentioned above, we
were unable to perform a grid search for hyperparameter tuning for the reinforcement learning
models. We only tuned the models on a fixed set of hyperparameters individually.

14.4 Recommendations for Future Research

In some sections of Chapters 2 to 13 we suggest some work that needs to be done as a future
research related to that topic. Some of this recommended research was accomplished in later
chapters as the thesis progressed. In addition to that, there are some suggestions that are yet to
be explored and can be seen as possibilities to be explored in future research.

In Chapter 2, we looked at su�x features of a word. There are, in total, 137 su�xes
available in the resource referenced in Chapter 2; however, we only looked at the top 10 most
frequent su�xes that appeared in our dataset. There is room to explore all of the su�x features
and see whether this improves the results.

In Chapter 3, we mention that the idea can be easily extended to address a multi-fact ques-
tion answering problem. However, we later shift our focus towards the semantic similarity
genre and didn’t follow through on this idea due to time limitations.

In Chapter 5, we use the standard Tree LSTM cell followed by structured attention instead
of using the attentive version that we design in Chapter 4. It would be interesting to replace
this stacked model with the attentive version. Also, as we were looking at the tree version of
a sentence with the tree version of LSTM, we hypothesize that we can perform breadth first
traversal or depth first traversal of the grammar tree and then use the standard LSTM cell with
or without the structured attention module instead of the tree LSTM version. This idea is yet
to be explored.
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In Chapter 9, we mention that there are di↵erent ways to encode dependency edge informa-
tion and we use one that seems more intuitive to us. When making this design choice, we had
to limit ourselves to not using too many parameters because of hardware limitations. But given
that GPU memory size is increasing, it is possible to explore more design options, such as
di↵erent combinations of transformations, concatenations, and residual connections to encode
these dependency edge labels.

In Chapter 11, we explored that our reinforcement learning framework works well with
shorter sentences and can give reasonable phrase structures. And in Chapter 10, we were com-
pressing a sentence by deleting some irrelevant words. One possible solution to the problem
that we faced in Chapter 11 is to first shorten a sentence by deleting irrelevant words using the
model from Chapter 10 and then further work on that. In addition, it would be interesting to
see how the models found in other parts of the thesis would react to the compressed sentences
that are obtainable from the model designed in Chapter 10.

In Chapters 12 and 13, we fine tune only on the MSRP dataset. However, it is possible
to explore other similar kinds of datasets that align with the language structure of the corpus
that we created and fine tune on them. Also, we use the standard LDA model to extract the
topics; however, there are some other alternatives such as latent semantic indexing, independent
component analysis, probabilistic latent semantic indexing, non-negative matrix factorization,
and Gamma-Poisson distribution that are yet to be explored.

Based on the experimental results, it is evident that the sequential models get superior
performance compared to the tree-structured models for most of the tasks. When attention
modules are combined with sequential models, they are able to see the entire input context;
however, attention modules with the tree-structured models only see a local region within a
subtree. It would be interesting to follow up on some of the recent works which successfully
encode global information with attention over trees [100, 169].

Because of the hardware limitations as mentioned above, we were unable to perform exten-
sive hyperparameter tuning over all of the models. As deep learning and reinforcement learning
models are very sensitive to hyperparameters, it would be interesting to revisit our models with
extensive hyperparameter tuning based on some well known hyperparameter search approaches
such as random search [35], Spearmint [74] and Hyperopt [36].

We design a number of models that can give e↵ective sentence representation. One possible
research direction would be to apply these representations to analyze medical documents and
retrieve contents related to medicines that can help health workers in quickly finding scientif-
ically based answers and avoiding misinformation during a time of crisis. Another possible
research direction would be to analyze the conversation on social media regarding a public
health sensitive topic such as COVID-19 and supply di↵erent responses to topics like anger,
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myths, country-wise health scenario, etc.

14.5 A Final Word

In this study, we design a set of deep learning models that incorporate linguistic knowledge and
address a wide variety of closely related NLP tasks. As we have seen, most of these complex ar-
chitecture designs have a common motivation – to generate e↵ective sentence representations.
Having an e↵ective domain specific sentence representations makes solving a wide variety of
tasks on that domain easier. There is a coherency in the kind of research and the order in which
we did it which helped us build a strong foundation and prepared us to address more complex
and advanced tasks as presented in the future work section. Through our extensive experiments
it became clear that additional linguistic information does help the modern deep learning ar-
chitecture in gaining more insight about the data. Another set of our works prove that a simple
tree-based model on many occasions outperforms a complex sequential model with a large
number of modules. Furthermore, we also show that it is possible to design such a model that
utilizes traditional linguistic information as well as modern deep learning modules. One of our
intuitions was that in generating a sentence representation, not all the words contribute with the
same impact, some contribute more, some contribute less and some not at all. We verified this
hypothesis using two of our existing works: the RL-based work gives a discrete distribution
of which words to keep and which words to delete. On the other hand, the Transformer-based
work gives a continuous distribution over the contribution of the words. In order to be more
specific, in one of our other works, we design a relational memory based architecture where
we see that this continuous distribution behavior over the contribution actually works better
within a window rather than over the entire set of words in the sentence. We also hypothesize
that if we have good word representations across multiple languages, where the words having
the same meaning are aligned, then the sentence vectors that we get across multiple languages
will also become language agnostic.

In summary, all of the works that we have done in this thesis follow a close coherency and
are mostly related with each other. The kind of goals that we have achieved are also based on
proper human-like intuition that we want the future AI should have. So far, we have seen that
these modern data driven deep learning architectures are superior in almost all cases, but we
also prove that adding human-like knowledge (i.e., linguistic information and intuitive design
principle) brings another level of expertise into these modern gems.
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Appendix B

Supporting Materials

B.1 Software Packages

1. The implementation of the paper titled “Improving Neural Sequence Labelling using
Additional Linguistic Information” (Chapter 2).
Platform: Pytorch
Download link: https://github.com/navid5792/Sequnece-Labelling

2. The implementation of the paper titled “A Novel Neural Sequence Model with Multiple
Attentions for Word Sense Disambiguation” (Chapter 3).
Platform: Pytorch
Download link: https://github.com/navid5792/wsd_s2s

3. The implementation of the paper titled “Improving Tree-LSTM with Tree Attention”
(Chapter 4).
Platform: Pytorch
Download link: https://github.com/navid5792/tree_attention/tree/master

4. The implementation of the paper titled “Identifying Protein-Protein Interaction using
Tree LSTM and Structured Attention” (Chapter 5).
Platform: Pytorch
Download link: https://github.com/navid5792/ppi

5. The implementation of the paper titled “E�cient Transformer-based Sentence Encoding
forSentence Pair Modelling” (Chapter 6).
Platform: Pytorch
Download link: https://github.com/navid5792/SiameseUSE
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6. The implementation of the paper titled “Investigating Relational Recurrent Neural Net-
works with Variable Length Memory Pointer in Sentence Pair Modelling Tasks” (Chapter
7).
Platform: Pytorch
Download link: https://github.com/navid5792/relational_memory_NN

7. The implementation of the paper titled “You Only Need Attention to Traverse Trees”
(Chapter 8).
Platform: Pytorch
Download link: https://github.com/navid5792/Tree-Transformer

8. The implementation of the paper titled “Encoding Dependency Information inside Tree
Transformer” (Chapter 9).
Platform: Pytorch
Download link: https://github.com/navid5792/Tree-Transformer

9. The implementation of the paper titled “Modelling Sentence Pairs via Reinforcement
Learning: An Actor-Critic Approach to Learn the Irrelevant Words” (Chapter 10).
Platform: Pytorch
Download link: https://github.com/navid5792/SS_actor_critic

10. The implementation of the paper titled “Learning to Compare Sentence Pairs in Phrase
Level: An Actor-Critic Approach” (Chapter 11).
Platform: Pytorch
Download link: https://github.com/navid5792/HS-LSTM-RL/tree/master

B.2 Datasets

1. Sense-tagged Semantic Corpus 3.0.
Download link: https://www.kaggle.com/nltkdata/semcor-corpus

2. MASC: An Open Language Data Community Resource.
Download link: http://www.anc.org/data/masc/

3. Senseval 3.
Download link: https://web.eecs.umich.edu/~mihalcea/senseval/senseval3/data.html

4. Penn TreeBank (PTB) POS tagging.
Download link: https://catalog.ldc.upenn.edu/LDC99T42
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5. CoNLL 2000 chunking.
Download link: https://www.clips.uantwerpen.be/conll2000/chunking/

6. CoNLL 2003 NER.
Download link: https://www.clips.uantwerpen.be/conll2003/ner/

7. Protein Protein Interaction problem. All the five datasets (AIMed, Bionfer, IEPA,
HPRD50, and LLL) are available in the following link.
Download link: http://mars.cs.utu.fi/PPICorpora/

8. Sentences Involving Compositional Knowledge.
Download link: https://github.com/brmson/dataset-sts/tree/master/data/sts/sick2014

9. Microsoft Research Paraphrase Corpus. Abbreviated as either MSRP or MRPC.
Download link: https://deepai.org/dataset/mrpc

10. AI2-8th Grade Science Questions, Hypothesis Based Evaluation.
Download link: https://github.com/brmson/dataset-sts/tree/master/data/hypev/
ai2-8grade

11. Stanford Sentiment Treebank.
Download link: https://nlp.stanford.edu/sentiment/index.html
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