50 research outputs found

    Materials, Processes, and Characterization of Extended Air-gaps for the Intra-level Interconnection of Integrated Circuits

    Get PDF
    Materials, Processes, and Characterization of Extended Air-gaps for the Intra-level Interconnection of Integrated Circuits Seongho Park 157 pages Directed by Dr. Paul A. Kohl and Dr. Sue Ann Bidstrup Allen The integration of an air-gap as an ultra low dielectric constant material in an intra-metal dielectric region of interconnect structure in integrated circuits was investigated in terms of material properties of a thermally decomposable sacrificial polymer, fabrication processes and electrical performance. Extension of the air-gap into the inter-layer dielectric region reduces the interconnect capacitance. In order to enhance the hardness of a polymer for the better process reliabilities, a conventional norbornene-based sacrificial polymer was electron-beam irradiated. Although the hardness of the polymer increased, the thermal properties degraded. A new high modulus tetracyclododecene-based sacrificial polymer was characterized and compared to the norbornene-based polymer in terms of hardness, process reliability and thermal properties. The tetracyclododecene-based polymer was harder and showed better process reliability than the norbornene-based sacrificial polymer. Using the tetracyclododecene-based sacrificial polymer, a single layer Cu/air-gap and extended Cu/air-gap structures were fabricated. The effective dielectric constant of the air-gap and extended air-gap structures were 2.42 and 2.17, respectively. This meets the requirements for the 32 nm node. Moisture uptake of the extended Cu/air-gap structure increased the effective dielectric constant. The exposure of the structure to hexamethyldisilazane vapor removed the absorbed moisture and changed the structure hydrophobic, improving the integration reliability. The integration processes of the air-gap and the extended air-gap into a dual damascene Cu metallization process has been proposed compared to state-of-the-art integration approaches.Ph.D.Committee Chair: Kohl, Paul A.; Committee Co-Chair: Allen, Sue Ann Bidstrup; Committee Member: Carter, W. Brent; Committee Member: Frazier, Albert B; Committee Member: Hess, Dennis; Committee Member: Meredith, Carso

    Surface processing of nanoporous low dielectric constant thin films

    Get PDF
    Master'sMASTER OF SCIENC

    Plasma Damage on Low-k Dielectric Materials

    Get PDF
    Low dielectric constant (low-k) materials as an interconnecting insulator in integrated circuits are essential for resistance-capacitance (RC) time delay reduction. Plasma technology is widely used for the fabrication of the interconnects, such as dielectric etching, resisting ashing or stripping, barrier metal deposition, and surface treatment. During these processes, low-k dielectric materials may be exposed to the plasma environments. The generated reactive species from the plasma react with the low-k dielectric materials. The reaction involves physical and chemical effects, causing degradations for low-k dielectric materials. This is called “plasma damage” on low-k dielectric materials. Therefore, this chapter is an attempt to provide an overview of plasma damage on the low-k dielectric materials

    Copper Diffusion Barrier Deposition on Integrated Circuit Devices by Atomic Layer Deposition Technique

    Get PDF
    Transfer from aluminum to copper metallization and decreasing feature size of integrated circuit devices generated a need for new diffusion barrier process. Copper metallization comprised entirely new process flow with new materials such as low-k insulators and etch stoppers, which made the diffusion barrier integration demanding. Atomic Layer Deposition technique was seen as one of the most promising techniques to deposit copper diffusion barrier for future devices. Atomic Layer Deposition technique was utilized to deposit titanium nitride, tungsten nitride, and tungsten nitride carbide diffusion barriers. Titanium nitride was deposited with a conventional process, and also with new in situ reduction process where titanium metal was used as a reducing agent. Tungsten nitride was deposited with a well-known process from tungsten hexafluoride and ammonia, but tungsten nitride carbide as a new material required a new process chemistry. In addition to material properties, the process integration for the copper metallization was studied making compatibility experiments on different surface materials. Based on these studies, titanium nitride and tungsten nitride processes were found to be incompatible with copper metal. However, tungsten nitride carbide film was compatible with copper and exhibited the most promising properties to be integrated for the copper metallization scheme. The process scale-up on 300 mm wafer comprised extensive film uniformity studies, which improved understanding of non-uniformity sources of the ALD growth and the process-specific requirements for the ALD reactor design. Based on these studies, it was discovered that the TiN process from titanium tetrachloride and ammonia required the reactor design of perpendicular flow for successful scale-up. The copper metallization scheme also includes process steps of the copper oxide reduction prior to the barrier deposition and the copper seed deposition prior to the copper metal deposition. Easy and simple copper oxide reduction process was developed, where the substrate was exposed gaseous reducing agent under vacuum and at elevated temperature. Because the reduction was observed efficient enough to reduce thick copper oxide film, the process was considered also as an alternative method to make the copper seed film via copper oxide reduction.Vuoden 2006 lopussa amerikkalainen mikroprosessorien valmistaja Intel aloitti kotitietokoneisiin suunnatun uuden sukupolven mikroprosessorin (CoreTM2 Duo, CoreTM2 quad-core and Xeon) valmistuksen. Tämän mahdollisti uusi prosessimenetelmä/materiaali, jota käytettiin transistorin pinnalla olevaan eristekalvoon, joka oli ainoastaan kymmenkunta atomikerrosta paksu. Kysymyksessä oli transistoritekniikan suurin muutos 1960-luvun jälkeen, mikä mahdollisti entistä pienemmän ja tehokkaamman mikroprosessorin valmistuksen. Vaikka uutinen vastaanotettiin myös Suomessa useissa tiedotusvälineissä, vain harva tiesi että kyseinen atomikerroskasvatusmenetelmä, ALD (= Atomic Layer Deposition), ja tuolla menetelmällä kasvatettu kalvo oli Suomessa kehitetty. Tämä olikin tiettävästi ensimmäinen kerta kun Suomessa kehitettyä teknologiaa käytettiin mikroprosessorien massatuotantoon. Väitöskirjatyössäni tutkitaan erästä toista prosessivaihetta mikroprosessorin valmistuksessa, jossa voitaisiin mahdollisesti käyttää ALD-menetelmää tulevaisuudessa. Olemme kehittäneet ALD-menetelmällä kasvatettavia materiaaleja, jotka soveltuvat diffuusionestokalvoiksi mikroprosessoriin. Diffuusionestokalvoa tarvitaan erottamaan johteet ja eristeet toisistaan mikroprosessorin sisäisessä johdotuksessa. Kalvon tehtävä on estää atomien kulkeutuminen kalvon toiselta puolelta toiselle puolelle. Työssämme on tutkittu erityisesti prosessien integrointiin liittyviä haasteita ja pyritty löytämään niihin ratkaisuja. Onnistuimme kehittämään uudeen ALD-prosessin, jonka avulla valmistimme hyvin sähköä johtavan materiaalin, wolframinitridikarbidin, joka oli myös erinomainen diffusionestomateriaali ja hyvin integroitavissa muihin mikroprosessorin valmistusvaiheisiin

    Modeling and characterization of abrasive-free copper chemical mechanical planarization process

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore