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The continuing scaling of integrated circuits beyond 22nm technology node poses 

increasing challenges to Electromigration (EM) reliability for Cu on-chip interconnects. 

First, the width of Cu lines in advanced technology nodes is less than the electron mean 

free path which is 39nm in Cu at room temperature.  This is a new size regime where 

any new scaling effect on EM is of basic interest. And second, the reduced line width 

necessitates the development of new methods to analyze the EM characteristics. Such 

studies will require the development of well controlled processes to fabricate suitable test 

structures for EM study and model verification. This dissertation is to address these 

critical issues for EM in Cu interconnects.  

The dissertation first studies the initial void growth under EM, which is critical 

for measurement of the EM lifetime and statistics. A method based on analyzing the 

resistance traces obtained from EM tests of multi-link structures has been developed.  

The results indicated that there are three stages in the resistance traces where the rate of 
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the initial void growth in Stage I is lower than that in Stage III after interconnect failure 

and they are linearly correlated.  An analysis extending the Korhonen model has been 

formulated to account for the initial void formation.  In this analysis, the stress evolution 

in the line during void growth under EM was analyzed in two regions and an analytic 

solution was deduced for the void growth rate. A Monte Carlo grain growth simulation 

based on the Potts model was performed to obtain grain structures for void growth 

analysis. The results from this analysis agreed reasonably well with the EM experiments.  

The next part of the dissertation is to study the size effect on the electron wind 

force for a thin film and for a line with a rectangular cross section. The electron wind 

force was modeled by considering the momentum transfer during collision between 

electrons and an atom. The scaling effect on the electron wind force was found to be 

represented by a size factor depending on the film/line dimensions.  In general, the 

electron wind force is enhanced with increasing dimensional confinement.  

Finally, a process for fabrication of Si nanotrenches was developed for deposition 

of Cu nanolines with well-defined profiles. A self-aligned sub-lithographic mask 

technique was developed using polymer residues formed on Si surfaces during reactive 

ion etching of Si dioxide in a fluorocarbon plasma. This method was capable to fabricate 

ultra-narrow Si nanotrenches down to 20nm range with rectangular profiles and smooth 

sidewalls, which are ideal for studying EM damage mechanisms and model verification 

for future technology nodes.      
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Chapter 1: Introduction 

This chapter introduces the general background for the development of Cu 

interconnects. The increased complexity of the interconnect structures necessitates the 

studies of long term reliability such as electromigration (EM). Cu interconnects have 

unique EM characteristics originated from the damascene structure and its fabrication 

process. This chapter also provides a brief introduction of the EM phenomenon and the 

challenges to Cu EM reliability raised by interconnect scaling. This motivates the 

research work in this dissertation. The scope of the dissertation is outlined at the end of 

this chapter.  
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1.1 GENERAL BACKGROUND 

For several decades, integrated circuit (IC) has distinguished itself by the rapid 

pace in scaling. Following Moore’s law, the density of transistors on ICs doubles every 

18 to 24 months. To meet this requirement, dimensional scaling occurs both in front-end-

of-line (FEOL), where transistors locate, and back-end-of-line (BEOL), where metal 

interconnects are made to connect transistors. BEOL interconnects perform essential 

functions in an IC-system by providing clock signals, electrical signals, power 

distribution and ground distribution.  

The scaling of ICs always comes with innovation of materials. The interconnect is 

no exception. When ICs were first produced, Al was used as interconnecting 

metallization due to its ease of deposition and etching. The resistivity of Al is 2.8 µΩ-cm, 

lower than that of most metals. The interconnect wires at that time were wide and thick 

and thus had low resistance. The resistance-capacitance (RC) delay of the Al 

interconnects was negligible compared to the switching delay of the transistors, also 

known as gate delay. As the device channel length shrinks during scaling, the transistors 

switch faster and faster. However, the interconnect wires become narrower, driving up 

the resistance so that interconnect RC delay becomes the bottleneck for the chip 

performance. For that reason, Cu was introduced to replace Al interconnects by IBM in 

1997 [Edelstein et al., 1997, Rosenberg et al., 2000]. Cu has a lower resistivity of 1.7 

µΩ-cm, considerably lower than that of Al. 

The Cu interconnects in the advanced ICs have highly complex hierarchical 

structures. As an example, Figure 1.1 shows scanning electron microscopy (SEM) images 

of the interconnects of an Intel’s 32nm high performance logic chip, where the whole 

structure contains 9 metal levels. The overall metal wiring structure follows the reverse 
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scaling rule, where the lower-levels of the local interconnects employ thin Cu wires to 

match the size and pitch of the transistors in Si while wires with increasing dimensions 

are used in the upper-levels of global interconnects. Metallization following the reverse 

scaling rule is adopted to reduce the RC delay and power consumption.  

 

 

Figure1.1 SEM image of Intel 32nm interconnects (a) from metal-1 to metal-8 and (b) 

metal-9 to Cu bump. [Brain et al., 2009]  

As a result of the progressive scaling, billions of transistors and interconnects can 

now be packed into an advanced micro-chip. This poses increasing concern in the 

reliability of ICs. The failure of one out of billions of units in a micro-chip may cause the 

failure of the entire chip. The BEOL reliability is generally assessed by studying 

electromigration (EM), stress induced voiding (SIV) and time dependent dielectric 

breakdown (TDDB). With the aggressive scaling of metal line dimensions and density, 

EM and TDDB are becoming increasingly important reliability concerns. Chip package 

interaction (CPI) is also an important reliability problem if the full IC-system is 

considered. This dissertation studies the EM of Cu interconnects. The local interconnects 

in metal-1 (M1) and metal-2 (M2) levels are more subjected to EM damage due to much 

smaller dimensions and higher current density.  
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Compared to Al interconnects, Cu interconnects have the advantage of a higher 

resistance to EM. EM is a diffusion process, the activation energy of which scales with 

the melting temperature of the material. Cu has a higher melting point of 1083°C 

compared with Al of 660°C.  At a given temperature, the diffusion in Cu is thus reduced 

compared with Al.  

 

1.2 THE DAMASCENE PROCESS 

Besides the improved performance of RC delay and EM, Cu has other properties 

very different from Al, which requires a different process to fabricate and to implement 

the interconnects. The processes and integration scheme in turn greatly affect the EM 

characteristics of Cu interconnects.  

First of all, there is no good dry etch process for Cu due to the lack of volatile Cu 

compound at low temperature. A prerequisite requirement for the dry etch process is that 

the main etching byproducts should be volatile at low temperatures. For example, the 

chlorine plasma reacts with Al, forming AlCl3. AlCl3 sublimates at 178°C [Plummer et 

al., 2000], i.e., volatile at a low temperature. Ion bombardment can then easily remove 

AlCl3 from the surface and pump it out of the system. Therefore, a subtractive reactive 

ion etching (RIE) process can be employed to fabricate the Al interconnects, as shown in 

Figure 1.2(a). In the fabrication process, the patterning by photolithography is first 

performed on an Al film. Then the RIE process is used to form Al wiring structure which 

is followed by a subsequent dielectric deposition process to insulate the Al wires. Finally, 

a chemical mechanical polishing (CMP) process is used to planarize the dielectric layer 

to complete one level of Al interconnect.  
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In comparison, the sublimation temperature for CuCl is 1490°C [Plummer et al., 

2000], due to a tight binding of CuCl with the surface. It is difficult to remove CuCl from 

the surface even with ion bombardment and thus no good dry etching process is available 

for Cu. Instead, a different “damascene” process is used to fabricate Cu interconnects, as 

shown in Figure 1.2(b). First, the photolithography and RIE process are performed on the 

dielectric layer. The alignment of photolithography on the transparent dielectric film is 

easier than on the opaque and shiny metal film. However, the RIE of low-k dielectrics 

turns out to be difficult since it is prone to plasma damage in the RIE process. The low-k 

dielectrics were introduced to replace SiO2 to further reduce the RC delay, crosstalk noise 

and power consumption of the interconnects but can be easily damaged by plasma 

processing [Baklanov et al., 2012, Shi et al., 2008].  After the patterning of the dielectric 

layer, Cu is electroplated into the via and trench openings on the dielectric layer. In a 

single damascene process, the vias and trenches are patterned and electroplated in 

separate steps. In a dual damascene process, the electroplating of Cu into the vias and the 

trenches are performed simultaneously. The dual damascene process not only simplifies 

process steps, but also decreases the via resistance and improves the EM reliability. 

Therefore, it is widely used in most of the advanced ICs. 

Another undesired property of Cu is its high diffusivity in Si and silicate 

dielectrics, which can cause electrical leakage between adjacent Cu lines or TDDB of the 

dielectric. The Cu in the active Si can create deep trap states thus degrades the device 

performance. To prevent the potential out-diffusion of Cu, a barrier, also called a liner, 

has to be formed before the Cu seed layer deposition and electroplating, as demonstrated 

in Figure 1.2(b). Besides the capability of blocking Cu diffusion, the candidate material 

for the barrier must have low diffusivity itself and adhere well to the low k dielectric 
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material. Low resistivity is also required to reduce RC delay. Tantalum (Ta) with melting 

temperature of 3020°C fulfills these requirements. The body-centered cubic (BCC) α-Ta 

has a resistivity of 15-50 µΩ-cm [Baklanov et al., 2012]. Cu also has a fairly low surface 

diffusivity on α-Ta, 2.010
-12 

cm
2
/s at 550°C [Fillot et al., 2007]. To improve the 

adhesion between the Ta barrier and the low-k dielectric, a TaN layer is usually buffered 

in between. The Ta/TaN bilayered diffusion barrier is deposited using a physical vapor 

deposition (PVD) process. 

The electroplating of Cu starts from the trenches and the surface of the dielectric 

layer simultaneously. An overhang of Cu, also called overburden, forms after the 

trenches are filled. Then a low temperature annealing (150-250°C) is performed to 

promote the Cu grain growth to stabilize the Cu microstructure. By comparison, the 

annealing of Al interconnects is performed on the Al thin film. This leads to different 

microstructures for Cu and Al interconnects.  

While Al has a stable native oxide Al2O3 as a good passivation layer, the easily 

oxidized Cu surface is not passivated well by the unstable oxide layer. Therefore, a 

capping layer, such as SiNx is applied, by plasma-enhanced chemical vapor deposition 

(PECVD), to the Cu surface after it is planarized by CMP. This capping layer also 

functions as an etch stop for the patterning on the dielectric layer. Carbon can be added to 

form SiCxNy to reduce the dielectric constant of this layer [Prasad et al., 2002], but with 

the risk of decreasing the adhesion with Cu [Wang et al., 2006]. As a result, the Cu/cap 

interface becomes a major diffusion path in Cu interconnects [Vairagar et al., 2005].    
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Figure1.2 Schematic diagrams of (a) conventional RIE process for Al interconnects 

and (b) damascene process for Cu interconnects.  
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1.3 EM IN CU INTERCONNECTS 

EM describes a mass transport process where metallic ions are driven by an 

electron current.  Accelerated by the electric field, the electrons collide with an ion near 

a lattice vacancy as illustrated in Figure 1.3.  The momentum transfer in the collision 

gives rise to an “electron wind” force, driving the atom to diffuse along a diffusion path, 

resulting in EM. The EM driving force FEM excreted on the ion is composed of two parts: 

the electron wind force Fwind and the direct force Fdirect from the applied electric field.  

Fwind and Fdirect have opposite directions. In materials such as Cu, the wind force 

dominates and the FEM can be expressed as:  

*

EM wind direct windF F F F Z e j    ,                     (1.1) 

where Z
*
 is the effective charge number, e the electron charge, ρ the resistivity of the 

conductor and j the electric current density.  

 

 

Figure 1.3  Schematic of the collisions between the electron wind and an metal ion. With 

the electric field E, electrons collide with metal atoms in the electron flow 

direction resulting in EM phenomenon. 

 

+

e-

e- collisions

E
electron wind

+

e-

e- collisions

E
electron wind



9 

 

The first report of EM can be traced back to 1861, when Gerardin observed it in 

molten lead-tin and mercury-sodium alloy [Ho et al., 1989]. EM received much attention 

only after the major semiconductor companies observed it as a failure mechanism for Al 

interconnects in the late 1960s [Lloyd, 1999, Ceric et al., 2010]. For a short period of 

time, the existence of ICs was threatened by EM [Sello et al., 1966, Tan et al., 2007].  

 EM is a diffusion-controlled mass transport process, which is directly 

proportional to the atomic drift velocity vd given by  

dv F ,                                  (1.2) 

where µ is the mobility of the ion and F is the driving force including FEM and stress 

induced back flow force if any. The mobility is directly related to the diffusivity D of the 

metal ion through the Einstein relationship: µ = D/kBT. kB is the Boltzmann constant and 

T the absolute temperature.  

Atoms can diffuse along two major diffusion pathways in Cu interconnects: 

Cu/cap interfaces and grain boundaries, as demonstrated in Figure 1.4.  In general, the 

diffusion along Cu/barrier interfaces is relatively slow and can be ignored. The effective 

diffusivity of a Cu line can be expressed as: 

N GB
eff N GBD D D

h d

 
  ,                         (1.3) 

where the subscripts N and GB denote Cu/cap interface and grain boundary, respectively. 

δ is the effective width for corresponding diffusion pathways. h is the line thickness and d 

is the average grain size. For a line mostly composed of bamboo type grains, the 

diffusion along grain boundaries can be ignored as well.    
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Figure 1.4  Schematic of major diffusion pathways in Cu interconnects.  

The atomic diffusion itself does not necessarily lead to void formation. Voids 

only occur at flux divergence sites, where more atoms flow out and less atoms flow in. 

Such flux divergence sites are commonly located at geometric discontinuity points and 

grain boundary triple points. Figure 1.5 shows three possible flux divergence sites for Cu 

interconnects fabricated by dual damascene process. In this example, electrons flow from 

metal-1 (M1) through via-1 (V1) to metal-2 (M2). Voids are commonly observed at the 

cathode end of M2 line, where the supply of atoms is blocked by the Cu/barrier interface 

although the atoms can diffuse out freely through the Cu/cap interface. Process defects 

generated on the upper surface of the Cu line by CMP process also makes this site more 

prone to void formation. Voids within the vias are more often observed in the initial 

process development stage, when the via fabrication process has not been optimized.    

 

 

Figure 1.5  Schematic showing flux divergence sites in a Cu interconnect [Ogawa et al., 

2002].   
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The initial void formation at the Cu/cap interface can also be observed in the 

resistance versus time trace recorded during EM tests, as shown schematically in Figure 

1.6. The trace first appears as a flat region when an initial void forms at the Cu/cap 

interface with a very small increase in the line resistance. An abrupt jump in the line 

resistance is usually observed when the void is large enough to fail the line. This is 

followed by a region with gradual resistance increase when the void continues to grow 

after the line fails.  

 

 

Figure 1.6  Resistance trace for EM of Cu interconnects including a flat region, an abrupt 

jump and a gradual increase region.    

 

1.4 SCALING CHALLENGES TO CU EM 

The scaling of transistor and interconnects continues to further improve the chip 

performance and reduce the cost per function. However, beyond the 22nm technology 

node, the scaling of interconnects becomes extremely difficult. One of the problems 

comes from the resistivity increase of Cu due to increasing sidewall scattering of the 
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conducting electrons as the line width continues to be reduced.  So far, the solution to 

mitigate the impact of this size effect has yet to be discovered. Together with the scaling 

of Cu line width, the barrier thickness also scales down accordingly to reduce the 

resistance. It is very challenging to form a barrier of only several monolayer thick, but 

maintaining the barrier function to block the out-diffusion of Cu. Reliability challenges 

are becoming an important limiting factor as well. Aware of the difficulty, some 

semiconductor companies are actually planning to use 14nm node FEOL mixed with 

22nm node BEOL to meet the time-to-market requirement. 

The most severe scaling challenge to Cu EM is that the EM lifetime is reduced 

approximately by half for each new technology node even with a fixed current density. 

This is demonstrated in Figure 1.7. The void at the cathode end of a line will cause line 

failure when its length ΔLcr is longer than the via diameter which is about the line width 

w. The EM lifetime is proportional to ΔLcr/vd. When the interface diffusion through 

Cu/cap interface dominates, the drift velocity scales with 1/h as indicated in Equation 

(1.3). Therefore the EM lifetime scales with w*h if the current density j is constant. Since 

both line width and thickness are reduced by 0.7x drop each generation, the EM lifetime 

decreases by half for each technology node. The experimental data points for various 

nodes, represented by the open circles in Figure 1.7, agree well with the prediction by this 

simple scaling model.  
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Figure 1.7  Normalized EM lifetime as function of critical void dimensions for various 

technology generations. [Hu et al., 2006]    

The situation is even more severe if one takes the scaling of current density into 

account. Figure 1.8 shows the evolution of Jmax and JEM in conventional Cu interconnects. 

JEM is the maximum current density which meets the targeted EM lifetime requirement. It 

scales down with w*h. Jmax is defined by the maximum equivalent DC current expected 

in a digit circuit divided by the cross-sectional area of an intermediate interconnect line. 

It keeps increasing not only because the cross-section of the line is decreasing, but also 

because the high performance device requires a larger drive current. FEOL devices are 

now in transition from planar transistors to FinFETs which can carry much larger current. 

This poses even more difficult scaling challenge to EM reliability.     
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Figure 1.8  Evolution of Jmax (from device requirement) and JEM (from targeted EM 

lifetime). [ITRS, 2011] 

 Bamboo type grains are commonly observed in Cu interconnects prior to 65nm 

node. However, at 65nm node and beyond, the Cu lines in interconnects are usually 

composed of a mixture of bamboo and polycrystalline grains [Zhang et al., 2007, 

Steinhogl et al., 2005, Hu et al., 2007a]. The grain boundaries associated with such grain 

structures provide additional diffusion pathways, and thus reduce the resistance to EM 

[Hu et al., 2007a]. Further scaling of line width introduces more small grains in the 

trench bottom [Kameswaran, 2011], which further degrades the EM performance.  

Significant efforts have been taken in introducing new materials to Cu 

interconnects to improve the EM reliability. Approaches can be categorized into two 

directions: improving the Cu/cap interface and/or engineering the Cu seed layer. For the 

first approach, methods include inserting a metal capping layer, alloying Cu surface with 

Al and forming Cu silicides at the top surface. Among these, a CoWP metal cap 

deposited by electroless plating was found to be particularly effective in suppressing the 

diffusion at the Cu/cap interface [Christiansen et al., 2011, Gambino et al., 2006, Zhang, 
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2010, Hu et al., 2004a]. This is due to the fact that Co can form a strong adhesive 

interface with Cu. However, this process is difficult to implement and it also degrades the 

TDDB performance of low-k dielectrics [Tan et al., 2008, Chen et al., 2010]. This 

prevents it from being adopted in advanced interconnects. For the approach of using a Cu 

seed layer, elements such as Ti, Al, Mn, Ge, Co have been added as dopants [Hu et al., 

2012, Nogami et al., 2010, Christiansen et al., 2011, ITRS, 2011]. Upon annealing, the 

dopants at the sidewalls can diffuse to the Cu/cap interface and segregate there to 

strengthen the interface. The dopants can also segregate at the grain boundaries, blocking 

the grain boundary diffusion. This approach is limited, however, by the electrical 

resistance increase induced by the Cu alloying process [ITRS, 2011].   

 

1.5 MOTIVATION 

The research performed in this dissertation is motivated by the challenges for the 

future scaling of the Cu interconnects beyond 22nm technology node.  First, the ever 

decreasing line width and increasing number of new materials introduced require new 

methodology to be developed for Cu EM study. For example, EM-induced void 

formation is a problem of paramount importance and fundamental interest. Due to 

resolution limitation, it becomes more and more difficult to directly use SEM to 

investigate the void formation beyond 22nm node.  In addition, EM and void formation 

are subjected to statistical variation and its investigation requires a large number of 

samples. It is also impractical to use transmission electron microscopy (TEM) to study 

the void formation, considering the effort required to prepare even a single sample for 

TEM observation. Therefore, it is highly desirable to develop a method to extract the void 

growth information based on analysis of EM data. Recently, it has been found that useful 
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information for EM can be extracted from the resistance traces [Arnaud et al., 2011, 

Doyen et al., 2008, Federspiel et al., 2007, Lamontagne et al., 2010, Doyen et al., 2007, 

Arnaud et al., 2010]. However, the void growth rate deduced in these works seemed to 

have referred to that after EM failure, i.e., the gradual increase region in Figure 1.6. 

Clearly, the void growth at the flat region actually determines how fast a line fails, so 

extracting information from this initial void growth stage is more critical. To develop 

such an approach for studying EM will be the research focus of this dissertation. 

Second, the dimensions of interconnect lines are now in a new size regime. The 

line width for M1 interconnects at 22nm node is 32nm. It is comparable to the electron 

mean free path which is 39nm for Cu at room temperature. It is well known that, in this 

so called classical size regime, the electrical resistivity increases significantly due to 

increased interface scattering and grain boundary scattering. The electrical resistance in a 

metal is caused by the scattering between electrons and atoms. As shown in Figure 1.3, 

the same scattering events also deliver momentum to the atom and cause it to migrate 

along the diffusion path. In this sense, EM closely correlates with electrical resistance. 

This raises an important question: Does a similar significant size effect exist on EM? It 

will be addressed in this dissertation as well.  

Third, as scaling continues, the EM of Cu interconnects is more sensitive to small 

process variations. This is schematically illustrated in Figure 1.9. While a 10nm square 

notch causes 10% width variation in a 100nm wide line as shown in Figure 1.9(a), the 

notch with the same size accounts for 30% width reduction in a 30nm wide line as shown 

in Figure 1.9(b). A 30% reduction of line width may easily induce a different EM failure 

mode and early failures [ITRS, 2011]. Due to the random nature of process variations, the 

lifetime could yield different distributions for different sets of samples.  This poses 
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critical challenges for EM mechanism study. Such line edge roughness (LER) problem is 

expected to have more effect on EM reliability beyond the 22nm node, mainly because of 

lithography limitation. The current generation of optical lithography system with a 

193nm wavelength source, combined with the optimization of computational lithography, 

reaches a resolution limit at 22nm node [ITRS, 2011]. The next generation lithography 

system using extreme ultraviolet (EUV) source with 13.5nm wavelength will not be 

ready for at least another two technology nodes. Therefore, it is of great importance to 

develop alternative processes to fabricate well-controlled Cu nanolines for investigation 

of EM mechanisms. Furthermore, due to the increasing difficulty in experimental study, 

modeling work is becoming more useful and important for Cu EM in advanced nodes. 

For simplicity in modeling, Cu line is commonly assumed to have a rectangular cross-

section. However, an actual Cu interconnect line usually has a taped profile. It would be 

greatly valuable to have Cu lines with ideal profiles for model verification. Developing 

processes to fabricate such ideal test structures is also one of the objectives of this 

dissertation.   

 

 

Figure 1.9  Schematic showing that narrower lines are more sensitive to process 

variations. (a) 100nm wide line with a 10nm square notch; (b) 30nm line 

with a 10nm square notch.  
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1.6 SCOPE OF THIS WORK 

The work contained in this dissertation is organized into 6 chapters as follows: 

Chapter 1 provides an introduction of Cu interconnects and challenges of Cu EM 

caused by interconnect scaling.  

Chapter 2 investigates the EM induced initial void formation in Cu interconnects 

by analyzing the EM resistance traces. A method of resistance trace analysis is developed 

for this purpose. EM tests are performed with multi-link structures to extract the statistics 

of resistance parameters and the initial void growth rate.  

Chapter 3 develops a void growth model based on the stress evolution in a Cu line 

under EM. The model is compared with the EM data presented in Chapter 2. Monte Carlo 

grain growth simulations based on the Potts model are performed to investigate the 

microstructure characteristics of a Cu line.  

Chapter 4 studies the size effect of electron wind force for a Cu thin film and a Cu 

line. The dimensions under discussion are close to the electron mean free path of Cu.  

Chapter 5 describes a process development for fabrication of Si nanotrenches for 

deposition of Cu nanolines with well-defined profiles. A method to use the polymer 

residues formed in fluorocarbon plasma as self-aligned sub-lithographic mask is 

developed.  

Chapter 6 summarizes the research results obtained in this dissertation and 

suggests future studies.  
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Chapter 2: Electromigration Induced Void Formation in Cu 

Interconnects 

This chapter studies electromigration (EM) induced void formation mechanism in 

Cu interconnects. A method was developed to investigate the kinetics of the initial void 

formation based on the analysis of resistance traces recorded during EM tests. EM tests 

were performed using multi-link structures to measure the EM failure time and their 

statistical distributions together with the resistance traces. The method of resistance trace 

analysis was applied to deduce the correlation of the void growth rates before and after 

line failure.  
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2.1 INTRODUCTION 

Electromigration (EM) describes the diffusion of metal atoms in a metallic 

conductor driven by an electron current.  For Al or Cu interconnects, the EM induced 

mass transport occurs along surfaces, interfaces and grain boundaries, moving in a 

direction from the cathode towards the anode. The local imbalance of the mass transport 

gives rise to flux divergence which can lead to void formation at the cathode or hillock 

growth at the anode of the interconnect structure [Bauguess et al., 1996]. The formation 

of void or hillocks can result in circuit open and short failure at a rate depending on the 

interconnect dimensions, fabrication process and temperature. As device scaling 

continues to reduce the interconnect dimensions, the increase in the current density will 

accelerate the EM induced void formation rate, raising a major reliability concern for on-

chip interconnects. For Cu interconnects, the mass transport is dominated by diffusion at 

the interface between the Cu line and the SiCN capping layer due to the relatively weak 

bonding in this interface. Defects generated on the upper surface of a Cu line by the 

chemical-mechanical polishing (CMP) process, also makes the Cu/cap interface most 

prone to void formation. This is schematically shown in Figure 2.1 (a) where void 

formation takes place at the interface. Figure 2.1 (b) shows that such a void was indeed 

observed by TEM at its initial stage and close to the interface. Such a void will continue 

to grow until it spans the whole cross-section of the Cu line and fails the interconnect 

line. This void formation mechanism as illustrated is different from that observed in Al 

interconnects where the Al interface is relatively defect free due to the presence of the 

natural aluminum oxide which is a good passivation layer. Instead, the voids usually form 

at grain boundary triple points in Al interconnects.   
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Figure 2.1 (a) Schematic showing voids formed at weak Cu/cap interface. (b) TEM 

image showing an initial void formed close to the interface [Zhang, 2010]. 

This unique feature of EM void formation for Cu interconnects is reflected in the 

resistance trace recorded during EM tests as a function of time. As shown in Figure 2.2, 

three stages are commonly observed in a resistance trace. Stage I is a relatively flat region 

when the voids are initially formed. The dominance of the interfacial mass transport 

renders the downward outgrowth of the void from the interface. During this stage, the 

resistance increase is usually quite small and barely detectable in the resistance trace. 

Once a void spans the whole cross-section of the Cu line, the electric current is forced to 

shunt through the resistive barrier layer. This causes line failure at Stage II and a steep 

resistance jump is observed in the trace. This is followed by a gradual resistance increase 

region at Stage III when the void further grows along the direction of line length. Clearly 

the first stage determines how fast the line fails. However, this most critical stage is least 

studied, perhaps because the resistance trace at Stage I remains nearly flat with no 
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significant increase in resistance. It may also be due to the fact that there is no good 

model so far to analyze the initial void formation stage in Cu lines.  

 

 

Figure 2.2 Typical EM resistance traces with definition of three Stages and the 

parameters Rstep and Rslope.  

One way to study the initial void formation at Stage I is to use in-situ SEM to 

observe the void during EM stressing [Liniger et al., 2002, Vairagar et al., 2005, Liniger 

et al., 2003]. However, the continuing scaling in microelectronic devices makes such 

direct SEM observation impractical when the line dimension is close the spatial 

resolution limit of SEM.  

Recently, a technique using a local sense structure close to the void is developed 

to detect the initial void growth rate at Stage I [Croes et al., 2011, Kirimura et al., 2012]. 

For a standard EM test structure, the voltage sense terminals are placed very close to the 
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current injector so that the resistance of a long entire line is measured, as shown in Figure 

2.3(a). Any resistance change caused by void formation in the line is relatively small 

compared to the line resistance. So the resistance trace does not provide enough 

sensitivity for observing void formation. In the newly proposed local sense structure, the 

voltage sense terminals are placed very close (only 10 µm away) to the via where void 

usually forms, as shown in Figure 2.3(b). In this way, the resistance change caused by 

void formation can be readily detected as a considerable portion of the resistance 

measured by the sensor. Figure 2.3(c) shows the increased sensitivity of such a local 

sensing structure. The drift velocity obtained by this technique at Stage I was found to be 

between 0.1 and 2 nm/h [Croes et al., 2011].  In comparison, the drift velocity at Stage 

III has been reported to be larger from 0.1 up to 25 nm/h at 330°C. [Yokogawa, 2004, 

Doyen et al., 2008, Lin et al., 2010, Hu et al., 2007].  
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Figure 2.3 (a) Standard EM test structure with the voltage-senses close to the current 

injector; (b) New local sense test structure with voltage-sensors close to via; 

(c) Typical EM resistance traces when sensing at the injector/local senses. 

[Croes et al., 2011]  

However, such dedicated local structure requires extra fabrication efforts. In 

addition, being adjacent to the void, the presence of the local sensing structure may affect 

the void formation kinetics. Considering the fact that extensive experiments have been 

performed on EM with standard test structures, there is a need to develop a method to 

analyze the initial void growth behavior at Stage I with standard EM test structures.  

This is the goal of this chapter. 

(a)

(b)

(c)
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2.2 ANALYSIS OF RESISTANCE CHANGE INDUCED BY VOID FORMATION 

For simplicity, a rectangular void is assumed. The void starts from the weak 

Cu/cap interface with an initial long slit shape growing downwards. After it reaches the 

bottom, the void further grows in the horizontal direction. Although the actual voiding 

behavior is more complex, this model catches the essential feature of EM voiding in Cu 

lines. Therefore it has also been used by other authors [Arnaud et al., 2011, Lamontagne 

et al., 2010]. Figure 2.4 shows the schematics for this voiding process.  

 

Figure 2.4 Schematics for the growth process of a rectangular void.  

It is further assumed that the line failure time is dominated by void growth instead 

of void nucleation. This seems to be a reasonable assumption, since the CMP process, a 

unit process used to fabricate the damascene Cu interconnects, commonly induces 

significant amount of process defects on the upper surface of Cu lines. It is reasonable to 

believe that enough number of small voids have already been nucleated during 

subsequent annealing and room temperature storage. In this void growth dominated case, 
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the failure time tf can be calculated from the amount of material needs to be removed and 

how fast the material is removed. 

, ,/ * /f crit d I crit d It V A v l v  .                         (2.1)  

The time tf is the measured failure time which is defined as the time corresponding to the 

first abrupt resistance jump in the resistance trace, as shown in Figure 2.2. In Equation 

(2.1), Vcrit is the critical void volume causing line failure. lcrit is the critical void length. A 

is the line cross-sectional area. vd,I is the drift velocity at Stage I. Rigorously speaking, the 

drift velocity can only be applied to void growth by edge displacement mechanism, 

where the drift velocity is the velocity of the void front, which is also identical to the 

velocity of atom motion. As indicated in the schematic in Figure 2.2, the void growth at 

Stage I follows a grain thinning mechanism instead of an edge displacement mechanism 

as at Stage III. However, one can mathematically define an effective drift velocity based 

on the void growth rate. vd,I can be interpreted as the void growth rate at Stage I 

normalized by A.  

Once the void spans the line cross-section, the electric currentis forced to shunt 

through the resistive TaN/Ta barrier layer. The resistance trace shows a steep jump with 

resistance increase Rstep, as shown in Figure 2.2. The resistance of the failed line is 

equivalent to the resistance of two resistors in series: the remaining Cu line and the 

barrier in the void segment.  

( )Cu b
Cu b void void

b

R R R L l l
A A

 
     ,                        (2.2) 

where ρCu and ρb are the resistivity of Cu and TaN/Ta barrier, respectively, L the total line 

length, Ab the cross-sectional area of the barrier, lvoid the length of void. The critical void 

length upon failure is typically on the order of 100nm. The Cu line length L under EM 

test is typically on the order of 10-100µm. So the first term in Equation (2.2) is rather 
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independent of the void length and the increase of the resistance comes essentially only 

from the second term in Equation (2.2) which is the barrier resistance at the void 

segment. Upon failure, lvoid is identical to lcrit. Therefore the resistance jump at Stage II is  

b
step crit

b

R l
A


 .                                 (2.3) 

This suggests that the critical void length is proportional to the resistance jump upon 

failure. For example, assume the effective resistivity of barrier as 2 µΩ-m [Doyen et al., 

2008]. When a void with length of 100nm fails a line with cross-section area of 

50nm*100nm and barrier thickness of 10nm, the resistance jump can be calculated from 

Equation (2.3) as 87 Ω. As one will find in Section 2.4, this is a typical resistance jump 

value commonly observed in the EM tests for this study. By knowing the effective barrier 

resistivity and barrier cross-section, one can also calculate the void length from the 

resistance increase. In Figure 2.5, the void length calculated by this method is compared 

to the actual void length measured by SEM to verify this linear relationship [Doyen et al., 

2008]. 

 

Figure 2.5 Comparison of the calculated and physically measured void length.[Doyen 

et al., 2008]  
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 At Stage III, the slope of the region with gradual resistance increase is 

,
b void b

slope d III

b b

dl
R v

A dt A

 
  ,                          (2.4) 

where 
,d IIIv  is the drift velocity at Stage III. Here the drift velocity and the void growth 

rate are defined for two different Stages (I and III) of void growth. In previous EM 

studies, Rslope as defined in Equation (2.4) is commonly used to extract the drift velocity 

or the void growth rate that determines the EM lifetime [Doyen et al., 2008, Arnaud et 

al., 2011, Yokogawa, 2004, Lin et al., 2010, Hu et al., 2007b]. However, most of these 

studies did not differentiate the void growth rates between Stage I and III. But there is no 

evidence to show that the void growth rate at Stage I is identical to that at Stage III. 

 Nonetheless, a failure time can be defined based on the drift velocity at Stage III: 

_

,

stepcrit
f calc

d III slope

Rl
t

v R
  .                           (2.5) 

Defined in this way, the parameter tf_calc can be determined by measuring both Rstep and 

Rslope from the resistance trace. This calculated failure time (tf_calc) is based on the 

assumption (or model) that 
,d Iv  equals to 

,d IIIv . In the following sections, the calculated 

failure time (tf_calc) and the measured failure time (tf) will be compared. If the calculated 

failure time (tf_calc) and the measured failure time (tf) are identical, then the plot of tf_calc 

and tf will yield a linear curve with slope of 1 and passing the origin of the coordinates. 

Otherwise, the plot would provide an indication about how much difference exists 

between 
,d Iv  and 

,d IIIv [Wu et al., 2013]. 

 Since Rstep, Rslope and tf are all statistically distributed, one has to control these 

parameters to obtain several sets of tf_calc and tf. There are several possible ways to 

achieve this. Rslope is proportional to the drift velocity. And in general, the drift velocity is 

proportional to diffusivity following the Einstein relation: 
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d

B

D
v F F

k T
  ,                                 (2.6) 

where µ is mobility, F the driving force, D the diffusivity, kB the Boltzmann constant, and 

T the absolute temperature. So by varying the diffusivity one can change Rslope. There are 

two major diffusion paths in Cu interconnects: Cu/cap interface diffusion and grain 

boundary diffusion. Selective metal capping based on Co alloys, such as CoWP [Zhang, 

2010, Christiansen et al., 2011, Hu et al., 2004a, Gambino et al., 2006], has been 

demonstrated as an effective way to suppress the interface diffusion, although this 

process may potentially reduce the time dependent dielectric breakdown (TDDB) [Chen 

et al., 2010, Tan et al., 2008] performance of low-k dielectrics— another major reliability 

concern for interconnects. Another way to suppress the diffusion, especially grain 

boundary diffusion, is to add dopants, such as Ti, Al, Ge, Mn to the Cu seed layer 

[Christiansen et al., 2011, Hu et al., 2012, Nogami et al., 2010, ITRS, 2011]. Those 

dopants will diffuse to grain boundaries and interfaces during the subsequent annealing 

process and slow down the Cu atom diffusion along these paths. The other parameter Rstep 

is proportional to the critical void volume. In principle, this can be varied by tuning the 

grain size. Smaller grain size in a line may results in a smaller critical void volume. On 

the other hand, more grain boundaries in small-grain structures also provide more 

diffusion paths and larger diffusivity. The degradation of EM lifetime in lines with small 

grains has also been reported [Zhang et al., 2011].  

All these approaches mentioned necessitates a change of the processing 

conditions for Cu lines, which potentially changes the resistivity of the line, stress 

conditions etc.. Furthermore, the change of processes also requires samples to be 

fabricated in different wafers, which would cause more uncontrollable variations. To 

overcome these issues, multi-link structures from the same wafer are used in this study.  
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Figure 2.6 shows a schematic of multi-link test structure, where M1 is the structure 

subject to EM test. The electric currentflows through multiple M1 lines serially linked by 

via and M2 lines. The structure fails when one of the links fails. Such structures have 

been used to study the early failure problem and to detect the failure mode that can be 

difficult to be observed in single-link structures [Gall et al., 1999, Ogawa et al., 2001, 

Hauschildt et al., 2007, Hau-Riege et al., 2007, Ogawa et al., 2002]. The purpose to use 

multi-link structure in this work is different from conventional studies. Multi-link 

structures are used to statistically tune the Rstep and Rslope in the earliest failed line. 

Presumably, in a structure with more links, one would have a higher chance to find a link 

with smaller critical void volume and larger diffusivity, in other words, smaller Rstep and 

larger Rslope. Meanwhile, all lines experience the same processing condition, which makes 

the comparison between lines more meaningful. 

 

Figure 2.6 Schematic of the cross-section of a multi-link EM test structure.   

 

2.3 SAMPLE INFORMATION AND EM EXPERIMENTAL PROCEDURE 

The EM test structures were 45nm node two-level Cu/low-k structures from 

Texas Instruments. The link number varies from 2, 10, 50 and 100 with the M1 EM line 

length fixed at 100µm. The line width is 70nm except at line ends which are designed to 
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be wider for contacting the 70nm*70nm vias. Figure 2.7(a) shows a layout of the 2-link 

structure, where two pink M1 lines linked by black square vias and one horizontal green 

M2 line. The M2 line is designed to be wide and short so that the EM in this layer is 

suppressed. Extrusion monitor lines surrounding the M1 lines are also fabricated to 

monitor potential anode extrusion. Both inter-layer dielectric (ILD) and inter-metal 

dielectric (IMD) used are organosilicate glass (OSG) with effective permittivity k of 

about 2.7. The thickness for the low-k dielectric stack is: 95nm for M1 IMD, 110nm for 

V1 ILD, 135nm for M2 IMD. A standard SiCN cap layer is performed for both M1 and 

M2 lines. And a 400nm SiON protective coating is deposited over the M2 layer. All 

samples studied are from a single 300mm wafer.  

 

 

Figure 2.7 (a) Layout of the 2-link EM structure tested. (b) 3D schematic of M2V1M1 

downstream test configuration.  

All EM tests performed are package-level tests with a system shown in Figure 

2.8. Tests were performed with a current density of 1.0MA/cm
2 

in a downstream 
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configuration. Figure 2.7(b) shows the schematic of such a downstream configuration. 

This current density corresponds to a 0.0665mA current through 70nm*95nm cross-

section and 72.8mV over the 1095Ω resistor in the constant current source. The 

experiments were carried out in a test chamber vacuumed by a mechanical pump and 

backfilled with nitrogen to 20Torr to improve the temperature uniformity within the 

chamber. The heating of the chamber is realized by two sets of heating coils: the 

primarily heating coils located at the top and bottom plates to control the test temperature 

and the secondary heating coils mounted at the chamber sidewall to reduce the 

temperature gradient from the center to the edge of the chamber. The targeting test 

temperature is set at 330°C by ramping up at the rate of about 3°C/min. Each heating coil 

has a separate temperature controller.  
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Figure 2.8 Package-level EM test system.   
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A current regulator is employed to maintain the constant current density during 

tests. The power supply can support output up to 80V and 10mA. A Keithley 7002 

switching box is used to select the channel of the sample under test in sequence. A 

Keithley 196 digital multimeter (DMM) is used to measure the voltage drop thus the 

resistance across the testing samples. The data acquisition is controlled by a National 

Instruments LabView program. 

After receiving the wafer with desired EM structures, wafer dicing, die attach, and 

wire bonding must be performed before the package level EM test. Some information for 

each step is listed below. 

The wafer is diced into 2mm*3.6mm pieces with the test module of interest in the 

die. An ADT 7100 dicing saw with a Ni blade (Q1235-Q5SH-000) from Kulicke&Soffa 

(K&S) are used for dicing.  

 

Figure 2.9 16-pin DIP package with two dies attached.   



35 

 

The dies are attached to 16-pin ceramic dual-in-line (DIP) packages, as 

schematically shown in Figure 2.9. Each package contains two dies. The die attach paste 

used is a conductive silver paint from SPI. Curing of package is realized with 24-hour 

room temperature storage.  

A West Bond Model 7400A Ultrasonic Wire Bonder is then used to electrically 

connect the EM module with the DIP package. The bonding wire used is 1% Si-Al alloy 

wire with 1.5 mil diameter. The pin to pin resistance is measured by a multimeter after 

wire bonding to ensure proper bonding.  

The packages are then carefully loaded into the EM chamber to ensure good DIP 

pin to socket electrical contact, which is verified by multimeter measurements. An 

electrostatic discharge (ESD) strap is worn during all pre-EM-test procedures to protect 

the EM structure from electrostatic discharge damage.  

 

Figure 2.10 (a) FEI Strata
TM

 DB235 dual beam FIB/SEM system and (b) schematic 

illustration of the configuration of the two beams (52
o
 in between). 

After EM tests, certain failed samples are selected for failure analysis. The sample 

is cut by a Focused Ion Beam (FIB) to check the cross-section of the line and location of 

the void. This is conducted by a FEI Strata
TM

 DB235 dual beam FIB/SEM system which 

(a) (b) 
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is shown in Figure 2.10. The sample is tilted to be perpendicular to the focused Ga ion 

beam during cutting. Meanwhile the electron beam, which has a 52° angle with the ion 

beam, is used to take SEM images to monitor the cutting position. 

 

2.4 RESULTS AND DISCUSSION 

2.4.1 Resistance Traces and Failure Mode 

Figure 2.11 shows a typical EM resistance trace for a 2-link structure. Two clear 

resistance jumps are observed, which corresponds to 2 voids spanning the line cross-

section. In a relatively long period of EM stressing, only two voids are observed for 2-

link structure. This suggests that each line probably contains one void, although multiple 

voids formed in a single line has been reported before [Zhang, 2010]. The 1
st
 jump 

determines the failure time tf. The statistics of Rstep and Rslope in the following sections is 

based on the 1
st
 jump and its subsequent gradual increase region. For higher number of 

links, more resistance jumps are observed. Figure 2.12 shows a typical resistance traces 

for 10-link structures with multiple resistance jumps.  
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Figure 2.11 Typical resistance trace for 2-link structure showing two resistance jumps.  

 

Figure 2.12 Typical resistance trace for 10-link structure. 
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The typical resistance increase for these jumps is about 100Ω, which corresponds 

to a trench type void. The post-mortem failure analysis also confirms the void type. 

Figure 2.13 (a) shows a post-test sample cut by FIB. The void is a trench type with an 

average length of about 100nm. By assuming TaN/Ta barrier thickness as 10nm [Zhang, 

2010], the effective barrier resistivity is found to be 2.3 µΩ-m in agreement with the 

reported value (2-3 µΩ-m) [Doyen et al., 2008]. Figure 2.13 (b) shows an initial void 

formed at the interface between Cu and cap layer which agrees with the model analysis 

shown in Figure 2.2 and Figure 2.4.  

 

 

Figure 2.13 SEM images of void formed. (a) trench type void fails the line; (b) initial 

long slit type void formed at the Cu/cap interface.  

 

 

 

 

(a) (b)

Trench void 
Initial void 
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Some resistance traces have a relative short plateau right after the jump, which is 

followed by a gradual increase region. Figure 2.14 shows such an example. In this case, 

the calculation of Rslope is based on the gradual increase region only.  

 

 

Figure 2.14 A plateau followed by a gradual increase region in a trace.  
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Some resistance traces are noisy or have small resistance increases before the 

jump. Sometimes it may not be easy to tell which increase relates to a line failure. To 

better discern the resistance jump and slope, the time differentiation of the resistance was 

also plotted together with the trace. As shown in Figure 2.15, a sharp δ-function like 

signal appeared to signify a real resistance jump caused by line failure. This is 

distinguished from bumps caused by resistance noise in the trace.  

 

 

Figure 2.15 Noisy resistance trace with its time differentiation. 
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A linear curve best fitting the gradual increase region is used to derive Rslope. For 

those structures with many links, small voids were formed in each link before one of 

them grew big enough to fail the structure. Although one small void causes negligible 

resistance change, the resistance increase resulted from a large amount of small voids in 

many links is considerable. This can be easily observed in Figure 2.16 for a 100-link 

structure, where the resistance starts the gradual increase before the abrupt jump. Rslope 

should be the rate of resistance increase from the critical void failed the structure only. In 

this case, Rslope is calculated as the difference between the slope after and before the 

jump, as demonstrated in Figure 2.16.    

1 2slopeR slope slope  .                           (2.7) 

 

Figure 2.16 The large amount of small voids formation cause resistance increase before 

line failure. The Rslope  is the difference between slope1 and slope2.  
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Resistance jump Rstep much bigger than the typical value 100Ω is occasionally 

observed. Figure 2.17 and 2.18 show two examples of such big jump observed from 10-

link and 100-link structures. The Rstep for these two cases are about 1.5 kΩ and 8 kΩ 

respectively. If such failures are also caused by the trench type void, the critical void 

length would be as long as several microns, which is an unrealistic occurrence.  So this 

should correspond to a different failure mode. Resistance jumps bigger than 1 kΩ have 

been reported by other authors before and they were identified as slit-type void formed 

under vias [Oates et al., 2006, Lee et al., 2006, Oates et al., 2009b, Oates et al., 2012], as 

shown in Figure 2.19.   

 

Figure 2.17 Big resistance jump observed in a 10-link structure. 
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Figure 2.18 Big resistance jump observed in a 100-link structure. 

 

 

Figure 2.19 Big resistance jump ( > 1 kΩ) corresponds to a slit-void. [Oates et al., 

2009b] 
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The samples under this study have M1 line ends wider than the vias as described 

in Figure 2.6(a). Once a slit-void is formed under the via, there is no electrical 

redundancy between M1 and V1 to bypass the electrical current. This results in a huge 

resistance jump as observed. Such slit-voids are more frequently observed in multi-link 

structures [Lee et al., 2006].  The results in Table 2.1 show that the chance to find them 

in 100-link structures is higher than in 10-link structures. No such big resistance jump is 

observed in the 2-link structures.  This also supports that the big resistance jumps 

correspond to slit-void. The slit-voids only require very limited amount of mass transport 

of Cu atom to open the connection between the line and the via. The failure time caused 

by such voids can be much shorter than the regular trench type void, which is of great 

interest in EM reliability study [Li et al., 2004, Lee et al., 2006]. However, all the big 

jumps observed in samples of this study are not the first jump. This indicates that the 

V1M1 interfaces in this particular batch of samples are good in suppressing the mass 

transport. Since this study is only interested in the line failure caused by the first jump, 

the slit-void failure mode will not be further studied in this dissertation. 

Table 2.1 Number of big resistance jump observed in different links. 

 # of big resistance jumps # of samples tested 

2-link 0 20 

10-link 3 22 

100-link 5 23 
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2.4.2 Joule Heating and TCR 

 When electric currentflows through an EM structure, the Joule heating may cause 

temperature increase. The power of Joule heating is proportional to the resistance of the 

test structure. The resistance of a multi-link EM structure is proportional to its link 

number. This may result in a temperature difference between different links, which would 

greatly affect the EM performance. It is well know that the EM lifetime has an 

exponential dependence on temperature. So it is of importance to estimate the potential 

temperature increase due to Joule heating for different links to achieve a fair comparison 

between them. 

 The follow procedure is used to evaluate the Joule heating in the test structure 

[Lee, 2003]:  

1) Under a relatively small current applied to the EM samples, slowly increase 

the temperature of the EM chamber. The resistances of the samples with 

respect to temperature is recorded and used to calculate the temperature 

coefficient of resistivity (TCR). 

2) Slowly increase the current density until the target current is reached.  The 

resistance increase of the samples due to temperature increase caused by Joule 

heating is determined. 

3) Use the TCR measured in step 1 and resistance increase in step 2 to calculate 

the temperature increase due to Joule heating. 

The TCR ( ) is defined as the fractional change in resistance per unit change in 

temperature:  

0/
R

R
T


D


D

,                                (2.8) 
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where R0 is the resistance at room temperature or reference temperature, RD and TD are 

the resistance change and temperature change, respectively. The resistance increase in 

high temperature for Cu is due to increased carrier scattering mostly with phonons. TCR 

can also be defined based on resistivity 

0/
T


 

D

D

.                             (2.9) 

 The resistance at room temperature (25°C) and EM temperature (330°C) for 21 

samples with different links is recorded. The TCR measured was 0.002326 ± 0.000022 

(°C)
-1

. No dependence on link number of TCRs was observed. This value is smaller than 

the TCR for bulk Cu 0.0039 (°C)
-1

 and the TCR for 0.5µm wide Cu line 0.0033 (°C)
-1

 

reported in [Lee, 2003]. This can be understood as the size effect of the resistance or 

resistivity for the metal line. In the expression of TCR,  / TD D  is relatively constant 

independent of line width, since it is from the contribution of phonon scattering. 

However, it is well known that resistivity has a significant size effect when the line width 

approaches the electron mean free path (39nm for Cu at room temperature). This size 

effect will be discussed more in detail in Chapter 4. The increase of 0 in smaller line 

width (70nm for this set of samples) decreases the TCR. Other authors also reported 

reduced TCRs for Cu lines with smaller width [Schindler et al., 2003, Huang et al., 

2008]. Since the Cu lines are constrained within TaN/Ta barrier and low-k dielectric 

which have different thermal expansion, the thermal strain may also have an effect on 

TCR [Warkusz, 2001].  

   Apparently, the 100-link structures would have the most significant potential 

Joule heating induced temperature increase compared to other links. So 10 samples of 

100-link structure at the targeted EM temperature 330°C were first tested. A relatively 

small current density (0.25 MA/cm
2
) was employed to first measure the resistances, 
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which yields a result of 43.94 ± 1.69 kΩ. Then the current density was increased to the 

targeted density (1 MA/cm
2
). This current difference is equivalent to 16 times of Joule 

heating power. The resistance measured at the target current density was 43.63 ± 1.67 

kΩ. The resistance actually decreased by 0.31 kΩ (0.7%), instead of being increased 

through Joule heating as normally expected. A possible explanation is given below. The 

power of Joule heating is  

2 2 2( )
L

P I R jA j LA
A

    .                        (2.10) 

It is proportional to line cross-section A, when current density j and line length L is set. 

The heat generated in a 70nm wide line is probably insignificant and dissipated away 

quickly without causing considerable temperature increase. The decrease of the resistance 

may arise from the grain growth at 330°C. It took about 2 hours to manually tune the 

current to 1MA/cm
2
 for all the channels and started the measurement at the targeted 

current. During this time period, the grain growth might have taken place causing the 

resistance to decrease. Such resistance decrease is also observed in the initial stage of the 

EM resistance traces. Figure 2.20 shows an example.  
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Figure 2.20 Initial resistance decrease in an EM resistance versus time trace. 

Overall, no measurable Joule heating induced temperature increase was observed 
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temperature within experimental errors.    
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used to for the following study. A brief introduction of the fundamentals of EM failure 

time statistics is presented below.  

EM failure time has traditionally been assumed to follow lognormal distribution. 

The lognormal failure distribution can be conceptually understood as that the logarithms 

of the failure times follow a normal distribution. The probability density function (PDF) 

of a lognormal distribution is 
2

50

2

(ln ln )1
( ) exp

22

t t
f t

t  

 
  

 
,                       (2.11) 

where t50 is the median failure time and σ is the standard deviation in lognormal 

distribution or the standard deviation of the log value of failure time. The cumulative 

distribution function (CDF), which describes the probability of a line failing within time 

interval [0, t], can be expressed as a complimentary error function: 
2

2

0

1 1
( ) ( ) exp

2 2 2 2

t z
v z

F t f u du dv erfc




   
       

  
  ,           (2.12) 

where 50ln( ) ln( )t t
z




 . Figure 2.21 shows a PDF and a CDF plot for lognormal 

distribution with σ = 0.2.  

 Exactly why the lognormal distribution is used is still an open question. Some 

people believe that the origin of it is that the grain size in metal lines follows a lognormal 

distribution which itself is not well understood. However, there is also a story that it is 

simply because Jim Black just happened to have such distribution function at hand when 

he first plotted the EM failure times in the 1960s [Lloyd, 2002].  In any case, a well-

defined analytical function is needed to analyze the failure distribution in order to obtain 

the targeted end-of-life (EOL) from the measured EM stressed data. 



50 

 

 

Figure 2.21 (a) PDF and (b) CDF plot of a lognormal distribution with σ = 0.2. [Lee, 

2003] 

In a multi-link structure, the link that fails first determines the time to failure of 

the structure. This is the so called weakest link model. The reliability function of a 

structure with N links is   

R(t, N) = R1(t) x R2(t) x R3(t) x R4(t) x...x RN(t),               (2.13) 

or  

1-F(t, N) = (1-F1(t)) x (1-F2(t)) x (1-F3(t)) x.....x (1-FN(t)),       (2.14) 

since R(t) = 1- F(t). Fi(t) is the CDF or unreliability function of i
th

 link. Under the 

weakest link approximation (WLA), each link follows the same failure statistics and Fi(t) 

is a function independent of i. The CDF of N-link structure can then be simplified as  

F(t, N) = 1- (1-F1(t))
N
.                            (2.15) 

Figure 2.22 is a representation of CDF based on WLA for multi-link structures 

when N=1, 10, 100 and 1000. The single link failure distribution F1(t) is assumed as 

lognormal. A clear trend can be found: as N increases, the failure time decreases and the 

deviation of failure time decreases.  
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Figure 2.22 CDF plots for N-link structures with N=1, 10, 100, 1000. [Ogawa et al., 

2001] 

From Figure 2.22 and Equation (2.15), one can find that, in the frame of WLA, 

F(t, N) cannot be lognormal distribution for N > 1 if F1(t) is lognormal. In other words, 

t50 and σ are usually not well defined for multi-link structures. Because the assumption of 

lognormal distribution is not extendable to multilink structure, the validity of the analysis 

has been challenged from time to time.  Nevertheless, until now, there is no other 

analytical distribution having more experimental data support than the lognormal 

distribution. In this study, the definition of t50 and σ based on the lognormal distribution 

is applied to multi-link structures simply for convenience. In fact, most experimentally 

observed range of CDF is between 1% and 99%, where the CDF plots approximately 

follow linear curves in a lognormal distribution plot even for multi-link structures as 

shown in Figure 2.22 and for the experimental data in Figure 2.29. Therefore, the 

description of multilink statistics follows that of Ref. [Ogawa et al., 2001] , indicating 

that as N increases in multi-link structures, t50 and σ decreases.  

Figure 2.23 shows the cumulative distribution function (CDF) for failures versus 

time to failure (TTF) plots for 2, 10 and 100 links. In general, the data follow the 

z = [ln(t) - ln(t
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simulation trend in Figure 2.22 with the 100-link structures having smaller failure time. 

However, there are 2 data points in the 10-link structures and 1 data point in the 100-link 

structures (enclosed in 2 dotted ellipses), which seem to fail in a different mode. Several 

groups have reported such bi-modal failure to occur in EM tests of Cu/oxide [Ogawa et 

al., 2001, Ogawa et al., 2002] and Cu/low-k interconnects [Pyun et al., 2005, Lee et al., 

2004, Oates et al., 2006].  

 

Figure 2.23 Experimental CDF plots for multi-link structures with N=2, 10, 100. The 3 

data points in the dotted ellipses are probably failed in a different mode.  

The early fails observed in this study were not caused by slit-type void formation 

under the via as reported in [Oates et al., 2006], because the resistance jump Rstep 

observed for these early fails was about 100 Ω corresponding to a trench-type void. 
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Figure 2.24 shows a typical resistance trace for the early fail with Rstep as 94 Ω.  The 

origin of such failures may be extrinsic failure induced by process defects. 

 

Figure 2.24 Resistance trace for the earliest failure detected for 10-link structures. The 

resistance jump is 94 Ω. 

The early failure usually is a weak mode with a small probability to be detected in 

a single-link structure. For example, Figure 2.24 shows a Monte-Carlo simulation for 

CDF plots with bi-modal failure. The probability for the early failure weak mode is set at 

1%. In this case, in a single-link structure, only the strong mode can be detected, while in 

a 100-link structure, more than half of the CDF branch will fail by the weak mode. One 

can use the simulation in Figure 2.25 to fit the experimental data in Figure 2.23 to 

determine the t50 and σ for two modes. However, the research objective of this study is to 

investigate the void formation mechanism, instead of the early failure. So, in what 

follows, the intrinsic strong mode, which has more data points to generate the statistics, 

will be studied.  
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Figure 2.25 Monte-Carlo simulations for a bi-modal failure with N = 1, 10 and 100. The 

strong mode parameters are t50 = 500 hours and σ = 0.5. The weak mode 

parameters are t50 = 50 hours and σ = 0.3. The probability for weak mode is 

set as 1%.  

The statistical probability of the failure modes is not readily determined based on 

the CDF plots in Figure 2.23. To confirm that the three data points near the bottom of the 

CDF plot are from a failure mode different from all other data points, one can 

deconvolute the three CDF plots for N = 2, 10 and 100 to a single hypothetical failure 

distribution for N = 1.  In this way, the data points of the same failure mode will 

manifest themselves as a single lognormal distribution, while those failed by a different 

mode will deviate from the expected lognormal distribution. The deconvolution is 

achieved by using the concept of conditional probabilities (CP), following [Nelson, 1990] 

and [Gall, 1999]. This is illustrated using the 100-link tests as an example. Initially, 18 

100-link structures, i.e., 18 x 100 =1800 links are under test at time t0 = 0. At time t1, one 

of the links in the 100 link structure fails, corresponding to 1 out of 1800 links failing 
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within time t1. Therefore the conditional reliability '

1R at t1 is (1-1/1800), which equals to 

the unconditional reliability R1. After t1, although the remaining 99 links in the failed 

structure are still under stressing, no further information can be extracted from the rest of 

the test links since only the failure time for first failed link is recorded. Therefore these 

99 links should be taken out and 1700 links are under test after t1. At time t2, one of the 

links in another structure fails. The conditional reliability at t2 then is (1-1/1700). It is the 

survive rate at t2 under the condition that the survive rate at t1 is (1-1/1800). Therefore the 

unconditional reliability at t2 is (1-1/1700) x (1-1/1800). In this way, the test and analysis 

for the other 1600 links can be continued in the same manner. The unconditional 

reliability Ri at ti are recursively calculated. The unconditional failure rate, i.e., the CDF 

at ti is Fi = 1- Ri. Table 2.2 shows the procedures to calculate the conditional and 

unconditional reliabilities for 18 100-link population.  
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Table 2.2 Procedures to deconvolute 100-link distribution into 1-link distribution. 

The method for data analysis follows [Nelson, 1990]. 

i = # of 

failed 

structures  

ti = failure 

time  

ni = # of 

links at ti-1  
1/ ni  

Ri
’
= 1- 1/ni  

conditional 

reliability 

Ri= R1
’
 R2

’
... 

Ri
’
  

unconditional 

reliability 

Fi=1- Ri 

unconditional 

failure  

1 12.6 1800 0.000556 0.999444 0.999444 0.000556 

2 23.06 1700 0.000588 0.999412 0.998857 0.001143 

3 26.209 1600 0.000625 0.999375 0.998232 0.001768 

4 28.005 1500 0.000667 0.999333 0.997567 0.002433 

5 29.54 1400 0.000714 0.999286 0.996854 0.003146 

6 29.63 1300 0.000769 0.999231 0.996087 0.003913 

7 32.53 1200 0.000833 0.999167 0.995257 0.004743 

8 33.17 1100 0.000909 0.999091 0.994353 0.005647 

9 33.21 1000 0.001 0.999 0.993358 0.006642 

10 33.33 900 0.001111 0.998889 0.992254 0.007746 

11 33.5 800 0.00125 0.99875 0.991014 0.008986 

12 33.8 700 0.001429 0.998571 0.989598 0.010402 

13 34.32 600 0.001667 0.998333 0.987949 0.012051 

14 35.82 500 0.002 0.998 0.985973 0.014027 

15 38.64 400 0.0025 0.9975 0.983508 0.016492 

16 40.03 300 0.003333 0.996667 0.98023 0.01977 

17 43.08 200 0.005 0.995 0.975329 0.024671 

18 45.63 100 0.01 0.99 0.965575 0.034425 
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Figure 2.26 Deconvoluted failure time distribution for N = 2, 10 and 100, representing a 

single link distribution. The three data points in the dotted ellipse clearly 

appear to be a different failure mode.    

The deconvolution procedures are performed to 2, 10 and 100-link data depicted 

in Figure 2.23 and the deconvoluted results are shown in Figure 2.26. Note that from 

Figure 2.23 to Figure 2.26, only the CDF changed due to the calculation method, but the 

failure times are identical. It is much clearer now in Figure 2.26 that the three data points 

in the dotted ellipse are from a different extrinsic failure mode. All the others follow a 

single distribution well. So these three extrinsic failure times are excluded in the 

following analysis.  

Figure 2.27 shows the deconvoluted failure time distribution with the three 

extrinsic data points excluded.  After deconvolution, the 2-, 10- and 100-link failure 
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times coincide with each other on a single lognormal distribution. This confirms that all 

the lines under study failed by the same mode except for the three early failure data 

points.  

 

 

Figure 2.27 The failure time distribution for N = 2, 10 and 100 in the intrinsic failure 

mode are deconvoluted into N = 1 based on CP. They follow a single 

lognormal distribution. Deconvolution is performed based on conditional 

probabilities.  

Another simpler way of deconvolution is to use the WLA in Equation (2.15), 

which was proposed by [Lee et al., 2006]. When the failure time distribution for N-link 

structure F(t, N) is known from measurement, the failure distribution for single link can 

be obtained from the inversion of Equation (2.15) as 

F1(t) = 1- (1- F(t, N))
1/N

.                            (2.16) 
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The decovolution result for the intrinsic failures obtained by this method is shown in 

Figure 2.28.  The result is similar to that in Figure 2.27, which further confirms that all 

the lines failed by a single intrinsic mode. The last two columns of Table 2.3 list the t50 

and σ of the distribution for N = 1 which are deduced by deconvolution based on 

conditional probabilities (CP) and WLA respectively. The two methods give similar 

values for t50 and σ.   
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Figure 2.28 The failure time distribution for N = 2, 10 and 100 in the intrinsic failure 

mode are deconvoluted into N = 1 based on WLA. They follow a single 

lognormal distribution. Deconvolution is performed based on WLA.  
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Table 2.2 The t50 and σ of intrinsic failures for N = 2, 10 and 100, and the 

deconvolution to N = 1 with two methods. CP: conditional probabilities; 

WLA: weakest link approximation. 

 N = 100 N = 10  N = 2 N = 1 CP N = 1 WLA 

t50 (a.u.) 31 51 90 110 115 

σ 0.19 0.30 0.37 0.44 0.45 

 

Figure 2.29 shows the intrinsic failure time distribution for N = 2, 10 and 100. 

They follow the WLA and the simulation results in Figure 2.22 very well: as N increases, 

t50 and σ decrease. All the values of t50 and σ for different links are listed in Table 2.3. 
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Figure 2.29 Intrinsic failure time distribution for multi-link structure with N = 2, 10 and 

100.  
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2.4.4 Statistics for Rstep and Rslope 

The Rstep and Rslope  are then extracted from the EM resistance traces and their 

distributions are plotted in Figure 2.30 and 2.31 respectively. The statistics of Rstep and 

Rslope exhibit lognormal distributions as well. And a clear trend can be found in the 

figures: as N increases, Rstep decreases and Rslope increases, which agrees with the 

previous assumption. Since Rstep and Rslope are proportional to the critical void volume 

and diffusivity respectively, this indicates that as N increases, the critical void volume 

decreases while the diffusivity after line failure increases. This trend is also consistent 

with the weakest link model in that the earlier failure occurring in a line, less mass 

depletion is required to induce failure while driven by a faster mass transport. 
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Figure 2.30 Rstep distribution for multi-link structures with N = 2, 10 and 100.  
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Figure 2.31 Rslope distribution for multi-link structures with N = 2, 10 and 100.  

Note that the critical void volume and diffusivity discussed here are specific to the 

line which failed the earliest among N links. They are not the average values among N 

lines. One should expect the average values to be independent of N since each line 

experienced the same process conditions and any statistical variation should be averaged 

out if all N lines were taken into account.  

Another trend shown in Figure 2.30 and 2.31 is that the standard deviation σ 

increases as link number N increases for both Rstep and Rslope distribution. This is different 

from what has been observed for the failure time distribution such as shown in Figure 

2.29. The implication of this result will be further discussed. Table 2.4 tabulates the 

median values of Rstep (Rstep_50) and Rslope (Rslope_50), and σ for 2-, 10-, and 100-link 

structures. 
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Table 2.4 Median value and standard deviation of Rstep and Rslope for N = 2, 10 and 

100.  

 N = 2 N = 10 N = 100 

Rstep 
Rstep_50 (Ω) 116 73 57 

σ 0.32 0.44 0.54 

Rslope 
Rslope_50 (Ω/hr) 4.0 6.1 11.1 

σ 0.38 0.46 0.64 

 

To better understand the Rstep and Rslope distributions for multi-link structures, 

Monte Carlo simulations were also performed. In the simulations, Rstep and Rslope were 

assumed to be independent of each other. In an N-link structure, the weakest link simply 

means the one with the smallest ratio between Rstep and Rslope. In other words, the link 

with the smallest ratio between critical void volume and diffusivity fails first. Due to the 

lack of single-link structure, the 2-link distributions for Rstep and Rslope are used as the 

base structure. The 10-link and 100-link can be considered as 5 and 50 of 2-link 

respectively.  

The simulation results for Rstep and Rslope shown in Figure 2.32 agrees with the 

experimental data in at least two aspects. Firstly, if the 2-link base follows a lognormal 

distribution as assumed, the 10-link and 100-link also follow lognormal distributions 

closely.  Secondly, as N increases, Rstep does decrease while Rslope increases.  
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Figure 2.32 Monte-Carlo simulation of Rstep and Rslope distributions for multi-link 

structures with link number N = 2, 10 and 100.  

However, the deviation σ has a reversed trend compared to the experimental data: 

as N increases, σ for both Rstep and Rslope decreases in simulations. The simulations are 

actually closer to intuition. This can be illustrated using Rslope as an example. The Rslope or 
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diffusivity of each line in an N-link structure actually follows the same distribution from 

a 2-link base. When N increases, the Rslope of the earliest failed line tends to have a larger 

value, which is why the line fails first. In other words, one is selecting values for Rslope 

from a higher end of the base distribution, say 70%-100%. Plotting these values in a 

range of 0-100% certainly makes the curve steeper while leading to a smaller σ. The Rstep 

can follow a similar analysis. 

Here possible explanations of why the experimental σ increases with N are 

proposed. From Equation (2.3), Rstep depends not only on the critical void volume, but 

also on the barrier cross-sectional area Ab and barrier resistivity ρb. Both of the 

parameters vary from line to line. So the measured Rstep contains information of critical 

void volume coupled with noise from variation of Ab and ρb. When N increases, Rstep 

becomes smaller. A smaller number is more sensitive to a probable constant noise which 

does not decrease with increasing N. Therefore, σ for Rstep increases with N.  

The fact that Rslope becomes larger when N increases may suggest that this 

parameter is less sensitive to the variation of Ab and ρb. However, in a multi-link 

structure, there are small voids formed in lines besides the one which has the first critical 

void, as illustrated in Figure 2.33. Each such small noncritical void causes a small 

resistance increase which is barely detectable. However, the resistance variation caused 

by a large amount of such small voids in multi-link structures is not negligible. And the 

number of such voids increases with N, which results in an increased σ for Rslope.   
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Figure 2.33 Schematic showing small void formation in lines of multi-link structure. The 

critical void causes line failure. While the noncritical void causes small 

resistance increase.   

Therefore, the change of deviation σ with the increasing N is a result of 

competition between the decrease due to weakest link statistics and the increase due to 

processing variations of barriers and small voids formed in the lines. The observed 

increase of σ, as N increases from 2 to 10 and 100, demonstrates that the noise from 

barrier variation and small void formation is more important in this range. Due to the lack 

of single link data, it is difficult to estimate which factor is more important when N 

increases from 1 to 2. It is reported that the σ of Rstep and Rslope is comparable to that of 

failure time tf for single link structures [Arnaud et al., 2011]. However, the 2-link data 

shows a much smaller σ for Rstep (0.32) compared to tf (0.37 for 2-link and 0.44 for 

deconvoluted single link). This suggests that the weakest link statistics shown in the 

simulation of Figure 2.32 may be more important in comparison to σ when N changes 

from 1 to 2.  
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2.4.5 Comparison between tf_calc and tf 

The above discussion on the failure statistics can be extended to compare the 

measured failure time tf with the calculated failure time tf_calc = Rstep/Rslope. As discussed in 

the last two sub-sections, these parameters are subject to statistical variation. To obtain a 

meaningful correlation, the median values from the lognormal distributions are used in 

the comparison as shown in the red curve in Figure 2.34.  

 

Figure 2.34 Comparison between the calculated median failure time t50_calc based on 

Rstep/Rslope and the measured median failure time t50.  

The correlation fits a linear relation well, indicating that the void growth rate at 

Stage I, vd,I, is linearly correlated to that at Stage III, vd,III.  However, instead of a direct 

correlation with a slope of 1, a slope of 0.4 is obtained. And the curve intercepts with the 

x-axis instead of passing through the origin of the coordinates. These two feature suggests 
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that vd,I is smaller than vd,III . Also presented in Figure 2.34 are data from another study 

for Cu single-link structures at 45nnm node with diffusivities changed by Al doping (1%) 

or barrier improvement [Arnaud et al., 2011]. The line width, height and length used in 

such studies are 63nm, 140nm and 225 µm respectively, embedded in low-k dielectric 

with k 2.5. The testing temperature is 300°C. The latter data also show a linear 

correlation of t50_calc vs t50, remarkably similar to the data from the multi-link structures. 

This suggests that the difference in the void growth rates at Stages I and III is not unique 

to the samples in this study. 

To confirm that the void growth rate is different at Stages I and III, a survey of 

other explanations is carried out for the curves in Figure 2.34.  We assume first that vd,I 

equals to vd,III, then one can follow [Arnaud et al., 2011] to extrapolate the resistance 

trace at Stage III down to Stage I, where it intercepts the trace at time t0, as shown in 

Figure 2.35 (a). Apparently,  

0 /f step slopet t R R  .                              (2.17) 

Since the time required for the void to grow large enough to fail the line is /step slopeR R , 

one can then define an incubation time for dopant to be depleted as time t0 before the 

void can be initiated [Arnaud et al., 2011].  However, the multi-link samples used in this 

study is capped with a standard SiCN layer and there is no doping in the seed layer. 

However, a similar phenomenon of t0 is still observed in this study as shown Figure 2.35 

(b). This suggests an incubation time for dopant depletion as defined by extrapolation of 

the resistance trace is not appropriate.  
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Figure 2.35 (a) Extrapolation of the resistance trace to define incubation time t0 for 

dopants. [Arnaud et al., 2011] (b) Extrapolation performed on a resistance 

trace of the multi-link samples.  

 Another possibility for t0 is the void nucleation time which was neglected in the 

previous analysis. If the line before testing was void-free, the cathode of the line would 

evolve into a tensile stress state while the anode into compressive stress state, driven by 

the electron wind force, as illustrated in Figure 2.36. When the tensile stress reaches a 

critical value crit , the metal line yields and a void forms. This time period is so called 

void nucleation time tn and it has been calculated that [Korhonen et al., 1993b] 

2exp( )( )a crit
n

E
t bkT

kT j


 ,                              (2.18) 

 where Ea is the activation energy, b is a constant. It is easy to show that 

1 1
n

slope

t
D R

  .                            (2.19) 
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Figure 2.36 Stress evolution of a void-free metal line under EM. [Hau-Riege, 2002] 

Therefore, if t0 observed were the void nucleation time tn, it should be 

proportional to 1/ slopeR .  A plot of t0 vs 1/ slopeR is shown in Figure 2.37 which does 

not follow a linear curve. This suggests that void nucleation alone cannot explain the 

experimental data. Therefore, a different void growth rates at Stage I and III seems to be 

the only possible explanation to account for the result observed in Figure 2.34.  

 

 

 

 

 

 

 

 

Figure 2.37 The plot of t0 vs 1/Rslope showing void nucleation time cannot explain the 

observed phenomenon.  
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2.5 CONCLUSIONS 

A method has been developed to extract the void growth rate at Stage I (before 

failure) from resistance traces recorded during EM. Based on the analysis, standard EM 

test structures can be used to determine the void growth rate and the EM failure time.  

According to this method, the calculated failure time based on Rstep and Rslope is compared 

to the measured failure time. The difference between these two failure times reveals the 

difference of the void growth rates at Stage I and Stage III which can be determined in 

EM tests.   

EM tests were performed on multi-link structures to statistically vary the failure 

time, Rstep and Rslope. The failure time statistics was found to follow the weakest link 

approximation. Deconvolution of the multi-link failure time to single-link failure time 

confirmed that the failures occur via a single intrinsic mode. The TCR and Joule heating 

measurement ruled out the temperature difference between different structures in the test 

link. The Rstep and Rslope distributions were obtained from the resistance traces. Both 

failure analysis and Rstep values show that the lines failed due to formation of trench type 

voids. Monte Carlo simulations for Rstep and Rslope show a similar trend as the measured 

results, except that they do not have similar statistical deviations. Possible explanations 

were proposed for this result.  A comparison between the calculated and the measured 

failure time shows a linear curve but with a slope of about 0.4 and the curve does not pass 

the origin. This suggests the void growth rate at Stage I is smaller than that at Stage III. 

Further modeling study will be performed in the next chapter to understand the 

experimental results reported here.   
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Chapter 3: Stress Modeling for Initial Void Growth in Cu Interconnects 

A kinetic model is developed in this chapter to analyze the initial void growth 

induced by electromigration in Cu interconnects. The approach is based on the kinetic 

model first formulated by Korhonen’s analysis on stress evolution in confined metal 

lines. The Korhonen model is extended to the initial void growth from the Cu/cap 

interface taking into account the stress effect and the void formation process. The new 

model shows that the initial void growth rate in Stage I is different from the void growth 

rate in Stage III after line failure although the two growth rates can be quantitatively 

correlated. The correlation deduced from the stress model agrees well with the results 

reported in Chapter 2. Grain structure is a prerequisite for the stress model, which is 

simulated based on the Potts model considering interconnect structures with both lines 

and overburdens.   
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3.1 REVIEW OF EM MODELS 

3.1.1 Introduction of EM Models  

Before the 1990s, the electromigration (EM) induced voiding was understood as 

vacancy migrating along grain boundaries and accumulating at flux divergent sites of 

blocking boundaries, which leads to failure [Shatzkes et al., 1986]. It became clear later 

that such a model is unreasonable since there are many sinks readily available in the 

metal conductor for the vacancies to annihilate [Lloyd, 2002]. This led to later analyses 

taking into account the effect of mechanical stress induced by mass transport under EM. 

Kirchheim formulated a model to calculate the generation of tensile and compressive 

stress by annihilation and production of vacancies at the anode and the cathode 

respectively [Kirchheim et al., 1991, Kirchheim, 1992].  A year later, Korhonen 

proposed a kinetic model to account for void formation driven by the stress evolution due 

to EM in confined metal lines [Korhonen et al., 1993b]. The Korhonen model analyzed 

the void formation kinetics as a result of stress evolution taking into account the effect of 

grain structure on mass transport in the confined line structure. The interconnect lines are 

embedded in multi-level structures where the stress in such confined metal lines is 

primarily hydrostatic and can be quite large. When the stress level in the line is built up 

beyond a certain threshold, void formation is initiated, leading to eventual line failure. 

The Korhonen model is a widely used model for EM and was implemented in simulation 

tools [Hau-Riege et al., 2001].   

 

3.1.2 the Korhonen Model 

The model to be developed in this chapter is based on the Korhonen model. So a 

derivation and introduction of the Korhonen model is included here. The central theme of 
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the model is that the buildup of mechanical stress in the metal line is induced by 

depletion or accumulation of local atom concentrations. This can be represented by a 

linear relationship within the linear elasticity range.  

a

a

dC d

C B


  ,                                (3.1) 

where Ca is atomic concentration, σ the mechanical stress and B the effective bulk 

modulus of the confined metal line. The atomic concentration is correlated to the atomic 

flux J through the continuity equation, which in 1-D case is 

0adC dJ

dt dx
  .                               (3.2) 

Therefore, 

a

d B dJ

dt C dx


 .                                (3.3) 

The atomic flux also has a simple relation with atomic concentration as 

d aJ v C ,                                   (3.4) 

where vd is the drift velocity with vd = µF. Here the mobility µ follows the Einstein 

relation 

B

D

k T
  ,                                    (3.5) 

where D is the diffusivity, kB the Boltzmann constant, T the absolute temperature. And 

each atom receives a driving force F consisting of both EM driving force and mechanical 

stress gradient induced backflow force 

* d
F Eq

dx


  ,                               (3.6) 

where Ω is the atomic volume having Ω = 1/Ca. E and q
*
 is electric field and effective 

charge respectively. Then the atomic flux (3.4) can be expressed as 

*( / )
B

D d
J Eq

k T dx


   .                          (3.7) 
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Substituting Equation (3.7) into Equation (3.3), one has the stress evolution equation in 

the Korhonen model as 

d d d

dt dx dx

 
 
  

   
  

,                          (3.8) 

where the effective diffusivity κ = DBΩ/kBT and the effective EM driving force γ = 

Eq
*
/Ω. 

 The differential equation for stress evolution in (3.8) is similar to a diffusion 

equation or heat conduction equation except for the additional driving force term γ. 

Therefore solutions are readily available in many references [Carslaw et al., 1959] for 

various boundary conditions. Separation of variables and Laplace transformation are 

techniques commonly used to solve the equation. Without any void present initially, a 

blocking boundary condition applies and the stress evolution follows the curves shown in 

Figure 2.36. Finally voids nucleate when the tensile stress at the cathode is larger than the 

yield stress. The time to reach that point is the void nucleation time given in Equation 

(2.18) which was originally deduced by Korhonen [Korhonen et al., 1993b].  

 

3.1.3 Void Growth in the Korhonen Model 

When a void is present in the line, the surface or boundary of the void is in a 

stress free state. In the case as shown in Figure 3.1(a), the boundary condition for x = 0 is 

σ = 0, while the blocking boundary condition still applies to x = L. Then the mechanical 

stress evolution can be schematically shown in Figure 3.1(b) where the stress over the 

entire line is in a compressive (negative) stress state. An analytical solution for the stress 

evolution can be derived as [Korhonen et al., 1993a] 

2 2 2

1

' 2 ( 1) exp( / )sin( / ) /n

n

x L m t L mx L m  




 
     

 
 ,        (3.9)   
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where m = (n - 1/2)π. Assuming a constant thermal stress T  existing throughout the 

line, except at x = 0 where σ = 0, before the start of EM at time t = 0, the relaxation of 

the thermal stress leads to another mechanical stress term evolving as [Korhonen et al., 

1993a] 

 2 2

1

'' 2 exp( / )sin( / ) /T

n

m t L mx L m  




  .                 (3.10) 

 

Figure 3.1 (a) Schematic for a metal line with a void at cathode; (b) stress evolution in 

the metal line as shown in (a).  

In the kinetic model, Korhonen associated the void volume with the volume 

strain. That means the driving force squeezes atoms towards the anode and this atomic 

redistribution provides space for the void to expand.  In this case, the void volume can 

be expressed as:   

0

1
( ) ( , ) ( , )

L

i fV t x t x t dx
B

     ,                 (3.11) 
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where σi and σf are the initial stress and the final stress respectively. Note that in the 

Korhonen’s original paper the void volume is written as 
0

( ) (1/ ) ( , )

L

V t B x t dx   

[Korhonen et al., 1993a] which is probably a typo since in the subsequent analysis, the 

void volume is defined in accordance of Equation (3.11). Also note that, in Equation 

(3.11), the void volume is normalized by the line cross-sectional area A. This leads to the 

following analytical solution for the void volume:  

2 2

3 2
1 1

( 1) 1
( ) [1 4 exp( )] [1 2 exp( )]

n

T
sat

n n

Lt t
V t V m m

m B m



 

 

 


       ,    (3.12) 

where Vsat is the saturated void volume and τ is the time for the void grow to volume Vsat. 

These parameters are expressed in the following equations.  

* 2 * 2/ 2 / 2 .satV Eq L B Z e jL B                    (3.13) 

2 /BL k T DB   .                       (3.14) 

In Equation (3.13), Z
*
 is the effective charge number, e the electron charge, ρ the 

resistivity of the metal line, and j the current density. Figure 3.2 plots the void growth 

based on Equation (3.12). It clearly shows that the void volume will reach a steady state 

due to the balance between EM driving force and stress gradient induced backflow force. 

The saturation volume is larger if there is an initial tensile thermal stress.  
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Figure 3.2 Void growth in the Korhonen model with initial stress 0 and 200 MPa. 

 

3.1.4 Microstructure-based Statistical Model  

Reliability is a statistical problem, thus, when a group of identical lines are tested, 

their lifetimes obtained are statistically distributed. This makes the modeling of failure 

time statistics to be equally important as the modeling of median failure time. Korhonen 

modeled the EM failure time statistics based on the microstructure distribution 

[Korhonen et al., 1993a]. 

When Korhonen developed the statistical EM model, his analysis was aimed at 

the Al-based interconnect with grain boundaries as the major diffusion path. The Al line 

usually is composed of a series of multiple bamboo segments mixing with multi-grain 

segments called clusters, as shown in Figure 3.3. Due to the fact that the diffusivity in 

cluster segments is much larger, the boundary between a cluster and a bamboo is 

essentially a blocking boundary. Therefore the Al line can be modeled as a series of 
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independent failure units with each having a cluster and a bamboo. The void growth in 

each failure unit starts with the mass transport in the cluster first, then extends into the 

bamboo segment. With a relatively long bamboo segments, a direct correlation between 

the cluster length and the failure time of the unit can be set, L = L(t). The failure 

probability F(t) of the unit at time t is the probability that its cluster length is longer than 

L(t).  If G(L) is the statistical distribution of cluster length [Korhonen et al., 1993a],  

F(t) = 1 – G(L).                         (3.15)   

Based on the weakest link approximation for the independent failure units, the CDF of N 

units in a line is [Korhonen et al., 1993a]   

FN(t) = 1 – [1-F(t)]
N
 = 1 – [G(L)]

N
.              (3.16) 

Equation (3.16) is the relationship correlating the failure time statistics with the 

microstructure (cluster length) distribution.   

  

 

Figure 3.3 Cluster and bamboo segments in a metal line and the stress evolution in each 

segment. [Korhonen et al., 1993a] 

cluster clusterbamboo bamboo
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In general, the Cu interconnects are composed of bamboo grains mixing with 

poly-grain structures when the line width is below 90nm. When the Cu/cap interface 

diffusion is suppressed by metal capping, the characteristics of the microstructure and 

mass transport are very similar to that of the Al interconnects. Recently, the statistical 

model formulated by Korhonen was applied to Cu interconnects with CoWP capping 

[Zhang, 2010, Zhang et al., 2011].   

While this statistical model seems to be able to account for most of the EM 

statistics observed, some important effects have not been accounted for.  For example, 

the failure units are assumed to be independent of each other so that the weakest link 

approximation can be used. However, two neighboring clusters can interact with each 

other by linking through a relatively short bamboo segment [Brown et al., 1995b], as 

shown in Figure 3.4. This leads to a higher stress level in the cluster pair and can change 

the failure time and its statistics. Thus the weakest link approximation is no longer valid 

for such coupling clusters [Brown et al., 1995a, Knowlton et al., 1995] and one has to 

consider all the clusters in the line and their interaction simultaneously, which makes a 

simple analytical description not possible. The cluster coupling has been experimentally 

observed  [Joo et al., 1999] and simulated in [Liu et al., 1997, Dwyer et al., 2001]. 
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Figure 3.4 Stress profiles for an interacting (a) and non-interacting (b) cluster pairs. 

[Brown et al., 1995b] 

 

3.2 INITIAL VOID FORMATION MODEL 

For a Cu interconnect line with standard SiCN capping, the diffusion at the 

interface dominates in EM. Rather than a weak coupling in Al interconnects as described 

in Section 3.1.4, two neighboring clusters in Cu interconnects strongly interact with each 

other. In fact, the interaction through interface diffusion is so strong that it may be 

improper to simply define bamboo and cluster segments in terms of the diffusivity 

difference as a base to apply the Korhonen model. In this sense, the weakest link 

statistical model (Section 3.1.4) proposed by Korhonen might not be better than that 

employed in the following analysis which considers the Cu line as a single segment with 

an effective diffusivity. 

All the models described above analyze the void formation problem in 1D to 

obtain a simple analytical solution. The applicability of a 1D model is restricted to the 

case where the void evolution in the y (line height) and z (line width) direction is 
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negligible compared with that in the x (line length) direction.  This happens to be the 

case for void growth at Stage III described in Figure 2.2 and 2.4 as well as demonstrated 

in Figure 3.1. Thus the Korhonen’s solution in Equation (3.12) should be only applicable 

to Stage III. For a void at Stage I in Cu interconnect, the void grows initially downward 

starting from the Cu/cap interface. The void evolution in the y direction is clearly not 

negligible at this critical stage. So the result deduced by Korhonen in Equation (3.12) 

does not adequately  describe the void growth at Stage I for Cu interconnects, although it 

has been used by a number of authors [Hau-Riege, 2002, He et al., 2004] in EM lifetime 

analysis without distinguishing the different void growth mode at Stage I and Stage III. In 

this section and what follows, the modeling of EM lifetime is specifically referred to void 

growth at Stage I.  The void growth rate deduced will be compared with that obtained by 

Korhonen and verified using EM test data reported in Chapter 2. 

In the following analysis, a rectangular void is used to represent the void growth 

mode shown in Figure 2.4.  Such a rectangular void at stage I was also adopted by 

[Arnaud et al., 2011] to simplify the analysis.  Accordingly, consider a void with height 

h as shown in Figure 3.5. The presence of the void divides the Cu line into two regions: A 

and B.  The stress evolutions in region A and region B are treated separately and the 

total void growth rate is the weighted sum of the void growth rate from region A and 

region B.  

I A BdV dV dVh H h

dt H dt H dt


  ,                         (3.17) 

where H is the Cu line thickness.  
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Figure 3.5 Schematic of void growth at Stage I and stress distribution inside the void 

segment.  

The void is an effective sink of atoms, which makes the normal stress at the void 

boundaries to be zero. Therefore the stress evolution corresponding to void growth at 

region A is similar to that at Stage III as depicted in Figure 3.1(a). The void volume VA(t) 

normalized by h will follow Equation (3.12).  

To obtain the stress evolution in region B, the stress inside the void segment is 

first analyzed. The void exposes a Cu free surface which has a diffusivity Ds much higher 

than the effective diffusivity Deff inside the Cu line. It was reported that the Cu surface 

diffusivity is a few orders of magnitude larger than the diffusivity in the interface and 

grain boundaries [Arnaud et al., 1999, Choi et al., 2008, Choi et al., 2011]. Within the 

void segment, atoms, represented by green dots in Figure 3.5, are squeezed toward the 

anode of the void segment. This leads to the presence of a stress gradient, shown in 

Figure 3.5, in the void segment to balance the EM driving force. One can use Equation 

critl

h(t) Ds

e-

Deff

x

σx

1
'

2
critl

y
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(3.14) to estimate the time to reach the balance. Due to the short length of a void and the 

high surface diffusivity, this process is estimated to take place within a minute which is 

negligible compared to EM failure time. The atoms at the anode of the void segment then 

leak through grain boundaries and interfaces in a relatively slow process, which leads to 

the growth of void. Any atom leakage is replenished quickly by the faster surface 

diffusion. So the stress at region B essentially remains at a constant level 
1

'
2

critl  

where '
H

H h
 


 due to the increased current density in the decreasing Cu cross-

section remaining in the void segment. The solution for the stress evolution with such 

boundary conditions is readily available. Although a void close to the via is under 

investigation, the relatively fat cathode, as shown in the layout in Figure 2.6(a), provides 

enough Cu atom source in the upstream of the void. It is expected that the EM mass flux 

can provide an equivalent number of atoms to and from the void leading to negligible 

effect on void growth at region B. Such an analysis is similar to the one used in Ref. 

[Korhonen et al., 1993a] to deduce the EM mass flux in a line with the bamboo/cluster 

type of microstructure. Then one can focus on the void growth induced by mechanical 

stress evolution at region B only, since the line length for x < - lcrit is much shorter than x 

> 0. The mechanical stress evolution is then calculated as (for x > 0) 
2

2
1

" (2 ' ) exp sin( ) /T crit

n

m mx
l t m

L L
   





 
   

 
 .               (3.18) 

And the void growth induced by this stress evolution is  

2

2
1

(2 ' ) 1
( ) [1 2 exp( )]

2

T crit
B

n

l L t
V t m

B m

 








   .               (3.19) 

The void growth rate at Stage I can now be obtained using the expressions of 

VA(t) in Equation (3.12) and VB(t) in Equation (3.19). However, the diffusivity which is 
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implicitly contained in the void volume through time constant τ remains to be specified.  

Since A and B are two different regions in the line cross-section, the diffusivities 

associated with them should be different. They are denoted as DA and DB respectively.  

The effective diffusivity for a Cu line with thickness H is expressed as   

N GB
eff N GBD D D

H d

 
  ,                         (3.20) 

where DN and DGB are diffusivities along Cu/cap interface and grain boundary 

respectively, δN and δGB are the effective width of the interface and grain boundary, 

respectively, d is the average grain size. Since the thicknesses of region A and B evolve 

with time, the diffusivity DA and DB should be time or h dependent as well. Only if all the 

diffusion paths are uniformly distributed along the Cu line, one can have DA = DB as a 

constant. Since the Cu/cap interface is restricted to the top surface which is closer to A, 

one should expect 
A BD D  assuming that the grain boundaries are uniformly distributed 

through the line cross section.  Quantitatively, the local grain structure is required to 

determine the diffusivities. In lieu of measured grain structures, Monte Carlo simulations 

of grain growth based on the Potts model are performed to obtain the grain distribution 

and the details are described in Section 3.4.  The simulation results reveal that there are 

more small grains located at the bottom of the line, as shown in Figure 3.18(d) and 3.20 

as examples. This may partially cancel out the non-uniformity of diffusion paths caused 

by interface diffusion. To simplify the following analysis, it is assumed that the averaged 

diffusivities of region A and region B are equal, i.e. 
A BD D D  .  

 The average void growth rate required for determining the failure time is obtained 

by averaging over H to yield a tractable solution. Assuming that there is an ensemble of 

Cu lines with different void thickness h varied from 0 to H, where the voids in these lines 

start to grow with different growth rates. The averaging of void growth rate over H 
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resembles an ensemble average over all these lines. In this way, the average void growth 

rate in Stage I is represented by the following expression: 

2 2

3 2
1 1

(2 )1 ( 1) 1
( ) 1 4 exp( ) 1 2 exp( )

2 2

n

T crit
I sat

n n

lt t
V t V m L m

m B m

 

 

 

 

    
        

  
  . (3.21) 

The first term in Equation (3.21) is the contribution from EM, while the second term is 

from thermal stress. For convenience, one denotes the terms in the first and second 

bracket pairs in Equation (3.21) as AEM and Aσ respectively, i.e., 

2

3
1

( 1)
1 4 exp( )

n

EM

n

t
A m

m 





 
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 

  and 
2

2
1

1
1 2 exp( )

n

t
A m

m








 
   
 

 . 

 To further simplify the solution, one can check the time scale under discussion. 

With L = 100µm, B = 7.5 GPa [Oates et al., 2009a], Ω = 1.18*10
-29

 m
3
 [He et al., 2004], 

kBT = 0.052eV at 330°C, and diffusivity D = 10
-12 

cm
2
/s at 330°C [Zhang, 2010], the void 

saturation time τ can be estimated to be about 2600 hours, according to Equation (3.14). 

All the failure time tf measured in the experiments in chapter 2 are less than 200 hours. 

This indicates that the actual time scale for line failure t << τ the time required to reach 

the steady state of void growth. At this short time scale, the EM flux term can be 

approximated as one with linear t dependence and stress flux term can be approximated 

as one with a square root t dependence. As shown in Figure 3.6, 2*t/τ approximates AEM 

well when t is within 15% of τ and Aσ coincides with (2 / )* /t   in a time scale up 

to 40% of τ. With this approximation, the void volume normalized by line cross-section A 

for Stage I (VI(t)) and Stage III (VIII(t)) are further simplified as 

21
( ) [ ] /critT

I sat

lt
V t V L t

B B




 
   ,                     (3.22) 

2
( ) 2 /T

III sat

t
V t V L t

B




 
  .                      (3.23) 
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Figure 3.6 Within a short time scale, AEM can be approximated by 2*t/τ (a), and Aσ can 

be approximated by (2 / )* /t   (b).  

 

3.3 INITIAL VOID GROWTH RATE RESULTS AND DISCUSSION 

The coefficients of the leading linear term in Equation (3.22) and (3.23) differ by 

a factor of 2. With the material constant set: Z
* 

= 1, j = 1 MA/cm
2
, ρ = 5.8*10

-6
 Ω-cm 

(from measurement at 330°C), Ω = 1.18*10
-29

 m
3
 [He et al., 2004], L = 100µm, B = 7.5 

GPa [Oates et al., 2009a], one has * 2 / 2satV Z e jL B = 5.25 µm. This is much larger 

than γlcritL/B due to the relatively small void length lcrit of about 100nm. Therefore, for an 

initial zero stress, the ratio of void growth rates between Stage I and Stage III is about 

0.5, i.e., dVI/dt ~ 0.5 dVIII/dt, which is demonstrated in Figure 3.7. This value is very 

close to the slope of 0.4, observed in Figure 2.34. While this is encouraging, to reach a 

ratio below 0.5, however, a compressive (negative) thermal stress is required. It is worth 

noting that such a compressive stress in Cu lines under EM testing at 330°C is highly 

probable because of the relatively higher coefficient of thermal expansion (CTE) of low-k 

dielectric compared to Cu (17 ppm/°C). Indeed, a 250MPa compressive stress at this 
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temperature range has been reported [Rhee et al., 2003].  The results obtained by x-ray 

diffraction (XRD) measurement are shown in Figure 3.8.  Finite element analysis has 

also confirmed the presence of compressive thermal stress in Cu lines along the length 

direction at EM test temperatures [Rhee et al., 2003]. 

 

 

Figure 3.7 Void volume change with time at Stage I (lower curve) and Stage III (upper 

curve) shows a slope ratio of 0.5 when thermal stress is 0.  
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Figure 3.8 Thermal stress components of a Cu/low-k interconnect measured by XRD at 

different temperatures. X is in Cu line length direction. [Rhee et al., 2003]     

Figure 3.9 shows an example of void growth under a compressive stress of 

50MPa, achieving a slope ratio between VI(t) and VIII(t) of about 0.4. The effective charge 

number is chosen as Z
* 

= 2. One interesting feature of VI(t) shown in Figure 3.9 is that the 

void does not grow (VI(t)<0) until certain time, tσ, which represents a stress incubation 

time for void growth. This corresponds to the time period for the EM-induced stress to 

overcome the compressive stress so that void growth can begin. It only exists when initial 

thermal stress is compressive. From Equation (3.22), one can deduce the stress incubation 

time as: 
2 2

21
' exp

2

T crit a T

sat

l EL
t b kT

B V kT j


  




      
       

     
,          (3.24) 

where b’ is a constant and γlcrit (in the order of magnitude of MPa) is ignored in the last 

approximation. This expression is similar to the void nucleation time shown in Equation 

(2.18). The void nucleation time is the time period required for the EM induced stress to 
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reach a critical stress σcrit so that void can begin to grow. In that sense the formalism of 

stress incubation time is very similar to that of the void nucleation time. The difference is 

whether or not there is a preexisting void. This stress incubation time accounts for why 

the curves in Figure 2.34 do not pass the origin.  

 

 

Figure 3.9 Void volume change with time at Stage I (lower curve) and III (upper curve) 

under compressive line stress.      

The results from the void growth model can now be simplified and schematically 

represented as shown in Figure 3.10. After a stress incubation period, the void first grows 

from the cap interface downward in a vertical direction with a relatively small growth 

rate.  This reaches essentially the end of Stage I where the line fails.  After the line fails, 

the void growth changes to a horizontal growth mode with a relatively large growth rate.  

This represents the steady state void growth in Stage III. Note that the averaged void 
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growth rate shown in Figure 3.10 is not a real time void growth rate. That is why the void 

growth rate shown in the Figure does not have smooth transitions at tσ and tf.  

 

Figure 3.10 Simplified model of void growth at different stages.       

Table 3.1 summarizes the EM behaviors of void growth and void nucleation. 

Equation (2.18) shows the failure time for void nucleation mode has j
-2

 dependence. The 

failure time for void growth mode depends on drift velocity, therefore it has j
-1

 

dependence. A modified Black’s equation uses variable current exponents: 

50 exp( )n aE
t Aj

kT

 .                         (3.25) 

A value between 1 and 3 is commonly used for n to fit experimental data. A value for n = 

1~2 accounts for the mixing of void nucleation and void growth for EM failure, while n > 

2 is attributed to Joule heating [Lloyd, 2007]. Another important parameter for EM is the 

critical current density below which no EM failure would be observed. If no failure 

occurs when the back flow stress balances the EM driving force, the line then reaches 

immortality. For void nucleation, it happens if the current density is not big enough to 
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generate sufficient stress at cathode to nucleate a void at that force balance point. The 

critical current density is [Oates et al., 2009a]  

  *

crit

c
jl

eZ






 .                               (3.26) 

For void growth, immortality happens when the saturated void size is smaller than the 

critical void size to fail the line. From Equation (3.13), the critical current density can be  

expressed as [Oates et al., 2009a, Korhonen et al., 1993b] 

2

*

2
( ) crit

c

Bl
jl

eZ 


 .                             (3.27) 

The thermal stress for both cases is neglected for simplicity. If a thermal stress (σT) exists, 

σcrit in Equation (3.26) should be substituted for (σcrit – σT), and lcrit in Equation (3.27) 

should be substituted for (lcrit - σTL/B).     

 

Table 3.1 Summary of Failure time and critical current density for void nucleation 

and void growth.  

 Failure time Critical current density 

Void nucleation 
2

ft j    *

crit

c
jl

eZ






  

Void growth 
1

ft j  
2

*

2
( ) crit

c

Bl
jl

eZ 


  

 

 Although the stress incubation time tσ is derived from void growth case, its 

behavior resembles the void nucleation time. Since a fitting parameter (b or b’) is used in 

interpreting data, it is difficult to differentiate the nucleation from the growth effects, in 
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spite of the fact that they have different origins. In subsequent study in this research, it is 

assumed that the failure is dominated by void growth, following Equation (3.22).  

 With this new model, one can now recalculate the failure time without assuming 

that the void growth rate at Stage I is identical to Stage III.  The measured Rstep and Rslope 

values are useful in providing critical void length and drift velocity as inputs for 

modeling calculations, as demonstrated below. The result shown in Figure 3.11 presents a 

curve approaching a slope of 1 and passing through the origin. This shows that the new 

model describes the void formation in Stage I well. The fitting parameters used Z* = 2.2, 

B = 7.8GPa, σT = -68MPa are all in the reasonable range. This indicates that the model 

developed for initial void growth has provided a valid theoretical base to account for the 

experimental data obtained from EM tests of Cu interconnects. 

 

Figure 3.11 Comparison between calculated t50 based on the new model and measured 

t50.         
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 A simulation is then performed to calculate the time to failure (TTF) distribution 

using the measured Rstep and Rslope statistics as input. The statistics of the simulation based 

on the new model agrees well with the 2-link experimental data, as shown in Figure 3.12. 

Also shown in the figure are TTF simulation based on Korhonen model and Rstep/Rslope. 

They overlap with each other because both of them are concerned with the void growth at 

Stage III. This simulation also demonstrates that the resistance traces contain valuable 

statistical information for EM lifetime. This is because the information of critical void 

volume and the diffusivity contained in Rstep and Rslope, respectively, is directly correlated 

to the EM failure time. Considering EM tests, the electrical resistance traces are relatively 

easy to obtain, particularly for a large ensemble of test structures.  They provide 

information that cannot be easily observed by TEM, but also can be used in deducing EM 

lifetime statistics as demonstrated here. 

 

Figure 3.12 Failure time statistics simulation using Rstep and Rslope distributions.         
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 Finally, the stress effect on initial void formation is studied based on the new 

model. This is important because, although the Cu line may be under compression at EM 

test temperature, due to CTE mismatch between Cu and low-k, the line will be under 

tension at room temperature or chip operating temperature. The effect of thermal stress to 

EM lifetime has also been reported in Ref. [Hauschildt et al., 2012]. Figure 3.13 plots the 

void growth at Stage I under two different stress states: compress stress of -100 MPa and 

tensile stress of 100 MPa. The parameters used are Z
* 

= 2, j = 1 MA/cm
2
, ρ = 5.8*10

-6
 Ω-

cm, L = 100µm, B = 7.5 GPa. It demonstrates that the void growth under tension can be 

very different from that under compression. Overall, the void growth rate is faster since 

there is no time required to overcome the compressive stress to initiate void growth. This 

will result in a shorter EM lifetime. For example, if the critical void volume causing the 

line failure is 0.03*Vsat, the failure time under -100 MPa compressive stress would be 

about 6 times larger than the failure time under 100 MPa tensile stress. The conventional 

lifetime extrapolation based on Black’s equation considers only the effects due to 

temperature and current density. The result shown in Figure 3.13 implies that this 

extrapolation method probably overestimates the lifetime. Thermal stress effect should be 

considered in a more conservative extrapolation.  
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Figure 3.13 Comparison of initial void growth under tensile (upper curve) and 

compressive stress (lower curve).       

   

3.4 MONTE CARLO SIMULATION OF GRAIN GROWTH 

When the line width is below 90nm, bamboo-type grains mixed with small 

polycrystalline grains are usually observed in Cu interconnects lines [Hu et al., 2007c]. 

These small grains provide additional EM diffusion paths, raising increasing concerns for 

EM reliability. TEM provides a direct observation of grain structures in Cu lines. But 

each observation is limited in one cross-section and it is very time consuming.  

Furthermore, there are technical difficulties in retrieving quantitative data on fine grain 

structures, due to the resolution limit of conventional TEM technique and the overlap of 

the TEM grain images. Computer simulation is employed in this section as a fast and 

inexpensive supplemental tool to study the grain growth. This approach also enables us to 

track the evolution of grains during annealing which is very difficult for direct TEM 
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observations. Another motivation of the grain growth simulation is to provide grain 

structures to support the EM modeling in this chapter.  

 

3.4.1 the Potts Model 

The grain growth simulation is performed by a Monte Carlo method based on the 

modified Potts model. In statistical mechanics, the Potts model [Potts, 1952] describes 

interacting spins on lattice. It is a generalization of the Ising model [Ising, 1925] which 

deals with spins having two states (spin up and spin down). In the Potts model, the spins 

can have an arbitrary number of states. Domains of the same spin state grow over time to 

minimize the energy of system. The Hamiltonian of the system consisting of N lattice 

sites can be written as 

  
N

i

N

i

i

n

j

SS

ij
E

J
H

ji
)1(

2
 ,                       (3.28) 

where Jij is the interaction energy between neighboring spins, Ei is the self-energy of a 

spin, δ is the Kronecker delta, Si is a specified spin state. In the early 1980s, people 

recognized that the Potts model can be used to describe the grain structures [Anderson et 

al., 1984, Srolovitz et al., 1984b, Srolovitz et al., 1984a, Anderson et al., 1989, Grest et 

al., 1988]. Each grain orientation is represented by a spin state Si. The interaction energy 

Jij can be viewed as the grain boundary energy between two neighboring grains. Ei can be 

used to represent the interface/surface energy for the cells close to interfaces and 

surfaces. The grain growth is driven by minimizing the system energy in Equation (3.28).  
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3.4.2 Simulation Details 

The Monte Carlo simulation code is written in C/C++ programming language. A 

desktop computer (Intel dual core) with Cygwin to provide Linux-like environment and 

an 8-core server with Linux operating system are employed for the simulation. The 

simulated data is then displayed by a visualization software OpenDX. The code was 

originally developed by Matthias Kraatz at UT Austin [Kraatz, 2011]. The original code 

simulates the grain growth in a rectangular line. In this dissertation, it is extended to 

describe a rectangular line with an overburden, which is usually the structure for a 

damascene line during annealing. A schematic of the cross-section of the simulated 

structure is shown in Figure 3.14. Instead of simulating normal grain growth without 

considering the interface/surface energy as in Ref. [Kraatz, 2011], in this dissertation, 

energy terms from interfaces and surfaces are taken into account for the abnormal grain 

growth. With the line width scaling, the interfaces and surfaces should have larger and 

larger impact on the grain growth due to the increasing surface to volume ratio.  

 

 

Figure 3.14 Schematic of the cross-section of a simulated Cu line with the overburden 

and liner.  

A cubic lattice structure is employed for the 3D grain growth simulation. The 

dimensions of the line are represented by the number of cells (lattice sites) in each 

Cu
TaN/Ta

overburden
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dimension. A total of 30 orientations are used for Cu grains. Initially each cell is set with 

a random orientation. Up to the 3
rd

 nearest neighbors are counted for the grain boundary 

energy calculation. This means n = 26 in Equation (3.28) for a cubic lattice. Due to the 

lack of reported experimental measurements for the grain boundary energy, it is difficult 

to set different grain boundary energies Ji for different grain boundaries. So an isotropic 

grain boundary energy Ji = J is used for simplification in this study. An average Cu grain 

boundary energy 0.559 J/m
2
 is reported in [Chattopadhyay, 2001]. 

It is reported that both PVD Cu seed layer and electro-plated Cu film show strong 

(111) texture [Rosenberg et al., 2000] due to a relative lower surface energy (1.83 J/m
2
) 

for (111) orientation [Skriver et al., 1992, Yang et al., 2011] as well as a relatively lower 

interface energy (0.47 J/m
2
) between α-Ta and (111) Cu [Abe et al., 1995, Yang et al., 

2011].  During simulation, the grain orientations Si =30, 29, 28 are assumed to have the 

lower surface energy ESL and interface energy EIL and other orientations have the higher 

surface energy ESH and interface energy EIH. The ratio between them is set as ESH / ESL = 

EIH / EIL =3. This ratio was also adopted by Ref. [Jung et al., 2004] previously. Note that 

all the orientations discussed above are referring to those viewed from the top surface, 

i.e., along the z direction shown in Figure 3.15. A (111) orientation viewed from the top 

surface cannot be another (111) orientation viewed from the sidewall (y direction). 

Therefore a grain having a low interface energy at the trench bottom cannot also have a 

low interface energy with trench sidewalls. Grains with orientations Si =1, 2, 3 are set to 

have low interface energy with the Ta barrier at the sidewalls, while the other orientations 

have high interface energy with the sidewalls.  

During simulation, the orientation of a cell is changed into one of its randomly 

selected unlike neighbors. The energy of the system is then recalculated and compared 
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with the one before reorientation. If the energy is reduced, the new orientation is kept. 

Otherwise, the new orientation is allowed only with the Boltzmann probability  

)/exp( TkQp B ,                            (3.29) 

where Q is the activation energy for grain boundary migration, kB the Boltzmann constant 

T the annealing or simulation temperature. Since Q cannot be determined explicitly, it is 

difficult to convert the energy unit into that of thermal energy kBT. Therefore the 

Boltzmann probability is simplified to [Jung et al., 2005]  

)2exp( Hp D ,                            (3.30) 

where ΔH is the energy difference between before and after the reorientation. Since the 

energy in the Hamiltonian is in an arbitrary scale, it is set that J = 1 during simulation and 

all other energy terms are scaled accordingly.     

 After the reorientation trial on one lattice site, a new lattice site is randomly 

selected from the rest of the lattice sites for a reorientation trial. This permutation 

continues until all the lattice sites go through at least one reorientation trial, which 

completes one Monte Carlo step (MCS).  Then a new permutation starts and finally the 

simulation stops when a desired number of MCSs is reached. 

 

3.4.3 Simulation Results and Discussion 

Figure 3.15 shows a simulated Cu line with overburden and the inter-metal 

dielectric (IMD) in red. The dimensions for the structure are XxYxZxY_linexZ_line 

which are illustrated in the Figure as well. The Cu line length, width and thickness are X, 

Y_line and Z_line respectively. For the structure shown in Figure 3.15, it is 

1000x400x300x100x200 with 20 MCS.  
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Figure 3.15 A simulated Cu line structure with overburden and dielectric.   

Figure 3.16 shows a 500x300x200x100x180 structure after 200 MCS of grain 

growth simulation. The orange and dark yellow colors correspond to orientations Si =1, 2, 

3. The blue colors correspond to orientations Si =30, 29, 28. It clearly shows that the 

grains close to the sidewalls have blue colors, while grains close to Cu line bottom and 

top surface of overburden have orange and dark yellow colors. This is caused by the 

abnormal grain growth to reduce the interface and surface energies. Except the grain 

growth starting from interfaces and surface, normal grain growth starting from the bulk of 

Cu line to minimize the grain boundary energy is also observed in Figure 3.16.  
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Figure 3.16 Different cross-sections of a simulated Cu line. 500x300x200x100x180; 200 

MCS.    

The normal grain growth in the bulk of Cu mixing with abnormal grain growth 

from interfaces and surface can be more clearly observed at the initial stage of the 

simulation. For example, in Figure 3.17, a Cu structure experiences 50 MCS of 

simulation. A clear color difference between bulk and interfaces can now be observed.       
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Figure 3.17 Time evolution of grain growth in a Cu line. 500x300x260x100x180; 50 

MCS.    

Figure 3.18 (a), (b) and (c) demonstrate the time evolution of grain growth. The 

simulation time is counted in unit of Monte Carlo step (MCS). When the simulation runs 

from 200MCS to 600MCS, the small grains grow larger. The growth of some grains is 

accompanied by the shrinking of other grains, which is also observed in Figure 3.18. But 

overall, the grain size is increasing with disappearing of small grains.  

Another phenomenon can be observed is that, as the simulation time elapses, the 

abnormal grain growth from interfaces and surface becomes more and more dominant. 

This is particularly true for Cu lines with smaller dimensions due to the increased surface 

to volume ratio. The simulated Cu structure shown in Figure 3.18(d) has dimensions that 

are 70% of that shown in (c), standing for one generation of scaling. After experiencing 

the same 600 units of MCS, the smaller Cu line in (d) shows much more grains in blue, in 

comparison with (c).   
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Figure 3.18 (a), (b) and (c) Time evolution of grain growth in a Cu line with dimension 

500x300x200x100x180. (d) A Cu line with dimension 

350x210x140x70x126, which is 0.7X scaled from those in (a), (b) and (c).     

If the orientations Si =30, 29, 28 in orange and dark yellow stands for (111) 

orientations, Si =1, 2, 3 in blues then should be (110) orientations so that they could be 

perpendicular to each other. The comparison of (c) and (d) in Figure 3.18 indicates that, 

due to grain growth initiated from sidewalls, Cu lines with smaller line width will show a 

stronger (110) texture. Such trend has been observed experimentally by high resolution 

TEM orientation mapping with precession diffraction technique. As shown in Figure 

3.19, if looking at the line width direction, the (111) texture can be observed in Cu lines 

[Kameswaran, 2011]. Such texture is stronger in a 70nm wide line compared to a 120nm 
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wide line. The (111) texture along line width corresponds to a (110) texture along normal 

(line thickness) direction.   

 

 

Figure 3.19 Inverse pole figures for a 120nm wide and a 70nm wide Cu interconnect line 

measured by precession microscopy with TEM. [Kameswaran, 2011]      

 Also reported in [Kameswaran, 2011] there are many small grains close to the 

trench bottom, which is also observed in Figure 3.18. To reduce interface energy between 

Cu and Ta at the trench bottom, (111) grains grow from the trench bottom. This is 

accompanied by (110) grain growth from sidewalls to reduce the interface energy 

between Cu and Ta at sidewalls. Due to the relatively high aspect ratio of the trench (a 

common value of 1.8 is adopted in the simulations), the grain growth at the sidewalls 

120nm

70nm
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dominates over the growth at the bottom. Once that occurs, the small grains at the trench 

bottom are frozen kinetically at the bottom. The size of these (111) grains depends on the 

simulation or the annealing time. As shown in Figure 3.20, from 200 MCS to 400 MCS, 

these grains grown in size at the expense of disappearing bulk grains. From 400 MCS to 

800 MCS and 1200 MCS, these (111) grains decrease in size due to the growth of (110) 

grains from sidewalls. Eventually these small grains will be consumed by the sidewall 

grain growth if the simulation time elapsed long enough. However, in a realistic 

annealing process, due to limited thermal budget there will always be some small grains 

at the trench bottom. Note that, in an actual Cu interconnect line, small particles trapped 

in the trench bottom may cause grain pinning to prevent grain growth at bottom [Harper 

et al., 1999]. This aspect is not included in this study.    

   

 

Figure 3.20 Grain size evolutions for grains at trench bottom. Dimensions 

350x210x140x70x126.    
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 According to the simulations performed above, the line width and aspect ratio 

(AR) have great effect on the grain growth inside a line. However, in each technology 

node, the line width and AR are generally set for lines at one specific metal level. The 

only tunable dimensional parameter is the overburden thickness. Therefore, it is of 

interest to investigate the effect of overburden thickness on grain growth [Jung et al., 

2004, Dubreuil et al., 2008]. Simulations for two identical Cu lines with different 

overburden thicknesses were performed to study the potential grain growth promoted by 

surface energy minimization from overburden. The results are presented in Figure 3.21. 

With a thin overburden (20-cell thick in (c) and (d)), some (111) grains growing from the 

overburden surface penetrate into the Cu line but are limited to a region close to the line 

surface. These (111) grains at the line top surface may cause EM reliability issue, since 

the diffusivity along (111) Cu and SiCN cap interface is relative larger. With a relative 

thick overburden (80-cell thick in (a) and (b)), no grain growth penetration from 

overburden surface is found for 500 MCS. The sidewall growth dominates the Cu grains 

at regions inside the line as well as at the line surface. This suggests that the role of 

overburden to grain growth is not critical when it is relatively thick, especially for narrow 

lines where the interfaces at sidewalls dominate grain growth.   
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Figure 3.21 Effect of overburden thickness to grain growth. The dimensions for (a) and 

(b) are 500x300x260x100x180. The dimensions for (c) and (d) are 

500x300x200x100x180. The only difference between two structures is the 

overburden thickness: one 80-cell thick, the other 20-cell thick. 500 MCS 

for both simulations.     

     

 3.5 CONCLUSIONS 

In conclusion, the Korhonen model for EM-induced void growth is reviewed and 

analyzed and it is found that the original Korhonen’s solution is only applicable to Stage 

III (after failure).  In this chapter, the Korhonen model was extended to analyze the 

initial void growth at Stage I leading to line failure. The approach is to divide the Cu line 

into two regions based on the void segment and calculate the stress evolution in the two 
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regions separately.  Approximate analytical solutions were obtained for void growth 

rates at Stage I and Stage III, which were found to depend on the initial thermal stress in 

the Cu line. By using a compressive thermal stress which is probable for Cu interconnect 

line at the EM test temperature, the model generates failure time agreeing well with the 

experimental data shown in Chapter 2. The model suggests that the conventional failure 

time extrapolation based on Black’s equation probably overestimates the EM lifetime and 

the effect of thermal stress should be considered in the extrapolation.      

Grain growth simulations based on Potts model were also performed considering 

interconnect structures with overburdens. Both normal grain growth from bulk and 

abnormal grain growth from surface and interfaces were found in the simulations. Due to 

the relatively high aspect ratio of a Cu interconnect line, the grain growth from sidewalls 

was found to play a dominant role. This led to small grains in the trench bottom and small 

possibility for penetration of grains growing from a relatively thick overburden surface. 

Such trends become even clearer with further scaling of line dimensions due to increasing 

surface to volume ratio. The simulated grain structure was used as material input for 

stress modeling.  
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Chapter 4: Size Effect on the Electron Wind Force for Electromigration 

in Nanoscale Interconnects 

The minimum width of Cu interconnect line of current technology node is now 

close to its electron mean free path (39nm at room temperature). This chapter studies the 

size effect on the electron wind force for a thin film and a rectangular line with 

dimensions in this size range. The problem is modeled by considering the momentum 

transfer between electrons and a defect atom on the Cu/cap interface, the dominant EM 

diffusion path in a Cu damascene line. The analytical result shows that the scaling effect 

on the effective charge number Z* can be represented by a size factor S depending on the 

film/line dimensions. The electron wind force is enhanced due to the dimensional 

confinement of the interconnect. Interface scattering and grain boundary scattering are 

found to have opposite effect on electron wind force. The temperature dependence of the 

electron wind force is analyzed.  
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4.1 INTRODUCTION 

The development of EM theory started more than a half century ago. Ficks 

developed a  model based on ballistic theory [Fiks, 1959] and then a semi-classical 

formulation was developed by Huntington and Grone [Huntington et al., 1961]. Bosvieux 

and Friedel [Bosvieux et al., 1962] formulated a quantum mechanical model, which was 

followed by subsequent models and formulations [Das et al., 1975, Landauer et al., 1974, 

Sham, 1975, Sorbello et al., 1977]. More detailed review can be found in Ref. [Ho et al., 

1989]. For conductors such as Cu, it is generally accepted that the EM driving force is 

dominated by the electron wind force, which can be expressed as
*F Z e j  , where Z

*
e 

is the effective charge, ρ is resistivity and  j is electric current density. The effective 

charge Z
* 

e 
 
is calculated based on the momentum transfer due to electron scattering on 

the jumping atom at the “saddle-point”, which is half-way along the jumping path to the 

vacancy. 

Cu interconnect was introduced to replace Al by IBM in 1997 due to its lower 

electrical resistivity and better EM reliability. As scaling continues, EM is once again 

becoming a limiting factor. The challenge is two-fold. First, as predicted by the 

International Technology Roadmap for Semiconductors (ITRS) [ITRS, 2011], the 

maximum current required by high performance devices Jmax keeps increasing and will 

soon be beyond the maximum current for targeted EM life time JEM. Second, even if a 

constant current is assumed, the EM life time still drops half for each generation 

following a simple geometry scaling relation [Hu et al., 2004b] 

t = ΔLcrt kB T/(Deff F).                               (4.1) 

In the above expression, ΔLcrt is the critical void length, kB the Boltzmann constant, T the 

temperature, Deff  the effective diffusivity and F the electromigration driving force. For 
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each generation, ΔLcrt decreases and Deff increases by 0.7. This results in a 2x drop of life 

time if the EM driving force F is taken as a constant when the drive current density j is a 

constant.  

The industry is now entering 22nm node with M1 line width only 32nm which is 

even smaller than the electron mean free path (MFP) in Cu (39nm at room temperature). 

In this size region, the transport behavior of electrons is different from that in bulk. For 

resistance (r), although it still follows a simple geometry relation  

r = ρ l/A,                                     (4.2) 

where l and A are the length and cross-sectional area of the metal respectively, resistivity 

ρ is no longer a constant as the line dimension scales. It is well known that the increased 

interface and grain boundary scattering will significantly enhance the resistivity in this 

size range, as shown in Figure 4.1.  

 

 

Figure 4.1 Increase of Cu resistivity as the scaling of line dimension due to grain 

boundary and side wall scattering. [ITRS, 2009]  
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EM is actually closely related to the electrical resistivity. As schematically 

demonstrated in Figure 4.2, when electrons flow in a metal under an electric field, they 

scatter upon colliding with atoms. This scattering process slows down the electrons 

resulting in electrical resistance. The same scattering process also transfers momentum to 

the atoms which may cause the atoms to migrate along the diffusion path. The latter 

phenomenon is called EM. Since the resistivity ρ starts to experience significant size 

effects in nanoscale interconnects, this raises an important question concerning the 

electron wind force - Will there exist a similar significant size effect on the momentum 

transfer as a result of such scattering events? In this sense, Equations (4.1) and (4.2), as 

well as the parameters in the equations F and ρ are quite similar in their correlation to the 

electron scattering process. While the increase of resistivity ρ due to increasing interface 

[Fuchs, 1938, Sondheimer, 1952] and grain boundary scattering [Mayadas et al., 1970] is 

well established, the size effect on electron wind force F has not been reported in this 

technology relevant size regime. This chapter studies this size effect for a thin film and a 

rectangular line.  

 

 

Figure 4.2 Schematic showing the scattering between electrons and atoms causes both 

electrical resistivity and EM.    
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4.2 THIN FILM  

The top interface is usually the dominant diffusion path for Cu damascene lines 

after the CMP and capped with a dielectric layer. This diffusion path can be suppressed 

by metal capping, making the GB diffusion more important for EM. This study is focused 

on electron wind force on a jumping atom along the interface with a dielectric cap. The 

objective of this study is not to develop a comprehensive theory for the electron wind 

force in metal nanolines. Instead, it aims at developing a simple model to estimate the 

“size effect” on the electron wind force relative to Cu interconnects for current and future 

technology nodes. Since the film and line dimensions under consideration are much 

larger than the atomic size, it is assumed that electron screening of the saddle-point atom 

is not affected by scaling and a classical free electron model can be used for Cu. For 

dimensions at the atomic scale, one can refer to Ref. [Bevan et al., 2010] for wind force 

calculation.  

For a thin film with thickness a as shown in Figure 4.3, electrons in the film gain 

a net momentum in the positive x direction from the external electric field ε. Part of the 

momentum of these electrons will be transferred to the jumping atom at the top interface 

due to scattering. The wind force received by the jumping atom is the momentum transfer 

rate and can be expressed as 

_ _( ) /x in x outF d P P dt  ,                             (4.3) 

where 
_x inP  and 

_x outP  are the momenta in the x direction of the electrons approaching 

and leaving the jumping atom during scattering, respectively.   
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Figure 4.3 Schematic of the model for a thin film with Cartesian coordinates. 

To calculate the momentum transfer rate between electrons and the jumping atom, 

one defines D(E) as the density of state of electrons at the energy level E, σi the effective 

scattering cross-section at the Fermi energy, Ω the solid angle, m the effective mass of an 

electron, v the velocity of electrons, f the electron distribution function. It can be shown 

that, in a free electron model, the number density of electrons whose energy lies between 

E and E+dE, and moving in a solid angle dΩ is 

f*D(E)dE*d Ω/4π.                            (4.4) 

Number of such electrons scattered by a defect atom at interface in time interval Δt is  

σ
i
*v

z
* f*D(E)dE*d Ω/4π* Δt.                        (4.5) 

Each of such electrons carries a momentum in x-direction as mvx. Momentum carried by 

such electrons scattered by the defect in time interval Δt is  

mv
x 
*σ

i
*v

z
* f*D(E)dE*d Ω/4π.                            (4.6)  

Then one can integrate the solid angle and explicitly calculate 
_x inP  and 

_x outP  

according to the electron moving direction. The electron wind force can be expressed as 

[Wu et al., 2012] 

4 0

( )
4

i
x zF d mv v fD E dE









   .                           (4.7) 

a

ε

an atom

an electron

z

x

y
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The scattering events at the interface are more complicated than the simplified 

picture described by Equation (4.7). The scattering cross-section is affected by the 

bonding environment of the scattering atom. When the jumping atom diffuses halfway to 

the vacancy, i.e., at the saddle point, it experiences more scattering and hence a bigger 

wind force than at an equilibrium position. To avoid such a complexity, instead of 

calculating the value of F, this study only focuses on how F changes with scaling of the 

film and/or the line dimensions, with the bonding environment and relative position of 

the metal atoms at the interface remaining unchanged.  

This is done by evaluating the ratio of F / F0, where F0 is the electron wind force 

for the jumping atom at the same interface but with an infinite film thickness a . The 

size regime discussed here is comparable to the electron MFP which is much larger than 

the atomic scale. Thus it is reasonable to assume that the effective scattering cross-section 

is not affected by the size confinement and canceled out in the ratio of F versus F0. 

The electron distribution function f can be evaluated based on the Boltzmann 

transport equation (BTE) 

0f fe
f f

m 


    r v

ε
v ,                       (4.8) 

where f0 is Fermi-Dirac distribution function and τ is the relaxation time. One can follow 

Fuchs-Sondheimer (F-S) method [Fuchs, 1938, Sondheimer, 1952] to obtain a solution of 

the BTE by introducing two interface scattering processes: specular scattering where the 

electron only reverses its momentum in the z direction, and diffuse scattering where the 

electron comes back to the equilibrium state after scattering.  The actual scattering 

process is somewhere between these two ideal cases. An empirical parameter, specularity 

parameter p, describing the probability of an electron to be specularly scattered is usually 
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introduced to obtain a tractable solution. For the case of pure diffuse scattering (p=0), the 

solution of the BTE without considering short length effect is [Sondheimer, 1952] 

0
1 ( , ) [1 exp( )],

x z

fe z
f v z

m v v





 
  


                       (4.9a) 

0
1 ( , ) [1 exp( )],

x z

fe z a
f v z

m v v





  
  


                      (4.9b) 

where f1 = f - f0 and the superscript “+” and “-” is for 0zv   and 0zv  , respectively. 

        One can now proceed to calculate the electron wind force and the result is 

*

0 .F Z Se j                                  (4.10)                                                                                      

In the above expression, *
0Z is a material constant and can be represented as: 

*

0

1
( ) ,

8
F F iZ D E E                             (4.11)                                                                                

where 
FE  is the Fermi energy and λ is the electron MFP. The factor S, which is called 

the size factor, can be expressed as 
/2

3

0

4sin cos [1 exp( )] .
cos

a
S d



  
 

                  (4.12)                                                                   

When a , 1S  and *

0 0 0 ,F F Z e j   where 
0  is the resistivity for the bulk 

material. Since 
0   is a constant for free electrons, one has *

0 01/Z  which agrees 

with Huntington’s result [Huntington et al., 1961].  One can define * *

0Z Z S  and the 

electron wind force is expressed in its conventional form
*F Z e j  . In this way, S 

represents the scaling effect on the effective charge and the effective charge number *Z

now scales with the film thickness a. As shown in Figure 4.4, In this case, *Z  is 

generally smaller than *

0Z  and decreases with scaling down of the film thickness due to 

reduced electron drift momentum resulting from increasing interface scattering. *Z

decreases rapidly when the film thickness is smaller than λ, the MFP.  According to the 
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F-S model, thin film resistivity is generally increased due to interface scattering with 

down scaling of the film thickness. Combining these parameters, one has the size effect 

on the wind force curve as shown in Figure 4.4(b), where a constant current j is assumed.  

The result indicates that the electron wind force in the interface of a nano-scale thin film 

is generally bigger than that for a film with infinite thickness due to increasing electron 

scattering at the interface. The increase in the scattering maximizes at 24% when the film 

thickness is about 0.8λ, then it starts to drop. 

 

Figure 4.4 (a) Size factor S and (b) electron wind force for a thin film as a function of 

film thickness a normalized by electron mean free path λ. 
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4.3 RECTANGULAR LINE 

        For a line with a rectangular cross-section as shown in Figure 4.5, a simple 

kinetic approach is adopted to calculate f.  Following Chambers [Chambers, 1950], when 

an electron at point O inside the wire travels to point P at the surface, the effective mean 

free path λ1 can be expressed as: [Chambers, 1950] 

1 [1 exp( / )]OP     .                          (4.13)        

  

 

Figure 4.5 Schematic of the model for a rectangular line with Cartesian coordinates. 

The electron distribution deviated from equilibrium can be calculated as 

[Chambers, 1950] 

/0 0
1( ) (1 )OP

z

z z

f fe
f OP v e

v m v

  
 D  
 

.                  (4.14)                                                                     

The electron wind force can be similarly formulated as in the thin film case as in 

Equation (4.10) with the following size factor: 
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/2

2 2 /

0 /2 0

4
cos sin cos (1 )

w

OPS dy d e d
w

 





    






    ,          (4.15)                                                        

where w and h is the width and thickness of the line, respectively. As shown in Figure 

4.6, by projecting OP to a cross-section of the line and dividing the section into 4 sub-

sections, the integration in Equation (4.15) can be further deduced [Chambers, 1950]. The 

integration can then be expressed as 

ED DC CB BAS S S S S    .                         (4.16) 

From symmetry, one has SED = SBA and SDC = SCB, since Equation (4.10) is averaging the 

electron wind force for an atom at various positions at the interface from point A to E in 

Figure 4.6.  

 

Figure 4.6 Schematics showing the line cross-section divided into 4 subsections for 

calculation of the size factor for electron wind force.  

It is can be shown that 
1tan ( / )

2 2

0 0 0

4
cos sin cos [1 exp( )]

sin cos

y hw

CB

h
S dy d d

w



    
  



     ,    (4.17) 

1

/2

2 2

0 0tan ( / )

4
cos sin cos [1 exp( )]

sin sin

w

BA

y h

y
S dy d d

w

 

    
  

     .    (4.18) 
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Then the scaling of S as a function of the line width can be plotted as shown in Figure 

4.7, where a MFP of 39nm is used. The trend is similar to the thin film case. When the 

line width scales down, Z
 * 

decreases. Again the wind force F increases to reach a 

maximum value then starts to drop. For a line with an aspect ratio AR =5, the maximum 

force is smaller than that in a line of 5nm wide, which is not shown in the figure. 

Quantum effect would become important when the line dimension is close to the electron 

wavelength (4.6Å for Cu).  Therefore Figure 4.7 is only plotted for the line width above 

5nm. The maximum value of Z* for a line with AR=1 is about 28% more than the value 

for a infinitely wide line, which is slightly larger than the thin film case, due to additional 

sidewall confinement.  In general, at the same line width, a higher aspect ratio implies a 

thicker line, leading to reduced confinement in the thickness direction and thus a 

reduction of the electron wind force. 
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Figure 4.7 (a) size factor S and (b) electron wind force for a line with rectangular cross-

section as a function of line width for lines with different aspect ratios 

(ARs). 

One should note that the electron wind force as shown in Figure 4.7 is averaged 

along the line width, i.e., the y direction. The formalism can also be used to calculate the 

force variation along the y direction.  As shown in Figure 4.8, the force along the line 

width is not uniform due to the non-uniform electron distribution. The atom at the center 
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of the interface receives a larger force than the atoms at the edge of the interface, 

especially for lower aspect ratio lines. For example, when AR=0.5, the force at the center 

is almost 2 times as large as the force at the edge. 

 

 

Figure 4.8 (a) Schematic showing the non-uniform distribution of electron wind force 

along line width direction. (b) Plot of electron wind force at different 

locations along line width for AR 0.5 and 2. p=0. 

        When 0p  , electrons are partially mirror-reflected by scattering at the interface. 

The effective mean free path can be derived as [Chambers, 1950]  

1
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y (w)

0.0 0.1 0.2 0.3 0.4 0.5

F
(y

) 
/ 

F
c

e
n

te
r

0.5

0.6

0.7

0.8

0.9

1.0

20nm width, AR=0.5

20nm width, AR=2

line edge line center

(b)

w

x
z

h

Fcenter
F(y)

(a)

y



124 

 

where PP’ is the distance traveled by an electron between two successive reflections. 

Then following the same procedure as in the 0p  case, the electron wind force has a 

similar form:
*

0F Z Se j  , with 
*

0

1
(1 )

8
F F iZ D E p  . By expanding the 

denominator in Equation (4.19) and comparing with Equation (4.15), the size factor S for 

0p  can be expressed in term of the S for 0p   

1

0 0, /

1

(1 ) n

p p n

n

S p p S 




 



   ,                      (4.20)                                                                  

where 
0, /p nS 

is the size factor when 0p  and MFP = / n . In Figure 4.9 (b), the size 

factor S and wind force ratio 
0/F F  is plotted with respect to p for a 20nm wide line and 

AR=2. It clearly demonstrates a decrease in the size factor but an increase in the wind 

force when there is more diffuse scattering than specular scattering, corresponding to a 

smaller p. According to the Soffer model [Soffer, 1967], a rough surface can reduce the 

specularity parameter p. This indicates that lines with smooth surfaces have better EM 

reliability because of a smaller electron wind force. 
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Figure 4.9 (a) Schematic showing successive reflections of electrons at interfaces. (b) 

F/F0 and S as a function of specularity parameter p for a line width 20nm 

and aspect ratio 2. 

 

4.4 GRAIN BOUNDARY SCATTERING 

Cu lines in interconnects are composed of multiple grains. As shown in Figure 

4.10, other than interface scattering, electrons also experience grain boundary (GB) 

scattering which can affect the EM driving force for atoms at the top interface. Those 

GBs parallel to the electron flow provide additional diffusion path for atoms and 

contribute to EM at the GB, a problem which is beyond the scope of the current study.  
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Instead, the study here only evaluates how GB scattering would modify the electron wind 

force for an atom at the interface.  

 

 

Figure 4.10 A Cu line composed of multiple grains, which provide scattering at grain 

boundaries in addition to interfaces. 

In this study, a bamboo-type grain structure is assumed in order to simplify the 

analysis. One follows the theory developed by Mayadas and Shatzkes (M-S) [Mayadas et 

al., 1970] which was formulated to calculate the electrical resistivity of polycrystalline 

films. When an electron impinges on a grain boundary, it encounters a potential barrier. 

By assuming this potential be a δ-function, an effective relaxation time τ
*
 can be deduced 

as [Mayadas et al., 1970] 

* / 1
cos


 



 
   

 
,                             (4.21)                                                                                      

where 
1

R

D R


 


with D as the effective grain size and R as the reflection coefficient of 

the GB. Although this simple expression for the effective relaxation time was initially 

deduced based on a Gaussian distribution of the grain size, a later study [Marom et al., 

2006] shows that it can also be applied to a lognormal or other distributions of the grain 
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size in a few nanometers range or larger.  Replacing the relaxation time τ by an effective 

relaxation time τ
*
, the formulation in terms of interface scattering can now be used to 

estimate the contribution from GB scattering. The size factor and wind force curves 

obtained are plotted in Figure 4.11 for a line with AR=1. A set of parameters p=0.5 and 

R=0.4  are used, which fit the resistivity experimental data well [Steinhogl et al., 2002, 

Sun et al., 2010]. The effective grain size D is chosen as three times of the line width and 

the resistivity is calculated based on the Matthiessen’s rule. As expected, by taking into 

account the GB contribution, the effective charge Z
*
e

 
is further reduced. For a 20nm wide 

line, Z
*
e

 
is reduced to only about 40% of an infinitely wide line. With additional 

contribution from GB scattering, the maximum electron wind force is found to reduce 

from 27% to 18% more than that for an infinitely wide line. This results in a partial 

cancellation of the overall effect and thus benefits EM reliability. 
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Figure 4.11 (a) Size factor S and (b) electron wind force for a rectangular line as a 

function of line width taking into account interface scattering and grain 

boundary scattering.  p=0.5, R=0.4 , AR=1, D=3*w. 
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4.5 TEMPERATURE EFFECT  

In the above analysis, room temperature is assumed for the Cu interconnects. 

However, when a chip is in service, the operating temperature is higher than room 

temperature. EM test is done at a higher temperature. So it is necessary to study the 

temperature effect of the electron wind force. Due to phonon scattering, the electron MFP 

is smaller at higher temperature. From resistivity data as shown in Figure 4.12, it can be 

deduced that  

0 0.00677 /cm K
T





 


,                   (4.22) 

where 0  is the resistivity induced by phonon scattering. In the free electron model, the 

product of resistivity and electron MFP is a constant independent of temperature 

0 const   .                           (4.23)  

Therefore, one can deduce the electron MFP for Cu at different temperatures.   

 

 

Figure 4.12 Cu resistivity as a function of temperature. [Sun et al., 2010] 
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Assume the chip operation or service temperature to be at 110°C and the EM test 

temperature at 300°C. One can calculate the electron MPF at these two temperatures to 

be 29nm and 19nm, respectively. Then the Z* and wind force for each technology node at 

these two temperatures can be calculated and they are shown in Table 4.1. The AR is 

chosen as 1.8. The tabulated results show that Z* can be up to 20% different at the testing 

temperature and operating temperature. But the electron wind force remains relatively 

constant with only a small temperature dependence, about 2%, at these two temperatures.  

 

Table 4.1 Temperature effect on Z
*
 and electron wind force for different 

technology nodes.  

 

 

4.6 CONCLUSIONS 

In conclusion, a size effect on the electron wind force for interface EM in a thin 

conductor film and a rectangular conductor line with a dielectric cap is evaluated. The 

analysis is relevant to Cu interconnects for current and the near-future technology nodes. 

The confinement by the film/line boundaries not only reduces the electrical conductivity, 

but also affects the effective charge Z
*
e. The effective charge for a 20nm wide line is 

Tech node 32nm 22nm 16nm 11nm

Line width 45nm 32nm 22nm 16nm

S (300°C) 0.80 0.74 0.66 0.58

S (110°C) 0.71 0.64 0.54 0.47

difference 11% 14% 18% 19%

F/F0(300°C) 1.05 1.06 1.08 1.10

F/F0(110°C) 1.07 1.09 1.10 1.12

difference 1.9% 2.8% 1.9% 1.8%
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reduced to only 40% of that for an infinitely wide line. The electron wind force in this 

size region is slightly larger than that for an infinitely wide line even for a constant 

current density. Due to the fact that EM tests are performed at a relatively higher 

temperature at which the electron MFP is smaller than at room temperature, the 

temperature effect on the scaling of the effective charge and wind force is studied. The 

effective charge can have up to 20% difference for the service condition and EM testing 

condition. The wind force remains relatively constant at these two temperatures. 

 In summary, through the study in this chapter, one additional scaling factor for 

EM in Cu interconnects is evaluated.  
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Chapter 5: Fabrication of Silicon Nanotrenches by Self-aligned Sub-

lithographic Masking Technique 

This chapter investigates fabrication methods for making high-quality Si 

nanostructures. The purpose is to fabricate nanotrenches with well-defined geometry and 

deposit Cu into these trenches to study their resistivity and electromigration 

characteristics. Electron beam lithography and Si anisotropic wet etching are employed in 

the fabrication. To overcome the etching-related problems such as trench widening 

during etching, a self-aligned sub-lithographic masking technique is developed. This 

mask is a polymer layer formed along a pre-defined wide trench in fluorocarbon plasma. 

The subsequent wet etching yields nanotrenches with atomically smooth sidewalls along 

the two edges of each predefined trench. Si nanotrenches with width down to 20nm and 

AR up to 20 have been successfully fabricated with such technique. Potential applications 

of the structure in nanofluidics are discussed.   
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5.1 INTRODUCTION AND MOTIVATION 

Due to the increasing difficulty of experimental study, modeling work is 

becoming more useful and important in advanced technology nodes. It is commonly 

assumed that interconnect lines are rectangular to simplify the model. For example, in 

Chapter 3, a rectangular line is assumed for void growth modeling and grain growth 

simulation. In Chapter 4, the same assumption is also adopted for electron wind force 

calculation. Models of resistivity scaling as well as many other studies also use 

rectangular lines for the sake of simplicity. Figure 5.1(a) shows a schematic of such an 

ideal rectangular structure. However, the cross-section of an actual Cu interconnect line 

usually has a taped profile, as shown in Figure 5.1(b). Therefore, a big gap in shape exists 

between the Cu lines in models and realistic structures. Having Cu lines with rectangular 

profiles would be of crucial importance to validate the models for resistivity, void 

growth, electron wind force and grain growth etc.. 

As scaling continues, the EM of Cu interconnects is ever more sensitive to 

process variations. A process defect may account for a considerable amount of variation 

in a Cu line in advanced technology nodes. An example for the line edge roughness 

(LER) induced line width variation has already been shown in Figure 1.9. Figure 5.1(c) 

shows an SEM image of a Chromium (Cr) line with LER. The LER does not scale 

similarly with line width. The current optical lithography reaches resolution limit at 22nm 

node but the next generation EUV lithography is not yet ready. The LER problem is 

expecting to have more effect on EM in the coming technology nodes due to the 

increasing surface to volume ratio. In addition, LER can also be introduced by reactive 

ion etching (RIE). The LER and other small process variations may easily induce a 

different failure mode for EM. This poses difficult challenge for the study of EM 
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mechanisms beyond 22nm node. Because process variations are random, the lifetime 

could yield different distributions for different sets of samples. Therefore, it is highly 

valuable to develop processes to fabricate well controlled Cu nanolines with smooth 

sidewalls for study of the intrinsic EM mechanisms. 

 

 

Figure 5.1 (a) Common model structure with rectangular cross-section and smooth side 

walls; (b) Cu interconnect line cross-section showing a taped profile [Cabral 

et al., 2010]; (c) Cr line fabricated showing LER.  

Since Cu lines are made by the damascene process, the profiles and the sidewalls 

of the Cu lines are mainly determined by the quality of trenches. The objective of this 

chapter is to develop methods for fabricating nanoscale trenches with well-defined 

geometries: rectangular cross-section and smooth sidewalls.  

It is well known in Si micromachining that the etching of a single crystalline Si in 

solutions such as potassium hydroxide (KOH) and tetramethylammonium hydroxide 

(TMAH) is anisotropic. Different crystalline planes have very different etching rates. 

Figure 5.2 shows the etching rates for (111), (110) and (100) planes in 40 wt% KOH 

(a)

(b)

(c)
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solution at different temperatures [Marchetti et al., 1998]. The etching for (111) plane is 

two orders of magnitude slower than the other two planes. Etching virtually stops at the 

(111) plane and a smooth surface exposes after etching.   

 

 

Figure 5.2  Si etching rates in KOH with respect to temperature for different crystalline 

planes. [Marchetti et al., 1998] 

Such feature of anisotropic wet etching (AWE) is widely used for fabrication of 

test structures for microelectromechanical systems (MEMS) study. A (110) Si wafer can 

be employed to achieve vertical sidewalls and a rectangular profile. If a trench pattern is 

defined along <112> direction, the Si wet etching goes vertical and exposes two (111) 

planes that are perpendicular to the (110) wafer surface. Figure 5.3 shows an SEM image 

of a microtrench etched on (110) wafer by a TMAH solution. The exposed sidewall is a 

smooth (111) plane.  
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Figure 5.3  Si trench etched on an (110) wafer in TMAH solution. [Wu et al., 2011] 

The trench pattern at microscale shown in Figure 5.3 can be defined by 

conventional optical lithography (hard contact, i-line) with resolution around one micron. 

To achieve nanoscale trench width, electron beam lithography (EBL) is used in this 

study.   

  

5.2 FABRICATION OF SI NANOLINES 

The work started with fabricating Si nanolines which are reverse patterns of Si 

nanotrenches. The EBL system used in this study was a JEOL JBX 6000 system with a 

beam energy of 50 keV. The resist used was ZEP 520A, a mixture of ZEP520 and ZEP 

A. It has higher sensitivity than Poly(methyl methacrylate) (PMMA) due to the αCl group 

and higher dry etch resistance due to the α-methylstyrene.  

Figure 5.4 shows the basic process flow chart for the fabrication of Si nanolines 

with EBL and AWE. TMAH was selected as the etchant solution because of its CMOS 

compatibility. TMAH etching was performed at a temperature of around 82°C. The 

processes started with Si thermal oxide (SiO2) and Cr deposition in which SiO2 was used 
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as an etch mask for Si etching in TMAH and Cr a conductive layer for EBL to avoid 

charging problem. The thickness of these two layers varied in different processes but all 

about the order of 10nm. After EBL, the pattern was transferred down to Si layer by dry 

etching of Cr and SiO2 through RIE. Then the TMAH etching was performed to etch Si. 

The processes were completed by removal of Cr and SiO2 using diluted BOE (buffered 

oxide etchant) and Cr etchant respectively.  

 

 

Figure 5.4  Process flow for fabrication of Si nanolines with EBL and TMAH etching.  

A dose test for EBL should be performed prior to real pattern writing. The 

standard dose for the JEOL system is 180µC/cm
2
. A dose for actual exposure can vary 

from -60% to +10%, where -60% means 60% lower than the standard dose and +10% 

means 10% higher than the standard dose. Figure 5.5 is an example of dose test for 

500nm wide lines with 1µm pitch. The SEM images of the e-beam resist are taken after 

development. In this particular case, -40% is found as the right dose to generate smooth 

clean patterns reproducing the feature size designed in graphic database system (GDS) 

files.  
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Figure 5.5 An example of dose test for EBL.   

 One critical issue for the nanoline fabrication is aligning the line to the <112> 

crystalline direction. The requirement of alignment precision is much more stringent for 

nanoscale fabrication compared to microscale fabrication. The wafer flat or cleave edge 

usually has a misalignment of about 2° with <112> direction. A simple estimation 

indicates that a misalignment of 0.6° will etch away a nanoline initially designed of 

100nm wide and 100µm long. To overcome this issue, an alignment technique with 

precision of 0.01° has been developed at UT Austin [Li, 2007, Luo, 2009]. Figure 5.6(a) 

shows an alignment test pattern array with angle varying in the range of ±2°. Figure 

5.6(b) shows the SEM images of the test pattern after TMAH etching. For those pattern 

misaligned with <112> direction, the Cr lines peel off because the Si underneath is etched 

away. The patterns in the red rectangular align better with <112> direction. The best 

alignment has the widest Si line width under Cr and SiO2. 

(a) (b)

(c)
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Figure 5.6 (a) The designed angle alignment test pattern. An array contains 401 

patterns. The angle between 2 neighboring patterns is 0.01°. (b) The 

alignment test pattern after TMAH etching.  

Figure 5.7 shows SEM images of Si nanolines fabricated with this method. The 

plan view exhibits clearly that the width of lines is uniform and LER is suppressed. The 

side view shows the vertical etched profile with atomically smooth sidewalls. The 

crystalline directions are also marked in the side view image. Si nanolines with such a 

high quality open up many interesting studies on their mechanical and electrical 

properties [Li, 2007, Luo, 2009, Li et al., 2008, Li et al., 2009].  

   

(a)

(b)



140 

 

 

Figure 5.6 (a) Plan view and (b) side view (52°) of Si nanolines fabricated by EBL and 

AWE.   

A force-sensor system was developed to measure the mechanical response of the 

Si nanolines to a lateral force [Niese et al., 2010]. This work is performed in Dr. Michael 

Hecker’s group in Globalfoundries at Dresden in Germany. Figure 5.7 (a) shows an SEM 

image of a Si nanoline, which is deflected by a tungsten tip. The in-situ observation 

shows that the nanolines can recover from a relatively large deflection. The finite element 

analysis (FEA) demonstrates that the maximum strain can be beyond 9% before the 

nanolines yield, as shown in Figure 5.7(b). This value is much larger than the yield strain 

for bulk Si (~2%). It also verifies the high quality of the Si nanostructures fabricated by 

this method.  

][ 101

][ 211
][001

][110

][111

(a) (b)
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Figure 5.7 (a) Si nanoline deflected by a tungsten tip; (b) FEA shows the strain 

distribution in a Si nanoline when deflected.  

With this fabrication technique, a line width down to 20nm range and with an 

aspect ratio (AR = thickness over width) as high as 40 has been achieved. Figure 5.8 (a) 

shows Si nanolines with 30nm width, while Figure 5.8(b) shows Si nanolines with AR of 

about 40.  

 

 

Figure 5.8 (a) 30nm wide Si nanolines; (b) Si nanolines with AR of 40.  
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5.3 FABRICATION OF SI NANOTRENCHES WITH CONTACT PADS 

Trenches are reverse patterns of lines. So the method for Si nanoline fabrication 

can be applied to Si nanotrenches as well. Figure 5.9 shows SEM images of an array of 

90nm wide Si nanotrenches. The same vertical profile and smooth sidewalls can be 

observed. The trench depth in this case is about 900nm. It can be better controlled if a 

silicon-on-insulator (SOI) wafer is used.  

 

 

Figure 5.9 (a) Plan view and (b) side view (tilt = 30°) of Si nanotrenches fabricated by 

EBL and AWE.   

The motivation of nanotrench fabrication is to deposit it with Cu and measure the 

electrical properties. So contact pads need to be integrated with the nanotrenches. Figure 

5.10 shows a designed pattern for an array of nanotrenches in which each nanotrench is 

integrated with four contact pads. The shape of the contact pad is a rhombus with length 

of 100µm. Due to the relatively large area of the contact pads, a bigger electron beam 

current is required for exposure of EBL in order to save time. A current of 10nA is 

selected for the exposure of contact pads, while the current for the exposure of 

nanotrenches is 100pA to achieve better resolution. Such two-layer exposure requires 

(a) (b)

http://dict.youdao.com/search?q=rhombus&keyfrom=E2Ctranslation
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alignment between two writings. Therefore alignment marks have to be fabricated first on 

the chip, which requires another lithography step. Figure 5.11 shows the process flow for 

fabrication of nanotrenches with contact pads. The alignment marks used in this study is 

Au marks with thickness of around 100nm. 

 

Figure 5.10 Designed pattern for an array of nanotrenches integrated with contact pads.  

 

 

Figure 5.11 Process flow for fabrication of nanotrenches with contact pads. 
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 Figure 5.12 shows a successful implementation of the process flow in which a 

160nm wide nanotrench connected with four contact pads are fabricated. The length and 

depth of the trench are 30µm and 470nm, respectively. The distance between two inner 

contact probes is 28µm. 

 

 

Figure 5.12 (a) Optical microscopy (OM) image of a nanotrench with contact pads after 

resist development; (b) SEM image of a Si nanotrench with contact pads 

after etching; (c) SEM image of the Si nanotrench.  

 Then the barrier deposition and Cu plating were performed in the fabricated Si 

nanotrenches, in collaboration with J. Bartha’s group at Technical University Dresden in 

Germany. Figure 5.13 shows a cross-sectional view of Si nanotrenches that are filled with 

electro-chemical deposition (ECD) Cu. Cu was also plated into the Si nanotrenches with 

contact pads. After Cu filling, the Cu overburden was removed by chemical-mechanical 

polishing (CMP). Figure 5.14 is an optical microscope (OM) image of a Cu line with 

contact pad

nanotrench

After exposure After etching(a) (b)

(c)
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contact pads after CMP. Electrical measurement was also performed on the Cu nanolines 

with contact pads. The resistivity measured is about 2-4 µΩ-cm, which falls in the 

reasonable range for ECD Cu [Zhang et al., 2007]. 

 

 

Figure 5.13 TEM image of the cross-section of Si nanotrenches deposited with ECD Cu. 

 

Figure 5.14  OM image of a Cu line deposited in the Si nanotrench connected with 

contact pads. The image was taken after Cu CMP. 

Cu

Si
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The electron mean free path for Cu at room temperature is 39nm. To observe size 

effect due to interface or grain boundary scattering, the width of Cu line should be in this 

range. However, it is difficult to fabricate Si nanotrenches with width down to this range, 

although the resolution of EBL can be as low as 20nm. This is because the etching 

induced trench widening effect, as illustrated in Figure 5.15. A native oxide layer is left 

on Si after the wafer is taken out of the RIE chamber. This oxide layer has to be removed 

by dipping into BOE before Si etching using TMAH. BOE, which is a diluted HF 

solution, etches SiO2 in an isotropic manner. An undercut forms after BOE dipping. The 

widened pattern is then transferred into the Si layer causing the Si trench widened too. 

Even if one successfully patterned a 20nm wide trench on the resist, the width of Si 

trench would still be around 100nm after etching. And this width is not well controlled. A 

novel technique is to be developed in the next section to eliminate this trench widening 

effect.  

 

Figure 5.15 Process flows showing the trench widening effect in Si nanotrench 

fabrication.   
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5.4 SELF-ALIGNED SUB-LITHOGRAPHIC MASK  

5.4.1 Fundamentals of Fluorocarbon Plasma 

Fluorine-based chemistries are commonly used in RIE of SiO2. The reaction 4F + 

SiO2  SiF4 + O2 generates very volatile products SiF4 [Plummer et al., 2000]. The 

etching of SiO2 with gases such as SF6, CF4 and NF3 is very isotropic. Carbon content is 

usually added into the plasma to achieve anisotropic etching, thus, to maintain the critical 

dimension (CD). High Carbon (C) to Fluorine (F) ratio leads to polymer formation. The 

polymer on the sidewalls can work as an inhibitor to prevent the undercut induced by 

lateral etching. Polymer on the bottom of pattern receives ion bombardment and 

anisotropic etching achieves through a bond-breaking process. Hydrogen is effective in 

increasing the C to F ratio in plasma by reacting with atomic F to form HF. CHF3 is a 

suitable gas to generate plasma with high C to F ratio. Small amount of O2 is also added 

to keep the etching vertical. Otherwise, the polymer formed on sidewalls would be too 

thick, which leads to a taped etching profile. CHF3 and O2 mixture are the gases used in 

this study for SiO2 RIE.  

Another benefit of high C to F ratio is the increased etch selectivity of SiO2 over 

Si. The polymer formation is more effective on Si surfaces than on SiO2 surfaces. The 

reason is believed to be that the oxygen in SiO2 reacts with carbon, forming carbon 

monoxide [Plummer et al., 2000]. This process leads to less polymer accumulation in the 

SiO2 surfaces compared to Si surfaces during etching. The polymer residue layer on the 

Si surfaces should be removed after etching. This is achieved by using an O2, CF4 or H2 

plasma treatment at an elevated temperature. The polymer residue can also be removed 

by wet treatment in a Piranha solution which is a mixture of sulfuric acid (H2SO4) and 

hydrogen peroxide (H2O2).  

http://en.wikipedia.org/wiki/Sulfuric_acid
http://en.wikipedia.org/wiki/Hydrogen_peroxide
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5.4.2 Polymer Residue Layer as an Etch Mask 

It is found that the polymer residue can work as an etch mask for Si anisotropic 

wet etching (AWE). As shown in Figure 5.16, the polymer residue, which is called 

composite material by plasma (CMP) in Ref. [Normand et al., 2001], protects the Si 

underneath in the etching solution of ethylenediaminepyrocatechol-water (EPW). EPW is 

another kind of anisotropic etching solution similar to KOH and TMAH.  

 

Figure 5.16 SEM image of mesas on (100) Si anisotropically etched by EPW. Both the 

polymer residue (CMP) and SiO2 work as etch masks. [Normand et al., 

2001]  

The capability of the polymer residue being an etch mask in the TMAH solution 

is tested in this study. Figure 5.17 shows SEM images of (110) Si treated with CHF3/O2 

plasma with different plasma conditions and then etched in TMAH. In Figure 5.17(a), the 

polymer residue only covers isolated areas of Si surface, which leads to formation of Si 

islands with size in 200nm range after Si etching. The coverage of Si by the polymer is 

more satisfactory in Figure 5.17(b) and (c). In Figure 5.17(d), the Si surface is masked by 

the polymer residue well. The plasma condition for Figure 5.17(d) is: 50 mTorr pressure, 

40 sccm flow rate for CHF3, 3 sccm flow rate for O2 and 360V DC bias.  

CMP: composite material by plasma,
i.e., polymer residue
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Figure 5.17 Masking capabilities for the polymer residue formed in different plasma 

conditions in the TMAH solution. The mask protects Si underneath better 

and better from (a) to (d).  

 With the plasma conditions described above, the thickness of the polymer residue 

layer is about 2nm, measured by spectroscopic ellipsometry (SE). The chemical 

composition in the polymer is analyzed by X-ray photoelectron spectroscopy (XPS). The 

result presented in Figure 5.18 shows that the polymer is mainly composed of fluorine, 

carbon and oxygen. This composition and their percentage are found to be relatively 

independent on the thermal oxide thickness. Even for a blanked wafer with only native 

oxide on it, the polymer layer after the same plasma treatment is composed of similar 

chemistry.   

(a)
(b)

(c) (d)
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Figure 5.18 Chemical composition analysis of the polymer residue layer by XPS.  

 

5.4.3 Sub-lithographic Mask 

 Till now, only the masking property of the polymer layer in TMAH has been 

studied. To achieve sub-lithographic patterning, the polymer has to be removed partially. 

For this purpose, one can make use of a unique feature observed in RIE – microtrenching 

effect.  

 Microtrenching is a phenomenon that the etch rate near the corners of a trench 

bottom is larger than at the center of the trench bottom. This leads to two smaller 

mictrotrenches at the corners as shown in Figure 5.19(a). It is caused by non-uniform ion 

bombardment in the trench. One of the mechanisms proposed is that the energetic ions 

impinging on the sidewalls at grazing angles (>80°) are reflected towards the bottom of 
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the trench, as shown in Figure 5.19(b). The ion bombardment removes more polymer 

near the corners of the trench and accelerate the etch rate in that area. 

 

 

Figure 5.19 (a) Cross-sectional SEM image of microtrenching effect; (b) mechanism of 

microtrenching—sidewall reflection of ions. [Cui, 2008]   

 Another mechanism for microtrenching is the negative charging of sidewalls 

[Shul et al., 2000], as shown in Figure 5.20(a). Due to the lighter masses, electrons in the 

plasma move much faster than ions, thus the sidewalls of the trench may be charged by 

electrons. The electric field created by the charged sidewalls deflects the ion flux and 

attracts more ions close to the corners of the trench. This leads to more ion sputtering and 

polymer removal, thus, a higher etch rate, near the corners. 

 With either mechanism, less polymer residue near the corners of a trench 

compared to the center of the trench is expected after SiO2 RIE. This has been verified by 

the high resolution TEM image of the cross-section of a trench after SiO2 RIE, as shown 

in Figure 5.20(b). Such non-uniform polymer distribution in the trench can be used as a 

sub-lithographic mask. As proposed in Figure 5.21, after SiO2 RIE, the polymer residue 

covers most of the Si in the trench except the area close to two corners. The wafer is then 

(a) (b)
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etched in TMAH without polymer removal (A BOE dipping is still performed to remove 

oxide formed when the wafer is exposed to the air.). Only two very narrow nanotrenches, 

which are self-aligned with the original pattern edges, will be etched into Si. Therefore, it 

is named as self-aligned sub-lithographic mask (SSM).   

 

 

Figure 5.20 (a) Schematic of sidewall charging leading to more ion sputtering near trench 

corners; (b) TEM cross-sectional view of the distribution of polymer residue 

layer in a trench after SiO2 RIE.  

 

 

Figure 5.21 Process to fabricate nanotrenches by using the polymer residue as SSM.  
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 Figure 5.22 shows SEM images of nanotrenches fabricated by the SSM technique. 

The initial pattern designed is 200nm wide trenches with 450nm pitch. The Si trench 

width after fabrication is 60nm. This technique not only overcomes the challenge of 

trench widening mentioned in last section but also shrinks the trench width compared to 

lithographic definition. Furthermore, the pitch of the pattern is also doubled, for example, 

there are two 60nm wide trenches with 450nm spacing. The SEM images clearly show 

that this method still inherits the high quality (rectangular profile and smooth sidewalls) 

of trenches. In addition, the yield of such method is surprisingly high as long as the 

plasma is tuned to a right condition. No defect is found in a large array of nanotrenches.   

 

 

Figure 5.22 Nanotrenches fabricated by SSM technique. Trench width is 60nm. (a) Plane 

view; (b) Side view (tilt = 45°).   

It is interesting to compare the SSM method with the self-aligned double 

patterning which is widely used in semiconductor manufacturing in advanced technology 

nodes. As shown in the process flow in Figure 5.23, spacer masks are formed by an 

additional film deposition and etching, to overcome the resolution limit of optical 

lithography and to double the pitch. One of the main applications for such technique is to 

fabricate ultrathin fins for FinFETs. A trench is a reverse pattern of a fin, but the ideas of 
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improving the resolution limit and doubling pattern pitch are similar for these two 

methods. However, the SSM method in this study does not require any additional thin 

film deposition and etching steps. The mask is self-formed during the SiO2 RIE. In fact, it 

even simplifies the process step, by eliminating the polymer residue removal step, 

compared to conventional process shown in Figure 5.4.   

 

 

Figure 5.23 Process flow of self-aligned double patterning: first pattern; deposition; 

spacer formation by etching; first pattern removal; etching with spacer 

mask; final pattern.  

 Since the final trench width is independent of the initial trench width designed, 

one question naturally emerges: how to control the trench width? In principle, it can be 

controlled by changing plasma conditions and the thickness of SiO2 layer to tune the ion 

sputtering distribution. As an example, four samples were prepared under the same 

processes except the power of plasma for SiO2 RIE. Varying power of 300W, 400W, 

500W and 600W were used. The four samples were from the same wafer and 

experienced the EBL in a single writing, which ensures their identical crystalline 

alignments. After RIEs, the four samples were attached to a single substrate and etched in 
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TMAH at the same time. The width of trenches was measured by SEM and the results are 

plotted in Figure 5.24. It is found that higher RIE power produces wider trenches. And 

the relationship between the power and trench width is linearly correlated in the range 

observed. The polymer residue near the corners is mainly removed by ion bombardment. 

The ions in the plasma are more energetic to sputter the polymer, when higher RIE power 

is used. This leads to less polymer coverage close to the two edges of a pre-defined 

trench, which probably explains why the width if Si trenches is larger with higher RIE 

power.   
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Figure 5.24 Control the width of Si nanotrenches by SiO2 RIE power.   

 The width of the nanotrenches fabricated by the SSM technique can be down to 

20nm range. Figure 5.25 shows two examples of such ultra narrow nanotrenches: 35nm 

wide for one; 25nm wide for the other. 
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Figure 5.25 Nanotrenches with (a) 35nm width and (b) 25nm width.   

 The width uniformity of the nanotrenches is also explored. Figure 5.26 shows the 

width uniformity along a 12mm-long nanotrenches. The measured width variation at 

different locations of the long trench is only 1.3nm. Figure 5.27 shows the width 

uniformity along an array of nanotrenches. The measured width variation for different 

trenches in the array is 1.4nm. Note that the measured variation is mainly caused by the 

SEM measurement error because it is beyond the resolution limit of the microscope. The 

actual line width can be even more uniform than the measured.    
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Figure 5.26 Width uniformity along a single nanotrench. 
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Figure 5.27 Width uniformity along an array of nanotrenches. 

 It turns out that the polymer residue layer is physically quite tough to withstand a 

relatively long time during TMAH etching. Figure 5.28 shows that the polymer mask 

protects the Si underneath well when the nanotrenches are etched to about 2µm deep. The 

aspect ratios (ARs) for the trenches showing in Figure 5.28(a) and (b) are about 20 and 

15 respectively.   
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Figure 5.28 (a) Cross-sectional view of nanotrenches with AR~20; (b) Side view of 

nanotrenches with AR~15 (tilt = 45°).  

 

5.4.4 Potential Applications 

The motivation of the nanotrench fabrication is to provide ideal structures for Cu 

deposition and facilitate proper measurement of Cu line properties. However, the 

nanotrenches fabricated by the newly developed SSM technique open up possibilities for 

other potential applications. These applications are briefly discussed below.    

 One interesting area is nanofluidics. When contacted with an aqueous solution, 

the surfaces of most solids gain a net (either positive or negative) charge density due to 

chemical reactions such as protonation or deprotonation, adsorption, or defects [Abgrall 

et al., 2008, Kirby et al., 2004]. As shown in Figure 5.29(a), the charge is screened in the 

solution by the so called electrical double layer: a layer of adsorbed ions (Stern layer), 

and a mobile layer (diffuse layer). The screen length is called the Debye length λd. λd is 

typically of the order of 1-100nm which is the width range of the nanotrenches fabricated 

by SSM. Meanwhile, as shown in Figure 5.29 (b), many bio-molecules are also in the 

same size range. The comparability of the size range opens up opportunities for nanoscale 
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fluidic transport studies [Schoch et al., 2008] and energy conversions [Daiguji et al., 

2004, Liu et al., 2005, Author, 2007, Yang et al., 2003]. It also provides tools for 

manipulating small molecules [Karnik et al., 2005] and nanoparticles [Abgrall et al., 

2008], as well as devices for bio-analysis [Liang et al., 2008, Tegenfeldt et al., 2004], 

separations [Han et al., 2000] and drug delivery [Sinha et al., 2004], etc.. 

 

 

Figure 5.29 (a) Schematic of the electrical double layer at solid/liquid interface [Abgrall 

et al., 2008]; (b) Size range of bio-molecules.  

 The nanotrenches need to be sealed to form nanochannels for nanofluidic 

applications. The sealing can be performed by a plasma-enhanced chemical vapor 

deposition (PECVD) of SiO2, as shown in Figure 30.  

 

 

Figure 5.30 Nanotrenches sealed by PECVD SiO2 to form nanochannels.  
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 As a demonstration, an array of 20 nanochannles with 60nm width and 5µm 

spacing was fabricated. A solution of bio-molecules labeled with fluorescein flowed 

through the nanochannel array. Fluorescence microscopy images taken are shown in 

Figure 5.31. It clearly demonstrates that all the 20 nanochannels are flow-through 

channels. The solution used was 0.5 mM Biotin-4-fluoroscein, 50 mM Tris-HCl with pH 

7.5 and 5 mM EDTA. 

 

 

Figure 5.31 Fluorescence microscopy image of nanochannels flowed with solutions.  

 The Si nanochannels fabricated in this study have atomically smooth sidewalls, 

which cannot be achieved by other fabrication methods [Perry et al., 2006, Martin et al., 

2005, Xia et al., 2008, Tas et al., 2002]. This not only provides uniform surface 

properties, but also decreases the friction of inner surface of the nanochannels. The latter 

advantage is important to reduce the adsorption of molecules to the channel walls, thus, 

reduce the chance for channel clogging, the biggest challenge for nanofluidic 

applications. 

50µm
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 Another critical challenge in developing many innovative nanofluidic devices is 

to fabricate nanochannels that are narrow in width but long in length. For example, DNA, 

the most important bio-molecule, has width in nanoscale but length in macroscale 

(centimeters). To use nanochannels for DNA sequencing, it requires long continuous 

nanochannels to stretch and stabilize the DNAs. Otherwise, the random motion of the 

parts of the DNAs outside the nanochannels would result in severe noise. However, the 

length of nanotrenches defined by direct writing of nanoscale lithography tools is limited 

by their writing field (about 100µm). For example, the JOEL EBL system employed in 

this study has a writing field of 80µm. The stitching error between two writing fields 

would make it difficult to pattern long continuous nanotrenches. With the SSM 

technique, the nanotrenches are obtained from trenches patterned with relatively larger 

width. It can overcome the writing field limit. Figure 5.32 shows four arrays of 40nm 

wide and 9-cm long nanotrenches fabricated in a 4-inch wafer. The ratio between the 

length and width is 2.2*10
6
. To the best of the author’s knowledge, they are the longest 

Si nanotrenches in the world. Note that, the capability to fabricate arrays of nanochannels 

with uniform properties is also of great importance to increase the throughput of the 

device. This is also a key advantage of SSM method. 

 SSM does not require nanoscale patterning to obtain nanotrenches. Therefore, a 

conventional optical lithography system with resolution at microns can be used. 

However, the AWE requires alignment of the trench with <112> direction. The LER 

induced by low resolution optical lithography may disable the localized pattern to meet 

the direction alignment requirement. To overcome this issue, an AWE in TMAH can be 

performed to expose the smooth sidewalls and eliminate the LER. Then an oxidization 

and SiO2 RIE can be employed to form the SSMs, followed by another AWE to obtain Si 
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nanotrenches along the sidewalls of the microtrenches, as shown in Figure 5.33. Si 

nanotrenches with 60nm width were fabricated by using this approach. 

 

Figure 5.32 Arrays of ultra-long (9cm) nanotrenches.  

 

Figure 5.33 Nanotrenches fabricated by using a conventional optical lithography. The 

inset is a cross-sectional view.  
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5.5 CONCLUSIONS 

Motivated by bridging the gap between modeling studies and realistic Cu 

interconnect structures, this chapter investigated the methods of making Si nanostructures 

with high qualities. AWE of Si was used to achieve rectangular profiles and smooth 

sidewalls on (110) Si wafers. With the EBL and crystalline direction alignment, Si 

nanolines with the width down to 20nm range and AR as high as 40 was fabricated. The 

same approach was also used to fabricate Si nanotrenches with the width down to 90nm 

range. Contact pads were also integrated with the nanotrenches. Cu was deposited into 

the trenches and the Ohmic electrical behavior of the Cu line was measured.  

To overcome the trench widening effect during etching, an SSM technique was 

developed to fabricate ultra-narrow nanotrenches. The method uses the polymer residue 

formed during SiO2 RIE in fluorocarbon plasma as an etch mask for Si AWE. Similar to 

the well-known microtrenching effect in RIE, the area near the edges of a pre-defined 

trench bottom receives more ion bombardment compared to the center of the trench 

bottom. It removes more polymers near the edges as well. The subsequent AWE of Si in 

TMAH only etches the Si close to the edges, leaving the Si underneath the polymer at the 

center of the trench bottom intact. This forms two nanotrenches along the two edges of 

the pre-defined trench. Nanotrenches with width down to 20nm range and AR as high as 

20 were fabricated with the SSM technique. The width is uniform along both a single 

trench and an array of trenches. The world’s longest (9cm) Si nanotrenches were 

fabricated with this method overcoming the writing field limitation of EBL. 

Nanochannels were formed by sealing the nanotrenches with PECVD SiO2. Their 

potential applications in nanofluidics were discussed.  
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Chapter 6: Conclusions and Suggestions for Future Work 

6.1 CONCLUSIONS 

Although EM reliability has been widely investigated for many years, the 

continuing scaling poses new challenges to reliability concern in Cu interconnects. New 

methods were developed in this dissertation to study and understand Cu EM. This 

includes investigating EM-induced initial void growth by resistance traces analysis, 

modeling void growth in Cu interconnects, and studying the scaling effect on EM driving 

force. A method was also developed in the dissertation to produce ideal Si nanotrenches 

for deposition of Cu nanolines.   

Chapter 2 studied the EM-induced void formation mechanism in Cu 

interconnects. A method to derive the initial void growth rate at Stage I by analyzing the 

EM resistance traces was developed. The method compares the calculated failure time 

tf_calc based on Rstep and Rslope with the measured failure time tf to obtain the difference 

between the void growth rate at Stage I and Stage III. EM tests were performed on the 

multi-link structures to statistically vary the failure time, Rstep and Rslope.  Failure analysis 

and Rstep values both showed that the lines are failed by trench type voids. The plot of 

tf_calc versus tf  shows a linear curve with slope 0.4 and intercepts with tf  axis, indicating 

that the void growth rate at Stage I is smaller than at Stage III.  

Chapter 3 modeled the initial void growth induced by EM in Cu interconnects. 

The model extends the Korhonen model which was applicable only to Stage III. The 

approach taken is to divide the Cu line into two regions based on the void segment and 

calculate the stress evolution in the two regions separately. Analytical solutions for the 

void growth rates at Stage I and Stage III were obtained. The modeled void growth rate 

depends on the initial thermal stress in the Cu line. By imposing a compressive thermal 
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stress, which is probable for Cu interconnect line at EM test temperature, the model 

generates failure time in good agreement with the experimental data shown in Chapter 2.  

In Chapter 3, grain growth simulations based on Potts model were also performed 

considering interconnect structures with overburdens. Both normal grain growth from the 

bulk and abnormal grain growth from the surface and interfaces were included in the 

simulations. The grain growth from sidewalls was found to be dominant, especially for 

decreasing line width. This is because of the relatively high aspect ratio of a Cu 

interconnect line and the increased surface to volume ratio when line width scales down. 

This leads to small grains in the trench bottom, in agreement with experimental 

observations. The simulated grain structure is used as input of material properties to 

support the void growth modeling. 

Chapter 4 studied the size effect on the electron wind force for a thin film and a 

rectangular line with dimensions comparable to the electron mean free path in Cu (39nm 

at room temperature). The problem was modeled by considering the momentum transfer 

between electrons and a defect atom at the top interface. The result shows that the scaling 

effect on the effective charge number Z* can be represented by a size factor S depending 

on the film/line dimensions. The confinement by the film/line boundaries not only 

reduces the electrical conductivity, but also affects the effective charge Z
*
e. The effective 

charge for a 20nm wide line is reduced by 60%. In contrast, the electron wind force in a 

nanoscale line is slightly enhanced. From the study in this chapter, one additional scaling 

factor for EM in Cu interconnects, the size effect on EM driving force, was discovered. 

Chapter 5 described the methods for fabricating high quality Si nanotrenches for 

bridging the gap between modeling studies and realistic Cu interconnect structures.  

With EBL and AWE on (110) Si wafer, 90nm wide Si nanotrenches with rectangular 
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profiles and smooth sidewalls were fabricated. Contact pads were also integrated with the 

nanotrenches for electrical measurements of Cu lines. To overcome the trench widening 

effect during etching, an SSM technique was developed. This method uses the polymer 

residue formed during SiO2 RIE in fluorocarbon plasma as a self-aligned etching mask to 

protect the Si at the center of the pre-defined trench in AWE. Nanotrenches with width 

down to 20nm range and AR as high as 20 have been fabricated with the SSM technique. 

The width along the trenches was uniform for single trenches and an array of trenches. 

Potential applications of the Si nanotrenches in nanofluidics were discussed.      

 

6.2 SUGGESTIONS FOR FUTURE WORK 

In Chapter 2, EM tests were performed on multi-link structures with link number 

N = 2, 10, 100. When the link number is high, the extraction of Rstep and Rslope becomes 

more difficult, as described in Section 2.4.1. So samples with relatively smaller link 

number such as N = 1, 2, 4, 8 would be more suitable for such study. The Rstep and Rslope 

statistics should be less subjected to noise from the test environment. Especially, the 

single link, as the base structure, can provide more information. It is also interesting to 

study the transition of statistics from N =1 to N = 2.  

All the samples in this study were under the same stressing conditions. The void 

growth kinetics at different stress conditions remain to be studied. One recommendation 

is to test samples at different temperatures. The thermal stress of the Cu lines is expected 

to change with temperature. According to the stress model in Chapter 3, the void growth 

rate difference between Stage I and Stage III depends on thermal stress. Therefore tests at 

different temperatures can provide data to further verify the stress effect in the model. 

Another stressing condition that can be changed is current density, which in itself can 
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influence the failure time and resistance parameters. But one should be aware of the 

possibility of encountering different failure modes under different current densities.  

Both the method for resistance trace analysis and the void growth model 

developed assumed a rectangular void shape for simplicity. In experiments, wedge 

shaped voids are more often observed. Analysis and model based on such void shape 

should be further developed, since it comes closer to a realistic case.  

The EM samples used in this study are fabricated with a standard SiCN cap. As 

scaling continues, new materials such as metal cap and seed layer doping are introduced 

in Cu interconnects. These new materials can affect the diffusion paths and void kinetics. 

It will be interesting and useful to apply the method based on resistance traces analysis to 

Cu interconnects with those new materials. Especially interesting would be the Cu 

interconnect with Mn doping, which is the metallization of choice for future technology 

nodes.  Such studies may extract important information about potential incubation time 

for dopants.  

For the grain growth simulations in Chapter 3, a simplified surface and interface 

energy assumption was used: one high energy and one low energy. It may be more 

realistic to assume a distribution of energy. Although not included in the dissertation, the 

author has performed some simulations of the effects of surface passivation and Ru seed 

layer to the grain growth. It is a direction worth further studies. And since Mn doping is 

promising, another important direction is to study the effects of Mn (diffusing and 

pinning) to Cu grain growth.  

In Chapter 4, the size effect on electron wind force was calculated for a long line 

to avoid the complication of potential short length effect. However, in Cu EM, the void 

usually grows close to the cathode end of the line. This makes the calculation of electron 
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wind force for an atom at the end of a line important. Furthermore, the defect atom was 

placed at the Cu/cap interface in this dissertation. When the line width scales down below 

90nm, small polycrystalline grains are frequently observed. The grain boundaries provide 

additional diffusion paths which are not negligible compared to interface diffusion. So it 

will be important to study whether the size effect on electron wind force for atoms within 

a line and/or at a grain boundary will become more significant.  

The Si nanotrenches fabricated in Chapter 5 can be filled with Cu and used to 

perform mechanical tests, such as nanoindentation, of Cu lines. A more interesting study 

will be electrical measurements on well-defined ultra-narrow Cu lines. But before that, 

processes to integrate contact pads with the SSM technique have to be developed, which 

inevitably requires also process development of Cu plating and Cu CMP. If successful, 

both mechanical and electrical measurements could be performed on a single line to 

study possible correlation between them. Other applications of these nanotrenches 

include nanofluidics, sensors etc., all of which are worth exploring as well, if resources 

are available.  
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