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ABSTRACT 
 

In this work, several kinds of surface processing have been carried out on 

MSQ-based porous low-k films in resolving some key issues in the low-k materials 

and copper damascene integration. Nanoporous low-k films were treated by using low 

frequency NH3 plasma in order to form a surface densified layer, which can 

effectively seal the porous films. The plasma treatment process has been optimized 

and applied for two kinds of low-k films. Both the sealing efficiency and the barrier 

performance against Cu diffusion have been evaluated after the plasma treatment. 

Hexagonal Boron Nitride (h-BN) films have also been deposited on porous low-k 

film to develop a new type of low-k dielectric barrier against Cu diffusion. Both 

Microwave Plasma CVD (2.45 GHz) and Radio-frequency plasma atom beam 

deposition (13.56 MHz) were applied for the h-BN deposition in order to evaluate the 

compatibility of the two plasma processes with the nanoporous films. 

 

Keywords: 
 
Low-k, Porosity, Plasma treatment, Densified layer, Diffusion Barrier and BN. 
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CHAPTER 1 

MOTIVATION AND OBJECTIVES 

 

 

1.1. Overview 

 

Since 1970, the Integrated Circuits (ICs) have doubled their speed every 18 

months on average as predicted by Moore’s law [Moore, 1965]. This has been 

achieved by the continuous efforts in device miniaturization [1]. As the integrated 

circuits scaled down to sub-100nm level, the impact of RC delay (wire resistance R 

and capacitance C) will undoubtedly increase. For a certain feature size, the RC signal 

delay is determined by interconnect metals and dielectrics. Compared to the previous 

generation Al/SiO2 interconnects technology, Cu has become the current metallization 

material of choice due to its lower resistance. The low resistance of copper has to be 

allied to low relative dielectric constant (k) material for the overall reduction of RC 

signal delay. Power consumption is the other major concern for IC interconnections 

because of the ever increasing frequencies and higher densities. Low-k dielectrics will 

significantly lower the dynamic power dissipation [2]. 
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TABLE 1.1 Characteristic numbers for future technology nodes relating to dimensions and 
material characteristics from ITRS 2002 roadmap (MPU Interconnect Technology 
Near-term). 
 
Year of Production 2001 2002 2003 2004 2005 2006 2007 
DRAM 1/2 Pitch (nm) 130 115 100 90 80 70 65 

MPU/ASIC 1/2 Pitch (nm) 150 130 107 90 80 70 65 

MPU Printed Gate Length (nm) 90 75 65 53 45 40 35 

MPU Physical Gate Length (nm) 65 53 45 37 32 28 25 

Local Wiring A/R (for Cu) 1.6 1.6 1.6 1.7 1.7 1.7 1.7 

Interconnect RC delay 1mm line (ps) 86 121 176 198 256 303 342 

Line length where τ= RC delay (um) 137 106 80 70 57 50 44 

Intermediate wiring dual Damascene A/R 1.6/1.4 1.6/1.4 1.7/1.5 1.7/1.5 1.7/1.5 1.7/1.6 1.8/1.6

Interconnect RC delay 1mm line (ps) 53 75 101 127 155 191 198 

Line length where τ= RC delay (um) 174 135 106 88 73 63 58 

Global wiring dual Damascene A/R 2.0/1.8 2.0/1.8 2.1/1.9 2.1/1.9 2.2/2.0 2.2/2.0 2.2/2.0

Interconnect RC delay 1mm line (ps) 21 29 40 47 59 74 79 

Line length where τ= RC delay (um) 280 216 168 163 118 100 92 

IMD-effective k value 3.0- 

3.6 

3.0- 

3.6 

3.0- 

3.6 

2.6- 

3.1 

2.6- 

3.1 

2.6- 

3.1 

2.3- 

2.7 

IMD-bulk k value <2.7 <2.7 <2.7 <2.4 <2.4 <2.4 <2.1 

 

Table 1.1 is an overview of the expected progress for technology nodes over the 

coming years based on the International Technology Roadmap for Semiconductors 

(ITRS) of 2002 [3]. At the 65nm node, the bulk k value of interconnect dielectrics is 

required to be lower than 2.1, as shown in Table 1.1. Referring to the 

Clausius-Mossotti equation:
ee

N
r
r α

εε
ε

03
1

2
1
=

+

−
 (1), where εr = the relative 

permittivity at low frequencies, αe = the electronic polarizability and Ne = the number 

of ions (or atoms) per unit volume exhibiting electronic polarization, k value is 

determined by molecular polarizability and the number of molecules per unit volume 

(film density) [2]. Since the possibility to lower molecular polarizability is limited, 

reducing the film density becomes an important way to develop ultra low-k (k less 



Surface Processing of Nanoporous Low Dielectric Constant Thin Films 

 3

than 2.2) inter metal dielectrics. Technologically, introducing pores into dielectrics has 

become the dominant strategy for future generation porous low-k materials. However, 

there will be many serious integration issues due to the low-density, porous nature of 

the ultra low dielectric constant films. For instance, porous films are not as hard, with 

implication for CMP and wire bonding [4, Laura Peters]. Cu may quite readily diffuse 

into the porous low-k films when integrated directly with the porous low-k materials 

in the back-end process. In addition, in a via-first integration scheme which is shown 

in figure 1.1, photo resist and other reactive chemicals need to be prevented from 

penetrating the sidewall of the via, during the trench etch in a porous low-k film [4].  

Generally porous low-k dielectrics need to be sealed before further treatment so as to 

avoid the problems throughout back-end processing [2].  

PR

Dielectrics

Dielectrics

ARC

Cu
Diffusion barrier

Stop layer

Via Trench

 
1. Via etch to diffusion barrier – SiN or SiC               3. ARC and trench lithography 

2. Resist strip                                       4. Trench etch stop to middle stop layer 

                                                  5. Resist strip 

                                                  6. Nitride or carbide etch 

                                                  7. Post-etch clean    

 

Figure 1.1. Via-first dual damascene processing steps 
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In a more general sense, understanding of the sealing mechanisms and ability in 

sealing the pores is fundamental to the effective integration of porous dielectrics in the 

interconnect processing [6]. Currently, there are three methods for surface pores 

sealing: by bombarding low-k films with plasma; by oxidizing the surface to create 

Si-O-Si bonds; or by chemically polymerizing the film, producing cross-linked C-C 

bonds [5].  

In this research, we explore three themes that are relevant to the processing and 

integration of nanoporous low-k materials: 

(I) Controlled low-frequency plasma treatment is employed in forming a 

non-porous skin layer to seal the pores on the film surface. Because the dielectric 

properties of the ultra low-k films might be modified after the processing [4], the 

chemical structure and electrical performance of the low-k materials are evaluated 

systematically after certain plasma treatment.  

(II) The formation of a non-porous skin layer on the nanoporous films by plasma 

treatment for blocking Cu diffusion is demonstrated in the second study. Referring to 

ITRS 2002, keff of the dielectric stack is the key to interconnection performance, the k 

values of hard masks and etch stop layers can be more critical than that of kILD.  

(III) Finally, we evaluate the growth of hexagonal BN as a copper diffusion 

barrier on the nanoporous films. Previously, Sugino reported [7, Takashi Sugino] the 

excellent low-k properties (k~2.4) of amorphous BN (BCN) film grown by simple 

quartz furnace CVD using BCl3 as one of the precursors. In this work we study the 

growth of hexagonal BN films from plasma-discharged borazine, using both 
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Radio-frequency and Microwave Plasmas, and evaluate the integration and 

processibility issues of the plasma processes with the nanoporous films. Process 

conditions which are required to deliver a lower overall keff stack have been identified. 

 

1.2. Nanoporous Low-k Thin Films 

 

1.2.1. Promising porous low-k materials 

 

In recent years, the chemical industry has been actively engaged in bringing new 

materials to the market with ever deceasing k values in order to comply with the 

performance specifications provided by the microelectronics industry technology 

roadmap. However, so far a low dielectric constant material that can meet the 

processing requirements of the damascene process remains elusive. The candidate 

materials must possess, besides desirable properties such as low k value, also high 

thermal and mechanical stability, good adhesion to other interconnect materials, 

resistance to processing materials, low moisture absorption, and low cost [8]. One 

difficult issue has been to identify a single material which exhibits the combination of 

low k value and good thermal and mechanical stability. There is a tradeoff between 

low dielectric constant and high bond strength, which usually leads to good 

thermal-mechanical properties [9]. In general, materials with strong bonds and a high 

density of such bonds tend to be structurally stable.  However, the strong bonds are 

usually very polarizable, and the material polarizability increases with the polarizable 
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bond density [10]. For example, the mechanical and thermal stability of SiO2 is partly 

due to its dense (~2.2g/cm3) network structure. Unfortunately, such high bond and 

material density in SiO2 leads to a large molecular polarizability, and therefore leads 

to a high dielectric constant of 4.0 (thermal SiO2). Organic polymeric materials often 

have a lower dielectric constant (2.5 to 3.5) due to the lower material density 

(~1.0g/cm3) and lower individual bond polarizabilities. However, most organic 

materials are soft and cannot stand high thermal stressing.  

As the feature size in integrated circuits shrinks to sub-100nm scale, an ultra 

low-k material (k<2.2) is required.  Since it is difficult to achieve such a low 

dielectric constant in dense materials, the dominant approach is to lower material 

density by incorporating micropores and/or meso- into a material network.  

Micropores have diameters smaller than 2 nm, while mesopores have diameters 

between 2 and 50nm [11]. In principle, one can tune the dielectric constant by varying 

the film porosity.  The development of porous dielectrics will substantially reduce 

the dielectric constant but it must have the desired thermal and mechanical properties 

required for the rigorous manufacturing environment.   

 

1. 2. 2. Classification and Properties of Porous low-k thin films 

 

According to their basic composition, structure and fabrication techniques, porous 

low-k films are classified into three different groups: silsesquioxane (SSQ) based 

porous thin films; silica based porous low-k materials and organic polymers.  
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Spin-on Silsesquioxane (SSQ) based thin films 

Silsesquioxane is the elementary unit of SSQ based low-k materials, which are 

organic-inorganic polymers with the empirical formula (R–SiO3/2)n. The most 

common representatives of SSQ are a ladder-type structure, and a cage structure that 

contains eight silicon atoms placed at the vertices of a cube (Fig. 1.2) [2]. The 

cage-structure is not very stable and can be decomposed to the more stable silica 

network. Substituents (R) on silicon can include hydrogen, alkyl, alkenyl, alkoxy, and 

aryl. Many silsesquioxanes have reasonable solubility in common organic solvents 

because of that organic substitution on Si. The organic substitutes also provide low 

density and low dielectric constant material, the lower k value of which is attributed to 

the low polarizability of the Si–R bond as compared to the Si–O bond in SiO2. 

   

R

R

R

R R

O
Si

Si

Si

Si

Si

O
O

O

O O

O O

O
OSi Si

Si
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Figure 1.2. Structure of elementary units of SSQ dielectric materials 

 

The silsesquioxane based materials for integrated circuits application are mainly 

hydrogen-silsesquioxane (HSQ), and methyl-silsesquioxane or CH3– SiO3/2 (MSQ). 

Hydrogen silsesquioxane (HSQ) consists of the cage and the ladder structures after 
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the fabrication. The ladder structure of HSQ is shown in Figure 1.3 while the cage 

form is shown in Figure 1.4 [6]. 

 

Figure 1.3. Ladder structure of Hydrogen silsesquioxane (HSQ). 

 

 

Figure 1.4. Cage structure of Hydrogen silsesquioxane (HSQ) 

When the H on the Hydrogen silsesquioxane (HSQ) is replaced by organic substituent 

CH3, the methyl silsesquioxane (MSQ) will be formed and the ladder structure of 

MSQ is shown in figure1.5. 

 

Figure 1.5. Ladder structure of Methyl silsesquioxane (MSQ). 
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MSQ materials have a lower dielectric constant compared with HSQ due to the larger 

size of the CH3 group (2.8 and 3.0–3.2, respectively) and lower polarizability of the 

Si–CH3 bond in comparison with Si–H bond. Increasing the porosity is one way to 

further reduce the k value of an existing material. The k value of an MSQ-based 

material, of which the total porosity is about 45%, has a k value about 2.0 [6]. The 

terminating groups play a water-blocking role, so that the films are normally 

hydrophobic. Moisture adsorbed by SSQ films can be either physisorbed, weakly 

bonded, or tightly bonded [12, 13]. Tight bonding can occur when a considerable 

amount of R groups are lost due to thermal annealing, oxidation, or plasma damage. 

SSQ based porous low-k thin films are fabricated by spin-on coating technique. 

For example LKD low dielectric constant thin film is fabricated by spin-on, as 

represented in figure 1.6 [Processing steps from JSR Corp.]. 

 

Local exhaust:
solvent fume

Fume hood

Open Container

Empty clean
PE bottle

Chemical solid 
waste

Chemical liquid 
waste

Local exhaust:
solvent fume and water Local exhaust: water

LKD Thin film

Waste
solution
of  LKD

Final BakeSpin Coat Pre-bake Soft-bake

420oC 30min
in Furnace
(closed enviroment
N2 or Vacuum)

80oC 60sec.
in Air

200oC 60sec.
in Air

Coater Track (closed environment)

          Figure 1.6. Fabrication Process of Porous LKD low-k film 
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The porous structure of SSQ-based thin films is primarily determined by the way 

the porosity is introduced in the films. For the sol-gel based SSQ materials, the 

mesopores are typically connected by meso-channels. For porogen based films, pore 

sizes are controlled by the size of the macroporogen. In such films the mesopores are 

probably connected by the constitutive porosity of the matrix materials [6, 14]. 

 

CVD deposited Silica based thin films 

  The silica based materials have the same basic structure as SiO2, with a molecular 

structure in which each Si atom is bonded to four oxygen atoms and each oxygen 

atom to two silicon atoms (SiO4/2). All kinds of silica have high chemical and thermal 

stability and fairly dense structures with a density between 2 and 3 g/cm3. The high 

frequency dispersion of dielectric constant is related to the high polarizability of the 

Si–O bonds (distortion polarization). Lowering the k value can be achieved by 

replacing the Si–O bond with the less polarizable Si–F bond producing F doped silica 

glasses (FSG). Another approach is to dope the silicate glasses with C by introducing 

CH3 groups, which also lowers the k value. Moreover, both fluorine and carbon 

increase the interatomic distances or ‘‘free volume’’ of silica which provides an 

additional decrease of dielectric constant. 

Silica-based films have high thermal stability, which is the highest for F-doped 

films because of the Si-F strength (stable up to 750oC, [15]). Carbon-containing bonds 

survive to higher temperatures than Si-H bonds (400oC, [16]).  

Silica-based materials can be non-porous (e.g., F doped silica), but most of them 
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exhibit constitutive porosity or subtractive porosity. Porous silica based low-k 

material has been developed by spin-on technique with a k value as low as 1.8 [17]. 

Pores are introduced into the silica-based low-k materials by either thermally 

removing the dopants or thermal decomposing the unstable CHx phase during 

chemical vapor deposition (CVD) [18, 19].  

 

Spin-on Organic polymers 

According to the behavior of dielectric constant, organic polymers can be divided 

into two different groups: non-polar polymers and polar polymers. Non-polar 

polymers contain molecules with almost purely covalent bonds and consist of 

nonpolar C-C bonds. The dielectric constant can be evaluated by using only film 

density and chemical composite [20] and the dielectric constant can be independent of 

frequency. Polar polymers contain atoms of different electronegativity that give rise to 

an asymmetric charge distribution. Therefore polar polymers have higher dielectric 

loss and a dielectric constant that depends on the temperature and frequency at which 

they are estimated.  

Most of the nonporous organic low-k films with sufficient thermal stability have 

a dielectric constant close to 2.6-2.8. The organic polymers of interest for low-k 

applications are almost hydrophobic and they adsorb only insignificant amounts of 

weakly bonded water. Because of the low mechanical stability and hardness, polymer 

low-k films cannot withstand some manufacturing processes such as CMP and wire 

bonding.   
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Spin-on technique is mainly employed for the fabrication of porous polymer low-k 

thin films. Some constitutive porosity presented in the film is related to the solvent 

extraction process and polymerization process. By using porogen, several subtractive 

porous organic polymers have also been synthesized [21]. Early generations of porous 

films have large voids (>100nm) and new generations of organic low-k films have a 

much smaller pore size of about 5nm. 

 

1.2.3 Fabrication of porous low-k films 

In general, the incorporation of nanopores into low-k films is achieved in one of 

the two approaches: either through evaporation of a solvent, or by burning off a 

thermally labile component in a composite film. “Sol-gel” is a common method, using 

solvent to produce porous silica thin films. In a typical sol-gel film technique [22], an 

alkoxysilane precusor, e.g., tetraethyorthosilicate or TEOS, along with catalysts, are 

dissolved in an alcohol. The solution is spin-coated onto a substrate. Chemical 

reactions are performed to produce a cross-linked gel network.  The subsequent 

drying process removes the remaining solvent and a porous silica film is prepared. 

The porosity and pore sizes are controlled by the solid content, catalyst, pH, solvent 

type, and so on. Porous silica produced by the sol-gel process has open pores with 

extraordinarily high hydrophilic specific surface areas that favor water absorption.   

It usually requires surface modification during the manufacturing process to reduce 

the polarity [23]. Similar to the sol-gel technique, Dow Corning used a low-boiling 

point solvent to produce a homogeneous solution for spin coating and a high-boiling 
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solvent to generate porous silsesquioxane films [24]. The films prepared by such 

methods often have interconnected porosity as a result of the solvent evaporation path. 

The other approach involves the use of thermally labile organic porogens to 

template the vitrification of a low-k material precursor [25]. IBM first developed 

porous methyl- silsesquioxane (shown in Figure 1.7) using a dendritic polymer, poly 

(ε–caprolactone)-based (PCL) material as a porogen [26]. Solutions of organic 

polymer mixed with low molecular weight silsesquioxane derivatives are spin-coated 

onto silicon wafers and heated slowly from 50°C to 430°C. In the low-temperature 

range (50-250°C), the silsesquioxane chains extend and crosslink to form a rigid 

network. Meanwhile, phase separation occurs and the PCL forms nano-domains in the 

MSQ matrix. Thermal decomposition of the porogen and volatilization of the 

resulting organic fragments occurs between 250°C and 430°C, leaving behind 

nanopores. 

 

Figure 1.7. An example of porous low-k film fabrication through burning out a 
thermally labile component in a composite film 
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A variety of structural materials, such as block copolymers [27], surfactants [28], 

and organic nano-beads, have been explored as porogens in different kinds of matrices. 

The ability of such porogens to form nanoscopic domains in the cured matrix material 

is critical, since the film morphology is supposed to mimic that of the composite [29]. 

Porogens are chosen based on the required temperature windows for thermal 

decomposition, and on their ability to decompose into small, low molecular weight 

byproducts that can easily diffuse through the matrix. The resulting pore structure is 

determined by porogen structure, concentration, molecular weight and interaction 

with the matrix. Films with closed/isolated nano-porosity can be prepared using this 

composite method that involves a thermally labile porogen. Such systems can readily 

change from closed/isolated pore structures to interconnected/open pore structures as 

the porogen concentration in the composite increases.  

 

1. 2. 4 Characterization of pore-sealing on porous low-k films 

In order to characterize the surface sealing defects, two techniques have been 

studied and reported: PALS (Positronium Annihilation Lifetime Spectroscopy) and EP 

(Ellipsometric Porosimetry). 

Positronium interactions with condensed matter and void volume are utilized for 

PALS characterization. As a beam of positrons is implanted into thin films, the 

positrons enter the solid and are quickly thermalized (several picoseconds) through 

collisions in the material from their initial energy of several Kev to several eV. A 

positron can either capture a bound molecular electron [30], or recombine with free 
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“spur” electrons generated by ionizing collisions to form the electron-positron bound 

state of positronium, Ps [31]. A small portion of positrons can diffuse back to the 

vacuum and may capture an electron to form “backscattered Ps” in vacuum. 

The Ps atoms can exist in either the single state, with a lifetime of around 125 psec, 

or the triplet state (Ortho-Ps) with a lifetime of approximately 142 nsec when 

decaying in vacuum. After implanted into porous dielectric materials, Ortho-Ps is 

inherently localized in the pores and its natural lifetime will be reduced by interaction 

with molecular electrons during collision with the pore surface [32]. In the case of 

closed pores, a shorter lifetime of ortho-Ps will be expected if Ps is trapped in a 

smaller pore. In the case of interconnected pores, Ps can diffuse over a long distance. 

If pores are interconnected with one another and big enough, Ps will be easily diffuse 

into the surrounding vacuum, as illustrated in figure 1.8. Once the interconnected 

porous film is capped, PALS will be able to characterize the single lifetime which is 

corresponded to the average mean free path of Ps through the entire film. Beam-PALS 

is able to control positron implantation by varying beam acceleration energy [34] and 

samples can be depth-profiled by varying the mean implantation depth at different 

acceleration energy. In this way, PALS can characterize not only the surface sealing 

defect but also the thickness of dense layer. 
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Figure 1.8. Positronium behavior in porous films [33] 

 

In the case of EP measurement, one kind of solvent toluene is employed in the 

chamber to characterize the sealing performance. Once the solvent is absorbed into 

porous films, the ellipsometric angles will be changed. So the ellipsometric angles of 

the porous low-k film will be evaluated during the process of increasing the chamber 

pressure to the solvent saturation pressure at room temperature [6]. The sealing 

performance of the capping layer can be subsequently estimated by characterizing the 

elliposometric angel change when solvent pressure increases. 

 

1.3. Multilevel Metallization for Integrated Circuits 
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device size. With continuous miniaturization, the metal system became a limiting 

factor in the number of devices that could be placed on a chip. The problem began to 

arise with larger circuits that used only one layer of metal for connection. Since the 

metal lines must be isolated from one another, the length of the metal lines became 

increasingly long. These long paths require additional area and cause longer signal 

delays. The metal will cover a large percentage of the circuit and eventually the point 

will be reached where the area needed to route the interconnect lines exceeds the areas 

required to build the devices. The packing density is said to be interconnect limited 

[35]. This problem can be minimized by using multiple layers of metal with the runs 

on one layer being orthogonal to the runs on the adjacent layers. This allows for the 

interconnect metal line to follow a shorter path and increases the packing density of 

devices in a circuit. 

The multilevel metallization will also reduce the RC time delay of the 

interconnect system. The impact of the interconnect on the circuit speed (performance) 

is related to the RC time constant. The resistance of the interconnect line is: 

mwt
lR ρ

=  (2), where ρ = conductor volume resistivity, l = the length of interconnect, 

w = width of the interconnect metal and tm = metal thickness. The capacitance of an 

interconnect line with a metal plate above and below the line is: 
IMDt
lwC ε2=  (3), 

where ε = relative dielectric constant, l = interconnect length, w = metal width and 

tIMD = thickness of inter-metal dielectrics. This equation assumes the IMD thickness 

above the line is equal to the thickness of the IMD below the line. The product of R 
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and C then becomes: 
IMDmtt

lRC
2

2ερ=  (4). Referring to formula (4), the RC time 

delay will be greatly improved by multilevel metallization because multiple layers of 

interconnect allow shorter metal runs (shorter l). 

In terms of the properties of the material in the multi-level metallization system, 

the metal with lower resistivity can further improve the RC delay at a certain feature 

size. Aluminum (Al) is the most widely used metal interconnects material during past 

few years, it has a low resistivity (2.65 µΩ·cm at 20oC), could be etched in solutions 

without attack on the underlying films, and adheres well to other metals and to 

dielectric films. However, when the technologies move to 0.25 µm regime and beyond, 

alternate metallization based on metals having resistivities lower than that of Al will 

be needed. With its lower resistivity (bulk ρ of about 1.678 µΩ·cm at 20oC), Cu is a 

promising replacement for Al alloys, not only in terms of speed but also in its higher 

electromigration and stress-induced voiding resistance. Physical vapor deposition 

(PVD), chemical vapor deposition (CVD) and electrochemical deposition techniques 

are used for Cu deposition in IC manufacturing industry currently [36]. 

Changes in the process integration technology are needed because of the use of 

Cu for interconnects. Figure 1.9 shows traditional subtractive etch scheme based on 

Al interconnect and Damascene schemes based on Cu interconnect. In the 

Cu-Damascene interconnect, dielectric trenches are patterned first, which are than 

filled with Cu metal and polished. The damascene structure introduces a whole new 

set of materials and processes distinctly different from the previous standard 

Al-on-silicon oxide interconnect technology. The previous technology was based on 
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the reactive ion etching (RIE)-based patterning of blanket metal films followed by 

dielectric deposition and planarization, as illustrated in Figure 1.9 (left). The transition 

to the Damascene schemes has made the process technologies required to form 

reliable devices very challenging [37]. In particular, there is a critical need to develop 

effective diffusion barrier (liner) materials that can prevent diffusion and intermixing 

of copper with adjacent dielectrics [38]. These must be thin layers that can 

conformally line the inner surfaces of the patterned dielectrics, i.e., the sidewalls and 

bottoms of the trenches and vias in the interconnected structure. Successful integration 

requires optimization of low-k dielectric stack with multiple processing steps like etch, 

lithography, metal barrier, electroplating and CMP polish of the Cu. 



Surface Processing of Nanoporous Low Dielectric Constant Thin Films 

 20

 

 

Figure 1.9. Interconnect fabrication approaches. Left: Conventional standard 
subtractive etch (Al as metal line); Right: Single-Damascene integration (Cu 
as metal line). 
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1.4. Porous Low-k Materials Damascene Integration Process 

Compared with the conventional subtractive process for ICs interconnect, the 

damascene integration process is necessary for Cu/low-k back-end integration because 

of the difficulty of etching Cu. In the damascene approach to forming interconnects 

on ICs, a trench is cut into the dielectric layer and then filled with metal. Therefore 

this method has two major advantages: no etching of the metal layers is required; 

there is only a bottom interface for Cu, which helps to reduce overall via resistance 

[37]. The damascene interconnects can be formed with either a single-damascene or 

dual-damascene process. 

 

1.4.1 Single-damascene Integration Process 

 Figure 1.9 (right) shows the typical single-damascene integration process. In the 

single-damascene process, the interlevel dielectric layer (ILD) is planarized after its 

deposition. Next, a via is patterned with a lithography step followed by the contact 

opening etching. Then a metal plug is formed in the opening by blanket deposition of 

the metal with a following CMP step. An intermetal dielectric layer (IMD) is then 

deposited and a second lithography step is used to form the pattern of trenches. After 

the trench is etched and the resist pattern is stripped, the trench is filled with metal 

(copper) and this metal is polished back by CMP to create a metal line embedded in a 

dielectric trench [38]. 
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1.4.2 Dual-damascene Integration Process 

In a dual-damascene structure, only a single metal deposition step is used to 

simultaneously form the metal lines and the metal in the vias. That is, both trenches 

and vias are formed in a single dielectric layer, after the via and trench recesses are 

etched. Thus, only one metal fill and one metal CMP step are required for each level 

of interconnect, resulting in lower process cost as compared with the single 

damascene process [38]. Two different fabrication sequences have been developed to 

produce dual-damascene structures:  

1. Trench-First Dual-Damascene  

2. Via-First Dual-Damascene 

Figure 1.10 illustrates the trench-first dual-damascene integration process. In this 

sequence, the trench patterns are defined in the ILD first. The trench is then produced 

by etching the dielectric down to the etch-stop layer, followed by first resist layer 

stripping. A second resist layer is then spun on and the via-pattern-mask is used to 

create the openings in this resist layer-aligned to the trench that was etched previously. 

Figure 1.1 shows the process sequences in the via-first approach, in which vias are 

defined first in the ILD, followed by patterning the trenches. Then a metal deposition 

step is used to form metal lines and metal plugs with a following CMP step to remove 

excess metal [37]. The sequence is then repeated for next level of interconnect. 
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         Figure 1.10. Trench-first dual-damascene integration process 

 

1.4.3 Porous low-k Materials Damascene Integration Issues 

 Referring to the different kinds of interconnect process, there are several severe 

reliability and integration issues that have impeded the implementation of low-k 

dielectrics. These issues include thermally or mechanically induced cracking, poor 

mechanical strength, moisture absorption, chemical interactions (especially occurred 

during photolithography, etch/clean and dielectric/metal deposition) and poor thermal 

conductivity. To lower the dielectric constant to less than 2.5, pores have been 

introduced, which further reduces mechanical strength and may increase 

moisture/chemical adsorption as well [38]. In this study, we have tried to seal porous 

low-k materials in order to resolve the porous structure induced problems that might 

occurred in the etch/clean and metal deposition steps. 

 

1.5. Thesis Objectives 

 In this chapter the integration of low-k dielectrics with copper for continuous 

improvement in the ICs device performance has been considered. As discussed, the 
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development of porous low-k dielectrics becomes very challenging because of various 

integration and reliability issues in the back-end of line process. Meanwhile, a good 

understanding of surface processing on porous low-k films is required to enhance the 

process compatibility in the back-end integration. For the successful integration, 

porous low-k films need to be sealed and the effective diffusion barrier with low 

dielectric constant needs to be formed and/or deposited on the ultra low-k films so as 

to reduce the effective k value of the dielectric stack. All of the above motivate the 

carrying out of this research. 

 In this work, we will focus on exploring the application of surface processing on 

the porous low-k films in resolving several key issues in the porous low-k materials 

and copper damascene integration. 

In Chapter 2, the experimental methodologies for the surface processing on low-k 

materials, as well as the characterization techniques evaluating the film properties 

before and after the process have been introduced. Three kinds of processing, NH3 

plasma treatment, dielectrics trench etching and BN deposition on porous low-k films, 

have been illustrated respectively. Then, the characterization techniques employed in 

this work will be explained in four parts: chemical composition characterization, 

morphology measurement, electrical test and porosity evaluation. 

In Chapter 3, low frequency NH3 plasma treatment of the low-k film Zirkon 

LK2200 has been demonstrated to be an efficient process to seal the surface pores of 

the porous dielectrics. Firstly, the experiment parameters of the plasma treatment have 

been optimized in order to effectively seal the porous film with a minimal damage 
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which was induced by such a processing. Secondly, the chemical composition and 

morphology of the low-k films have been characterized to evaluate the properties 

before and after plasma processing. The formation of a densified layer has been 

experimentally identified. Thirdly, the copper diffusion barrier performance of the 

densified layer has been evaluated by using SIMS. Finally the Zirkon film is trench 

patterned so as to demonstrate the ability to delineate the porous films. 

In chapter 4, the low frequency NH3 plasma treatment has been applied to porous  

LKD 5109 film (from JSR Co. Pte. Ltd.) which is an alternative low-k material with a 

different porosity. In Chapter 4, the properties of the material are evaluated after the 

plasma process. The properties of the material as a Cu diffusion barrier after 

processing are evaluated by using SIMS and current-voltage measurement. Finally the 

sealing performance will be characterized by using PALS, followed by the discussion 

about pore sealing mechanism using plasma surface interaction. 

In Chapter 5, plasma-deposited BN film has been evaluated as a copper diffusion 

barrier on porous low-k film LKD 5109. BN films are grown by Microwave Plasma 

(2.45 GHz) and Radio-frequency (RF) atom beam deposition (13.56 MHz) on LKD 

films in order to evaluate the compatibility of the two plasma processes with the 

physical integrity of the nanoporous films. Chemical composition and electrical 

properties of the dielectric stack have been characterized. BN barrier performance 

against Cu diffusion is then evaluated. Finally RIE system is employed to trench 

pattern the BN films to demonstrate the potential of BN as the capping layer. 

In Chapter 6, I will make a conclusion for this study as well as the future work. 
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CHAPTER 2 

EXPERIMENTAL SECTION 

 

As what has been discussed in the previous chapter, three types of processing on 

porous low dielectric constant materials will be introduced in this chapter, namely (i) 

surface plasma treatment; (ii) low-k thin film trench patterning and (iii) BN thin film 

deposition. A number of characterization techniques have been employed to evaluate 

the properties of the low-k thin film properties after processing. The characterization 

techniques are divided into four main groups and will be discussed in the later part of 

this chapter. 

 

2.1. Surface Plasma Treatment 

The modification of the surface of porous films was carried out using a low 

frequency plasma (50.0 Hz-400.0 kHz) enhanced chemical vapor deposition 

(PECVD ORN 8092 from TRION TECHNOLOGY Corp.) system. The low-k films 

were first loaded into the PECVD chamber and then chamber pressure was pumped 

down to around 1.0×10-5 Torr. To purge the whole chamber, NH3 gas was then led to 

the chamber for about 15 minutes at a flow rate of 100 sccm. Chamber temperature 

was increased to 300oC or 400oC in the ambient of NH3. Once the temperature 

reached 300oC or 400oC, radio-frequency plasma power (150w, 100Hz) was turned on, 
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followed by the plasma treatment process that would last for 3s, 10s, 30s, 60s or 600s. 

Finally, chamber was cooled down to room temperature and the high vacuum 

conditions re-established. 

Two kinds of MSQ based porous low-k material were treated by these processes: 

Zirkon LK2200 from Shipley and LKD 5109 from JSR. 

 

2.2. Dielectric Films Trench Patterning  

MSQ based low-k film Zirkon LK2200 (1.0µm in thickness) from Shipley and 

BN film on Si (150nm in thickness) has been patterned using the following process.  

 Photo Resist (PR) Spin-coating 

By using a spin-coater (Spincoater P6700 from Specialty coating systems INC), 

photo-resist (AZ 5214) was spun coated on the surface of the low-k film after 

spinning for 30s at a speed of 5000 rounds per minute (RPM). Then the low-k sample 

was placed into a furnace for 30mins soft baking at 90oC. Employing a spin-coater, 

AZ 5214 was spun coated on the BN film after spinning for 45s at a speed of 6000 

RPM, followed by 60s soft-bake on the hot plate at 95oC. 

 Photolithography 

As illustrated in figure 2.1, a mask with a trench-pattern (from Microelectronic 

Fabrication Lab, NTU) has been used for the PR photolithography. Employing glass 

(transparent for visible and ultraviolet radiation) as the mask substrate, the dark part 

was covered by chromium, which can block radiation during photolithography process. 

By using contact printing (Mask Aligner from KARL SUSS Corp.), the exposing 
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radiation (wavelength 405nm, constant power 900w) was transmitted through white 

area (feature size 2.0um±0.3um) of the mask and certain parts of the photo resist were 

exposed to the radiation for 15 seconds. 

 

5um 2um Chromiun

Glass

                 Figure 2.1. Mask Pattern for Photolithography 

 

 Photo Resist Development 

After photolithography, the photo resist was developed in the solution of developer 

AZ400k (Diluted 5 times by deionized water) for about 55 seconds, followed by 

30min hard baking at 120oC so as to stabilize the photo resist before plasma dry 

etching. Photo resist on the BN film was developed in the solution of AZ developer 

(diluted 2 times by deionized water), with a 5-minute hard-bake at 125oC thereafter. 

 Plasma Dry Etching 

Employing RIE system (RIE Plasma lab80 Plus from Oxford Instruments), low-k 

samples received 7-minute dry etching at a chamber pressure of 30mTorr.  Ar 

(50sccm) and CF4 (50sccm) were utilized in RIE etching, with the RF plasma power 

of 150w, which created a DC bias voltage around 400 volts. By using the same RIE 
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system, 100nm BN films have been successfully patterned after 60-second dry etching 

at a chamber pressure of 50mTorr. Ar (30sccm) and CF4 (50sccm) were used in RIE 

etching, with the RF plasma power of 250w, which created a DC bias voltage of 492v. 

 Photo Resist Stripping 

Finally the dielectric samples was immersed in acetone (Photo resist is soluble in 

acetone) for ultrasonic rinsing for about 5min, thus stripping the photo resist and 

polymer residue induced by RIE etching. 

 

2.3. BN Thin Film Deposition 

 

Microwave Plasma enhanced Chemical Vapor Deposition (MWPECVD) 

MWPECVD (from AsTex) has been used for BN thin film growth on both silicon 

substrate (p type) and porous low dielectric constant material LKD 5109. Deposition 

processes were carried out for 4 minutes at different temperatures: 200oC, 300oC, 

400oC and 500oC. The frequency of microwave enhanced plasma power was 2.45 

GHz and power forwarded in process was around 400W. N2, A single source precursor 

based borozine, diluted in hydrogen and nitrogen, was utilized in BN growth with the 

flow rates of 5 sccm, 40sccm and 20sccm for the respective gases.  

 

Radio-frequency Plasma enhanced Chemical Vapor Deposition (RFPECVD) 

RFPECVD (Oxford Applied Research) with the plasma power frequency of 13.56 

MHz was also employed for BN deposition on LKD thin film by using pure borozine. 
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The deposition processes were carried out at around 400oC for 3mins, 5mins and 7 

mins. Plasma power was around 300w, chamber pressure has been lowered to 5×10-8 

torr as the base pressure and chamber pressure in process was about 2.0×10-4 torr.  

 

2.4. Characterization Techniques 

The characterization techniques used in this work have been divided into four 

groups: chemical composition characterization, morphology measurement, electrical 

test and porosity evaluation. 

 

2.4.1. Chemical Composition Characterization 

1. Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR Spectrum 2000 (Perkin Elmer Corp.) has been used in characterizing the 

chemical structure of the low-k materials after different kinds of surface processing. In 

the IR measurement, transmission mode has been employed for low-k thin films 

chemical composition evaluation after plasma treatment, thermal annealing and thin 

film deposition. 

 

2. Raman Spectroscopy 

Laser Raman Microscope (from Renishaw PLC) has also helped to estimate the 

chemical structure of porous low-k films and it is especially efficient for a few 

chemical bonds without strong absorption in FTIR spectrum. The laser of the 

equipment can penetrate through film surface for about 1 µm; therefore the Raman 
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spectra obtained represent the entire chemical composition of the materials exposed to 

laser radiation. 

 

3. X-ray Photoelectronic Spectroscopy (XPS) 

XPS (VG ESCALAB 220i-XL Instrument) greatly helped us in characterizing the 

detailed chemical structure and stoichiometry of the low-k films. With a background 

pressure in the low 10-10 mbar range during analysis, the XPS instrument is equipped 

with a monochromatic Al Kα (1486.7 eV photons) and an unmonochromated Mg Kα 

X-ray source (1253.6 eV photons), a concentric hemispherical analyzer and a 

magnetic immersion lens (XL lens) to increase the sensitivity of the instrument. It 

successfully investigated the surface chemical composition change of porous low-k 

materials after certain plasma treatment. 

 

4. Time-of-flight Secondary Ion Mass Spectroscopy (Tof-SIMS) 

Tof-SIMS (Tof-SIMS IV) provided by ION TOF Corp. has been employed to 

evaluate the depth profile of chemical composition. In SIMS characterization, Ar 

beam of 3 keV (or 1 keV) was used for sputtering, Ga primary beam at 25 keV in 

energy was employed for positive analysis and Cs primary beam for negative analysis. 

This equipment not only helped to demonstrate the barrier performance of surface 

densified layer against Cu diffusion, but effectively estimated the BN thin film 

chemical structure on porous low-k films. 
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Figure 2.2. MIS structure for SIMS experimental demonstration of barrier 
performance 

 

As shown in figure 2.2., around 150nm Cu has been sputtered by PVD (PVD 

Sputtering System from Denton Vacuum INC) on low-k dielectrics after plasma 

treatment, followed by one hour thermal annealing in quartz thermal furnace 

(Annealing Thermal Atmospheric Furnace from Winston-Salem Corp.) in N2 ambient. 

To avoid knock-in effect in SIMS measurement, Cu layer has been etched by 26% 

(NH4)2S2O8 solution in advance, then SIMS was used to characterize the Cu depth 

profile in low-k film so as to evaluate the barrier performance. 

 

 

2.4.2. Morphology Measurement 

 

1. Atomic Force Microscope (AFM) 

By using contacting mode measurement, AFM XE-100 (from PSIA) was used to 

evaluate the surface morphology and to analysis mean roughness of film surface after 

different kinds of treatment. 
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2. Scanning Electron Microscope (SEM) 

SEM (JSM-6700FEG SEM from JEOL Corp.) was employed to measure the 

thickness of thin film deposited on low-k materials, to characterize the cross-section 

critical dimensions of the patterned trenches in the dielectric films and to help 

characterize the cross-section morphology of dielectric stacks after BN deposition. 

 

3. Transmission Electron Microscope (TEM) 

High resolution TEM (CM 300 TEM from Philips Corp.) was used for evaluating 

the thickness of densified layer on low-k films after certain plasma treatment. To 

prepare samples for TEM characterization, several steps have been finished, as 

illustrated in figure 2.3. 

 

expoxy

stacking

1.2-1.5mm

cut

50um Cu grid

polish one side

glue to Cu grid

polished side 
facing down

Polish the 
other side

50-100um
dimple

curing 30-
40min

20-30um

Ion milling

Sample for TEM
characterization

         

Figure 2.3. Process steps of preparing samples for TEM characterization 
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4. Surface Profiler 

 The thicknesses of deposited BN thin films and the trench depth after RIE etching 

have been estimated by surface profiler (KLA-TENCHOR Corp. P-10 Surface 

Profiler). 

  

2.4.3. Electrical Test 

 

In this thesis, both relative dielectric constant of low-k films and leakage current 

density of Metal-Insulator-Silicon (MIS) structure after Cu integration with the porous 

low-k materials were characterized by the Advanced Computerized Semiconductor 

Measure System (ACSM System) from Materials Development Corporation. 

Metallization of the dielectric films for electrical contacts in capacitance-voltage (C-V) 

and leakage current-voltage (I-V) measurement was achieved by electron-beam 

deposition system and PVD sputtering system. Two kinds of shadow mask have been 

employed for metal electrodes preparation: one mask with a number of holes of 1mm2 

in area, and the other mask with holes of 1mm in diameter.  

 

1. Capacitance-voltage Measurement (C-V measurement) 

Capacitance-voltage (C-V) measurement (ACSM system) has been used to 

estimate the effective k value of the dielectrics in this study. By using the C-V 

measurement, the capacitance of the dielectric film can be measured, thus the k value 

of the film before and after surface processing can be calculated accordingly. As 

shown in figure 2.4, a typical MIS capacitor in accumulation can be modeled as the 
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series combination of a capacitor CS representing the insulator capacitance and a 

resistor RS representing the combination of substrate resistance, back contact 

resistance and cable resistance [39]. 

Capacitance meter Actual device

Gp
Cp

Cs Accumulation
capacitance

Rs Series
resistanceMeasured

equivalent
parallel
conductance

Measured
equivalent
parallel
capacitance

 
Figure 2.4. Circuit models for MIS device in accumulation and admittance by a 
C-V measurement 

 

The relationship between CP, the measured capacitance, and CS the actual oxide 

capacitance, is:      

2221 ss

s
p CR

CC
ω+

=                    (5) 

where ω = the angular frequency of ACSM measuring signal. In our C-V 

measurement, RS was lower than 150Ω because of ohm back contact and CS was less 

than 200PF, so ωRSCS ≪1. Thus, CP equals CS and the capacitance measured is 

accurate.  

To introduce the basic theory for C-V measurement, the MOS capacitor will be 

discussed first. The MOS capacitor consists of a Metal-Oxide-Semiconductor 
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structure as illustrated by Figure 2.5. Shown here is the semiconductor substrate with 

a thin oxide layer and a top metal contact, referred to as the gate. A second metal layer 

forms an Ohmic contact to the back of the semiconductor, this is called the bulk 

contact, and it reduces the contact resistance between the test tool and the capacitor. 

The structure shown has a p-type substrate. We will refer to this as an n-type MOS or 

n-MOS capacitor since the inversion layer is the p type channel [40]. 

 

Figure 2.5. nMOS Metal-Oxide-Semiconductor capacitor. 

When the gate voltage is applied to the MOS capacitor during C-V measurement, 

the capacitor will go through three stages with the applied voltage. These stages are 

accumulation, depletion and inversion. Accumulation occurs when one applies a 

voltage less than the flat-band voltage (appendix A) [39]. As shown in figure 2.6, the 

negative charge on the gate attracts holes from the substrate to the 

oxide-semiconductor interface. Only a small amount of band bending is needed to 

build up the charge accumulation so that almost all of the potential variation is within 

the oxide. As a voltage more positive than the flat-band voltage is applied, a negative 

charge builds up in the semiconductor. Initially this charge is due to the depletion of 



Surface Processing of Nanoporous Low Dielectric Constant Thin Films 

 37

the semiconductor starting from the oxide-semiconductor interface. The depletion 

layer width further increases with the increasing gate voltage. As the potential across 

the semiconductor increases beyond twice the bulk potential, another type of negative 

charge emerges at the oxide-semiconductor interface: this charge is due to minority 

carriers, which form a so-called inversion layer [40]. 

 

Figure 2.6. Interface charge in accumulation, depletion and inversion status. 

  

During the C-V measurement, the MOS structure is treated as a series connection 

of two capacitors: the capacitance of the dielectric film and the capacitance of the 

depletion region. In accumulation status, there is no depletion layer and the remaining 

capacitor is the oxide capacitor, so the measured capacitor capacitance C equals to the 

oxide capacitance at accumulation status, Cox. Based on the formula
ox

T
KAC =  (6), 

where C=capacitor capacitance, A=electrode area and Tox = electrode spacing, the 

relative dielectric constant can be calculated:     
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A
CTk oxox=      

Where k is the relative dielectric constant of dielectrics, COX is the dielectric 

capacitance in the accumulation region, A refers to the area of the metal electrode of 

the MIS structure and TOX represents thickness of insulators. 

As represented in figure 2.7, Au electrodes (200nm) of 1mm2 in area were 

fabricated on BN surface by electron beam deposition (EDWARDS FL400 from 

Fisher Scientific Corp.) to form a metal/insulator/semiconductor structure of 

Au/BN/LKD/Si. Tungsten probe was used to contact with the Au electrodes and Au 

(200nm) was also developed on the backside of Si substrate so as to form ohm contact 

between Si and ACSM system.  

Si (100)

400nm LKD

BN

200nm Au

 

Figure 2.7. Metal/insulator/semiconductor structure for BN/LKD stack C-V 
measurement 
 

By using PVD sputtering system, Au electrodes (200nm) 1mm in diameter were 

prepared on the surface of low-k materials after plasma treatment, as shown in figure 

2.8. Au (200nm) was also sputtered on the backside of Si as to form ohm contact and 

lower the series resistance. 
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200nm Au

400nm LKD

Si (100)
 

 

Figure 2.8. Metal-insulator-semiconductor structure for LKD C-V measurement 

 

2. Leakage Current-Voltage Measurement (I-V measurement) 

In this study, the leakage current-voltage measurement has been used to check the 

barrier performance against Cu diffusion through low-k dielectric films. As shown in 

figure 2.9, Cu electrodes (150nm) 1mm2 in area were fabricated on the surface of 

dielectrics by using a shadow mask in PVD sputtering system. Au was developed on 

the backside of Si substrate to form the ohmic back contact. 

 

Si (100)

400nm LKD

150nm Cu

200nm Au  

Figure 2.9. Metal-insulator-semiconductor structure for I-V measurement 

 

The porous dielectric layers are especially susceptible to copper diffusion. After 

the deposition of copper and thermal annealing, I-V measurement is carried out on the 

MIS structure to check for leakage current. Fowler-Nordheim tunneling has been 

studied extensively in Metal-Oxide-Semiconductor structures where it has been 
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shown to be the dominant current mechanism, especially for thick oxides. The basic 

idea is that quantum mechanical tunneling from the adjacent conductor into the 

insulator limits the current through the structure. Once the carriers have tunneled into 

the insulator they are free to move within the valence or conduction band of the 

insulator. The calculation of the current is based on the WKB approximation yielding 

the following relation between the current density, JFN, and the electric field in the 

oxide, Eox: ))(2
3
4(exp

2/3*
2

ox

Box
oxoxFNFN E

q
q
m

ECJ φ
h

−= , where ΦB =the barrier 

height at the conductor/insulator interface in Volt, mox
* =the effective mass of the 

insulator, JFN =the current density and Eox =the electric field in the oxide. 

To simulate the extreme process condition in IC manufacturing, the MIS structure 

was exposed to one hour thermal stress at 400oC in N2 ambient so as to test the barrier 

layer reliability. Tungsten probe was used to connect with Cu electrode and I-V 

characteristics were evaluated in the ACSM system. 

 

2.4.4. Porosity Evaluation 

The porosity and sealing performance of the porous low-k thin films after plasma 

treatment was evaluated using the beam-PALS measurement in the University of 

Michigan (Dept. of Materials Science and Engineering). 

Beam-PALS is able to control positron implantation by varying beam acceleration 

energy [26] and samples can be depth-profiled by varying the mean implantation 

depth at different acceleration energy. In this way, PALS can characterize not only the 

surface sealing defect but also the thickness of densified layer.  
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A good review of positron-material interactions can be found in a paper by 

Schultz and Lynn [34]. Some of the processes by which positrons and Ps may interact 

Figure 2.10. Positron and Ps interactions with condensed matter 

with condensed matter are illustrated in Figure 2.10. For our purpose we will 

concentrate on Ps behaviors. When a beam of positrons is implanted into thin films, 

the positrons enter the solid where they are quickly thermalized (several picoseconds) 

through collisions in the material from their initial beam energy of several keV to 

several eV. They then diffuse through the solid. A positron can either capture a bound 

molecular electron [30] or recombine with free “spur” electrons generated by ionizing 

Secondary 

electrons 

Backscattered Ps 

(~140ns) 

p-Ps (0.125ns) annihilation or 

e+ free Annihilation (0.5 ns) 

o-Ps defect trapping

o-Ps defect trapping 

e+ reemission 

e+ e+ e+
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collisions to form the electron-positron bound state of positronium, Ps [31]. A small 

fraction of positrons can diffuse back to the vacuum. They can capture an electron on 

the way and form “backscattered Ps” in vacuum. Note that Ps cannot be formed in the 

bulk of metals, as the high electron density effectively screens out the Coulomb 

attraction. 

 In insulating materials, the Ps atom may exist in either the singlet state (para-Ps 

or p-Ps) which decays predominantly into two gamma-rays with a lifetime of 

approximately 125 psec, or the triplet state (ortho-Ps or o-Ps) which in vacuum 

decays predominantly into three gamma-rays with a lifetime of approximately 142 

nsec (such as the backscattered Ps). Within condensed matter, ortho-Ps prefers to 

localize in the pores since the binding energy of positron and electron pair increases 

upon entering a void. Its natural annihilation lifetime of 142 ns can be markedly 

reduced by interaction with molecular electrons during collisions with the pore 

surface. The collisionally reduced o-Ps lifetime is correlated with void size and forms 

the physical basis for probing pore structure with PALS.  

In using PALS with thin films, an electrostatically or magnetically focused beam 

of several keV positrons is generated in a high vacuum system using a radioactive 

beta-decay source. Two electrostatically focused positron beam systems have been 

used for this study and they are schematically shown in Figure 2.11 and Figure 2.12.   

In both systems, a 25 mCi 22Na radioactive source is used to produce positrons. 

The positrons are projected into the moderator, which is made of a metal that 

possesses a negative work function for positrons. A small fraction of positrons will be 
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ejected back with ~1eV energy into the vacuum and become the source for the beam.  

Different moderator setups have been used in these two systems. A 5 µm Ni foil of the 

transmission style is used in System I for a better-focused beam. System II is designed 

for a higher rate using a tungsten vane-moderator in the reflection style [34]. In both 

systems the positron beam is then accelerated by electrostatic lenses and transported 

into the sample chamber and deflected into a target sample as shown in the inset to 

Figure 2.11. The beam energy can be varied between 0.25 through 6 keV in System I 

and up to 20 keV in System II. The final beam spot size is on the order of 1 mm 

diameter in System I and about 5 mm in System II. 
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Figure 2.11. Schematic of the Depth-Profiled Positron Spectrometer: System I 
designed for good timing resolution 
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Figure 2.12. Schematic of the new slow positron beam: System II designed for 
high rate of events  

 

In beam-PALS, fast coincidence timing techniques are used to measure the lifetimes 

of annihilating positronium [41]. The timing start signal is provided by the secondary 

electrons produced when the positron beam strikes the sample surface because the 

thermalization time of the positron (several picoseconds) is negligible compared to Ps 

lifetimes (several up to 140 nanoseconds). A channel electron multiplier analyzer 

(CEMA) plate (positive – biased) detects the secondary electrons and provides the 

start pulse. Typical start rates are 2000 ~ 3000 counts /second in System I and can be 

up to 30,000 counts/second in System II. The stop signal is provided by one of the 



Surface Processing of Nanoporous Low Dielectric Constant Thin Films 

 46

annihilation gamma-rays detected by plastic scintillators.  Typical stop rates are 

about 300 counts/second in System I and are about ten times higher in System II using 

a 2” detector. These numbers can be at least tripled by using a 4” gamma detector. Ps 

lifetime for each event is then determined between the CEMA signal and the 

subsequent detection of an annihilation gamma ray. Fast timing electronics are very 

typical for PALS systems. We use Ortec 583/584 constant fraction discriminators and 

a Lecroy 4202/4204 time-to-digital converter with 156 picoseconds/channel 

resolution. Each event is then stored through a data accumulation system and 

eventually a lifetime histogram is generated. The system timing resolution throughout 

this study is normally 0.3 ns and 0.8ns, respectively for the two beams. This is 

sufficiently small to resolve ortho-Ps lifetimes (several tens of nanoseconds) in the 

mesoporous low-k films. 
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CHAPTER 3 

ZIRKON LK2200 FILMS PORE-SEALING  

BY NH3 PLASMA TREATMENT 

 

As introduced in chapter 1, surface plasma treatment on porous low-k materials 

with a view in improving the diffusion barrier properties to copper will be evaluated 

in this chapter. The material chosen is MSQ-based porous low dielectric constant 

material Zirkon LK2200 (k≈2.2), supplied by Shipley Company, L. L. C. 

 

3.1. Introduction 

 

As device dimensions continue to shrink to 0.18 µm and below in ULSI 

technology, RC delay becomes the limiting factor in integrated circuit performance. 

Because low-k materials have ultra low dielectric constant (2.2 and below), they have 

been developed to replace conventional SiO2. 

As discussed previously in chapter 1, the pores of the ultra low-k films have to be 

sealed before further processing due to the integration and reliability issues induced 

by the porous structure. Different strategies for capping/sealing of porous low-k 

materials have been investigated recently. F. Iacopi and coworkers reported that 

mesoporous low-k films were effectively sealed by depositing continuous thin films of 
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Ta (N) on the surface of the porous dielectrics [6, 14]. In other works, they employed 

the deposition of Ta (N)/SiC thin films for the surface reconstruction of the porous 

low-k materials to achieve efficient pore-sealing [42]. A controlled plasma treatment 

process has also been reported to lead to the formation of ultra thin dense layer on 

microporous dielectric films, which shall be another attractive strategy in sealing the 

porous dielectrics [43, 44]. In this study, low-frequency NH3 plasma treatment is 

employed for sealing the mesoporous low-k film Zirkon LK2200. 

Zirkon LK2200 is a kind of MSQ-based mesoporous low-k material with the k 

value of 2.2. The thickness of the film is about 1.02 µm and the refractive index of the 

film is 1.2718. By using PALS characterization, porosity and pore size of the low-k 

film has been evaluated to be 30% and 2.7nm. 

 

3.2. Experimental Section 

 

In this study, low-frequency NH3 plasma treatment has been carried out on 

MSQ-based Zirkon LK2200 films in order to seal the porous dielectrics. The low-k 

films have also been trench-patterned to demonstrate the ability to delineate the 

porous films. The low-k material was treated by NH3 plasma in a PECVD reactor for 

a very short time. The substrate temperature was adjusted to between 300oC-400oC 

with a processing chamber pressure of 300.0 mTorr. The plasma power forwarded was 

150 watts and the flow rate of NH3 was 100.0 standard cubic centimeters per minute 

(sccm). Second, a Cu film of 150 nm was deposited on the low-k samples by PVD 
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sputtering system and exposed to one hour thermal stressing at 400oC in N2 ambient. 

The diffusivity of Cu in the porous low-k film was then evaluated by Time of 

Flight-Second Ion Mass Spectroscopy (Tof-SIMS). Finally Zirkon LK2200 was 

trench-patterned in RIE system to demonstrate the ability to employ the Zirkon films 

in the damascene interconnect scheme. 

   Beam-PALS has been employed to evaluate the sealing performance of 

low-frequency plasma treatment. Fourier transform infrared (FTIR) spectra, Raman 

spectroscopy and SIMS were applied to investigate the chemical structure of the 

porous material before and after different time NH3 plasma treatment. Cross-section 

TEM successfully characterized the densified layer on the surface after plasma 

treatment and AFM was also used to evaluate the surface morphology after such 

processes. Cross-section SEM (XSEM) was used to characterize the critical 

dimensions of the patterned trenches in the low-k films after RIE etching and 

post-etching clean. 

 

3.3. Results and Discussion 

 

3.3.1. Pore-sealing efficiency of NH3 plasma treatment 

 The Zirkon films have been treated by NH3 plasma for different process time: 3s, 

10s, 30s, 60s and 600s. Beam-PALS has been used to evaluate the pore-sealing 

efficiency of the PT process. All these processed films, along with Si-capped porous 

films, and unprocessed porous films which are used as control samples, were depth 
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profiled with beam-PALS by varying the implantation energy from 1 to 8 keV. To get 

the control data, Si-capped Zirkon LK2200 and unprocessed Zirkon LK2200 films 

have been characterized by PALS, as shown in table 3.1. Compared with the Ps 

intensity (in vacuum) of the uncapped film, the Ps intensity (in vacuum) of Si-capped 

films decreased to 1.4% and 0.9%, with the implantation energy of 5.0 KeV and 8.0 

KeV.  

 

Samples Energy 
(KeV) 

Mean Depth 
(nm-g/cm3) 

Ps lifetime 
(ns) Ps Intensity Ps Intensity 

in vacuum 

2.0 85 27.2 
   1.6 4.9% 22.1% 

3.0 160 34.4 
   0.2 8.5% 21.1% 

4.0 260 37.9 
   1.2 8.0% 12.6% 

5.0 370 38.8 
   0.3 13.3% 12.7% 

Uncapped 

8.0 780 41.8 
   0.5 11.3% 8.5% 

5.0 370 47.8 
   1.2 5.9% 1.4% 

Si-capped 
8.0 780 48.5 

   0.4 8.7% 0.9% 

 

Table 3.1. PALS characterization of Zirkon LK2200 films with and without 
Si-capping.  
 

Table 3.2 also shows the PALS data of the low-k samples after different PT processes. 

As shown in table 3.2, the Ps lifetime remains constant when the implantation energy 

is varied, and the intensity of Ps is comparable to Si-capped film, these evidence the 

formation of the densified skin layers in the plasma-treated films [32]. 
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Samples Energy (keV) Ps lifetime (ns) Ps intensity 
(%) 

Ps intensity 
in vacuum (%)

2 52.3 7.3 3.0 
3 52.6 9.3 2.2 
5 52.0 13.3 1.6 

10s 

8 51.4 11.7 1.1 
2 50.9 2.1 2.7 
3 53.1 5.7 2.1 
5 53.6 9.8 1.4 

30s 

8 53.1 9.4 1.1 
2 51.2 4.0 2.6 
3 52.4 7.4 2.1 
5 53.0 11.3 1.4 

60s 

8 52.4 10.6 1.1 
2 51.3 6.0 2.6 
3 50.8 9.7 2.0 
5 50.7 13.0 1.4 

600s 

8 50.4 11.9 1.1 

 

Table 3.2. PALS characterization of Zirkon LK2200 films after different time 
plasma treatment. 
 

Referring to the data in table 3.1 and 3.2, the intensities of Ps in the vacuum of the PT 

films are also plotted in figure 3.1. As illustrated in figure 3.1, all the processed films 

present a similar intensity of Ps in vacuum as the Si-capped film, which is much lower 

than the Ps intensity of non-processed porous film. This indicates that there is only 

backscattered Ps in the vacuum in the PT films. Hence, the pores in these porous 

MSQ-based films have been sealed off after plasma treatment [45]. The densified 

layers formed on the surfaces perform effectively as a diffusion barrier to Ps. 
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Figure 3.1. Ps vacuum intensity in the PT films. A pair of unprocessed porous 
and Si-capped porous films is examined for comparison. 
 

SIMS has also been used to characterize the depth profiles of carbon and CN in 

the plasma treated low-k samples. Referring to the SIMS depth profile of carbon 

species (fig 3.2), carbon depletion occurred after NH3 plasma treatment, with the 

depletion width of 10nm, 21nm, 56nm, 134nm and 252nm, respectively after different 

PT processing. The carbon depletion depth increases with prolonged plasma treatment 

time. Figure 3.3 shows the CN depth profile of non-processed and PT samples. 

According to the figure, CN concentration apparently increases in the low-k samples 

after plasma treatment, with the depth of 70nm, 95nm, 150nm and 320nm after 10s, 

30s, 60s and 600s PT, respectively. Based on the PALS and SIMS characterization 

results, it is observed that densified layers formed after NH3 plasma treatment, with 
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the formation of ultra thin carbon depletion layers on the surface of the porous low-k 

films. 
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Figure 3.2. Carbon depth profile of non-processed and PT low-k samples. 
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Figure 3.3. CN depth profile of non-processed and PT low-k samples. 
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Referring to the profiling data, long time plasma treatment (600s) is not applicable for 

the porous low-k film treatment because it would affect the property of the entire film. 

 

3.3.2. Chemical composition characterization 

FTIR and Raman spectroscopy have been employed to evaluate the chemical 

composition of the Zirkon films before and after plasma treatment. 
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Figure 3.4. FTIR spectrums of Zirkon 2200 after different PT processes. 
 

Figure 3.4 shows Fourier-transform infrared absorption spectra (FTIR) of the 

MSQ films before and after a series of NH3 plasma treatment. As shown in the spectra, 

the peak at 1275cm-1 is attributed to Si-CH3 stretching, the peak at 1106cm-1 is 

assigned to large angle Si-O-Si bonds in a cage structure and the peak at 1041cm-1 is 
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assigned to the stretching of smaller Si-O-Si bonds in a network structure [46-48]. It 

can be inferred from the FTIR measurements that the basic chemical structure of the 

Zirkon low-k material is the hybrid of the large angle and small angle Si-O-Si bonds. 

After the plasma treatment process, the FTIR spectra of Zirkon film did not vary from 

before the plasma treatment. Based on the calculation of the peak area in figure 3.4, 

the peak intensity of Si-CH3 stretching has only been slightly reduced after different 

time plasma treatment, as illustrated in figure 3.5. The figure highlights that the ratio 

of the peak area (ISi-O/ISi-CH3) was only slightly increased from 2.17 to 2.28 after 60 s 

PT processing. However, a very small absorption peak at around 3500cm-1 is observed 

in the spectrum of the Zirkon film after 10s plasma treatment at 400oC and the peak is 

assigned to Si-OH stretching. In the PT processing at 400oC, plasma damage probably 

caused decomposition of the Si-C bonds, this induced the formation of a small 

fraction Si dangling bonds which absorbed moisture from air to form Si-OH bonds. 
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Figure 3.5. FTIR Peak area ratio of ISi-O/I Si-CH3 of Zirkon films after different 
plasma treatments. 
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Figure 3.6. Raman spectroscopy of non-processed and plasma treated low-k 
films. 
 

Raman spectroscopy was also used to characterize the change in chemical 

composition after plasma treatment because of the high sensitivity to C-H stretching. 

The peak at 980cm-1 in figure 3.6 is associated with the Si substrate [49]. Figure 3.6 

also shows two peaks at 2916cm-1 and 2976cm-1 attributable to C-H symmetric and 

asymmetric stretches. Comparing the peak intensity ratio of C-H stretching to Si-O 

bending, the ratio of the peak intensity also slightly decreased from 1.56 to 1.46 after 

the short time plasma treatment, and this also helped to confirm the carbon depletion 

after NH3 plasma treatment. 
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3.3.3. Morphology Characterization 

 

Both AFM and TEM have been used to characterize the surface morphology and 

cross-section morphology of the low-k materials after plasma treatment. As shown in 

figure 3.7, the mean surface roughness of the Zirkon films decreased from 0.866 nm 

to 0.514 nm after 10s plasma treatment. However, the mean surface roughness was 

gradually increased with prolonged plasma treatment time and the mean film 

roughness was about 1.127nm after 600s plasma processing, which is even much 

higher than that of the unprocessed film. According to the AFM results, short time 

(less than 60s) plasma treatment reduces the surface roughness and increases the 

compatibility of the low-k films in the back-end of line technology. Prolonged plasma 

bombardment however will induce surface damage, resulting in much higher surface 

roughness.  
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PT time (S) 0 10 60 600 

Mean Roughness (nm) 0.866 0.514 0.543 1.127 

 

Figure 3.7. AFM of unprocessed and PT processed Zirkon low-k films 

Cross-sectional TEM identified the presence of a densified skin-layer on the 

surface of low-k materials after NH3 plasma treatment. Figure 3.8 shows the 

cross-sectional TEM of the Zirkon low-k films after 3s, 10s, 30s and 60s NH3 plasma 

treatment, respectively. Compared to the unprocessed porous films, the densified 

skin-layers have higher density; therefore there is a striking contrast between the 

surface layer and the under layer which are illustrated in the TEM figures of figure 3.8. 

The thickness of the densified skin-layer is 35 nm, 66 nm and 150 nm after 10 s, 30 s 

and 60 s plasma treatment, respectively.  
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Figure 3.8. Cross-sectional TEM figures of processed Zirkon films 

 

Based on the SIMS depth profile and the cross-sectional TEM data, a mechanism 

for the growth of the densified skin layer has been proposed, as shown in figure 3.9. 

After plasma generation, radicals and ions quickly diffuse into open meso-pores in the 

surface region and interact with the walls, causing the collapsing of the open 

nano-pores (less than 10 s). Because of the open nano-pores collapsing, there is one 

thin layer with almost no pores (so called densified layer) formed on the surface. After 

the formation of the densified layer, radicals and ions continuously diffuse through the 
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skin layer to form a carbon-depleted layer with properties different to the skin layer. 

After prolonged plasma treatment (several minutes), the thickness of the carbon 

depletion layer and the densified layer dramatically increased. 

 

 

Figure 3.9. Proposed mechanism of Plasma treatment on the porous low-k film 

 

3.3.4. Beneficial effect against Cu diffusion 

To evaluate the properties of the densified skin layer as Cu diffusion layer, 150 

nm Cu was deposited on the plasma-treated low-k films to form the Cu/LKD/Si stack. 

After 1 hour of thermal annealing at 400oC, the surface Cu films were etched away by 

26% (NH4)2S2O8 solution to prevent the knock-on effect in subsequent SIMS 

measurement.  

As shown in SIMS depth profile of the as-received MSQ/Cu stack, the Cu 

intensity near the surface is very low since the Cu has been etched away by the 

(NH4)2S2O8 solution penetrating through the open pores on the film surface. However, 

the signal-to-noise intensity of the Cu is still higher than 10 in the depth of ~550nm, 
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which indicates that Cu has diffused into the porous low-k film after the thermal 

annealing. Compared to the depth profile of Cu/MSQ (as-received) stack, the Cu 

intensity are much higher on the film surface and the intensity decreases rapidly at 

greater depths, highlighting that the densified skin-layer effectively blocked the Cu 

during the thermal annealing. The long tail of the Cu depth with an intensity of lower 

than 10 is due to the limit of SIMS intensity resolution. The high intensity of copper 

on the surface of the PT films also indicates that the surface densified layer effectively 

prevented the chemical solution from penetrating into the porous film. Based on the 

SIMS results, the nitridation layers in the densified surface have enhanced the 

resistance of the post-PT Zirkon films to copper penetration. 

 
Figure 3.10. SIMS depth profile of Cu/MSQ/Si stack after 1 hour thermal 
annealing at 400oC in N2 ambient. 
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3.3.5. Zirkon LK2200 Film Trench Patterning 

 

In the Cu-Damascene scheme for forming interconnects, dielectric trenches are 

patterned first, followed by Cu deposition and CMP polishing. Successful integration 

requires optimization of low-k dielectric films with lithography and etch. To examine 

the process compatibility of the porous Zirkon low-k films, we have performed trench 

patterning on the low-k films using standard contact photolithography steps with 

Argon-CF4 as the etching gas. An etch rate of about 140 nm/min could be achieved. 

Figure 3.11 shows successful trench formation for the porous low-k films indicating 

that the MSQ-based low-k material is suitable for back-end processing.  

 

 

Figure 3.11. Cross-section SEM of the Zirkon film after RIE etching. 
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Figure 3.12. SEM of the MSQ surface after Plasma Etching. 

 

Figure 3.12 shows the surface of the low-k films after RIE etching, the trench 

width is about 2.3 µm, which is exactly as designed. 

 

3.4. Conclusion 

 In this chapter, porous low-k film based on Zirkon LK2200 has been successfully 

sealed by ammonia plasma treatment. A densified skin layer of 35 nm could be  

formed on the surface after ten seconds of plasma treatment, which could act 

effectively as copper diffusion layer. 

 The porous low-k films have also been trench patterned by using RIE etching, 

indicating the process compatibility of the Zirkon materials. 
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CHAPTER 4 

 

FORMING IN-SITU Cu DIFFUSION BARRIER BY NH3 

PLASMA TREATMENT ON LKD POROUS LOW-K 

MATERIAL 

 

In chapter 3, low frequency NH3 plasma treatment has been found to be effective 

in sealing the porous Zirkon LK2200 film. In this work, we extend this study to 

another kind of porous low-k film, i.e., LKD5109 MSQ film from JSR. 

 

4.1. Introduction 

 

To reduce the resistance-capacitance (RC) delay time as ICs feature size scales 

down, the current leading candidate for the metal is Cu, and porous methyl 

silsesquioxane (MSQ) for dielectric insulator. However, the diffusivity of copper in 

porous MSQ is very high and the copper diffusion will cause dielectric failure and 

lead to significantly increased leakage current [54]. Therefore, an effective barrier 

layer is needed to prevent copper diffusion into the porous dielectrics. 

As reported in chapter 3, densified layer will be formed on the surface of the 

microporous MSQ film after certain plasma treatment [32, 53]. A number of studies 
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have been done on the NH3 plasma treatment of HSQ/MSQ nonporous low-k 

materials as well. For the NH3 based plasma treatment, after the plasma treatment, a 

thin nitrided layer typically forms on the surface of the HSQ and it can act as an 

effective diffusion barrier for Cu/HSQ integration [50-52]. 

In this chapter, low-frequency NH3 plasma treatment was applied to see if a NH3 

plasma treatment can have a similar effect on porous MSQ low film, more precisely 

on JSR’s LKD5109 film. It is hoped that the NH3 plasma-treated IMD film can exhibit 

a sufficient thermal stability against Cu diffusion, which would preclude the need to 

deposit additional diffusion barrier layer and therefore reduce the complexity of the 

back-end processes. 

 

4.2. Experimental Section 

 

In chapter 4, we carried out our study on a kind of MSQ-based mesoporous low 

dielectric constant (k = 2.2) material LKD5109, which was provided by JSR 

Corporation. 

The process steps used in this work are as follows: 

1.  LKD solution was spun on silicon (p type) substrate. After 60s pre-baking at 80oC, 

the wafer was soft-baked for 60s at 200oC and was cured for 30min at 420oC (N2 

ambient). The film thickness of LKD5109 was about 400nm. 

2.  To characterize the thermal stability, LKD film was annealed for 1 hour at 300oC, 

400oC, 500oC and 600oC, respectively. 100 nm Cu was then deposited on the 
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samples exposed to thermal stress by using a shadow mask (area=1mm2) in PVD 

sputtering system. Then the relative dielectric constant was measured by 

capacitance-voltage measurement (C-V). 

3.  In another set of samples, the low-k films were treated with NH3 plasma in 

low-frequency plasma enhanced chemical vapor deposition (PECVD) system for  

varying plasma time with processing parameters of 300oC substrate temperature,  

300 mTorr work pressure, 100 SCCM NH3 flow rate , and 150 W plasma power. 

4.  A 200nm thick Au film was deposited on the plasma-treated samples by PVD 

sputtering to form a metal-oxide-semiconductor (MOS) capacitor structure. The 

dielectric constant after plasma treatment was then evaluated by C-V 

measurement. 

5.  A 150 nm thick Cu film was deposited on the different samples (plasma treated 

and non-plasma treated samples) by PVD sputtering deposition. The diffusivity of 

Cu in the porous low-k film was evaluated by leakage current measurement and 

TOF-SIMS on Cu/LKD/Si stack after 1 hour thermal annealing in N2 ambient at 

400oC. 

6.  Fourier Transform Infrared (FTIR) spectra, Raman spectroscopy and XPS were 

employed to characterize the chemical structure of the porous low-k films before 

and after NH3 plasma treatment for different lengths of time. 
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4.3. Result and discussion  

 

4.3.1. Thermal Stability of LKD 5109 

 

Figure 4.1 compares FTIR spectra of LKD5109 films before and after thermal 

stress treatment. In the FTIR spectra, the absorption band at 778cm-1 is due to the 

Si-CH3 vibration [47], the IR absorption band at 1277cm-1 is due to Si-CH3 stretching 

and the peak at 2980cm-1 is due to C-H stretching in CH3 group [55, 56]. It can be 

seen in Fig. 4.1 that, after one hour thermal stressing at temperatures of 500 oC or 

below, the peak intensity at 778cm-1 basically remained unchanged, while a noticeable 

reduction is observable after 600 oC annealing which indicates that the onset of a 

partial decomposition of Si-C bonds probably occurs at a temperature of around 600 

oC. 
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Figure 4.1. FTIR spectrum of LKD film after one hour thermal stress at 300 
oC, 400 oC, 500 oC and 600 oC, respectively. 

 

From the FTIR spectra, the peak area ratios of caged-like Si-O-Si stretching peak 

to Si-CH3 stretching peak before and after different thermal stress have been deduced 

and plotted against annealing temperature in figure 4.2. The ratio was kept nearly 

unchanged up to 500oC, and then dramatically increased from 6.2 to 7.6 after thermal 

stress at 600oC. The Si-CH3 bonds probably partially decomposed at 600oC, inducing 

the decrease in peak intensity. The intensity decrease of the peaks at 778cm-1 and 

1277cm-1 only after a thermal treatment at 600 oC suggests that the chemical structure 

of the low-k films has basically remained unchanged up to 500 oC. 
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Figure 4.2. FTIR peak area ratio of Si-O-Si stretching peak to Si-CH3 stretching 
peak after thermal stress. 

 

On the other hand, the C-V measurement of LKD films has revealed only a slight 

increase in k value, from 2.2 to 2.4 after 500 oC annealing (see figure 4.3), implying a 

minimum chemical and structural changes up to 500 oC which is consistent with the 

FTIR result.  The increase in the k value after 600 oC annealing is certainly due to 

the substantial change in chemical structure after the same temperature annealing as 

revealed by the FTIR measurement. Partially decomposed Si-CH3 bonds after 600 oC 

annealing should be susceptible to moisture uptake once exposed to atmosphere [21]. 

Therefore, the potential processing temperature should be no higher than 500oC for 

such low-k film. 
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Figure 4.3. Relative dielectric constant of LKD before and after 1 hour thermal 
stress 

 

Based on the results of FTIR and C-V measurement, we concluded that the 

chemical structure of LKD will be stable after one hour thermal stressing at a 

temperature lower than 500oC, while a substantial thermal stress induced structural 

damage occurs at a higher temperature. 

 

4.3.2. Characterization of the LKD chemical structure after Plasma 

Treatment  

Chemical structure change of porous materials after plasma treatment has been 

evaluated by using FTIR, Raman Spectroscopy, X-ray photoelectron spectroscopy 

(XPS) and Secondary Ion Mass Spectroscopy (SIMS). 
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Figure 4.4. FTIR spectra for as-cured LKD film, 3s NH3 plasma treated LKD 
film, 10s NH3 plasma treated LKD film, 30s NH3 plasma treated LKD film and 
60s NH3 plasma-treated film. 
 

Figure 4.4 shows the Fourier-transform Infrared Absorption spectra (FTIR) of the 

LKD film before and after different periods of NH3 plasma treatment. In the spectra, 

the peak at 815cm-1 is due to the Si-O bending mode in a network like structure [46], 

the peak at 1108cm-1 is related to large angle Si-O-Si bonds in a cage like structure 

and the peak at 1056cm-1 is from the stretching of smaller Si-O-Si bonds in a network 

like structure. The peak at 1277cm-1 is attributed to Si-CH3 stretching, and the small 

absorption band at 2977cm-1 is attributed to C-H stretching in the CH3 group [46-48, 

57]. 
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The intensity of the peak assigned to large angle Si-O-Si bonds is twice the peak 

intensity of the small angle Si-O-Si bonds, which suggests that the basic chemical 

structure of the LKD low-k film mainly consists of the large angle Si-O-Si bonds [57]. 

After the plasma treatment process, the FTIR spectra of LKD film remain almost 

unchanged. The peak intensity of Si-CH3 stretching has just been slightly reduced 

after different time plasma treatment. However, a rather weak absorption band at 

around 3400cm-1 was observed in the spectrum of LKD after 60s plasma treatment 

and it was thought due to Si-OH stretching vibration, probably caused by the Si-CH3 

bonds decomposition by the prolonged plasma bombardment on the surface of the 

LKD low-k film. 
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Figure 4.5. Raman spectra of as-received LKD and LKD after NH3 plasma 
treatment for different times. 
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Being very sensitive to C-H stretching in the CH3 group, Raman spectroscopy is 

employed to estimate the chemical composition of the LKD film after plasma 

treatment. In the spectra in figure 4.5, the two peaks at 2919cm-1 and 2979cm-1 are 

due to the C-H symmetric and asymmetric stretching vibrations respectively. As 

shown in the figure, the intensities of these two peaks slightly decreased after plasma 

treatment which suggests that slight carbon depletion happened after NH3 plasma 

treatment. 
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Figure 4.6. Si-C/Si-O peak ratios obtained from a series of FTIR spectra for 
as-cured LKD films receiving various time of plasma treatment. C-H/Si-O peak 
ratios obtained from a series of Raman spectra for as-cured LKD films after 
different time NH3 plasma treatment. Note that the ISi-C/Si-O and IC-H/Si-O for 
as-cured films prior to any plasma treatments are used as standard and set at 1. 

 

Referring to the FTIR and Raman spectra of the LKD samples after NH3 plasma 

treatment, the ratio of the peak areas of Si-C/Si-O and C-H/Si-O has been seduced and 
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presented in figure 4.6. It is clearly shown in the figure that peak ratios of ISi-C/Si-O and 

IC-H/Si-O have been slightly reduced by less than 20% after 10s NH3 plasma treatment 

and the ratios remained unchanged when plasma-treatment lasted for another 20s.  

SIMS was also applied to characterize the change in chemical composition of the 

LKD5109 after NH3 plasma treatment. Figure 4.7 (a) shows SIMS depth profile of the 

as-received LKD 5109, in which the CN and SiN (negative ions) signal intensity are 

nearly 100. Compared with the depth profiles shown in Figure 4.7a, the depth profiles 

of LKD samples after plasma treatment at (b) 30 s and (c) 60s show much higher CN 

and SiN signal intensities, with highest intensity on the film surfaces. The higher 

intensity of the CN and SiN signals at depth of about 250nm implies that the 

nitridation occurred not only on the surface, but also inside the porous film. This is 

due to the high ion flux and high diffusivity of chemically active radicals within the 

porous low-k film. The chemical structure in the deeper bulk regions can be altered 

through the reaction of these radicals with the matrix material during the plasma 

process. Similar to the observed C depletion in chapter 3, the carbon intensity also 

show a decrease on the LKD film surfaces after NH3 plasma treatment, with the 

depletion widths of 60nm (for 30s plasma) and 90nm (for 60s plasma), respectively. 

The C depletion was caused by plasma bombardment on the surface of the porous 

films as well as by the chemical reaction of CH3 with some chemically active radicals 

that diffused from the plasma into the low-k film. The observation of constant CN and 

SiN signal intensities within the C-depleted regions suggests that the C-depleted 

surface regions are in the form of SiN/SiOC≡N. 
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Figure 4.7. SIMS depth profiles of LKD films: (a) As-received LKD5109, (b) 
LKD after 30s NH3 plasma treatment and (c) LKD after 60s NH3 plasma 
treatment. 

 

 Further evidence for the nitridation of the LKD film surface was also obtained 

from XPS analysis. To study profiles that are representative of the near surface 

regions, about 50Å thick surface layer was sputtered off from the plasma treated LKD 

films, which has the benefits of removing surface contaminations. Figure 4.8 shows 

the typical XPS spectra for N1S in the NH3 plasma treated LKD films, which confirms 

the presence of N on the surface [51]. 
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Figure 4.8. XPS spectra of N1s with and without NH3 plasma treatment on 
LKD films. 

 

4.3.3. Relative dielectric constant measurement 

The dielectric constant of the LKD film was measured after a series of NH3 

plasma treatment to assess the processing compatibility of the low-frequency plasma 

treatment. 

Capacitance-voltage (C-V) measurement has been used to characterize the k value 

of the LKD5109 before and after NH3 plasma treatment. To eliminate system error, 

C-V measurement has been calibrated first using 1000Å thermal SiO2 on Si substrate 

as the standard sample. As described in chapter 2, Au electrodes (with 200nm 

thickness) of 1 mm diameter were prepared on the surface of the standard SiO2 

together with the LKD films (including both plasma treated and non-plasma treated 
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films) using PVD sputtering deposition. To reduce the contact resistance, Au (200 nm 

thick) was also sputtered on the backside of Si to form backside Ohmic contact. 

Figure 4.9 shows the C-V curves of the standard SiO2 sample with a k value of 3.9. 6 

electrodes have been used to measure the accumulation capacitance and the mean 

value of the 6 measured capacitances has been used to calibrate the C-V measurement 

system. 
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Figure 4.9. Capacitance-voltage curves of thermal SiO2 for C-V measurement 
system calibration. 

 

 

From the C-V curves, a mean accumulation capacitance Cox of 341.5 PF is 

calculated. In this chapter ă is used as the correction factor for the Cox. A correction 

factor value ă is obtained from
oxoxTC

r0Aã εε
= , where εr is the relative dielectric constant 

(k) of the SiO2 at 300 K, A refers to the area of the electrode of the MIS structure and 
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TOX represents thickness of the insulator. The factor ă is calculated to be 0.794 from ă 

= Aε0εr / (CoxTox) =8.854×10-12×0.785×10-6×3.9/ (341.5×10-12×1000×10-10) = 

0.794 

Figure 4.10 shows the C-V curves measured on the plasma treated and 

non-plasma treated LKD films. Based on the theory of the C-V measurement, the Cox 

is equal to the accumulative capacitance of the MOS capacitor. As shown in the C-V 

curves, the accumulative capacitance is the maximum capacitance when the positive 

bias applied to the bias (P type Si). Three electrodes have been chosen to measure the 

Cox for each sample and the relative dielectric constants of these films are calculated 

from the formula
0

oxoxox TCã
ε

ε
Ar = . The dielectric constants of the different samples 

were illustrated in figure 4.11. As shown in this figure, the k value of the porous low-k 

films increased slightly after short time (less than 30s) NH3 plasma treatment. 

However, the k value increased dramatically after 60s plasma treatment (increased to 

2.83). 
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Figure 4.10. C-V curves of LKD thin films before and after plasma treatment. 
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Figure 4.11. Relative dielectric constant of as-cured LKD film and LKD films 
subjected to different periods of plasma treatment time. 

 

4.3.4. Evaluation of barrier performance of the plasma modified 

surface layer against Cu diffusion 

I-V (current-voltage) measurement and SIMS have been used to evaluate the 

barrier performance of the plasma modified surface nitrided layer in the 

plasma-treated LKD films against copper diffusion. 

By using PVD sputtering deposition, Cu has been deposited on the LKD films to 

form the Cu/LKD/Si structure. Leakage current density-voltage curves of the MIS 

stack have been measured with and without thermal stressing. Figure 4.12 shows the 

I-V curves of the LKD films with and without NH3 plasma treatment before thermal 
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annealing. It is observed in figure 4.12 that the leakage current densities of the 

plasma-treated samples are lower than that of the as-received LKD low-k film. The 

leakage current densities of all the samples are still lower than 1×10-6 A/cm2 at 40 V 

bias which means that dielectric breakdown didn’t occur at electric field of 1MV/cm 

[50]. 
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Fig 4.12. Leakage current density-voltage curves of Cu/LKD film/Si structure 
without thermal annealing, (a) to (e) representing the I-V curve of LKD as, PT 3s, 
PT 10s, PT 30s and PT 60s LKD, respectively (PT = plasma-treated). 
 

Figure 4.13 illustrates the leakage current behavior of the NH3 plasma-treated 

LKD films after subjecting to thermal stress at 400oC. It is observed that the leakage 

current densities of the LKD samples after 30s PT or even longer did not change from 

that of the as-treated LKD samples. This suggests that the film surface nitridation had 

somehow suppressed copper diffusion. An increase of the leakage current densities of 
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short time (<10) PT samples is also represented in figure 4.13, which suggests that 

some Cu ions diffused into the porous film during the thermal stress process [58]. 

Compared to untreated film, an obvious reduction in leakage current density of 

approximately five orders of magnitude is observed for NH3 plasma-treated samples 

(>30s). It is also shown in figure 4.13 that the current density decreased after 

prolonged NH3 plasma treatment.  
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Fig 4.13. Leakage current density-voltage curves of Cu/LKD film/Si structure 
after 1 hour thermal annealing at 400oC. 

 

Based on the I-V data, we can conclude that NH3 plasma treatment (>30s) on 

porous LKD samples appears to suppress the Cu diffusion in nanoporous films that 

were subjected to 400oC stress for 1 hour as far as leakage current is concerned. 
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SIMS was also applied to evaluate the resistance of the PT LKD films against Cu 

penetration. Figure 4.14 represents the depth profiles of the Cu/As-received LKD/Si 

stack and the Cu/PT-60s LKD/Si stack after 1 hour thermal annealing at 400 oC in N2 

ambient. As shown in the figure, the Cu has diffused into the porous low-k film and 

even penetrated into the Si substrate. By contrast, the copper depth profile in the 

PT-60s LKD film decreases rapidly and shows shallower copper distribution, 

suggesting a substantially reduced Cu diffusion in plasma-treated film. 
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Figure 4.14. Secondary ion mass spectroscopy for as-cured LKD and LKD film 
after 60 s plasma treatment with Cu-electrode after being subjected to thermal 
stress at 400oC for 1 hour 
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4.3.5 PALS Characterization 

To evaluate the sealing performance of the PT process, 6 LKD films with varying 

amounts of plasma treatment and temperature are depth-profiled with 1, 3, and 5 keV 

positron beams. In Table 4.1, the depth-profiling PALS results are shown for an 

as-received 400 nm-thick control film of LKD-5109 with no plasma treatment. The 

long vacuum lifetimes of nearly 140 ns, and the large vacuum intensities, compared to 

the expected intensities from backscattering, indicate that the positronium atoms are 

freely diffusing into the vacuum through highly interconnected pores.  

 

E (keV) 
Mesopore 
Lifetime 

(ns) 

Mesopore 
Intensity 

(%) 

Ps Vacuum 
Lifetime 

(ns) 

Ps Vacuum 
Intensity 

(%) 

Ps Back 
Scattering 

(%) 

Ps Total 
Formation

(%) 
1 28.0 1.8 130 29.8 7 25 

2 17.2 1.6 133 28.5 3.5 26.5 

3 16.5 2.3 135 25.7 2.5 25.5 

5 19.3 1.7 138 19.2 1.8 19 
 

Table 4.1 PALS Results for as-received 400 nm-thick LKD without PT process. 

The varying mesopore lifetime with positron implant energy is another evidence 

that the mesopores in the LKD film is highly interconnected with a percolation length 

larger than the film thickness. To measure the true mesopore lifetime that can be 

correlated to the actual pore size, PALS measurements on Ta-capped LKD films were 

also performed and a mesopore lifetime of 51 ns (for both 5 nm and 20 nm Ta capping) 

that is independent of positron implant energy was obtained. From this lifetime value, 

it was estimated that the diameter of the cylindrical pores in the LKD film is about 2.8 

nm.  
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It was found from PALS measurement that, unlike in the case of Zirkon LK2200 

films, NH3 plasma treatment does not completely seal surface pores for Ps 

out-diffusion as high Ps vacuum signal intensity as well as much shorter mesopore 

lifetimes (shorter than 51 ns observed in Ta capped films) were detected (see figures 

4.15 and 4.16).  

 
Figure 4.15. Ps mesopre lifetime vs. Ps implant energy in as-received and plasma- 
treated LKD films. 
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Figure 4.16. Ps vacuum signal intensity vs. Ps implant energy in as-received and 
plasma-treated LKD films. 

 

Though the surface pores in the LKD films were not completely sealed by the 

NH3 plasma treatment, it was revealed by PALS that substantial densification was 

indeed caused by the plasma treatment, thus explaining the previous observations 

made from I-V and SIMS measurement. To quantify the depth profile of the film 

densification and the closing of surface pores, the total amount of positronium 

(escaping and confined to pores, corrected for Ps backscattering) is compared between 

plasma-treated samples and the control film at each positron beam energy. It is noticed 

that for all the plasma-treated samples, the fraction of the densified pore decreases 

with the positron energy, and hence the implantation depth, is increased as shown in 

Fig 4.17. The plasma treatment appears to be most effective in collapsing pores 

roughly in the top 50-100 nm near the surface of the LKD films. 
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Figure 4.17. Fraction of densified pores as a function of positron implantation 
depth using energies of 1, 3 and 5 keV. 

 

Using plasma treatments, a near-surface densification of open-pored LKD5109 

films has been observed. However, no treatment conditions have been found that can 

seal the pores on the surface completely according to the PALS results. 

 

4.4. Conclusion 

 

 Low-frequency NH3 plasma treatment has been found to be effective in forming a 

thin densified nitride layer on LKD5109 and substantially enhanced its resistance to 

copper penetration.  
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 However, results from the beam-PALS measurement suggests that NH3 plasma 

treatment cannot completely seal the surface of the mesoporous LKD materials (as far 

as positronium out-diffusion is concerned), probably because of the highly 

interconnected porosity distribution of LKD5109. The unsealed structure will cause 

reliability issue in the back-end process. Judging from the results of the chemical and 

electrical characterization, the k value of the porous LKD film property is increased 

after NH3 plasma treatment. Therefore, low-frequency NH3 plasma treatment is not an 

attractive method to enhance the processing capability of LKD5109 low-k material. 
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CHAPTER 5 

 

EVALUATION of PECVD DEPOSITED BORON NITRIDE 

as COPPER DIFFUSION BARRIER on POROUS LOW-k 

MATERIAL LKD5109 

 

5.1. Introduction 

Identifying a copper diffusion barrier on the nanoporous substrate is critical for 

the damascene fabrication process. In this study, we have evaluated the compatibility 

of plasma-deposited amorphous Boron Nitride film as copper diffusion barrier on 

LKD-5109 (from JSR, k = 2.2) [59]. LKD-5109 is a kind of MSQ 

(methylsilsesquioxane) based porous low dielectric constant material. The relative 

dielectric constant (k) of this film is about 2.2. Using postronium annihilation lifetime 

spectroscopy (PALS), the porosity and mean interconnected pore size were estimated 

to be about 30% and 2.7 nm. The thermal conductivity and specific gravity are 0.235 

W·m-1·K-1 and 0.93 (with H2O as the reference material). 

Boron Nitride (BN) is a well known dielectric with high thermal conductivity, 

low thermal expansion, high electrical resistance and low dielectric constant and loss 

tangent, and with microwave transparency. The advantages of boron nitride are the 

mechanical, thermal and chemical stability so integration into IC manufacturing 
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process is possible. Although the dielectric constants of the films have been reported 

[49, 50], there are few studies on the incorporation of BN as a low-k material. 

Previously, Sugino and coworkers prepared amorphous BCN films on silicon at 650 

°C using nitrogen and boron trichloride and reported a k value of 2.2 [62]. In other 

studies, they intentionally introduced methane as the carbon dopant and synthesized 

BCN films at 390°C and reported similarly low k values for the BCN films because 

amorphous regions formed in the h-BN film [63, 64]. In this work, we prepared BN 

films on nanoporous LKD films using the precursor borazine at 400°C. No carbon 

was intentionally introduced in order to study the intrinsic properties of the BN films. 

Both Microwave Plasma CVD (2.45 GHz) and Radio-frequency plasma atom beam 

deposition (13.56 MHz) were applied for the BN deposition in order to evaluate the 

compatibility of the two plasma processes with the nanoporous films. Growth 

parameters were optimized to minimize boron implantation and carbon depletion 

within the nanoporous substrate, which were found to have deleterious effects on the 

dielectric properties. 

 

5.2. Experimental section 

LKD5109 was spin-coated on p-doped Si (100) substrate. After 60 seconds of 

prebaking at 80oC, the wafer was soft-baked for 60 seconds at 200 oC and was cured 

for 30 min at 420oC (N2 ambient). A 400nm LKD film was obtained finally.  

The microwave plasma-enhanced chemical vapor deposition (MWPECVD) 

process was carried out in a commercial reactor (AsTex). The substrate heating was 
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controlled by a RF-induction heater stage with water cooling, using the following 

substrate temperatures: 250 oC, 300 oC, 400 oC and 500 oC. The growth parameters 

used were typically: Microwave Plasma Power: 400 watts, Pressure: 20 Torr, flow 

rates of borazine, H2 and N2 were 5.0 sccm, 20sccm and 40sccm, respectively. Both 

porous low-k material (LKD5109, 400nm on Si 100) and silicon (100) wafer were 

used as the substrates. 

A low pressure CVD route using a 13.56 MHz remote-discharged radiofrequency 

plasma beam source (Oxford Applied Research) was also applied to deposit h-BN on 

LKD. The remote-discharged atom beam source allows predominantly neutrals to 

effuse from a capillary dosing plate onto the sample, affording minimal ion beam 

damage of the sample. Due to the considerably lower pressure of the deposition, the 

gas feed was entirely borazine without the need to use carrier or diluting gas. 

Parameters: RF plasma power: 300 W, chamber pressure: 2.0×10-4 torr, substrate 

temperature: 400oC. 

The chemical composition of the BN on low-k material was characterized by 

FTIR and Raman spectroscopy. 1 mm2 Au electrodes were electron beam-deposited 

onto the BN films to form a metal/insulator/semiconductor (MIS) structure of 

Au/BN/LKD/Si, as shown in figure 5.1. Capacitance-voltage (C-V) measurement was 

used to estimate the effective dielectric constant of the BN on low-k material and Si 

substrate. Standard 100 nm thermal SiO2 was used for equipment calibration. The 

thickness of the BN was measured using surface profiler (KLA-Tencor) following 

depth profiling in secondary ion mass spectrometry (SIMS) and cross-section SEM. 
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SIMS was used to measure the changes in the elemental depth profile of boron and 

carbon after BN deposition. 

Si (100)

400nm LKD

BN

200nm Au

 

Figure 5.1. Metal-Insulator-Semiconductor structure for C-V measurement. 

 

To evaluate the diffusion barrier against copper, 150 nm Cu was deposited on the BN 

by sputtering and the composite film was annealed at 400 oC for 1 hour in N2 ambient. 

Time-of-flight SIMS (Tof-SIMS) was employed to estimate the barrier performance 

of the BN against copper diffusion. 

 BN thin films have been patterned for trench delineation to demonstrate the 

compatibility in damascene integration schemes. Photo resist (AZ5214) with a 

thickness of 1.4 µm was spun coated on BN films, followed by hard-contact 

photolithography for 15 s and photo resist development in AZ developer (diluted 2 

times by deionized water) for 60 s. By using reactive ion etch system, BN films were 

etched and thereafter were put in acetone for about 5-minute ultrasonic clean process, 

which was to strip photo resist and clean etching residue. 
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5.3. Results and Discussion 

 

The adhesion properties of BN deposited on the LKD film at 250oC and 300oC 

are quite poor due to the absorption of water and O2 at the interface, so deposition at a 

higher substrate temperature is required. Prior to that, we applied FTIR and C-V 

studies to investigate the high temperature limits for the processing of LKD to identify 

an appropriate temperature window for the deposition of BN. As indicated by the 

FTIR and CV results, at temperatures below 600oC, the bonding in the films remains 

relatively stable. Therefore so long as the processing temperatures are maintained 

below 500oC, the bonding in the LKD film can withstand the thermal stress. 

5.3.1. Structural and compositional characterization 

First, we consider the BN films deposited by microwave plasma enhanced 

chemical vapor deposition (MWPECVD) on LKD at 400 ºC. The changes in bonding 

of the LKD after BN deposition are investigated by Raman and FTIR spectroscopies. 

According to figure 5.2, the Raman spectrum of LKD as-received featured two strong 

absorption peaks at 2916cm-1 and 2976cm-1 which are attributed to C-H stretching in 

CH3. The decay in the intensities of these two peaks after plasma treatment, possibly 

due to etching, has been observed to signify a change in the physical properties, i.e. an 

increase in the dielectric constant of the films, which is undesirable. Therefore the 

correct deposition conditions have to be identified to prevent a depletion of the C-H 

signals. 
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Figure 5.2. Raman spectrum of as-received LKD film and the low-k film 
after microwave CVD BN deposited on it at 400oC. 

 

After BN deposition using MWPECVD, a new peak at 1370 cm-1 assignable to 

the E2g phonon modes of hexagonal BN (h-BN) can be seen, as shown in Fig 5.2. We 

found that the conditions inherent in the MWPECVD system are not suitable for the 

processing of the LKD films, ion damage and sputtering inevitably results in a 

depletion of the C-H related after BN deposition, as shown by the Raman data in 

Figure 5.2. Therefore we attempted the deposition using the remote discharged RF 

atom beam source in high vacuum conditions. We found that the RF atom beam 

deposition only caused a partial reduction in these C-H signals, indicating a smaller 

degree of collateral damage. 
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Figure 5.3. FTIR spectrum of as-received LKD, microwave plasma CVD 
deposited BN on low-k film and RF plasma deposited BN on low-k material at 
400oC. 
 

Another method to evaluate the degree of plasma-induced damage can be judged 

from the transmission FTIR study of the films shown in Fig. 5.3. The hexagonal B-N 

stretching featured a strong absorption band at 1380cm-1 and the B-N-B bending 

mode featured a weaker band at 792cm-1 [66]. The peak at 1275cm-1 is attributed to  

Si-CH3 stretching [56], the peak at 1108cm-1 is assigned to large angle Si-O-Si bonds 

in a cage structure and the peak at 1055cm-1 is assigned to the stretching of smaller  

Si-O-Si bonds in a network structure [55, 56]. The peak at 1275 cm-1 due to Si-CH3 

stretching on the LKD film is entirely attenuated after MWPECVD treatment in Fig 

5.3 (a), but is slightly reduced for samples treated by the RF atom beam source in Fig 

5.3 (b). 
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SIMS was applied to investigate the changes in elemental profile following the 

plasma deposition of BN on the LKD. The SIMS depth profiles are plotted in figure 

5.4, 5.5 and 5.6 for as-received LKD film, BN films grown by MWPECVD and RF 

atom beam deposition, respectively. 
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Figure 5.4. SIMS depth profile of as-received LKD film. 
 

According to figure 5.5 and 5.6, BN layers are observable on the surface of LKD 

films with small amount of O atoms incorporated into this BN layer, which may be 

induced by the apparatus without load-lock system. The carbon depletion occurred 

during the BN deposition process in MWPECVD. Comparing the SIMS depth profiles, 

we can see that the carbon concentration of LKD film was totally depleted after BN 

growth using MWPECVD for about 4 mins. The high energy microwave plasma 

probably bombarded not only the surface of LKD film but also the material several 
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hundred nanometers beneath after diffused through the pores on the surface and thus 

probably decomposed most of the Si-CH3 bonds in porous films, inducing the serious 

carbon depletion. 
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Figure 5.5. SIMS depth profile of microwave plasma CVD deposited BN on 
LKD film at 400oC. 

 

In addition, there is observable boron diffusion into the nanoporous films. Boron 

incorporation could occur by implantation through open pores in the nanoporous films. 

The concentration of boron in the LKD film after MWPECVD treatment, compared to 

RF plasma beam treatment, is at least an order higher. This suggests that boron 

implantation in the nanoporous matrix occurs for the MWPECVD system due to its 

higher density of energetic ions. In contrast, the RF atom beam source supplies 

predominantly neutral fluxes with low incident energies, thus processes due to ion 



Surface Processing of Nanoporous Low Dielectric Constant Thin Films 

 98

implantation and ion beam-induced damage are reduced. 

0 100 200 300 400 500
100

101

102

103

104

105

OO

O
O

C

C
C

B

B

B

B
SiSi

Si

Si

 

 
In

te
ns

ity
 (c

ou
nt

s)

Sputtering Time (S)

 

Figure 5.6. SIMS depth profile of RF plasma CVD deposited BN on LKD 
film at 400oC. 

 

5.3.2. Electrical Measurement 
 

The dielectric constants of metal-insulator-semiconductor structure fabricated 

from MWPECVD-deposited BN on p-type Si (100), MWPECVD-deposited BN on 

LKD film and RF plasma-deposited BN on LKD film are shown in Fig. 5.7. The 

effective k value is obtained from εr = COXTOX/A ε0, where εr is the relative dielectric 

constant (k) at 300 K, A refers to the area of the electrode of the MIS structure and 

TOX represents thickness of the insulator. Effective k values of the three films are 

shown in Figure 5.7. The k values of MWPECVD-deposited BN on Si is 2.2, 
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MWPECVD-deposited BN on LKD is 5.0 and RF atom beam-deposited BN on LKD 

is 2.4. Although the k value of MW-deposited BN film was measured to be only 2.2 

on silicon, when the BN film was integrated with LKD using MWPECVD, ion 

damage of the nanoporous structure resulted in an increase of the k value to 5. FTIR 

and Raman data suggested that the growth process at 500 °C probably damaged the 

basic porous structure of the low-k material. BN deposition with the RF atom beam 

source clearly has the benefit of introducing minimal damage to the nanoporous films 

and maintaining an overall low k value for the BN/nanoporous stack. The increase in 

the overall k value of the film for the MWPECVD process could be attributed to 

several reasons. One is the higher degree of etching of carbon in the nanoporous film 

by the higher concentration of atomic hydrogen in the plasma. The presence of CH3 

in the SSQ-based nanoporous matrix is partly responsible for imparting 

hydrophobicities and lowering the dielectric constant of the material, and its removal 

by hydrogen etching creates dangling bonds which may be replaced by polar Si-OH 

bonds, this increases the dielectric constant [32]. High density ions in the MWPECVD 

system also cause boron implanation in the nanoporous films, and collapsing of the 

porous structures leading to structural damage. 
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Figure 5.7. I: C-V curve of MPCVD BN on Si.  II: Relative dielectric constants: a. 
MPCVD deposited BN on p type Si (100), b. MPCVD deposited BN on LKD film 
and c. RF-CVD deposited BN on LKD film. 

 

5.3.3. Barrier Performance against Cu diffusion 

To evaluate the diffusion barrier properties of BN, the multi-layered 

Cu/BN/LKD/Si stack was subjected to 1 hour thermal stress at 400oC. After thermal 

annealing, copper layer was etched by 26% (NH4)2S2O8 solution in advance so as to 

avoid the knock-on effect during SIMS characterization. The thickness of the BN was 

50.0 nm. From the SIMS depth profile of the composite stack after thermal stressing, 

we can conclude that Cu diffusion into the porous low-k material is blocked although 

it has diffused into the BN with a thickness of about 13.0nm. The blockage of the 

diffusion may be due to amorphous structure of BN film and the presence of a 20 nm 

densified surface layer on the porous material, as illustrated in figure 5.9. The 

densification of the MSQ based nanoporous material after plasma treatment has been 

reported previously [32，53]. 
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Figure 5.8. SIMS depth profile of Cu/MPCVD-BN/LKD/Si structure 
annealing at 400oC in N2 ambient for 1 hour. 

 

 

Figure 5.9. XSEM of MPCVD deposited BN on LKD at 400oC 
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5.3.4. BN trench patterning 

To examine the process integration of the BN-nanoporous composite, we have 

performed trench patterning on the RF-deposited BN films and the MW-deposited 

BC0.4N films using standard photolithography steps with Argon-CF4 as the etching gas. 

An etch rate of about 100 nm/min could be achieved. Figure 5.10 shows the 

microscope image of the BN film surface after photo resist development. As 

illustrated in the image, photo resist has been developed with an accurate trench width 

of 2 µm. 

 
Figure 5.10. Microscope image of the surface after photo resist development. 

 

As shown in figure 5.11, the photo resist on the thin BN film has been well 

developed with a thickness of about 1.4 µm. After photolithography and photo resist 

development, the photo resist has a very good critical dimension, with the same trench 

width as that of the mask. After RIE dry etching and photo resist stripping, 

cross-section SEM of BN film was illustrated in figure 5.12. The thin BN films have 
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been successfully etched and cleaned with no obvious polymer residue after the whole 

process, which demonstrated the BN film’s compatibility in back-end of line process. 

 

Figure 5.11. XSEM of photo resist developed on BN film. 

Figure 5.12 and 5.13 also show successful trench formation on the BN film with 

clean vertical side wall and the absence of residual polymer resist, indicating that the 

BN-based material is suitable for back-end processing. 

 



Surface Processing of Nanoporous Low Dielectric Constant Thin Films 

 104

 

 

Figure 5.12. Low-Magnification XSEM of patterned BN film after photo 
resist stripping and residue cleaning. 

 

   

 

Figure 5.13. High-magnification XSEM of patterned BN film after photo 
resist stripping and residue cleaning. 
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5.4. Conclusion 

 

We found that plasma-deposited h-BN films using borazine as the gas source has 

intrinsically low dielectric constant values (carbon impurity <1%) of between 2.2-2.4 

depending on the type of plasma deposition process. The RF plasma beam-deposited 

h-BN films grown at a substrate temperature of 400 °C can integrate well with the 

nanoporous LKD film to form a dielectric stack with overall k value of 2.4. Thermal 

stress experiment carried out by annealing the Cu/BN/LKD/Si stack at 400 °C for one 

hour indicates that copper diffusion occurs in the BN film (50 nm thick), although its 

diffusion into the LKD is blocked. Microwave plasma deposition is not compatible 

with the process integration on nanoporous LKD due to the ion beam-induced damage 

of LKD. However, microwave plasma-deposited h-BN films were found to have a low 

k value of 2.2 suggesting that the h-BN films, or its composite, may function 

independently as low-k material. 
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CHAPTER 6 

CONCLUSION and FUTURE WORK 

 

In this work, both plasma treatment and thin dielectric barrier deposition have 

been carried out on MSQ-based porous low-k films to resolve some key issues in the 

low-k materials and copper damascene integration.  

Two kinds of low-k films, Zirkon LK2200 and LKD5109, were treated by low 

frequency NH3 plasma in order to form a densified surface nitridation layer. The 

porous low-k film, Zirkon LK2200, has been successfully sealed by ammonia plasma 

treatment with a densified skin layer of 35 nm formed on the surface after 10s of 

plasma treatment, which could act effectively as copper diffusion layer. The 

low-frequency NH3 plasma treatment has also been found to be effective in forming a 

thin nitride layer on LKD5109 and substantially enhanced its resistance to copper 

penetration. However, beam-PALS measurement results showed that the plasma 

treatment can’t completely seal the surface of LKD5109, which was probably due to 

the highly interconnected porosity distribution in the film. The unsealed structure will 

cause reliability issue in the back-end process. Since the plasma treatment limited 

capability in sealing the LKD5109 and the low-k property degradation after 

processing, low-frequency NH3 plasma treatment is not a good method to enhance the 

processing capability of LKD5109 low-k material. 
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 BN film was deposited on LKD5109 so as to act as dielectric barrier against Cu 

penetration. With an intrinsic dielectric constant of about 2.2-2.4, the RF plasma 

beam-deposited BN films can integrate well with the nanoporous LKD film to form a 

dielectric stack with overall k value of 2.4. Thermal stress experiment showed that 

copper diffusion occurs in the BN film (50 nm thick), although its diffusion into the 

LKD is blocked. Microwave plasma deposition is not compatible with the process 

integration on nanoporous LKD due to the ion beam-induced damage of the material. 

However, microwave plasma-deposited h-BN films were found to have a low k value 

of 2.2 suggesting that the h-BN films, or its composite (BCN), may function 

independently as low-k material. 

 In the future work, the sealing efficiency of NH3 plasma treatment on patterned 

Zirkon LK2200 should be verified firstly. Especially we need to check the treatment 

performance on the sidewall of the dielectric trench and via by using beam-PALS. 

Secondly, the microwave plasma-deposited BN/BCN film processing compatibility 

with Cu should be checked to see whether or not it can be an attractive candidate as 

ultra low-k material. 
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NOMENCLATURE: 

 

Low-k film: Low Dielectric Constant film 

PT: Plasma Treatment 

RC delay: Resistance Capacitance Delay 

MSQ: Methyl-silsesquioxane 

CVD: Chemical Vapor Deposition 

PVD: Physical Vapor Deposition 

DRAM: Dynamic Random Access Memory (DRAM) which is the most common 
kind of random access memory for personal computers and workstations 

MPU: Micro Processor Unit 

CMP: Chemical-Mechanical Polishing 

RIE: Reactive Ion Etching 

ARC: Anti-reflective Coating 

PR: Photo Resist 

MIS: Metal-Insulator-Silicon structure 

ESL: Etch Stop Layer 

Hard Mask: The layer with high mechanical integrity to protect under layer from 
polishing 



Surface Processing of Nanoporous Low Dielectric Constant Thin Films 

 109

 

BIBLIOGRAPHY 

 
1. J. D. Plummer, M. D. Deal and P. B. Griffin., Silicon VLSI Technology, edited by 

Alice Dworkin, Rose Kernan and Marcia Horton., Prentice Hall, New Jersey, 1 
(2000) 

 
2. K. Maex, M.R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma, Z. S. 

Yanovitskaya., J. Appl. Phys., Vol. 93, No. 11, 8794 (2003) 
 
3. International Technology Roadmap for Semiconductors (ITRS) of 2002 
 
4. L. Peters., “Industry Divides on Low-k Dielectric Choices”, Semiconductor 

International (2001) 
 
5. L. Peters., IMEC Explores Interconnect, Reliability Issues Beyond 65 nm, Nov. 

Issue, Semiconductor International (2002) 
 
6. F. Iacopi., C. Zistl., C. Jehoul., Zs. Tokei., Q.T. Le., A. Das., C. Sullivan., G. 

Prokopowicz., D. Gronbeck., M. Gallagher., J. Calvert., K. Maex., Microelectron. 
Eng., Vol. 64, 351 (2002) 

 
7. T. Sugino., Y. Etou., T. Tai., H. Mori., Appl. Phys. Lett., Vol. 80, No. 4, 649 

(2002) 
 
8. W. W. Lee and P.S. Ho, MRS Bulletin, Oct., 19 (1997) 
 
9. M. Morgan, E.T. Ryan, J.-H. Zhao, C. Hu, T. Cho and P.S. Ho, Annu. Rev. Mater. 

Sci., 30, 645 (2000) 
 
10. B. Zhao and M. Brongo, Mat. Res. Soc. Sypm. Proc., 565, 137 (1999) 
 
11. J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, 

J.D.F.Ramsay, K.S.W.Sing, and K.K. Unger, Pure Appl. Chem. 66, 1739 (1994) 
 
12. J. Proost, E. Kondoh, G. Vereecke, M. Heyns, and K. Maex, J. Vac. Sci. Technol. 

B 16, 2091 (1998) 
 
13. J. Proost, M. Baklanov, K. Maex, and L. Delaey, J. Vac. Sci. Technol. B 18, 303 

(2000) 
 
14. F. Iacopi, Zs. Tokei, M. Stucchi, S. Brongersma, D. Vanhaeren, and K. Maex, 



Surface Processing of Nanoporous Low Dielectric Constant Thin Films 

 110

Microelectron. Eng. 65, 123 (2003) 
15. T. Furusawa, D. Ryazaki, R. Yoneyama, Y. Homma, and K. Hinode, J. 

Electrochem. Soc. 148, F175 (2001) 
 
16. S. S. Han and B. S. Baez, J. of. Electrochem. Soc. 148 (4), F67 (2001) 
 
17. S. Backaran, J. Liu, K. Domansky, N. Kohler, X. H. Li, C. Colye, G. E. Fryxell, S. 

Thevuthasan, R. E. Williford, Adv. Mater. 12, No. 4 (2000) 
 
18. Grill, D. Edelstein, and V. Patel, Advanced Metallization Conference 2001 

(Material Research Society, Pittsburgh, PA, 2002) 
 
19. K. Buchanan, K. Beekmann, K. Giles, J. C. Yeoh, and H. Donohue, Advanced 

Metallization Conference, Montreal, Canada, 2001 
 
20. G. L. Link, in Polymer Science, edited by A. D. Jenkins (1972), p. 1283. 
 
21. J. J. Waeterloos, Zs. Tokei, F. Iacopi, R. Caluwaerts, H. Struyf, I. Vos, and K. 

Maex, SEMATECH Workshop, San Francisco, CA, (2002) 
 
22. T. Ramos, K. Roderick, A. Maskara and D. M. Smith; Advanced Metallization 

and Interconnect Systems for ULSI Applications in 1996 Mater. Res. Soc., 
Pittsburgh, 455 (1997 b) 

 
23. M.-H. Jo, J.-K. Hong, H.-H. Park, J.-J. Kim and S.-H. Hyun, Microelectronic 

Engineering, 33, 343 (1997) 
 
24. T. A. Deis, C. Saha, E. Moyer, K. Chung, Y. Liu, M. Spaulding, J. Albaugh, W. 

Chen and J. Bremmer, Mat. Res. Soc. Sypm. Proc., 612. D5.18 (2000) 
 
25. A. T. Kohl, R. Mimna, R. Shick, L. Rhodes, Z. L. Wang and P. A. Kohl, 

Electrochem. Solid ST, 2,2,77 (1999) 
 
26. K. R. Carter, Mat. Res. Soc. Sypm. Proc., 467, 87 (1997) 
 
27. J. L. Hedrick, R.D. Miller, C.J. Hawker, K.R. Carter, W. Volksen, D. Y. Yoon and, 

M. Trollsas, Adv. Mater., 10, 13, 1049 (1998) 
 
28. H. Fan, H.R. Bentley, K.R. Kathan, P. Clem, Y. Lu and C.J. Brinker, J. Non-Cryst. 

Solids. 285, 79 (2001) 
 
29. J. L. Hedrick, T.P. Russel, M. Sanchez, R. DiPietro, S. Swanson, D. Jerome, R. 

Mecerreyes, Macromolecules, 29, 3642 (1996) 
 



Surface Processing of Nanoporous Low Dielectric Constant Thin Films 

 111

30. A. Ore, Univ. Bergen Arbok, Naturv. Rekke, 9 (1949) 
 
31. O. E. Mogensen, J. Chem. Phys., 60, 998 (1974) 
 
32. J. N. Sun, D. W. Gidley, Y. Hu, and W. E. Frieze, E. T. Ryan, Appl. Phys. Lett. Vol 

81, No. 8, 1447 (2002) 
 
33. J. N. Sun, D. W. Gidley, T. L. Dull, W. E. Frieze, A. F. Yee, E. T. Ryan, S. Lin and 

J. Wetzel, J. Appl. Phys. Vol 89, No. 9, 5138 (2001) 
 
34. P. J. Schultz and K. G. Lynn, Rev. Mod. Phys., 60, 701 (1988) 
 
35. S. R. Wilson, J. T. Clarence and J. L. Freeman, NOYES PUBLICATIONS, 

Handbook of Multilevel Metallization for Integrated Circuits p.8 (1993) 
 
36. G. C. Schwartz, K.V. Srikrishman and A. Bross, Handbook of Semiconductor 

Interconnection Technology, IBM Microelectronics, published by Marcel Dekker, 
Inc, p.302 (1998) 

 
37. S. Wolf, Silicon Processing for the VLSI Era., 672-673 (2002) 
 
38. R. H. Havemann and J. A. Hutchby, Proceedings of The IEEE, vol. 89, No. 5, 

May, 591 (2001) 
 
39. B. J. Gordon, Solid State Technology, Jan, 57 (1993) 
 
40. D. K. Schroder, Arizona State University, Semiconductor Material and Device 

Characterization, A Wiley-Interscience Publication, p.347 (1998) 
 
41. L. Xie, G. B. DeMaggio, W. E. Frieze, J. DeVries, D.W. Gidley, H.A. Hristov and, 

A. F. Yee, Phys. Rev. Lett., 74, 4947 (1995a) 
 
42. F. Iacopi, Zs. Tokei, Q. T. Le, D. Shamiryan, T. Conard, B. Brijs, U. Kreissig, M. 

V. Hove and K. Maex, J. Appl. Phys. Vol. 92, No. 3, 1548 (2002)  
 
43. H. J. Lee et al., J. Electrochem. Soc. Vol. 148, Issue 10, F195 (2001) 
 
44. E. T. Ryan, J. Martin, K. Junker, J. J. Lee, T. Guenther, J. Wetzel, S. Lin, D. W. 

Gidley, and J. Sun, Proceeding Of IITC, 27 (2002)  
 
45. D. W. Gidley, W. E. Frieze, A. F. Yee, T. L. Dull, H.-M. Ho, and E. T. Ryan, Phys. 

Rev. B, 60, R5157 (1999)  
 
46. Y-H Kim, M. S. Hwang, H. J. Kim, J. Y. Kim and Young Lee, J. Appl. Phys, vol. 



Surface Processing of Nanoporous Low Dielectric Constant Thin Films 

 112

90, 3367 (2001)  
 
47. A. Grill and D. A. Neumayer, J. Appl. Phys, vol. 94, 6697 (2003)  
 
48. C. T. Chen and B. S. Chiou, J. Mater. Science. 139 (2004)  
 
49. T. Thamm, W. Baumann, D. Dietrich, N. Meyer, S. StoE and G. Marx, Phys. 

Chem. Chem. Phys., vol. 3, 5150 (2001)  
 
50. P. T. Liu, T. C. Chang, Y. L. Yang, Y. F. Cheng, S. M. Sze, IEEE TRANSACTIONS 

ON ELECTRON DEVICES, vol. 47, NO. 9, SEPTEMBER, 1733 (2000) 
 
51. H. S. Sim, Y. T. Kim and H. Jeon, Jpn. J. Appl. Phys, vol. 41, 3658 (2002) 
 
52. K. M. Chang, I. C. Deng, Y. P. Tsai, C. Y. Wen, S. J. Yeh, S. W. Wang, and J. Y. 

Wang., J. Electrochem. Soc. 147 (6), 2332 (2000) 
 
53. E. T. Ryan, J. Martin, K. Junker, J. Wetzel, D. W. Gidley and J. N. Sun, J. Mater. 

Res., Vol. 16, No. 12, 3335 (2001) 
 
54. K. Mosig , T. Jacobs , K. Brennan , M. Rasco , J. Wolf , R. Augur, Micro 

Engineering, vol. 64, 11 (2002) 
 
55. M. G. Albrecht and C. Blanchette, J. Electrochem. Soc. 145, 4019 (1998) 
 
56. T. R. Crompton, The Chemistry of Organic Silicon Compounds, edited by S. Patai 

and Z. Rappoport (Wiley, New York), pp. 416-421 (1989) 
 
57. L.-H. Lee, W.-C. Chen, W.-C. Liu, J. of Polymer Science Part A: Polymer 

Chemistry, vol. 40, 1560 (2002) 
 
58. Z.-C. Wu, C.-C. Chiang, W.-H. Wu, M.-C. Chen, S.-M. Jeng, L.-J. Li, S.-M. Jang, 

C.-H. Yu, and M.-S. Liang, IEEE ELECTRON DEVICE LETTERS, vol. 22, No. 6, 
JUNE 263 (2001) 

 
59. A. Das. Microelectronic Engineering 64 (2002) 25 
 
60. S. V. Nguyen, T. Nguyen, H. Treichel, O. Spindler, J. Electrochem. Soc. 141，

1633 (1994)  
 
61. W. F. Kane, S. A. Cohen, J. P. Hummel, B. Luther, D. B. Beach, J. Electrochem. 

Soc. 144, 658 (1997) 
 
62. T. Sugino, T. Tai, Y. Etou, Diam. Related. Mater. 10, 1375 (2001)  



Surface Processing of Nanoporous Low Dielectric Constant Thin Films 

 113

 
63. T. Tai, T. Sugiyama, T. Sugino, Diam. Related. Mater. 12, 1117 (2003)  
 
64. T. Sugiyama, T. Tai, A. Okamoto, M Yoshitake, T. Sugino, Diam. Related. Mater. 

12, 1113 (2003)  
 
65. M. J. Loboda, C. M. Grove, and R. F. Schneider, J. Electrochem. Soc. 145, 2861 

(1998)  
 
66. T. Sugino and H. Hieda, Diamond and Related Materials 9, 1233 (2000)  

 


