12 research outputs found

    Learning View-Model Joint Relevance for 3D Object Retrieval

    Get PDF
    3D object retrieval has attracted extensive research efforts and become an important task in recent years. It is noted that how to measure the relevance between 3D objects is still a difficult issue. Most of the existing methods employ just the model-based or view-based approaches, which may lead to incomplete information for 3D object representation. In this paper, we propose to jointly learn the view-model relevance among 3D objects for retrieval, in which the 3D objects are formulated in different graph structures. With the view information, the multiple views of 3D objects are employed to formulate the 3D object relationship in an object hypergraph structure. With the model data, the model-based features are extracted to construct an object graph to describe the relationship among the 3D objects. The learning on the two graphs is conducted to estimate the relevance among the 3D objects, in which the view/model graph weights can be also optimized in the learning process. This is the first work to jointly explore the view-based and model-based relevance among the 3D objects in a graph-based framework. The proposed method has been evaluated in three data sets. The experimental results and comparison with the state-of-the-art methods demonstrate the effectiveness on retrieval accuracy of the proposed 3D object retrieval method

    Local Color Voxel and Spatial Pattern for 3D Textured Recognition

    Get PDF
    3D textured retrieval including shape, color dan pattern is still a challenging research. Some approaches are proposed, but voxel-based approach has not much been made yet, where by using this approach, it still keeps both geometry and texture information. It also maps all 3D models into the same dimension. Based on this fact, a novel voxel pattern based is proposed by considering local pattern on a voxel called local color voxel pattern (LCVP). Voxels textured is observed by considering voxel to its neighbors. LCVP is computed around each voxel to its neighbors. LCVP value will indicate uniq pattern on each 3D models. LCVP also quantizes color on each voxel to generate a specific pattern. Shift and reflection circular also will be done. In an additional way, inspired by promising recent results from image processing, this paper also implement spatial pattern which utilizing Weber, Oriented Gradient to extract global spatial descriptor. Finally, a combination of local spectra and spatial and established global features approach called multi Fourier descriptor are proposed. For optimal retrieval, the rank combination is performed between local and global approaches. Experiments were performed by using dataset SHREC'13 and SHREC'14 and showed that the proposed method could outperform some performances to state-of-the-art

    3D Object Comparison Based on Shape Descriptors

    Get PDF
    No abstract availabl

    Local Color Voxel and Spatial Pattern for 3D Textured Recognition

    Full text link

    Indexing and Retrieval of 3D Articulated Geometry Models

    Get PDF
    In this PhD research study, we focus on building a content-based search engine for 3D articulated geometry models. 3D models are essential components in nowadays graphic applications, and are widely used in the game, animation and movies production industry. With the increasing number of these models, a search engine not only provides an entrance to explore such a huge dataset, it also facilitates sharing and reusing among different users. In general, it reduces production costs and time to develop these 3D models. Though a lot of retrieval systems have been proposed in recent years, search engines for 3D articulated geometry models are still in their infancies. Among all the works that we have surveyed, reliability and efficiency are the two main issues that hinder the popularity of such systems. In this research, we have focused our attention mainly to address these two issues. We have discovered that most existing works design features and matching algorithms in order to reflect the intrinsic properties of these 3D models. For instance, to handle 3D articulated geometry models, it is common to extract skeletons and use graph matching algorithms to compute the similarity. However, since this kind of feature representation is complex, it leads to high complexity of the matching algorithms. As an example, sub-graph isomorphism can be NP-hard for model graph matching. Our solution is based on the understanding that skeletal matching seeks correspondences between the two comparing models. If we can define descriptive features, the correspondence problem can be solved by bag-based matching where fast algorithms are available. In the first part of the research, we propose a feature extraction algorithm to extract such descriptive features. We then convert the skeletal matching problems into bag-based matching. We further define metric similarity measure so as to support fast search. We demonstrate the advantages of this idea in our experiments. The improvement on precision is 12\% better at high recall. The indexing search of 3D model is 24 times faster than the state of the art if only the first relevant result is returned. However, improving the quality of descriptive features pays the price of high dimensionality. Curse of dimensionality is a notorious problem on large multimedia databases. The computation time scales exponentially as the dimension increases, and indexing techniques may not be useful in such situation. In the second part of the research, we focus ourselves on developing an embedding retrieval framework to solve the high dimensionality problem. We first argue that our proposed matching method projects 3D models on manifolds. We then use manifold learning technique to reduce dimensionality and maximize intra-class distances. We further propose a numerical method to sub-sample and fast search databases. To preserve retrieval accuracy using fewer landmark objects, we propose an alignment method which is also beneficial to existing works for fast search. The advantages of the retrieval framework are demonstrated in our experiments that it alleviates the problem of curse of dimensionality. It also improves the efficiency (3.4 times faster) and accuracy (30\% more accurate) of our matching algorithm proposed above. In the third part of the research, we also study a closely related area, 3D motions. 3D motions are captured by sticking sensor on human beings. These captured data are real human motions that are used to animate 3D articulated geometry models. Creating realistic 3D motions is an expensive and tedious task. Although 3D motions are very different from 3D articulated geometry models, we observe that existing works also suffer from the problem of temporal structure matching. This also leads to low efficiency in the matching algorithms. We apply the same idea of bag-based matching into the work of 3D motions. From our experiments, the proposed method has a 13\% improvement on precision at high recall and is 12 times faster than existing works. As a summary, we have developed algorithms for 3D articulated geometry models and 3D motions, covering feature extraction, feature matching, indexing and fast search methods. Through various experiments, our idea of converting restricted matching to bag-based matching improves matching efficiency and reliability. These have been shown in both 3D articulated geometry models and 3D motions. We have also connected 3D matching to the area of manifold learning. The embedding retrieval framework not only improves efficiency and accuracy, but has also opened a new area of research

    Objekt-Manipulation und Steuerung der Greifkraft durch Verwendung von Taktilen Sensoren

    Get PDF
    This dissertation describes a new type of tactile sensor and an improved version of the dynamic tactile sensing approach that can provide a regularly updated and accurate estimate of minimum applied forces for use in the control of gripper manipulation. The pre-slip sensing algorithm is proposed and implemented into two-finger robot gripper. An algorithm that can discriminate between types of contact surface and recognize objects at the contact stage is also proposed. A technique for recognizing objects using tactile sensor arrays, and a method based on the quadric surface parameter for classifying grasped objects is described. Tactile arrays can recognize surface types on contact, making it possible for a tactile system to recognize translation, rotation, and scaling of an object independently.Diese Dissertation beschreibt eine neue Art von taktilen Sensoren und einen verbesserten Ansatz zur dynamischen Erfassung von taktilen daten, der in regelmäßigen Zeitabständen eine genaue Bewertung der minimalen Greifkraft liefert, die zur Steuerung des Greifers nötig ist. Ein Berechnungsverfahren zur Voraussage des Schlupfs, das in einen Zwei-Finger-Greifarm eines Roboters eingebaut wurde, wird vorgestellt. Auch ein Algorithmus zur Unterscheidung von verschiedenen Oberflächenarten und zur Erkennung von Objektformen bei der Berührung wird vorgestellt. Ein Verfahren zur Objekterkennung mit Hilfe einer Matrix aus taktilen Sensoren und eine Methode zur Klassifikation ergriffener Objekte, basierend auf den Daten einer rechteckigen Oberfläche, werden beschrieben. Mit Hilfe dieser Matrix können unter schiedliche Arten von Oberflächen bei Berührung erkannt werden, was es für das Tastsystem möglich macht, Verschiebung, Drehung und Größe eines Objektes unabhängig voneinander zu erkennen

    An Analogy Based Costing System For Injection Molds Based Upon Geometry Similarity With Wavelets

    Get PDF
    The injection molding industry is large and diversified. However there is no universally accepted way to bid molds, despite the fact that the mold and related design comprise 50% of the total cost of an injection-molded part over its lifetime. This is due to both the structure of the industry and technical difficulties in developing an automated and practical cost estimation system. The technical challenges include lack of a common data format for both parts and molds; the comprehensive consideration of the data about a wide variety of mold types, designs, complexities, number of cavities and other factors that directly affect cost; and the robustness of estimation due to variations of build time and cost. In this research, we propose a new mold cost estimation approach based upon clustered features of parts. Geometry similarity is used to estimate the complexity of a mold from a 2D image with one orthographic view of the injection-molded part. Wavelet descriptors of boundaries as well as other inherent shape properties such as size, number of boundaries, etc. are used to describe the complexity of the part. Regression models are then built to predict costs. In addition to mean estimates, prediction intervals are calculated to support risk management

    Swarm Robotics

    Get PDF
    Collectively working robot teams can solve a problem more efficiently than a single robot, while also providing robustness and flexibility to the group. Swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. The robots in the swarm should have some basic functions, such as sensing, communicating, and monitoring, and satisfy the following properties

    Polyhedral Model Retrieval Using Weighted Point Sets

    No full text
    Due to the recent improvements in laser scanning technology, 3D visualization and modelling, there is an increasing need for tools supporting the automatic search for 3D objects in archives. In this paper we describe a new geometric approach to 3D shape comparison and retrieval for arbitrary objects described by 3D polyhedral models that may contain gaps. In contrast with existing approaches, our approach takes the overall relative spatial location into account by representing the 3D shape as a weighted point set. To compare two objects geometrically we first apply principal components analysis to bring the objects in a standard pose, and enclose each object by a 3D grid. Then we generate for each object a signature representing a weighted point set, that contains for each non-empty grid cell a salient point. We compare three methods to select in each grid cell a salient point and a weight: (1) choose the vertex in the cell with the highest Gaussian curvature, and choose as weight a measure for that curvature, (2) choose the area-weighted mean of the vertices in the cell, and choose as weight a measure denoting the normal variation of the facets in the cell and (3) choose the centre of mass of all vertices in the cell, and choose as weight one. Finally, we compute the similarity between two shapes by comparing their signatures using a new shape similarity measure based on weight transportation that is a variation on the Earth Mover's Distance. Unlike the Earth Mover's Distance, the new shape similarity measure satisfies the triangle inequality

    3D Shape Similarity Through Structural Descriptors

    Get PDF
    Due to the recent improvements to 3D object acquisition, visualization and modeling techniques, the number of 3D models available is more and more growing, and there is an increasing demand for tools supporting the automatic search for 3D objects and their sub-parts in digital archives. Whilst there are already techniques for rapidly extracting knowledge from massive volumes of texts (like Google [htt]) it is harder to structure, filter, organize, retrieve and maintain archives of digital shapes like images, 3D objects, 3D animations and virtual or augmented reality. This situations suggests that in the future a primary challenge in computer graphics will be how to find models having a similar global and/or local appearance. Shape descriptors and the methodologies used to compare them, occupy an important role for achieving this task. For this reason a first contribution of this thesis is to provide a critical analysis of the most representative geometric and structural shape descriptors with respect to a set of properties that shape descriptors should have. This analysis is targeted at highlighting the differences between descriptors in order to better understand where a descriptor fails and another succeed. As a second contribution, the thesis investigates the problem of using a structural descriptor for shape comparison purposes. A large class of structural shape descriptors can be easily encoded as directed, a-cyclic and attributed graphs, thus the problem of comparing structural descriptors is approached as a graph matching problem. The techniques used for graph comparison have an exponential computational complexity and it is therefore necessary to define an algorithmic approximation of the optimal solution. The methods for structural descriptors comparison, commonly used in the computer graphics community, consist of heuristic graph matching algorithms for specific application tasks, while it is lacking a general approach suitable for incorporating different heuristics applicable in different application tasks. The second contribution presented in this thesis is aimed at defining a framework for expressing the optimal algorithm for the computation of the maximal common subgraph in a formalization which makes it straightforward usable for plugging heuristics in it, in order to achieving different approximations of the optimal solution according to the specific case. Implemented heuristics for robust graph matching with respect to graph structural noise are discussed and experimented on sub-part correspondence between similar 3D objects, and shape retrieval application with respect to different structural graph descriptors
    corecore