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ABSTRACT 
 

An important goal in robotics research is to allow the robot to interact with the 

environment at a much higher level than presently possible, thereby increasing the 

system's effectiveness. One prerequisite for this is accurate sensors and intelligent 

use of data. Tactile sensing is an area of research that has much impact potential on 

a large number of industries and disciplines particularly robotics and automation. 

 The lack of suitable commercial tactile sensors has limited developments in 

the robotic handling of fragile objects. This work demonstrates the use of simple 

tactile sensor arrays based solely on electrically conductive polymer foam. The 

advantages of this approach include (1) increased robustness because of the 

polymer substrate material; (2) decreased fabrication cost and complexity; (3) 

flexibility of integration with robot devices; (4) reliable and stable dc response. Given 

the accuracy of the position estimation, position feedback is integrated into a grasp 

controller to make optimal grasping and manipulation of objects possible. 

 This dissertation describes a new type of tactile sensor and an improved 

version of the dynamic tactile sensing approach that can provide a regularly updated 

and accurate estimate of applied forces for use in the control of gripper manipulation. 

This particular tactile sensor was designed and built by Mr. Karsten Weiß for the 

HERMES mobile robot project [Porto and Science 1998]. 

 An algorithm that can discriminate between types of contact surface and 

recognize objects at the contact stage is also proposed. A technique for recognizing 

objects using tactile sensor arrays, and a method based on the quadric surface 

parameter for classifying grasped objects is described. Tactile arrays can recognize 

surface types on contact, making it possible for a tactile system to recognize 

translation, rotation, and scaling of an object independently. 
The author also describes a new model-based approach to building a contact 

state observer. The observer uses contact force and position measurements, and 

prior information about the task encoded in Strain Quadric Composition [Petchartee 

2007a], to determine the current normal force and shear forces. Quadric surfaces 

can be used to represent multiple principal strains at a contact point. An application 

of strain quadric composition showed some correlated results of strains can be 

interpreted by tactile sensors [Petchartee 2007a]. 
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CHAPTER ONE 
INTRODUCTION 

 
1.1 Motivation 

 

There has been increased interest in the application of robots in manufacturing 

because of their flexibility and programmable sensitivity in manipulating a variety of 

object shapes. Moreover, sensors applied to robots should allow intelligent slip 

sensing and precise gripping during manipulation. In most factories, robot 

manipulators are designed in the form of parallel jaw grippers generally called 

end-effectors. 

 

The motivation for many sensor based studies has been triggered by the need 

to mitigate the limitations of parallel jaw grippers. When equipped with tactile sensors, 

these grippers are more effective than traditional grippers as they are capable of 

encircling objects with the least possible force necessary to prevent slippage or 

premature release. However, to be able to prehend objects with different weights, 

robots must have excellent force control capacity, particularly when manipulating 

fragile objects or in cases where the coefficient of friction between object and gripper 

surfaces is low. This places high demands on both spatial and temporal sensor 

parameters making real-time operations necessary. To achieve this the robot must be 

capable of identifying the physical characteristics, including the surface nature, of the 

object. It must also be able to estimate the objects weight in order to generate an 

appropriate control force for secure acquisition of the object without fear of damage. 

 

Nicholls’ research survey [Nicholls 1989, 1992] on tactile-sensor technology 

indicates that despite rapid developments in the industry, the advent of robotic 

manipulators having sensitivity comparable to that of human hands has still far to 

come. Therefore, there has been ongoing research to develop guidelines for solving 

such problems, resulting in the availability of several new tactile-sensor designs. Some 

designs are capable of sensing only the contact between the object and the sensor 

surface, and merely the presence or absence of contact. Other more complex designs 
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have the capacity to generate information, for instance, about the size and shape of the 

object together with the force distribution on the tactile sensor surface. 

According to [Crowder 1998], simple touch sensors are able to measure the 

sense of touch or force at a certain contact point between object and sensor surfaces 

and are thus only capable of determining the presence or absence of contact. In 

comparison, tactile sensors are capable of measuring the sense of touch as a force 

distribution on the sensor surface which can be used further to analyze the 

characteristics of the contact, such as the object shape. 

 
 

1.2 Tasks and Goals of this Study 
 

From the above motivation, the present study aims at researching, designing 

and applying an improved version of tactile sensors capable of sensing different kinds 

of information. The tactile sensors under investigation must have a simple design and 

yet posses a flexible interface to a robotic system. In addition, repair must be 

uncomplicated, and the acquisition of materials easy.  

 

In the experiments to show the capacity of the proposed tactile sensors, a robot 

called Athene is used.  The robot is programmed to analyze the tactile image data 

recorded from tactile sensors and then to classify the object shape under any 

transformation invariance. The first series of experiments illustrate the robot’s 

optimized grasped capability.  

 

1.) Upon gripping the object, the robot lifts the object while adjusting the control 

force to the minimum before the occurance of slip.  

2.) The objects is prehended between the robot fingers above the surface. 

 

 Prehension forces are then reduced until the first occurance of slip is detected 

and the applied force noted as the minimum retention force. This shows the sensor 

capacity to detect the onset of incident slip. In the second experiment, four different 

shapes of objects have been used to test the robot’s ability in recognizing contact 

surfaces with the proposed method. The experiment in this study proposes a surface 
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recognition algorithm that determines the types of contact surfaces by fusing 

information collected by the tactile sensor system. This algorithm can recognize and 

localize 3-D objects using a 2-fingered robot hand, on which tactile sensor arrays are 

mounted. 
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1.3 Resulting Requirements 
 

 Since there have hitherto been no theories explaining the real requirements of 

tactile sensors for robots, the mechanism and operation of the tactile sensors in this 

research are studied in comparison with humans and their grasping behaviors. 

Although this is an effective technique in developing tactile sensors for robotic 

manipulation, the characteristics and requirements of the tactile sensors will be 

determined by their applications. These are presented below: 

 

1. The sensors must be sensitive to an external force. The sensitivity partly 

depends on the physical characteristics and the materials from which the 

sensors are made. Provided that the sensitivity of the materials are identifiable, 

materials selection can be in accordance with the object to be prehended. 

Violation of this, i.e., using highly sensitive tactile sensors to lift heavy objects or 

using insensitive sensors to lift light objects, causes two problems – namely that 

the sensors will not sense the force lower or higher than certain predefined 

values. Generally, the sensitivity of the sensor should be appropriate to the 

weight of the grasped objects.  

 

2. The tactile sensor measuements must be stable and repeatable and 

hysteresis must be low. Calculation of deviations in linearity between applied 

and sensed forces is not necessary as several techniques can be used to 

compensate for many kinds of known non-linearity.  

 

3. Because of their intended industrial applications, the tactile sensors should 

be robust. However, they should not cause damage to parts, tools or equipment. 

 

[Omata and Terunuma 1992] have mentioned that most tactile sensors lack the 

capability of sensing certain forces exclusive to humans such as the shear force at the 

finger tips, the contact surface characteristics, the object stiffness and flexibility. 

Nicholls [Nicholls 1992] has a similar view and adds that tactile sensors used for 

robotic grippers must consist of at least two types of sensors. The first type must be 

able to locate the contact position and to characterize the force distribution between 
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the object and the grippers. The second type must be able to track some types of 

mechanical reaction during manipulation, such as unexpected movement or slip. 
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1.4 Organization of the Dissertation 
 

 This dissertation is divided into eight chapters. Chapter One discusses the 

motivations behind the study, the tasks and goals, the expected results, Statement of 

the Problem, and the resulting requirements. It also outlines the brief content of each 

Chapter.  

 

Chapter Two reviews the present and past research related to this dissertation. 

It summarizes the existing technologies used for developing tactile sensors, and 

discusses their strengths and weaknesses. In addition, the gripping and force-sensing 

mechanism, and the system used to govern force-control experiments are presented. 

 

 In Chapter Three, the robot, tools and equipment used in the experiments are 

detailed. Then the computer system used to control the robot, the program structure 

and operations, and the experimental objects are described. This chapter also 

presents the set of tactile sensors and their components, and the program used to 

interface with the grippers. It concludes with information about the capacity of the 

tactile sensors in sensing normal force and shear force on the sensor surface. 

 

 In Chapter Four, the operating principles of the tactile sensors, their electronic 

components and materials are elucidated. In addition, the calibration and 

characteristics of the tactile sensors developed are described. Noise, sensor linearity, 

hysteresis and measurement resolution, including the temporal resolution, of the 

sensor elements are also discussed. The shape of force distribution on the tactile 

sensor surface during gripping is the last topic of this chapter. 

 

 Chapter Five presents experiments and applications. The first section of the 

Chapter describes optimization of grasping forces from the robot gripper. The second 

section discusses real experiments, mathematical proofs and statistical results.  
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Chapter Six discusses contact surface classification methods using tactile data. 

The first section reviews the experiments used for contact identification. The second 

section provides details of the experiment model for contact classification. The last 

section describes real experiments and their results.  

 

 In Chapter Seven, all the experimental results including the problems solved by 

the findings from this dissertation, and issues for further research are discussed. They 

are separated into sections: summary of results, review of contributions and problem 

solution. 
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1.5 Statement of the Problem 
 

 Generally, when robots manipulate objects, they must do so with a predefined 

grasping force. By contrast, humans are skilled at manipulating objects with a grasping 

force maintained only slightly above the minimum required to prevent slipping. They 

can estimate the weight and friction properties of an object by looking at it and using 

knowledge based on previous experience. As they grasp and lift the object, they make 

use of dynamic or “fast-acting” receptors in the skin that respond to small, localized slip 

that is precursor to gross sliding of the object [Johansson and Westling, 1990], 

[Srinivasan et al. 1990].  

 

 Those receptors enable them to reach a better estimate of the contact friction 

conditions and thus maintain the normal/tangential force ratio with a margin of safety 

depending on the task, material and texture of the object being handled. Accurate 

knowledge of the coefficient of friction is particularly important for gentle manipulation 

and prehension which is subject to sliding. When performing fine manipulation with 

fragile objects, it is essential that the grasping forces be maintained between the 

minimum required to prevent slippage and the maximum before damage occurs. When 

a pre-determined slip is to be maintained during retention the current and accurate 

knowledge of frictional conditions is essential to prevent the object from unexpectedly 

accelerating or ceasing to slide.  

 

 Although it is evident that humans benefit from the ability to continually adjust 

their grasping forces based on incipient slip sensing, comparatively little has been 

done to provide such capabilities for robots. It is therefore desirable to provide robots 

with a counterpart to the human ability to obtain continuous and accurate updates of 

the friction coefficient. A number of efforts have been made over the years to develop 

sensors that can detect the onset of slip [Cuttino et al. 1988], [Dario et al. 1984], 

[Dornfeld and Handy 1987].  With varying degrees of success, these sensors are able 

to detect when an object has begun to slip. However, they all require motion of the 

grasped object before being activated. In other words, for these sensors to send a 

signal, major sliding must already have begun, and consequently there is little time to 

increase the prehension force before significant object motion occurs. 
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 The development of robotic systems capable of operating in unstructured 

environments to replace human operators in hazardous or inaccessible locations relies 

on the use of sophisticated sensors capable of discriminating and detecting incipient 

object slippage for precise and secure object grasping. Normal touching forces, shear 

forces, or sliding forces in the plane of the contacting surface play an important role in 

robot sensing and manipulation of objects. To safely grasp an unknown object, an 

intelligent robot gripper needs to detect the forces in the gripping direction and in the 

gravitational direction. Thus, a robot gripper should be composed of three-axis force 

sensors which can detect the forces xF  (x-direction force), yF  (y-direction force) and 

zF  (z-direction force) or six-axis force sensors which add the capability of detection in 

xM  (moment about the x-axis), yM  (moment about the y-axis) and zM  (moment about 

the z-axis). 

 

Surface tractions or stresses acting on an internal material are typically 

decomposed into three mutually orthogonal components. One component is normal to 

the surface and represents direct stress. The other two components are tangential to 

the surface and represent shear stresses. Direct stresses tend to change the volume of 

the material and are resisted by the body's bulk modulus (which depends on the 

Young's modulus and Poisson’s ratio). Shear stresses tend to deform the material 

without changing its volume and are resisted by the body's shear modulus. Defining a 

set of internal datum planes aligned with a Cartesian coordinate system allows the 

stress state at an internal point p  to be described as relative to x , y , and z  

coordinate directions. Since each point in the body is under a static equilibrium (no net 

force in the absence of any body forces), only nine stress components (3 direct and 6 

shear stresses) from three planes are needed to describe the stress state at a point p . 

These nine components can be organized into the matrix: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

zzzyzx

yzyyyx

xzxyxx

σττ
τστ
ττσ
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where shear stresses across the diagonal are identical (i.e. xyτ  = yxτ , yzτ   = zyτ , and 

zxτ = xzτ ) as a result of static equilibrium (no net moment). This grouping of the nine 

stress components is known as stress tensor (or stress matrix). The subscript notation 

used for the nine stress components have the following meaning: ψησ  is the stress on 

the ψ  plane along the η direction. Direction of the surface normal upon which the 

stress acts is ψ  whereas direction of the stress component isη . 
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1.6 Related Work 
 

 [Mark 2000] has summarized the history and the current state of the art in tactile 

sensing and analyzed why past predictions for the exploitation of the technology have 

not been realized. In the 1970s, despite a great deal of robotic activity, very little 

research on tactile sensing was conducted. Some good ideas were put forward, but the 

few devices reported were primitive, for example, adding transducers to detect 

movement in compliant robot components or detecting contact through force feedback. 

 

 By contrast, the 1980s were a period of growth and exploration. A great variety 

of device designs, transduction methods, and sensing physics were examined during 

this period. The main transduction methods investigated included resistance and 

conductance, capacitance, piezoelectric and pyroelectric, magnetic, magneto electric, 

mechanical, optical, ultrasonic, and strain gauges. A typical device consisted of a 

surface pad with a linear or rectangular array of scalar-valued sensing points. 

    

 Despite the findings of the Harmon survey [Harmon 1982], tactile sensing has 

not made any significant contribution to real applications in factory settings. 

Commercial sensors just became available, and there was market potential for 

low-cost, robust, accurate and repeatable sensors that could easily be integrated into 

robotic systems. The technology was beginning to mature with the advent of 

commercial devices, and so it was expected that tactile sensors would be integrated in 

factory-based robotic systems in the near future [Nicholls and Lee 1989]. 

 

 In the 1990s, sensors were often silicon-fabricated with tougher and more 

durable designs. Many new and different materials were examined, and much was 

learned about the complexities of friction control in human fingers. Systems that could 

alter the characteristics of a soft contact surface showed promise for future devices, 

and elastic contact layers have been used in so many tactile sensors. 

 

 To date, a variety of tactile sensors have been presented on the basis of various 

principles such as variation in electrical capacity and resistance, piezoelectric and 

magnetic effects, and etc. [Raibert and Tanner 1982], [Hackwood et al. 1983], [Dario et 
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al. 1984], [Novak 1989], [Yamada and Cutkosky 1994], [Hakozaki and Shinoda 2002]. 

They have played an important role in sensing the friction coefficient [Bicchi et al. 1989] 

or an object surface condition [Howe 1990]. In particular, the tactile sensors have 

attracted greatest anticipation for improving manipulation because a robot must detect 

the distribution of not only normal force but also tangential force applied to its finger 

surfaces [Ohka et al. 1994]. Material and stability recognition capabilities are 

advantages of a robotic hand equipped with the three-axis tactile sensors [Takeuchi et 

al. 1994]. Also, in a peg-in-hole scenario, a robot can compensate for its lack of 

degrees of freedom with the optimum grasping force allowing an object to move 

between two fingers using a measured shear force occurring on the finger surfaces 

[Borovac et al. 1996]. 

 

 In an attempt to detect the onset of slip signals that occurred before major 

motion of the object, [Howe and Cutkosky 1989] developed a dynamic tactile sensor 

for use with soft robotic fingers. Grasp force control based on beginning slip detection 

was tested by Tremblay, [Tremblay et al. 1992]. Finally, [Howe 1992] has found that 

skin acceleration sensors can be used with a force reflecting master slave manipulator, 

thereby permitting a human operator to determine not only how hard the slave gripper 

is grasping, but also when the grasping force approaches the minimum required to 

prevent slippage.  

  

 Several designs of three-axis force cell have been reported to use magnetic 

effects [Hackwood et al. 1983], variations in electrical capacity [Novak 1989], 

[Hakozaki and Shinoda 2002], piezoelectric PVDF film [Yamada and Cutkosky 1994] 

and a photo-interrupter [Borovac et al. 1996]. Since constitution of the three-axis force 

cell is more complicated than that of single-axis force cell, it is difficult to develop a 

three-axis tactile sensor composed of many three-axis force cells. Consequently, the 

number of elements in the aforementioned three-axis tactile sensor was insufficient for 

acquiring the spatial distribution of tactile information. It is not required that each 

component sensor of a three-axis force sensor has the same rated output to accurately 

detect forces. The six-axis force moment sensors developed in [Yabuki 1990], 

[Hatamura et al. 1989], [Ono and Hatamura 1986], [Kim et al. 1999], [Kim 2001], [Kim 

2000], [Kim 2003] are not suitable for use in an intelligent robotic gripper due to their 
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low accuracy caused by interference error and size. The lack of any widespread 

application of tactile sensing is partly due to the difficulties mentioned and also to the 

lack of availability of commercial sensors with suitable configurations and 

characteristics. 

 

 Typically, tactile sensors do not directly measure the force generated by contact 

with an object, but instead measure strain in an interposed compliant skin which is a 

rubber-like medium used for sensor protection and to confer a more stable grasp. 

 

 Many array sensors employ a protective cover made from an elastic material 

which gives mechanical compliance assisting the grasping process and increasing the 

robustness of the device. However, this configuration raises a serious difficulty known 

as the inverse tactile transduction problem. When an object is pressed into the surface 

of an elastic layer, the stresses that will be generated down at the sensing points can 

be calculated from the material properties and the surface shape. This is called forward 

analysis. In inverse analysis, the changes on the surface from the sensed data 

gathered remotely through the elastic medium are computed. 

 

 Unfortunately, this does not give rise to a unique solution, as there is no 

one-to-one correspondence between the stresses deep within an elastic material and 

those that are applied normal to the surface. In other words, a given pattern of sensory 

values may be caused by many different physical patterns on the surface. This is 

known as an ill-posed problem and cannot be solved by direct analysis. It can be seen 

that elastic materials act as a low-pass filter, only transmitting large-scale spatial 

patterns and attenuating any fine detail. A useful illustration of the inversion problem 

and its ill-posed nature is presented in [Nowlin 1991].  

 

 Hence, essentially what is required is the solution of the elastic field inverse 

contact problem. Here, the distribution of forces acting on a boundary of the sensor 

itself should be inferred from spatially discrete knowledge of the stress field over a 

surface inside the sensor. Great importance is also given to the measurement of rapid 

changes in tangential shear force to provide early warning of object slippage. Detection 
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of incipient slippage which should be accomplished and codified rapidly for prevention 

of actual slipping is based on fast scanning of the sensors in the contact area. 

 

The mathematics for this problem, known as the tactile inverse problem, has 

received much attention, and there are several ways to deal with such problems. 

Recent sensors capable of detecting texture, stress changes, the various stages of 

dynamic slip, and other temporal contact events have been produced. By using several 

complementary sensors with different response rates, an integrated system can 

process a range of contact features for a given sensing problem. Also, while compliant 

materials have essential properties for some tactile tasks, it has been shown that rigid 

contact must be established if dynamic properties of objects are to be sensed through 

tactile means [Ellis et al. 1994]. 
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1.7 Major Contributions of This Dissertation 

 

 This dissertation describes a new type of tactile sensor and an improved version 

of the dynamic tactile sensing approach that can provide a regularly-updated and 

accurate estimate of applied force for use in the control of manipulation. The sensor 

performs similarly to the human tactile receptors described by [Johansson and 

Westling 1987]. When the finger is pressed against an object, it compresses to 

conform to the surface of the object. 

 

 In addition, the studies showing continuous adjustment of force to stabilize 

gripping, particularly during motion, have been reviewed. This prehension force 

adjustment occurs simultaneously with, or slightly ahead of, fluctuations in load forces. 

They may therefore be seen as anticipatory, and it is argued here that a key purpose of 

research in manipulation should be to understand the integration of sensory motor 

information in building an internal model of the object and the effector system in order 

to support such anticipation. 

 

 A strategy by which a controller can repeatedly and accurately estimate the 

pre-slip at the contact point between a gripper finger and an object has also been 

developed. This information is further used to control the grasping force. The results 

can show by using tactile sensors detect the beginning of slip and normal and 

tangential forces at the robot-gripper. This approach is similar to responses reported in 

the physiology literature for human subjects [Johansson and Westling 1987].  

 

 Moreover, this dissertation presents a scheme by which a manipulator can use 

dynamic tactile sensing to detect when it is about to lose hold of a grasped object and 

can take preventive measures before major sliding occurs. By detecting localized 

slippage on the gripping surface preceding major slip, the controller can modify the 

grasping force to prevent the object from further slipping. Also, by monitoring normal 

and tangential forces at the contact when these "incipient" slip signals occur, the 

controller has the capacity to obtain an accurate estimate of the applied force, which 

can then be used during the manipulation task.  
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 For the processing of tactile signals, the use of image-processing techniques is 

emphasized in the study. Many have been derived from computer vision research and 

applied to static images from array sensors. Some statistical methods are adapted for 

the extraction and recognition of features. Segmentation methods using edge 

extraction, threshold, filtering and boundary growing are all employed. Geometric 

measures and the method of moments are also used. Moreover, for the proposed 

techniques, the importance of dynamic events is recognized, and sensors have been 

developed for detecting stress changes, slip and other temporal contact events. 

 

 The developed tactile sensor has been integrated with a robot-gripper. A 

system to measure the pattern of the object surface by using the tactile inverse 

problem proposed and evaluated in this research has been developed. The study also 

introduces the mechanical filter effect depending on touch motion. 

 

From the experiments in this study, a contact recognition algorithm which 

determines the types of contact surfaces by fusing information collected by the tactile 

sensor system is proposed. This algorithm can recognize and localize 3-D objects 

using a 2-fingered robot hand, on which tactile sensors are mounted. 

 

 This dissertation describes and proposes enhancements to the proposed tactile 

sensor capable of detecting both normal and tangential forces. A method to estimate 

the six-axis force from the quadric surface of the contact areas by taking into account 

the first contact surface displacement caused by a normal force has been designed. A 

series of calibration experiments using a manipulator-mounted tactile sensor and a 

commercial six-axis force sensor have been conducted to evaluate the component of 

force and determine the behaviors included in the contact area. 

 

 Subsequently, the tactile sensor is mounted at the end of a robot manipulator 

touching hard object specimens such as rigid balls. From the experimental data, the 

tactile sensor can detect not only normal forces but also tangential forces, including the 

case when a ball being rotated, pushed and/or pulled. However, tangential sensitivity 

variations resulting from the behavior of the electric field in tactile sensor elements can 

also be found. 
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 The main contributions of this dissertation are listed below. Although some of 

them have been achieved in other experiments, their co-occurrence is relatively rare. 

More importantly, a simultaneous presence of all contributions has not yet been 

accomplished. 

 

- Adaptive algorithm exploiting the minimum force for an object manipulation; 

- Understanding of the behavior of the new tactile materials for contact classifying 

applications and successful results; 

- Proposed model for the interaction force in the new tactile sensor, evaluated 

model and the study of its impact on touch encoding to derive six-axis force 

sensing; 

- Study of the impact of threshold values on control of the gripper and the solution 

of this problem; 

- Innovative design taking into account the test environment to maximize the 

flexibility of robot control. 
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CHAPTER TWO 
LITERATURE REVIEW 

 
2.1 Robot tactile sensing 

 

Chapter Two presents a literature review of research conducted on tactile 

sensor-oriented methodologies for robotic manipulators. Much of the work has been 

prompted by industry’s need to understand this area in order to increase the efficiency 

of robotic manipulators in manufacturing.  

 

Previous studies in the field have been compiled by [Nicholls and Lee 1989] and 

[Nicholls 1992]. Among these, of particular interest are implementations practical for 

robotic manipulation, a list of which is provided in the table below. The table includes 

information on their density of cells per mm2 and size of arrays which have been built. 

 

 Transducer 

principle 

Author/Research Group 

Implementation 

Density   

Cells/mm2 

Size of 

Array 

1 

 

 

 

 

 

Piezoelectric 

 

(Dario 1982) 

(Howe 1989) 

(P. Dario et al. 1983) 

(Patterson 1986) 

(R. D. Howe et al. 1993) 

(Gaetano et al. 1998) 

(Y. Yamada et al. 1998) 

(Hyungtae Kim et al. 2002)

(Atkinson 2003) 

(Todorova 2004)   

(Krishna 2004)   

 

 

 

 

 

 

 

28.44 

 

 

 

 

 

 

 

8 x 8 

 

5 x 5 

15 x 15 
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2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Piezoresistive 

including Strain 

gauges 

 

(Tamai 1982) 

(Wong 1985) 

(Buttazzo 1986) 

(Tise 1988) 

(Patterson et al. 1986) 

(Speeter 1988, 1990) 

(Friedrich 1995) 

(Daniel Castro 1997) 

(Fiorillo 1997) 

(Sugiyama et al. 1990) 

Tactile Matrix Sensor,  

JRA Technology Ltd. 

(Model400, Interlink 

Electronic, Inc., Camarillo, 

CA 2001 ) 

(Nicholas J. Droessler 

2001). 

(Claire M. Seguna 2000)  

(C. M. Seguna, M. A. 

Saliba  2001) 

(Lomas 2003) 

(Noda 2006) 

 

 

 

 

 

1.58 

40.96 

4 

 

0.16 

 

 

 

 

 

 

 

 

 

1.77 

 

 

 

 

 

 

 

16 x 16 

16 x 16 

32 x 32 

4 x 4 

8 x 8 

 

 

 

 

 

 

 

 

 

12 x 12 

5 x 5 

 

3 

 

 

Thermal (Monkman and Taylor, 

1993) 

(Yuji 2002) 

(Yamamoto 2005) 

0.25 

 

 

 

4 

 

 

Ultrasonic (Hutchings et al. 1994) 

(Ando and Shinoda 

1995,2002) 

0.31 

 

 

16 x 16 

2 x 2 
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5 

 

 

Magnetic/Inductive 

 

 

 

(Checinski 1985) 

(Luo 1985) 

(Vranish 1985) 

(Patterson 1985) 

(Hasegawa 2004, 2005) 

(Murayama2005) 

  

 

 

 

6 Capacitive (B.L. Gray 1996) 

(E. Nicolson 1995) 

(Castelli 2002) 

(Fan-Gang 2004) 

 8 x 8 

8 x 8 

8 x 8 

7 Electrochemical (De Rossi 1989) 

(Masato 2006)   

8 

 

 

 

 

 

 

 

Opto-electronic (Rebman 1985) 

(King  1985) 

(Mott 1985) 

(Begej 1988) 

(Winger 1988) 

(Jenstrom 1989) 

(Schoenwald 1992-1997) 

(Maekawa et al. 1992b) 

(Bertholds 1987) 

(Eghtedari 1989) 

(Yamada 2002) 

(Ohka 2005) 

(Rossiter 2005) 

(Mazid 2006) 

 
 
 
 
 
 
 

0.08 

 

 

 
 
 
 
 
 
 

10 x 10 

 

 

 

 

4 x 4 

Table1. Implementations of array sensors and their densities in units per square 

millimeter. 
 

As can be seen from table 1, the commonest sensors used in tactile arrays are of the 

piezoresistive types. They tend to be of small size, fast response and their ease of 

fabrication and integration makes them ideal.  
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2.2 Sensing technologies and Analysis Techniques 

 

Many physical principles have been exploited in developing tactile sensors. In 

most cases, development is largely application-driven. It should be recognized that 

operation of touch or tactile sensors to a great extent depends on the materials of the 

object being acquired. For its strengths and weaknesses to be analyzed, a particular 

design needs to be considered in terms of its application. Since parallel-jaw robotic 

manipulators with flat internal sensors are capable of grasping either round or flat 

objects and are a simple application used in most industrial environments, robotic 

manipulation of this type is the topic of this research study.  

 

From the designs listed above, the works of [Fearing 1990], [Maekawa et al. 

1992], [Russell 1987], and [Speeter 1988] were indicated to be well-suited for 

flat-finger geometry. Among these, Speeter’s tactile sensors achieved the highest 

sensitivity with the minimum sensed force of only 0.3 Newton. In comparison, Fearing’s 

design had the sensitivity with the minimum sensed force of 0.5 Newton. The optical 

wave-guide design of [Maekawa et al. 1992] had the same resolution as that of 

[Fearing 1990]; however, it could provide only information on contact area and net 

force, but not pressure distribution.   
 

 Piezoelectric properties are used for the development of transducers which 

convert kinetic energy into electrical energy. Crystaline materials which exhibit 

piezoelectric properties are used to make the elements used as tactile sensors. 

However, there are also polymeric materials which exhibit piezoelectric properties. 

These have the advantages of robustness and flexibility to externally applied forces. 

Among several types of polymeric materials, polyvinylidene fluoride (PVDF) is 

frequently selected for use in sensors because of its low cost and good mechanical 

properties. It is characteristically supplied is sheet form in varying thicknesses between 

5 um and 2 mm. A thin layer of metal is attached to both the upper and lower sides of 

the sheet so that it can collect the charge and permit electrical connections to be made. 

Although not piezoelectric in its raw state, PVDF can be made piezoelectric by heating 

in an electric field. In addition, it can be molded. Hence, PVDF has a number of 

benefits, including its property to be used as an artificial robot skin.  
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 A few research studies have been conducted on use of tactile sensors on 

objects in motion. In their experiments, [Bajcsy et al. 1986] attached a plastic 

“fingernail” to the rear of robot fingers comprised with small measurement units called 

‘piezoelectric’ elements, which responded to variations in surface height as the nail 

pressed against an object. It may be possible to analyze the signal from this sensor to 

find details of the surface finish; nevertheless, because the nail does not from part of 

gripping surface of the finger, the signal generated may not be an actual representation 

of variations in the object surface. As a result, this sensor cannot be practically used for 

robotic manipulation.  

 

Similarly, [Patterson and Nevill 1986] has developed an induced vibration 

sensor capable of recognizing small shapes and textures. For these types of sensor, 

large areas of piezoelectric film were excited by vibration induced in a ridged rubber 

skin when the sensor slides against a surface. Because of complicated interactions 

between the sensor and the test surface, the analysis is difficult. For instance, signals 

vary greatly even with minute movements of the test object. However, repeatable 

results may be obtained, and the sensor is capable of identifying the test object from 

among a list of candidates provided that other conditions are controlled and 

pattern-recognition techniques on the power spectrum of signals are used. 

  

 Piezoelectric materials in the polyvinylidene fluoride (PVDF) family, a type of 

polymeric materials, can be used to develop tranducer arrays of tactile matrix sensors, 

particularly large ones. These materials have become popularly used because of their 

unique properties, two of which are that they can be used to develop force sensors with 

the thickness of only 5 mm and they have high sensitivity to minute external forces. 

 

[Canepa et al. 1998], for example, used PVDF materials in developing tactile 

sensors capable of sensing incipient slip between the object and the surface of tactile 

sensors. This was made possible by information on the normal and shear stress 

delivered by PVDF arrays. Following the work of [Howe and Cutkosky 1993], [Dario et 

al. 1984] used film-like PVDF materials to develop tactile sensors with high flexibility 

and very high sensitivity. After that, their sensors were further developed so that they 

could identify the characteristics of the grasped object surfaces, making their research 
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 well known in the field [Patterson and Nevill 1986]. Moreover, Dario et al. used the 

film-like PVDF to develop stress-rate sensors which were then applied in examining 

conditions during prehension thus increasing further the effectiveness and activeness 

of their robotic manipulator. It may be claimed that they are the very first researchers 

who used PVDF materials to develop active tactile sensors. 

 

As discussed earlier, PVDF materials used in developing tactile sensors have 

an advantage over other types of materials in that they can be developed with a very 

high degree of thinness and measurement resolution. In addition, they are very cheap 

and moldable. The most recent technology using PVDF materials is ‘phase-array 

transducer’ which has a much more complicated design than other tactile sensor 

arrays. This transducer is expected to receive more popularity in applications in the 

future.  

 

What follows presents the drawbacks of using PVDF in developing tactile 

sensors compared with other types of materials. This is based on the summary of 

[Carlson 2000], [Lee and Chu 2005] and [Najarian et al. 2006]. The first drawback of 

PVDF is unequal response rate from each sensor. This is because each sensor is of a 

different size, resulting in its different response rate despite an equal external applied 

force. An even greater different rate will be found if the PVDF materials are from 

different manufacturers. The second drawback is its fragility when compared with other 

types of materials used for developing tactile sensors. Thus, applications of sensors 

made from PVDF materials risk easy damage. The third drawback of using PVDF is 

phase-array electronics are scarce. At present, there is only one distributor of this 

device. Hence, the selling price is relatively high. However, several companies are 

interested in producing phase-array electronics, so this limitation may soon be 

resolved. The next drawback is difficulty of material modifications before applications 

as each sensor has its own response rate. Besides, it has unequal degree of 

non-linearity. The solution to these problems is to sort the materials according to their 

response rate. 

 

 In recent years, researchers have found some new techniques for designing 

and applying tactile sensors. One successful commercially available product is the 
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Force Sensing Resistor (FSR) which has been developed by Interlink Electronics. The 

Resistor is a semiconducting polymer-thick film (PTF) device which exhibits a 

decrease in electrical resistance with any increase in applied mechanical force to the 

active surface. The FSR has similar applicational properties to a load cell or strain 

gauge, but the technology and sensitivity are more comparable to that of the 

semiconductor strain gauge.  

 

A force sensing resistor is a piezoresistive polymer, whose electrical resistance 

changes in a predictable manner following the application of a mechanical force to its 

surface. It is normally supplied as a polymer sheet with a sensing film applied by 

screen printing. The sensing film consists of both electrically conducting and 

non-conducting particles suspended in matrix. The particles are of submicron size, and 

are formulated to minimise temperature dependence, improve mechanical properties 

and increase surface durability. Applying a force to the surface of the sensing film 

causes an improvement in the conductivity between the conducting electrodes, and 

hence reducing the electrical resistance of the film. However, in addition to its good 

sensitivity to small external forces the FSR does exhibit a small degree of 

temperature-dependence. Though flexible, there are limits to which it can be bent to fit 

the necessary radius of curvature of a robot gripper finger [Seguna and Saliba 2001]. 

 

 Strain gauges have also been widely used in tactile-sensor development. A 

strain gauge when attached to a surface will detect a change in the length of material 

as it is subjected to an external force. It can be manufactured from either resistive 

elements (foil, wire, or resistive ink) or semi-conducting materials. A typical resistive 

strain gauge consists of a resistive grid bonded to an epoxy-backing film. A 

semi-conducting strain gauge is fabricated from a suitable piece of doped silicon. In 

this case, the mechanism in resistance change is the “piezo-resistive effect”. 

Semiconductor strain gauges can several hundred times more sensitive than wire 

strain gauges but suffer from slight non-linearity and higher temperature dependence. 

When used for robotic tactile applications, the strain gauge is normally used in two 

configurations: as a load cell, where the stress is measured directly at the point of 

contact; or with the strain gauge positioned within the structure of end-effectors. 
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 Less frequently used technology includes thermal techniques whereby the flow 

of heat to or from the object can be measured. Typically, a current flowing though a 

thermal sensor (resistance thermometer or thermistor) causes it to heat which in turn 

results in an increase in electrical resistance. Contact with an object causes heat to 

flow from the sensor into the object material thus resulting in a lowering of temperature 

and a subsequent reduction in resistance. Such devices tend to be slow, however 

Peltier elements or infra-red pyrometers which deliver better temporal characteristics 

have also been used [Monkman and Taylor 1993]. The use of a small Peltier heat 

pump allows the construction of a much faster-acting thermal sensor. The heat pump is 

sufficient for many VR simulation purposes, because the human thermal comfort zone 

lies between 13 and 46 oC and the working range of heat pump is 10-65 oC [Burdea 

2003].   

 

Ultrasonic tactile sensors are based on instantaneous localization of acoustic 

emissions caused by touch and/or contact movement. One method uses a sensor 

structure which consists of an ultrasonic emitter on the flexible sensor-body and a 

sound-sensing matrix embedded at the center of the body. Any points on the sensor 

surface work as emission sources when touched and the body transmits the waves 

inwardly. The matrix works as a wideband acoustic emission transducer which is 

capable of detecting arrival directions of acoustic waves, packet by packet. This means 

it has to resolve and localize a series of ultrasonic emissions caused by touch and slip. 

The second method employs ultrasound to measure the thickness of an elastomeric 

pad. The sensor uses a thin rubber pad that is deformed when an object is depressed 

into it. The amount of deformation depends on the magnitude of the force applied to the 

object and the stiffness of the rubber. Beneath this rubber pad is a two-dimensional 

array of ultrasonic transmitters and receivers that are used to measure the thickness of 

the rubber pad. A tactile sensor with a number of elements (arranged as an array) has 

to measure thickness of the elastomeric pad through the use of ultrasonic pulse-echo 

ranging. The strength of the echo pulse depends upon the acoustic properties of the 

rubber pad and the material contacting the pad. This pulse amplitude is not measured 

but only the time-of-flight of the pulse. 
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[Ando and Shinoda 1995] describe a tactile sensor based on ultrasonic 

emission. Their system consists of a flexible spherical fingertip and a sound sensor at 

the center of the fingertip. Contact points act as emission sources and the sensor 

works as a direction-sensitive, wideband acoustic emission transducer. This sensor 

can distinguish multiple contacts but errors in position estimation of the contacts are as 

large as several millimeters. In order to realize this type of mechanism it is necessary 

to solve two important problems: 1) What kind of ultrasonic emissions appear by touch, 

and are they detectable? 2) How can the multiple wave packets be resolved and 

localized instantaneously? Based on work [Hutchings 1994], for either no object 

contact or contact with a metal object, large echo signals are produced. Also, the 

echoes produced by many plastic materials, liquids, and biological soft tissues can be 

undetectably small since their characteristic acoustic impedance is close to that of the 

covered material (elastomeric pad). Air trapped in the cells of the elastomer has a 

detrimental effect on its ultrasonic reflection characteristics and the elastomer used 

must have a relatively constant coefficient of friction. 

 

 Magnetic-based sensors have also been used in industry. There are two 

approaches to the design of touch or tactile sensors based on magnetic transduction. 

Firstly, movement of a small magnet by an applied force will cause the flux density at 

the point of measurement to change. Detection of magnetic field changes is achieved 

either by a Hall element or a magneto-resistive device. Secondly, the core of a 

transformer or inductor can be manufactured from a magneto-resistive or 

magneto-elastic material of which magnetic characteristics are modified when subject 

to a change in the external physical force. This material will deform under pressure and 

simultaneously cause magnetic coupling between the transformer windings and the 

coil’s inductance. That is the external force will result in an inductance change.  

Although the field intensity of this type of sensors follows an inverse relationship 

leading to a nonlinear response, this can be easily linearized by mathematical 

processing. The major disadvantage lies in its size and complexity which makes the 

production of large arrays difficult and expensive. 
 

 Capacitive based sensors are another technology popularly adapted as tactile 

sensors. These types of sensor rely on applied forces which either changes the 
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distance between two plates or the effective surface area of a capacitor. As a result, 

the capacitance of the tactile sensor at a specific elemental position will change. In 

such a sensor, the two conductive plates are separated by a dielectric medium. The 

higher permittivity of the dielectric increases the dynamic range which its elasticity 

provides an effective return spring mechanism. To measure changes in capacitance, a 

number of techniques can be applied, the most popular one being use of a precision 

charge source. Another technique is to use elements of the sensor as part of a tuned or 

LC circuit and measure changes frequency. 

 

Because of the ability to manufacture very small elements, capacitive sensor 

arrays have found recent cost effective application in fingerprint recognition systems. 

Their applicability to robotics is somewhat limited in that they provide only binary 

images over relatively small areas. 
 

 Research work on other types of tactile sensors was well summarized by 

[Nicholls and Lee 1989]. Among those, capacitive tactile sensors are relatively reliable, 

easy to construct and inexpensive. Three capacitive tactile sensors using 

capacitive-strain measurement techniques were developed based on the earlier 

design of [Fearing 1986]. Nonetheless, they had a slow response rate, i.e., exhibited a 

much larger time delay than that found in other types of force sensors such as Son’s 

design [Son 1996]. This is due to several factors, most notably the time required to 

scan and process array information, the time required to compute velocity commands, 

and the time consumed in transmitting commands to the host PC.  A significant 

problem with capacitive sensors is hysteresis [Boie 1984], which cannot be 

compensated for computationally.  However, when compared with other types of tactile 

sensors, it can be said that capacitive tactile sensors have escalated the performance 

of robotic manipulation in the field of sensor-oriented technology.  
 

 Developments in electrochemical micro sensors is mainly concentrated on 

chemiresistors and potentiometric micro sensors. Classification of electrochemical 

micro sensors follows directly from Ohm’s law: potentiometric from measurement of 

potential, amperometric from measurement of current, and chemiresistors from 

measurement of resistance. The schematic of a chemiresistor consists of a pair of 



 
 
 

28

contacts deposited on an insulating substrate and a selective layer whose conductivity 

is modulated by the interaction with the electrolyte. The response signal is obtained by 

applying a constant current and measuring the resulting voltage difference at the 

electrodes. The chemical modulation of the signal may occur in the bulk of the 

selective layer, at its surface, or interface with the insulating substrate or at the 

contacts. The mechanism is relatively simple but the exact origins of the signal are 

often difficult to determine. Because of this uncertainty, the interpretation of the 

response in terms of the concentration of the electrolyte is complicated. All of these 

factors and their unpredictable combinations make the rigorous interpretation of the 

chemiresistor results quite difficult. 

 

Potentiometric sensors derive the analytical information from an explicit 

relationship between the potential of the indicator electrode and the concentration in 

the sample. Because the potential of a single electrode cannot be measured a second, 

so-called reference electrode is introduced. The macroscopic potentiometric 

on-selective electrodes for liquid or gas measurements represented the largest group 

among all chemical sensors. The reasons which make potentiometric sensors 

particularly suitable for miniaturization is that the magnitude of the signals do not 

depend on the size of the sensing area. However, the power of the measured signal is 

very small, and its measurement requires a high-input impedance amplifier. 

Potentiometric sensors have only limited usefulness due to their vulnerability to 

changes of buffer capacity of the sample and its adverse effect on individual reactions 

(J. Janata 1989). 

 
 Optical technology has also been widely applied in the development of a wide 

range of tactile sensors. The operating principles of optical-based sensors fall into two 

classes: intrinsic, where the optical phase, intensity, or polarization of transmitted light 

is modulated without interrupting the optical path; extrinsic, where the physical 

stimulus interacts with light external to the primary light path. Intrinsic and extrinsic 

optical sensors can be used for touch, torque, and force sensing. For industrial 

purposes, the most suitable ones are those which require the least optical processing. 

For example, detection of phase shift using interferometry is not considered a practical 

option for robotic touch and force sensors. 
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There are also other optical technologies employed in developing optical-tactile 

sensors. For instance, ‘photo-elasticity’ is a phenomena where externally applied 

stress results in changes in an optically-transparent material. The polarization of light 

transmitted through a photo-elastic medium subjected to an applied external force 

undergoes rotation. This results in changes in effective light intensity when the 

outgoing light is passed through a plane polarizer. 

 

Photo-elastic sensors are of considerable importance in measuring the degree 

of slip of the object being gripped. The force sensitivity is determined by a spring or 

elastomer, and the sensor can be constructed with source-receiver fiber pairs 

embedded in a solid elastomeric structure. The intensity of received light is a function 

of distance, and hence applied force. The amount of light transmitted to the receiver is 

determined by the applied force which changes the thickness of the clear elastomer. 

By using a number of matrices of transmitter-receiver pairs, the tactile image at the 

contact points can be determined. Although the optical fibers described are solely for 

transmission of light to and from the sensor, they can also be used to develop tactile 

sensors. 

 

Two major drawbacks of many simple optical-tactile sensors are their size (too 

large to be attached to robot grippers fingers), and their operation and data processing 

(which is often too complicated for use in industrial environments). Despite these, a 

suitable design based on internal-state micro-bending of optical fibers can be a 

solution. Micro-bending is a process of light attenuation in the core of fiber when a 

mechanical bend or perturbation (of the order of few microns) is applied to the outer 

surface of the fiber. The degree of attenuation depends on the fiber parameters, which 

include the radius of curvature and spatial wavelength of the bend.  

 

Like capacitive arrays, optical sensor arrays in the form of back-illuminated 

CCD cameras with light reflective elastomeric coverings have also found recent 

application in fingerprint recognition systems. Likewise, their applicability to robotics is 

similarly limited. 
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Use of materials with defined force-resistance characteristics has also received 

considerable interest in touch and tactile sensor research. The basic principle of these 

types of sensor is electrical resistance or conductivity measurement between two 

points on a conductive elastomer or foam. The majority of sensors use either 

semiconducting polymers or elastomers consisting of carbon-impregnated rubber. The 

resistance of elastomers changes in accordance with the applied external force 

resulting from the deformation of elastomers which alters the particle density. The 

majority of industrial analogue tactile sensors are based on the principle of 

piezoresistive sensing. This is due to the simplicity of their design and interface to 

robotic systems.  

 

 In conclusion, the choice of transducer, modality, and passivity will depend 

largely on the sensor application. A combination of these sensor techniques can yield 

highly reliable information for a wide range of applications. Areas of most interest 

include contact location, contact force, local shape, slip and vibration direction. In 

dexterous end-effectors, the force and relative motion between the grasped object and 

the fingers also needs to be controlled. This can be done by using a set of sensors 

capable of determining the magnitude, location, and orientation of the force at a 

contact point in real-time. Attaching miniature force sensors around the robot fingers to 

enable a kinesthetic sense equivalent to that found in humans is one approach. 

 
In Chapter Three, tactile sensors developed for robotic manipulation using 

piezoresistive principles are proposed. Materials used for developing tactile sensors 

used in this research consist of elastomeric foam which is well known for its 

mechanical compliance. Foam is generally used to wrap fragile objects like glass, but 

the type used in the present study is that used for containing electronic devices 

because of its electrostatic discharge properties. Hence, it is sometimes called ESD 

foam. 

 

Foam is normally made from artificial rubbers or similar polymers, which can be 

classified into polystyrene, neoprene, polyethylene, polyester-based polyurethane, 

and others. The most used ones are polyethylene and polyurethane, and the materials 

are thus called polyethylene-based foam (PE-Foam) and polyurethane-based foam 
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(PU-Foam) respectively. These foams are used to surround the fingers of robot 

grippers and can be molded or bent into any desired shape. 

 

The tactile sensors proposed in the present study work by measuring a change 

in electrical resistance. To sense the force distribution exerted on the tactile sensors by 

object contact, part of the surface of the complaint material is covered with a grid of 

electrode pairs, and the resistance between the electrodes of each pair is measured. In 

other words, the resistance change is a result of the pressure on the foam - which 

consequently retracts. This type of sensors allows an easy construction of a tactile 

image of good resolution, depending on the designed density of grid arrays.  

 

Due to their simplicity of design and interface to robotic systems, for this 

research, a sensor prototype of this form was built. Experimental analysis of its 

behavior demonstrates both its feasibility and its limitations. 

 

From the above discussions, it would be reasonable to rely on most important 

features used in designing tactile sensors, e.g.  

1) capability in measuring the magnitude, direction and point of action of the external 

force applied on the finger body,  

2) lightness in weight so that they cause no errors during fine control of finger joints,  

3) high sensitivity to sense external forces (including normal and shear forces), 

4) good dynamic range and reasonable spatial resolution of at least 2 mm with fast 

response of at least 100Hz, 

5) low hysteresis and temperature drift,   

6) enough compactness to be housed in a finger body and  

7) good linearity is desirable, though some degree of non-linearity may be tolerated. 
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2.3 Sensing and manipulation 
 

The amount of force between the robot gripper required to retain an object is a 

good representation of interactions between a robot and its environment. Success in 

controlling the force depends on the application of force-measurement materials. 

  

Robotic manipulation requires well defined and orderly steps in which the 

conditions of touch between the robot fingers and the grasped object are precursors to 

reducing errors in the prehension position. Although each step varies with movement 

and the order of movement which can be pre-determined, it is also subject to the 

pattern of sensing reaction during contact. As there are several alternative patterns to 

a single reaction, a degree of decision-making must be made. 

 

The objective of using tactile sensors for robotic manipulation lies in that a robot 

is able to lift an object from its existing position to a higher one, then move it in other 

directions, and finally place it at a given destination. All these require that the force 

sensors be able to identify characteristics given by an objects surface.  

 

One of the problems involved is manipulation. There have been numerous 

research studies conducted on active manipulation, but none have successfully 

yielded tactile sensors capable of identifying the characteristics of the prehended 

object and hence the strategies required to retain it. The next problem concerns the 

properties of the object surface, including both geometric and weight factors. These 

must be characterized for robot analysis and processing during the prehension and 

retention sequence. This is further complicated by the fact that different types of tactile 

sensors require different analytical and processing algorithms. 

 

It has been mentioned earlier that robotic manipulation requires well-defined 

and orderly procedures. One of the papers showing these features was the 

experimental work of [Howe 1990], concerning the pick and place of an object of 

previously unknown weight. In their research, tactile sensors were attached to the 

robot fingers, and thus the degree of slip and slip acceleration could be identified 

during robotic manipulation.  
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The research was divided into five stages, including the pre-contact stage, the 

manipulation stage, the optimization stage, the unloading stage, and the post-contact 

stage. Each stage had its own explanatory theories and function-control procedures. 

The completion of each stage was signalled by different ‘events’. 

 

Event-driven manipulation programming as in the above has been employed in 

several studies under different names. For instance, [Brooks 1985, 1987] used the 

term ‘presumption architecture’ in his research. [Howe and Cutkosky 1989] explained 

‘event’ as sensing measurement which occurs during robot or robot-part movement, 

and this was applied in their algorithm to drive gripping. Later, [McCarragher and 

Asada 1993] used the term ‘transitions to drive an assembly algorithm’ in their 

research. 

 

2.4 Sensing global shape  
 

Arrays consisting of 16 x 4 tactile sensor elements, mounted on the inner sides 

of the gripper fingers, have been used in experiments for this research. Consequently, 

during prehension of an object, both sides will retract, depending on the shape of the 

object. The force distribution on both sides of the tactile sensors will be in accordance 

with the shape of the object. To achieve discreteness in force distribution and enable 

identification of the global shape of the prehended object, a Non-Uniform Rational 

Basis Spine (NURBS) has been developed which allows interpolation of the force 

distribution on the sensor elements. As a result, the three-dimensional information 

derived will yield a more precise representation of the grasped object [Piegl and Tiller 

1997]. 

 
However, there are applications for contact classification and shear and 

moment force sensing in chapter six and seven where quadric surfaces will be used for 

the presentation of object geometric features independent of the resolution of the 

tactile sensor. The quadric surface approach is a simple, yet adequate, method for the 

proposed tactile sensor as the dimension of the tactile array (16x4) cannot represent a 

complex object surface. 
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2.5 Control System  
 

An expert system is a system which employs human knowledge stored in a 

computer to solve problems that ordinarily require human expertise [Turban 1992]. The 

system simulates judgment and behavior of a human or an organization that has 

expert knowledge and experience in a particular field. Typically, such a system 

contains a knowledge base consisting of accumulated experience and a set of rules for 

applying the knowledge base to each particular situation described by the 

programming codes. Sophisticated expert systems can be enhanced by addition of 

information to the knowledge base or to the rule base. 

 

In Chapter Four, strategies that enable an expert system to adapt to, or learn 

from, interactions with object manipulation and object approaching will be described. It 

is assumed that a relatively primitive computer-based adaptive capability can be of 

significant value in a problem-solving environment in which a computer is used as a 

collaborative decision-support tool. Because of its capability to support rule-based 

programming and object-oriented design, the Microsoft Visual C++ (VC ++) Version 

6.0 and SQL database have been chosen as an expert system tool for this project. 
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CHAPTER THREE 

 SYSTEM OVERVIEW 

 

In this Chapter, the task and the whole system including the basic hardware 

structure and supporting software for robot control and experiment will be described.  

The basic idea, design, construction and software integration of the tactile sensors are 

discussed.  

 

3.1 System Configuration 

 

In this research, ATHENE (shown in Figure 3.1) was used. A 6-DOF articulated 

arm with 2-finger grippers, 2-DOF on waist and stereo vision system enabling the robot 

to move in 3D dimensions is mounted on the mobile platform. There are tactile sensors 

covering the surface of the 2-finger grippers on all four sides and their tips. The tactile 

sensors are used to sense force and moment data during prehension operations. 

 

Figure 3.1: ATHENE Robot 

 

The service robot ATHENE has been designed to operate in indoor environments 

like offices and warehouses. It has 1.95 meters in height and can reach and grasp from 

normal-sized tables. In the tactile module, the analog-digital converters (ADC) are 

coupled to a 16-bit microprocessor via multiplexers. The tactile controller is equipped 

with a CAN-bus interface and mounted onto the gripper module. The sensor module is 

plugged into the CAN-bus and the power supply cord of the manipulator- It can be 
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handled like an additional module, i.e., the sensor data can be read through the CAN-

bus interface of the PC. The robot consists of:  

1) A robot arm with seven degrees of freedom (DOF) and kinematics similar to 

human arms;  

2) Parallel jaw grippers with tactile sensors;  

3) A dual color-CCD stereo camera head with two degrees of freedom (DOF), 

controlled by software, to provide visual feedback to the robot;  

4) An image acquisition system with two PCI bus frame grabber boards (IC-P2M) 

manufactured by Imaging Technology Inc.;  

5) A computer network and a microprocessor network. 

 

The ATHENE robot is a Centaurus with the mobile platform having three wheels. 

The single front wheel is the control wheel (for driving and turning), and the two rear 

wheels are passive wheels. Above the mobile platform are the mechanics of the 6-DOF 

manipulator. This consists of the waist, the shoulder, and the right hand at the tip of 

which the tactile sensor is installed. The neck of the robot has 360-degree rotation and 

can tilt. Its eyes comprise of two cameras, each of which can move to the left, right, up 

and down.  

 

 

Figure 3.2: Hardware Configuration 1 
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From the hardware configuration above, the system consists of two computers 

connected by TCP/IP Protocol. One computer is the PC2, in which no special hardware 

is installed. Its function will be discussed later. The other is the PC1, which directly 

controls all the operating mechanisms of the robot.  

 

The primary mechanisms are the two robot eyes which can pan and tilt according 

to signals transmitted to them from the computer through the serial port using the VISCA 

protocol, which is a special characteristic of this type of camera. The Super Video 

(SVDO) signals from both cameras are connected to the two frame grabbers. The 

hardware operation sensing the visual signal is controlled by the processing unit in its 

corresponding computer.  

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Hardware Configuration 2  

 

The secondary hardware consists of the arm controller, grippers, tactile sensors, 

and the neck. These components receive control signals from the CAN-bus in the form 

of CAN-Protocol data transmission. The processors of this computer consist of three 

types. The first one is the processor of the computer itself. The second are two 32-bit 

40MHz digital signal processors (DSP), manufactured by Texas Instrument and 

connected to the computer processor through the PCI bus. The connection between 

these two processors is through their ports. One of the processors is installed with the 

IpackTim CAN-module functioning to transmit data using the CAN-Protocol.  
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Commands are sent from the computer processor through the first and then 

second DSP via the CAN-module to the CAN-bus and finally different modules of the 

robot-arms including the tactile sensors.  

 

The final hardware mechanism is the mobile platform which has a large number 

of 8-bit microcontrollers (Transputers). In controlling the mobile platform, commands are 

sent via the DSP to the first Transputer CPU in the set. From the above, the processors 

in this control set include: 

 

1) Intel Pentium IV CPU, which controls programming operations on the PC1 and 

the PC2; 

2) DSP processors, of which the control programs are loaded on the PC1 only 

during operation; 

3) Transputer CPU, which, like DSP processors, are loaded on the PC1 only during 

operation; 

4) Microprocessor on the tactile controller (whose control programs have been  

written and developed before being burnt on EPROM of the tactile controller)  

which commence their function when energy is distributed to the robot. This is an 

additional 16-bit 20MHz microprocessor. 

 

It should be noted, however, that all programs in each processor function 

independently and consist of sub-programs which examine their communication with 

other processors. As such, the central processor will be responsible for data 

transmission and transfer from one processor to the others. Different processing 

programs have different compliers, which can be summarized as follows: 

 

1) TLINK C complier used on the Transputer CPU in the mobile platform; 

2) Parallel C complier used on the DSP processors; 

3) Tasking C complier used on the microcontrollers of the tactile controller; 

4) Microsoft Visual C++ used on the two PC’s. 
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System Software for Robot Control 

 

The software structure for robot control consists of two parts. Their relations are 

shown in Figure 3.4. 

 

Each part functions on different computers. On the PC1, the MISSION software 

retrieves data from the two cameras of the robot using the frame-grabber hardware. The 

image data are processed and stored in the database engine operating on the PC2. 

These image data include the current object image data and robot-gripper image data. 

These two pieces of data are processed to enable successful approach and prehension. 

In addition, the MISSION software stores data from the tactile sensors in the database, 

and controls all robot movement. 

 

The software operating on the PC2 is the BrainThread, which also connects to the 

database. It uses data from the database for robot operational decision making. Another 

parallel program operating with the BrainThread is MATLAB, which performs 

mathematical processing. Because of its speedy operation enabled by its optimized 

relations to the processors, the program is used for some types of calculation. When  the 

BrainThread software performs certain calculation tasks, the data will be transmitted to 

the MATLAB software, which processes and stores the results. Both types of software 

are connected by a “wrapper”. Wrappers are a type of software, or more specifically, 

"glueware" that is used to attach together other software components. 
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Figure 3.4: Software Architecture 

 

All software operations are shown in Figure 3.5. Operations start when data from 

the left and right eye images stored in the database table are processed. Data in both 

tables show the image contour points potentially belonging to the object, robot grippers, 

or other objects not to be identified by the robot. Data in all tables in the database are 

stored in rows which represent moments of acquisition. They are also stored in columns, 

sometimes called attributes, which represent different types of data. Data in the left and 

right image tables are used when the robot is approaching the object.  

 

The data in Tactile Image A and B are used when the robot has already 

prehended the object and starts to gauge the force required to retain it. The A and B of 

the tactile image tables represent the data from each side of the tactile sensors due to 

the fact that the robot has parallel fingers, both of which make contact with the object 



 
 

41

surface on object acquisition. Each column in these tables shows the data from every 

sensor element of the corresponding tactile sensor.  

 

The TacEvent table shows special data reported by the tactile sensors such as 

slip, center of force etc. The data in Joint1 table, Joint2 table etc., show each joint angles 

history. All the data above will have time-variability characteristics which can be 

compared to the temporary memory in the human brain. 

 

The CMD table stores commands to control parts of the robot, including image 

recording, data storing and tactile-sensor reading. The commands programmed for this 

table emanate from the BrainThread program.  

 

The file system has different files which store data on robot control with certain 

patterns. This is an important feature for several reasons. To begin with, some situations 

have certain patterns and are frequently used by the robot. There may also be some 

commands which momentarily perform a number of robot controls. These commands 

will be stored in the file system in order that the BrainThread sub-programs can read 

data directly from it. Only data inappropriate for operation will be modified after data in 

the file has been read to the BrainThread. This file system can be compared with the 

long-term memory found in the human brain.  

 

The whole process of software operations can be explained as follows: The robot 

starts reading data from the image tables or the tactile sensor tables, depending on the 

task it is performing. With data on joint angles, the robot is capable of controlling the 

movements of its grippers to successfully perform the task commanded. When the 

command is repeated or part of the command is similar to other commands, the 

BrainThread will read such command from the file system. The command inappropriate 

to the task can be resolved at this stage. The BrainThread is also capable of storing its 

operation status in the form of state variables.  

 

The command desired will then be stored in the CMD table. After that, the 

BrainThread will send an event message to the MISSION software processor in the PC2 

to read the command from the CMD table in order to control robot functions.  
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In the opposite direction, the MISSION software will send an event message back 

to the BrainThread to signal the completion of the task. The whole process will then be 

repeated. The BrainThread is capable of storing more than one command in the CMD 

table enabling the robot to perform more than one type of task. Moreover, for every 

movement of the robot, joint positions will be stored in their respective tables.  

Figure 3.5: Software Operation 
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3.2 Force Sensor Design 

 

In this section, the principle of operation and the design of the tactile elements are 

discussed. The material used for this research is a soft, deformable surface made from 

electrically conductive foam, which detects continuous pressure with excellent sensitivity 

and resolution. The conductive foam is 3-mm thick. The underlying physical 

phenomenon behind the sensors is that of the variable resistance, whereby the 

resistance of the foam decreases with an increase in the applied pressure. The analysis 

of the structure of the conductive foam can help in understanding this phenomenon.  

 

There are many types of polymer foam: polystyrene, neoprene, polyethylene, 

polyester-based polyurethane, polyether-based polyurethane, and others.  Each is a 

synthetic plastic with very desirable properties: malleable, deformable and capable of 

returning to its original shape (good elasticity). However, polyethylene-based (PE) foam 

and polyurethane-based (PU) foam are the most readily commercial available 

conductive foams. The conductive foam used in this research is a material with a surface 

resistivity of greater than 1x102 Ω/square and less than 1x105 Ω/square. Concepts of 

surface resistivity can be found in many books and standards [ASTM Standard D 257-

99, ESD STM 11.11-2001, IEC 61340-5-1 Standard, Heaney 1999]. 

 

Conductive foam is normally a composite material comprising an electrically 

insulating PU-Matrix doped with an electrically conductive material such as graphite. The 

bond between the foam material and the conductor is a physical bond, which means the 

graphite particles are not chemically bonded with the foam polymer, but are embedded 

in the matrix. The resistance measured between two electrodes on the same side of the 

conductive foam (one tactile element) is derived from electrical conductivity through a 

number of conductive paths. In the quiescent state the foam has a resistance of about 

1MΩ. When compressed, the resistance drops to around 50Ω. These values are 

measured using the size and shape of electrodes which have been designed specifically 

for this project, for example: circular electrodes of 1 millimeter diameter arranged on the 

same ground plane (See figure 3.7). Any kind of mechanical perturbation exerted on the 
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sensor surface will induce elongation and/or compression, which rapidly increases 

and/or decreases some conductive paths.  

 

If many tactile elements are arranged in a rectangular grid, an image of the 

applied force field or the force distribution may be obtained.  

 Figure 3.6: Operating principle of the tactile elements  

 

 As shown in figure 3.7, the inner electrodes are arranged in an array and 

surrounded by the ground plane or common electrode. 

 

 
  Figure 3.7: Array of electrodes as planes for force measurement 

 



 
 

45

3.3 Tactile Sensor Design 

 

To create a tactile sensor from a basic force sensor, a number of procedural 

issues on the design of a usable tactile sensing system must be addressed. System 

parameters such as the number of tactile elements, the density of arrays, the sensor-

scanning speeds are strongly interdependent. The sensor’s performance is dictated not 

only by the quality of the individual tactile elements, but also by how the tactile elements 

are integrated. The spatial resolution of the tactile array is a function of the proximity of 

individual sensors to one another. 

 

Consequently, this research has begun with the formulation of a conceptual 

model, which includes the essential ingredients of a general tactile sensing system. This 

model is used to explore various system designs and their respective trade-offs. 

 

Figure 3.8 schematically illustrates the conceptual model of the tactile sensing 

system used in this research. The functional divisions naturally fall into a pyramid form, 

with the more computationally intensive processes occurring at the upper end of the 

pyramid and the more functionally rigid processes residing near the bottom. The vertical 

connections between elements are bi-directional or unidirectional, permitting data to flow 

downwards for addressing purposes and upwards for signal use by higher subsystems. 

This structure can be easily applied for the development of manipulator control, which is 

also typically hierarchical in nature [Albus 1981]. Clearly, this architecture is by no 

means unique to tactile sensing or manipulator control systems. Other researchers have 

presented similar models for multi-sensor integration [Albus 1983], human cerebellar 

function [Malchior et al. 1984], automated production [Snyder 1985], and many other 

applications. The advantage of using a hierarchical structure is that complex processes 

can be systematically decomposed into sub-processes, which can be implemented at 

desired levels of complexity.  

 

The model is divided into six levels. In the first level of the model is transduction 

of contact data, which may involve complex measurements such as the detection of 

normal force and shear force as well as their spatial derivatives at the contact surface.  
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However, the transducers used in this research are simply intended to indicate 

contact with an object. Much of the previous interest in tactile sensing has been focused 

on transduction, and past research results provide a rich foundation from which to draw.  

 

The second level, multiplexing and transmission of tactile data, involves the 

interrogation of sensors and the preparation of collected information for serial 

transmission. Critical trade-offs exist between the operating speed and the number of 

electrical wires in a conduit. Contact data from many tactile elements must be 

transferred to the controller at a rate sufficient for tactile information to be successfully 

used in dynamic end-effector control. Since conduit routing and fatigue will be a major 

problem to the systems success, the system should be designed to minimize the number 

of data conductors used. 

 

The third level, tactile data selection, reduces the amount of data that must be 

transmitted from the robot gripper by selecting which sensors or sensor patches should 

be interrogated. In very simple tactile systems with relatively few transducers, 

compromises may not be necessary. In more expansive systems, however, sensor 

selection will be a necessity. Sensor selection will be predetermined to automatically 

respond with contact events, or modulated in anticipation of upcoming interactions 

planned by the controller. 

 

The fourth level, preprocessing, is strongly dependent on the type of transduction 

array used and can range from elaborate processing schemes to detect geometrical 

features such as edges or holes, to merely data scaling for transmission to the controller. 

The selection of a particular transduction and preprocessing scheme strongly influences 

the reliability, size, and mechanical behavior of a tactile array. Initial choices are 

important since they will later impose bandwidth constraints on data access by higher 

levels. 

 

The fifth level, tactile data interpretation, forms a dynamic, tactile "map" of contact 

interactions and may also perform computations, which enhance contact features. This 

level of data will be placed in a format useful to the next level of the system.  
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At the sixth level, control, the algorithm for grasp and manipulation are 

implemented. At this level, tactile parameter such as sensor density, resolution, and 

localization are particularly important, since information must be sufficient to allow 

reliable control of desired complex tasks. 

                            Figure 3.8: Model for tactile sensing 
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3.4 Electronics Circuit Design 

 

As discussed earlier in ‘Force Sensor Design’, the operating principle of this type 

of tactile sensor is to measure a change in electrical resistance. From Figure 3.7, each 

tactile element will have two electrodes. One electrode from each tactile element will be 

connected to a common substrate or ground plane. The other electrodes will be 

connected in series with a fixed resistance to the voltage source.  

 

The voltage measure points are above the joints of each tactile element. The R 

value will be related to the surface resistivity of the conductive foam. That is, the R value 

will determine the voltage drop across the tactile-elements under normal conditions. In 

other words, the value of the fixed resistance is so chosen that when no force is applied 

to the foam surface, the voltage across a tactile element should be approximately 80% 

of the supply voltage V+.  The decrease in voltage across a tactile element (from 80% to 

0% of V+) is due to compression of conductive foam under tactile pressure, whereas the 

increase in voltage across the tactile element (from 80% to 100% of V+) is due to 

elongation or expansion of the conductive foam under shearing or traction forces.  

 

 The voltage across the tactile elements will decrease when a compressive force 

is exerted on the foam because of the resulting increase in conductivity. On the other hand, 

the voltage increases as a result of a tensile force. Such increases are noticeable notable 

despite the minimal size of expansion of the foam.  
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Figure 3.9: The sampling circuit 

 

The analog-digital converter (ADC) is used with successive approximation on all 

input channels from sensor electrodes. In order to reduce the number of ADC chips, 

MAX396 16-channel analog multiplexer chips for the controller units of the finger 

sensors are used. 

                   Figure 3.10: Details of each side assembled into the finger  
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Each side of the fingers consists of three layers. The first layer, the epoxy layer, is 

used to protect the semiconductor devices from excess force and collision. The PCBs 

(printed circuit boards) with epoxy are glued to an aluminum core.  The second layer is 

the PCB layer with the inner electrodes connected to an electronic circuit through an 

epoxy layer and to the topmost, the foam layer which is glued to the rear of the PCB. 

Illustrated in Figure 3.10 is a designed fingerplate for a device which takes advantage of 

this pressure measurement property. The arrangement of layers in this way enables the 

robot fingers to measure deformations by measuring changes in the electrical 

conductivity of the foam as the surface of the fingers is deformed. 

 

The fingers are covered by 3-mm thick conductive foam. Each finger consists of 

many tactile elements. Each side of the fingers is designed to measure the force at one 

specified location. Electronic devices to drive each tactile element are located very 

closely to each tactile element in the finger segment. This allows signal processing to be 

brought as close to the sensors as possible or even to be integrated with the sensors. 

The width of the fingers is 20 mm, their length is 55 mm excluding an aluminum core and 

they have a thickness of 12 mm. 

 

  The tactile sensors have been developed with the following specifications: One 

finger consists of two 16x4 cells, two 16x2 cells, and 6x2 cells, making up the total 408 

cells for the two fingers. 

 
Figure 3.11: Details of finger components 
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The controller facilitates three essential functions: data collection, manipulation 

and communication. The C167 microcontroller equipment is housed in the controller unit 

with a 20 MHz clock. One of the main advantages of this system board is flexibility of the 

memory configuration. The main memory on the board is arranged in two continuous 

areas with I/O port (communication channel), and both can be accessed as 8-bit or 16-

bit words. An internal RAM chip is also included which can be accessed with zero wait 

state by the microcontrollers. For this application, both external and internal memories 

are used and the entire main memory is configured and accessed as 16-bit words. In 

this model, 128Kx16 SRAM external RAM was made available. This microcontroller also 

has a 2Kx16 flash memory which contains codes that allow transfer of application 

programs from the PC host to the board. The flash memory is accessed at power-up or 

reset so that the board can be used in embedded stand-alone real-time applications.  

 

 
Figure 3.12: The circuit diagram 

  

The controller unit has two PC host interfaces: RS232C and CAN-bus. A fast 

CAN interface is provided by the C167 chip. Several software-configurable registers are 

also mapped into the chip's I/O location.  
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These resources allow bi-directional interrupts (communication requested signal) 

between the controller board and the PC host. The analog-to-digital (ADC) module 

consists of quad-channel ADC chips with successive approximation on all input channels 

with sampling frequencies up to 10 KHz. The inputs are limited to a range of zero to +5 

Volts and so input voltages from every tactile element must be within this range. The 

sampling timing is synthesized fully by the software. No interrupts are used, so the 

sampling timing is jitter free. 

                                        Figure 3.13: The Controller Unit 
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3.5 Software Integration 

 

The software integration of visual modalities has been achieved in an efficient 

manner by creating a unified data structure for geometrical properties of objects and by 

programming with multi-threading techniques. When displaying a visual image, the 

update rate is approximately 100 Hz which appears continuous. The first main screen, 

shown in Figure 3.14, is Finger Screen, which is adapted for the shortcut viewing of the 

finger sensors. Each area corresponding with the electrodes is arranged in such a way 

that they easily recognize the existence of the physical finger sensors. Since graphic 

environments are often identical, it will be advantageous if the graphic specifications are 

similar. That is, the whole area of the finger as well as its different plates can be seen on 

the screen, as shown in Figure 3.14. 

                                       Figure 3.14: Finger Screen 

 

The two requirements for software integration are real-time rendering and data 

transfer speed. In order to satisfy both requirements and to optimally use the power of 

the computer processor, the visual thread and the communication thread need to be 

separated. That is, the two threads are run at the same time. The visual thread is 

updated at 100 Hz while the communication thread is connected to the tactile controller 

at 256 Kbits/sec. 
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Since the two threads are running simultaneously, there is always a chance of 

conflict between their access to shared memory, i.e. when one thread is writing data to 

the memory and the other thread is reading from the memory. In order to avoid this 

problem, these two threads need to be synchronized. The easiest way to do this is to 

use critical sections. In Visual C++, there are four types of synchronization objects: 

critical sections, semaphores, mutexes, and events. Technically, the first three are all 

instances of general semaphores. When one thread wants to access the shared data, it 

will check first if the other threads are accessing the same data. If the operating system 

indicates that the shared memory is not being used, one of the other threads can access 

the data. On the other hand, if the operating system indicates that the shared memory is 

currently being used, the thread that is accessing the memory must wait until the other 

one is completed. 

Figure 3.15: Single Side Screen 
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3.6 Sensor Behavior 

 

This type of sensor has been designed and build by [Weiß and Wörn 2004, 2005] 

to measure finger forces. However, integration with the robot fingers and software 

development has been done as part of this research. This tactile sensor measures the 

pattern of deformation beneath the fingers, which changes when a force is applied to the 

fingers. This pattern can then be used to predict finger forces. Normal forces, shear 

forces, and even changes in finger postures have all been shown to result in different 

deformation shapes. In conclusion; a new tactile finger sensor containing a 2D array of 

detectors is described in order to understand how normal forces and shear forces can be 

sensed. Normal touching forces, shear forces, or sliding forces on the plane of a contact 

surface play an important role in robot sensing and manipulation of objects. 

 

Before describing the detailed operating principles of the tactile sensors, the 

tactile sensor layout will be presented. The figure below shows the side-cut picture of the 

tactile sensors. The uppermost part is the 3 mm-thick conductive foam. The conductivity 

measured by the electrodes is distributed under the foam. There are 64 points to 

measure the resistance which disperses evenly over the conductive foam surface. All 

the electrodes are connected through the multiplexers to the ADC. Some electronic 

circuits will be installed below them, as shown in the figure 3.10. Between the sets of 

electrodes and electronic circuits lies a layer of epoxy material acting as an insulator. 

The force exerted on the tactile sensors will usually be in a downward direction.  

 

Figure 3.16 exhibits only one side of the robot finger after tactile sensor 

installation. A robot finger has five sides (four sides on the finger shaft and one side of 

the fingertip). Normally, a measurement of resistance requires two electrodes, which in 

this case are the 64 electrodes and the common ground plane. 

 

There is an analytical mathematical model which provides the complete field 

distribution inside the tactile material. Using the Ansoft Maxwell 2-D field simulator, the 

electric field’s characteristics and static responses are calculated which are shown in 

figure 3.16. 
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Figure 3.16: Material Behavior [Ansoft Maxwell 1997] 

 

The following section describes the material behaviors of the tactile sensors and 

why the conductivity changes upon an application of force. However, complex 

mathematical models will not be used. From the figure 3.16, the parts with + are the 

electrodes connected to the conductive circuit. The parts with - are electrodes commonly 

connected to the ground plane. The direction of current flow will be dependant on the 

three dimensional electrical field in an isotropic material.  

 

Conventionally, a current flows from + to -. If the electrodes and the ground plane 

are on the same plane level, then the electrical field will flow perpendicularly from the 

electrodes and flow back perpendicularly onto the ground plane. In figure 3.7 and figure 

3.16, the electrodes and the ground plane do share the same horizontal plane. Hence, 

the vector field will take a divergent shape, and a symmetrical distribution can be 

observed. However, when the material is pressed on the top, pressure distributions are 

formed. The area underneath the applied epression results in a high pressure, while the 

pressure of the surrounding areas decreases.  
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The volume under the tactile sensor surface in figure 3.16 corresponds to a 

downward difference pressure distribution on the material, and has a symmetrical 

characteristic. However, the electrical field lines inside the material are no longer 

symmetrical. The conductivity values read from the electrodes will have a data 

distribution that corresponds to the curvature of the tactile surface under pressure. 

 

On measuring the resistance at the tactile elements, the analysis of the electric 

field has to be carried out by using Poisson's equation, which requires certain boundary 

values. In addition, measuring the resistance under pressure will also depend on the 

analysis of the material behaviour for both pre-deformation and post-deformation. 

 

In some part of the electrical field analysis, the potential distribution ),,( zyxVV =  in the 

material for a uniform charge density can be given in Cartesian coordinates by Poisson’s 

equation: 
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where ρ  = material charge density (depending on pressure) with the units Coulomb/m3. 

and ε  = electrical permittivity. Material analysis concerning ρ  andε  will be discussed in 

chapter7 where the concept of the stress/strain quadric and its applications will be 

introduced. The electric field ),,( zyxE  is defined as VE −∇=  or 
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The ground plane (-) is connected to the ground and maintained at 0=V . The 

voltages at the electrodes of the tactile elements show some variations (i.e. the voltages 

are dependent on potentials calculated by the voltage dividers formed by R and R0 as 

shown in figure 3.9). From the above equations and the boundary conditions, 

calculations must be carried out using Finite Element software. In practice, determination 

of electrical resistance is achieved through voltage measurements, as shown in figure 

3.9. 
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Figure 3.17: Sensing Complexity  

 

Figure 3.17 shows the behavior of a cubic section of the sensor upon the 

application of a downward pressure. In figure 3.17a, when the tactile surface receives a 

vertical indentation causing a force distribution in the lower part of the foam content and 

the area surrounding the center of the force, the force then increases the conductivity in 

that area. The area with the highest conductivity is at the center of pressure, while the 

surrounding areas also show increasing conductivities, thoguh to a lesser extent that in 

the center. In figure 3.17b, the object pressing on the sensor surface moves without slip. 

It can be seen that the foam cube diverts in a certain direction depending on the 

direction of object movement. The diversion caused by pressue on the foam occurs in 

three dimensions resulting from shear forces. Figure 3.17c occurs when the object 

pressing on the tactile sensor is rotated with the center of rotation different from the 

center of force, which is caused by force applied to the surface. In this case, the foam 

cube distorts three-dimensionally as well. Both 3.17b and 3.17c yield extremely 

complicated computations in this respect.  
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CHAPTER FOUR 
The New Tactile Sensor and Its Performance 

 
4.1 Performance Matrix  
 
 The tactile sensor design has been tested in order to determine its ability to 

detect tactile information. A number of experiments have been conducted to explore 

the following parameters: hysteresis, temporal resolution, sensitivity, linearity and 

time variance, spatial resolution, localization, shape determination from force 

distribution, and surface fitting. The experiments together with their procedures are 

summarized in the table below, and further details are discussed in Section 4.3: 

Performance Tests. 

 Parameters Experiments and Procedures 

1 Hysteresis An experiment to measure hysteresis was conducted by exerting 

forces on a particular tactile element, using an indentor - a 3-mm 

diameter cylinder with an evenly cut surface. The indentor was 

also used for all the other experiments. Force was increased from 

zero to three Newton with increasing strain being continuously 

measured and recorded. Then the force was reduced from three 

to zero Newton with reducing strain being similarly measured and 

recorded.  
2 Temporal 

resolution 

Two experiments were conducted to test this parameter. In the 

first experiment, the indentor was used to create a 1-mm deep 

indentation on a tactile element. The indentation was maintained 

for one second and then released for one second. This process 

was repeated. However, the time spent for pressing and releasing 

was reduced to half the previous time after every successive ten 

seconds. In other words, the frequency of indentation was 

doubled every ten seconds. In the second experiment, the 

indentor was used to create a stable force on a tactile element for 

1.5 seconds. The data from the beginning of the indentation until 

the end of the process were recorded.  
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3 Sensitivity An experiment was conducted to find the relationship between the 

tangent of the data curve from the ADC and the displacement in 

order to ascertain sensitivity. Data was collected while the 

indentor was used to indent to different depths on the tactile 

surface.  
4 Linearity and 

time variant 

Two experiments were conducted. One experiment was 

conducted to test linearity - the relationship between the 

resistance measured from a tactile element and the force exerted 

on it by the indentor. The other experiment was conducted to test 

time variance - the resistance of the tactile sensor which varies 

with time during which a constant force is maintained.  

5 Spatial 

resolution 

This measurement was achieved by applying force on different 

tactile elements along a particular 16 element row. The ADC data 

from the eigth location resulting from each pressing event were 

measured and graphically plotted. 

6 Localization This parameter refers to the ability to localize contacts on the 

tactile sensor surface. Two experiments were conducted to test 

this. In the first experiment, the indentor was used to apply force 

to the tactile sensor surface before being horizontally displaced to 

other positions whilst maintaining the depth of displacement. The 

second experiment was conducted by using the indentor to press 

different positions on the tactile sensor surface with all the data 

being recorded to determine the center of force representing the 

contact points.  
7 Shape 

determination 

from force 

distribution 

This was an experiment to determine the force distribution on the 

tactile sensor surface while objects with different shapes were 

being pressed against it. Black and white colors were used to 

show 2D areas which did and did not experience force.  
8 Surface fitting The same sets of objects as used for testing parameter seven

were also used in this experiment. However, this resulted in 3D

data.  

Table2. Performance Matrix Validation 
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4.2 Experimental Setup 
 

 
 

Figure 4.1: The impulse tester 

 
 Two sets of experiments were conducted to determine the tactile sensor 

parameters and the equipment used was chosen accordingly. Included in the first set 

of experiments were the experiments in which the impulse tester was used to create 

impulses on the tactile surface. For example, the experiment conducted to test the 

second parameter in Table 2. The equipment used for this one consisted of a 

function generator and an impulse tester. The impulse tester, the equipment at the tip 

of which the indentor was installed, used a solenoid to generate the force required for 

pressing the indentor on the tactile surface. The frequency of indentation was 

increased or decreased by programming on the function generator. The signal from 

the function generator will then be amplified by an amplifier before driving the 

solenoid. The solenoid forced the indentor to move in the vertical direction and 
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pressed upon the tactile surface. The degrees of pressure were controlled by the 

amplifier and the function generator while the depths of indentation were adjusted 

according to the height of the arms. To apply a constant pressure, the function 

generator had to program supplying a direct voltage to the solenoid. 

 The tactile surface contained 64 tactile elements arranged in a 4x16 array. For 

the reason of convenient measurements, all tactile elements were connected to 

external test points. The signals measured at specific test points were able to be 

divided by electrical resistors measured by a multimeter, or the shapes of those 

electrical signals were to be measured by an oscilloscope. 

 

 

Figure 4.2: The 3-axis test bench 

 

 Included in the second set of tests were experiments which required the 

horizontal displacement of the indentor to different positions on the tactile sensor 

surface. A special tester employed force from the computer controlling the stepping 

motors through the stepping motor driver. Its tip was capable of three axes of precise 

movement. For each axis, the control resolution was one-twentieth of an inch per 
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step of the movement. The commercial force sensor was equipped with indentor 

through the tip of the z-axis. This was the indicator of the pressure applied by the z-

axis motor. On the other hand, the depths of indentation were also marked on the 

sliding ruler. Then, it was able to gauge the vertical distances by counting the applied 

steps into the z-axis stepping motor. The signals measured from the tactile sensor 

were able to be measured for its electrical signals by an ADC card. The pressure 

distribution or the whole electrical signals of the tactile array were simultaneously 

measured with 32 analog inputs, at a 12-bit measurement resolution and a sample 

rate of 640 Kbit per second. 
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4.3 Performance Test 
 
 This Section is divided into three parts. In 4.3.1: Force Sensor Characteristics, 

electrical noise, thermal response, hysteresis, temporal resolution, sensitivity, and 

linearity and time variance are discussed. In 4.3.2: Tactile Sensor Characteristics, 

spatial resolution and localization are presented. In 4.3.3: Tactile Performance, 

shape determination from force distribution and surface fitting are described. 

  
 4.3.1 Force Sensor Characteristics  
 

 Electrical noise 
 

Electrical noise from the tactile sensor in the form of interfering signals is a 

very important factor which must be taken into account before data from the tactile 

sensor can be used. There are three main causes of noise. First, the contact 

between the foam and the electrodes was not electrically or mechanically perfect 

because the foam was simply glued to the electrodes at the back of the PCB. 

Secondly, the foam started to degenerate after extended periods of use; for instance, 

its ability to stretch and yield reduced. As a result, the voltages around the used area 

became different along the foam surface. It was very difficult to solve this problem 

using software based compensation methods. The only realistic solution was to 

replace the foam. 

 

The third cause of noise resulted from the processing of the foam which 

involved mixing graphite particles with polymeric particles in the foam. However, this 

did not produce a chemical bond of the two elements. The resultant conductance 

was merely through the graphite particles from the electrodes to the ground plane.  

 

 In order to reduce the noise, four lower bits of each sampling data from the 

ADC were simply neglected hence the signal contain only 8 relevant bits, and a filter 

was used to compress the noise. The simplest noise reduction method was a low 

pass filter achieved by the “sliding method” or “box filter”. Instead of using the mean 

value, a specified factor ( fC : compression factor) was used as a divisor. Data from 



 

 

65

each tactile element was replaced by the summation of its local neighbors divided by 

the compressed factor. This method chose a local neighborhood to smooth the data 

derived from the tactile array. 

 

 The compression factor was selected by observing raw data from the ADC. 

For calculation, each data from the tactile element could be part of two different lines. 

The one chosen for smoothing was the middle taxel. One disadvantage of using this 

method was that sharp edges and secular highlights might be diminished or lost. 

Using a threshold value ( tF ) as a reference it was possible to restore some of the 

lost sharpness. By this method, taxels which contain levels higher than the threshold 

value were set to a new value (filler value), and taxels which contain levels lower 

than or equal to the threshold value were set to the original value. 

 

 
 

           Figure 4.3: Noise compression 

 

a0
(1,2)  is old data from the tactile element at row 1 and column 2. 

a1
(2,3)  is new data (filler value) from the tactile element at row 2 and column 3. 
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Thermal response  
 
 This characteristic does not depend on the properties of the tactile sensor 

itself but on the material covering the tactile sensor. According to the properties 

specified by the manufacturer, temperature change does not influence the 

measurement of force-resistance relationship if it remaines within the range of 0º 

to120ºC. The magnitude of an actual change in the force-resistance relationship is 

not predictable outside this range. In addition, the material used in this type of tactile 

sensor responds only to a force stimulus not to other external stimuli, radiation, and 

in particular, electro-magnetic fields. For these reasons, additional information for 

purposes of temperature compensation was not required.  

 

 Furthermore, our conductive-based tactile sensor was encapsulated, enabling 

accurate, stable, and reliable operation. The sensors conductive foam consisted of 

both electrically-conductive and non-conductive particles suspended in a polymer 

matrix. The particle sizes were of the sub-micron order and were formulated for 

minimal temperature dependence, improved mechanical properties and increased 

surface durability. 

 

Hysteresis  
 

 Hysteresis represents the historical dependence of physical systems. If an 

object is pressed on the sensor surface, the surface will deform. When the pressure 

is released, the surface will be restored. The absence of these characteristics 

exhibits hysteresis, which is caused by the loss of absolute energy from the system. 

Hysteresis correlates with the resilience of the rubber: the higher the resilience, the 

lower the hysteresis.  

 

 Hysteresis is calculated from a stress-strain curve. Hysteresis is the difference 

between the loading energy and the unloading energy, whereby energy values are 

determined by calculating the area under the test curve. In this experiment, the 

sensor was loaded incrementally from 0 to 3 Newtons and then back down to the no 

loading condition to determine the extent of the hysteresis. This piece of data was 
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shown by plotting the force of the probe versus the sensor output. In Figure 4.4, the 

lower curve represents the sensor output for an increasing applied force and the time 

to increased force is in 1 minute. The upper curve represents a decreasing force and 

the time to decreased force is also in 1 minute. The difference between the curves is 

the hysteresis, which was 8.2 % of the total response. This difference lies within the 

noise range of the system. Thus, it should be possible to reduce the effect of 

hysteresis down to an acceptable level by compensation in software. 

  

 
Figure 4.4: Hysteresis curve: 

(lower curve: increased force in 1 minute; upper: decreased force in 1 minute) 

 

 Temporal Resolution  
 

 This section discusses the resolution of the tactile sensor capable of 

processing temporal resolution. In the first experiment, the indentor was used to 

press on the tactile sensor surface to test the response. The 1-mm deep indentation 

was maintained for 1 second and repeated every 2 seconds. The data were recorded 

and plotted on the graph in figure 4.5 where the horizontal axis is time and vertical 
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axis the ADC data above the particular tactile element. The time used to maintain the 

indentation and repetition time were reduced to half after every ten seconds; in other 

words, the indentation frequency was doubled every ten seconds. This was to test 

the frequency of pressure at which the tactile sensor would or would not respond. 

 
Figure 4.5: Temporal response 

 

 Theoretically, the test methodology above would yield square-wave signals. In 

practice, however, square waves were not apparent. This could be attributed to the 

physical behavior of the material. With a high indentation frequency, the ability to 

restore to the quiescent state was reduced resulting in a rounding of the waveform. 

From the graph in figure 4.5, the data becomes unstable at the frequency of 40Hz 

and diminished completely at 50Hz. 
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Figure 4.6: Data from pressing on a tactile element 

 

 The second experiment to test the temporal resolution was conducted by 

maintaining a 1-mm indentation on the tactile sensor surface. While a constant force 

was being applied for 1.5 seconds, no noise spikes were observed at the start of the 

applied force. In fact, a square wave is not apparent in the presence of any other 

kinds of external force disturbance because the gradual decrease in resistivity. In 

addition, the polymer behaves like a low pass filter in the presence of an external 

force disturbance. In this way, the conductivity increases and decreases slowly. As 

the transitory time is finished, the system elasticity tends to restore the foam to the 

quiescent state and the resistance returns to the original value. 

 

 Sensitivity  
 

 One of the most important performance criteria is pressure sensitivity. This 

can be defined as the relationship between the tangent of the data curve from the 

measured voltages and the displacements. To evaluate the sensitivity of the sensor, 

the relationship between measured voltages and the displacement pressing on a 

specific tactile element was measured.  
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 This was equal to the change of measured voltages in Figure 4.7 divided by 

the change of the displacement amplitude. From the slope in this Figure, the 

sensitivity was 1.6 volts per millimeter.  

 
Figure 4.7: Sensitivity and Resolution 

 

 Sensor response was affected by the applied force and the force distribution 

as well as the tactile sensor. The problem is that the response per force unit area 

varies over the applied area. That is, as the area of an applied stimulus of constant 

pressure changes, the sensor output also changes. The response variation subject to 

stimulus size was due to both mechanical and electrical properties. If the tactile 

sensor consisted of discrete force sensing elements that had no connection to one 

another, there would be no cross-talk. However, since the tactile sensor in this 

research had interconnecting components in them, elastomeric covers and 

mechanical connections became a significant factor. On the other hand, the sensor-

scanning electronics was not an obstacle in determining the response per force unit 

area because it could read a particular cell without ambiguity.  
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 Linearity and Time variance 
 

 Figure 4.8 shows variations in the contact resistance when forces are applied 

to the tactile sensor surface. In the experiment, a 3-mm x 20-mm x 55-mm piece of 

foam was placed on a flat surface. Then the indenter was used to depress the foam. 

Forces of 2, 4, 6 and 8 Newtons applied to the foam surface yielded resistances of 

650KΩ, 250KΩ, 100KΩ and 50KΩ respectively as shown graphically in the force-

resistance relationship of figure 4.8. 

 

 The response was monotonic, although not perfectly linear, when the forces 

were small between 0 and 4 Newtons. The measured values showed that this tactile 

sensor had a high sensitivity in this range and a lower sensitivity to increasing forces 

outside this range.  

 
Figure 4.8: The relationship between force and resistance 

 

 The advantage of smooth and continuous curves is the applicability of 

computational methods in fitting mathematical equations to the curve.  
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We found that there is a well-defined mathematical relationship between the range of 

applied force and the values returned by the tactile element. 

 

From the graphical trend line shown in Figure 4.8, we see that the relationship 

between an applied force and the returned sensor value obeys the formula: 

 

   )108.365-1.579( )/-32.34(11)/-0.449( NFNF eeR ××= Ω    (3) 

 

where R is the value returned by the tactile element and F is the force (Newton) 

applied to the tactile surface. The coefficients, 1.579 and 118.365 10x , have the units 

Ω , while 0.449 and 32.34 have the units Newton-1. 

 

 Temporal variation of data from the tactile sensor is another important factor 

which needs to be discussed. The graph in figure 4.9 shows data collected from the 

tactile sensor array during actual gripping of a metal cuboid. The plane of the tactile 

sensor array was parallel to that of the object. The graph lines with different colors 

represent data from different tactile elements. The right hand section of the figure 

provides a description of the relationship between the colors and the positions of the 

tactile elements. For example, R2C7 indicates the tactile element in the second row 

of the seventh column. From figure 4.9, it can be seen that signals sensed by tactile 

elements may change, although the force on the tactile surface remains stable. The 

ADC data increased with time within the first second, after which they became stable. 

 

 Although differences in the height of each line reflect different sizes of force 

exerted on each tactile element, this is not a major problem. It can be seen from 

figure 4.9 that each line has increasing height or differently increasing rates during 

the first few seconds, i.e., non-symmetric, which is a more serious problem. In 

conclusion, this type of sensor may generate non-linear and time-variant signals as 

well as different variants in each tactile element. 
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Figure 4.9: Time variant data  

 

 These sensor elements have a markedly non-linear profile with changes in 

concentration. Calibration models have been investigated in order to differentiate 

between static and time-variant signals. They are also used as a compensation 

method to describe the interactions between the analyses and real data from sensors 

for exploratory studies and calibration. In the selected scenario, they can be used to 

predict, and compensated for, time-variant signals within the first one to two seconds 

after making contact with the object. When calibration within a range of a few 

samples has been carried out, the constants pertaining to the model will be 

evaluated. Because field data are collected and manipulated (computed) over a 

period of time without laboratory calibration somewhat greater data errors are 

expected. To partially compensate, the field data is corrected using a nonlinear 

interpolation between successive laboratory calibrations. The objectives of this 

section are: 1) to apply a non-linear calibration model to correct the tactile sensor; 

and 2) to monitor sensor performance whilst it is in use.  

 

 Calibration is a specific type of inverse prediction where )t(f 0  is an unknown 

value, but is noted in one or more further observations.  
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It does not affect the point estimates and does not affect the construction of intervals. 

Data for calibration problems come from a calibration sample of “known” it  values, 

which are used to produce responses, )t(f i , i=1,2,..,n. As a starting point in the 

analysis, we assume that the variability in )t(f for the analysis sample is similar to 

that for the calibration sample. 

 It has long been popular to use linear regression and least-squares polynomial 

fitting for the determination of instrumental calibration graphs. It is simple to compute 

and in the case of normally distributed uncorrelated random errors, it is probably 

optimal. However, there exists a weak alternative which, in some circumstances, may 

not be preferred, such as in our case. Direct search methods extend their uses to a 

much larger and more general class of functions.  

 

 The way in which the unknown parameters in the function are estimated, 

however, is conceptually the same as it is in linear least-squares regression. Direct 

search has been used as a linear regression method to determine the inner linear 

relationship between the dependant )t(f  and independent variables t  using a 

number of principal components. This adaptation uses of a direct search technique 

knows as the Nelder-Meade algorithm. It does not attempt to approximate any 

gradients or other partial derivatives. It is quite effective on small problems involving 

only a few variables which can also be handled by functions employing optimization 

methods. 

 

 For the search method, we use the Nelder-Meade direct simplex search. This 

search has the advantage that it has memory and can go back to previous search 

candidates and thus is less likely to get “stuck” in a search. Unlike many other search 

procedures, it does not require the generation (by analytic or numeric means) of 

derivatives. Like most searches, it works best at low dimensionalities. We have found 

it to be a good robust searcher for this type of problem compared to other searchers 

we have used. The software is implemented by defining an objective function that is 

to be minimized. Like all search program, this function has a number of stopping 

conditions. These include the objective function reaching a minimum as defined by a 

tolerance and within a maximum number of iterations. Alternatively, successive 
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iterates may differ by less than a specified tolerance. Note that successful searches 

do not mean that the global minimum has been found. 

 

A nonlinear model is any model of the basic form: 

 

ελβ += ),,t(fy ,     (4) 

 

where the functional part of the model ),,t(f λβ  is not linear with respect to the 

unknown parameters, λ  and β . The method of least squares is used to estimate the 

values of the unknown parameters. The models to meet two criteria are of practical 

importance: the function is smooth with respect to the unknown parameters and the 

least-squares criterion used to obtain the parameter estimates has a unique solution. 

 

The following model for the calibrated tactile data is proposed: 

 
t

2
t

1
21 ee),,t(f λλ ββλβ −− += .     (5) 

 For the purpose of tracking and correcting this non-linearity, we have devised 

a four-parameter calibration function and corresponding linearization function which 

characterizes the sensor elements response over the first few seconds after the 

object has made contact with the tactile surface. 

 

 For the purposes of illustration, consider determining the best-fit curve 
t

2
t

1
21 ee)t(f λλ ββ −− +=  given a small dataset and using uniform weighting to simplify 

the model. Real calibration would associate an error estimate with each calibration 

point and weigh them inversely proportional to their error estimates. Least-squares 

fitting is derived from minimizing the expression: 
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 The alternative method of robust calibration is called minimum 1-norm. It has 

the distinct advantage that it emulates more closely the techniques used by a trained 

analyst – drawing a line by eye through the data which minimizes the absolute 

deviation between the calibration points and the line. It has the same number of 

points above and below the fitted line. Minimum 1-norm is derived from minimizing 

the expression: 

∑
=

−=
N

1i
ii )t(f),t(fm θ       (7) 

 

We will consider Figure 4.9 with a proposed nonlinear model calibrated over a few 

seconds of concentration range using the same time sequence from 0.2 to 1.4 

seconds. 

 

 
Figure 4.10: Calibration of Nonlinear models vs. original data 

 

 Based on Figure 4.10, all calibrations are accurately determined and, from 

moderate to high concentrations, give quite similar results. It is clear that the 
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proposed calibration is accurate for the values near the real data that correspond to 

the minimum 1-norm retaining accuracy over the calibrated range.  

 

 A model parameter is determined by fitting a function to the experimental data 

using least-squares minimization. Models will be applied to corrected and linearized 

sensor values for all tactile elements concerned. The linearization process is 

illustrated in Figure 4.10 for a set of sample data collected after contact with the 

object. The values of  λ  and β  are progressively approximated after the correction 

process on a few samples of data. The parameters λ  andβ  therefore provide an 

index of a sensors non-linear properties, which can be recorded to track conditions 

and to correct field data using post-processing. 
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 4.3.2 Tactile Sensor Characteristics  
 
 Spatial Resolution  

 
 The spatial resolution of the sensor is limited by the space between the tactile 

element center and the elastomeric properties of the protective material covering the 

fingerplate. For a sensor that records just the surface normal force, a point source 

should be detected by only one or more cells directly in contact with the stimuli. 

Besides, spreading to and blurring from adjacent cells should be minimal because a 

sharp sensor response gives more details of the tactile force outlines of the object.  

 

 Figure 4.11 shows the response of a single tactile element when the indentor 
was used to scan a straight line across the surface. By pressing the indentor to a 

depth of 1 mm on the tactile surface, the data were measured and collected from the 

eighth taxel located in the middle of the fingerplate. The tactile response changed 

with the indentor position due to underlying continuum mechanics of the foam media. 

It showed the peak forming of signals around the area of contact. This was because 

the distance between tactile elements was constantly 2 mm. From this, the 

indentation depth could be determined to be about 1 mm.  

 

 The number of contacts included 16-grid points with their centroid at the eighth 

point measured from a coordinate located at the middle of the fingerplate. It can be 

seen from figure 4.11 that the tactile sensor could discriminate between simultaneous 

contact points whose distance was at least 2 mm. This means if there are any 

contact points whose distances are less than 2 mm appart, the tactile sensor will 

sense them as one contact point.  
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Figure 4.11: Single tactile response to lateral scans 

 

In some cases, however, it may be useful to vause the propagation of strains 

caused by contact points between adjacent tactile element sites. This is not an effect 

from the normal force of contact points but a side effect resulting from the nature of 

an elastic material and a surface tension caused by the deformation of contact 

points. Experiments involving this phenomenon have been introduced during 

previous research studies. Fearing and Hollerbach [Fearing and Hollerbach, 1985] 

showed theoretically how strain sensors placed below a tactile surface could be used 

to extract the angle of inclination. Their experiments also adapted an elastomeric 

material covering the strain sensor array. The spatial effect caused by the covered 

material lead to an increased sensitivity of nearby sensor elements. 
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       Localization  
 

 Tactile localization is the ability to locate a contact point on a tactile surface 

that has just been touched. Generally, the ability to locate the stimulus site accurately 

increases as the density of tactile elements increases. In this experiment, the 

indentor was pressed on the tactile surface to depth of 2 mm. A captured frame of 

the tactile data is shown in figure 4.12. The frames were recorded at the exact 

moment at which contact began. The number in the image represents the ADC data 

at the contact region on the tactile sensor.  
 

 To understand the distribution of the displacement field in the contact area, 

frame 1 and frame 10 were compared, as shown in lowest part of the picture. These 

two frames were 9 frames apart with 90 msec time difference and about 17 mm of 

object movement. All the objects moved to the left, and the region bounded by the 

circle in the upper panel moved to the corresponding region in the middle panel. 

From a three-dimensional reconstruction of the tactile data, the portions of the 

surface in contact with the indentor could be estimated. The tactile sensor was able 

to detect multiple areas of contact, and the minimum inward displacement that could 

be detected was 0.1 mm.   
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Figure 4.12: Frame of image 

 
 To identify the location of contact points, it is necessary to use a realistic 

method that requires some computing power. The basic one is the center of force, 

which is defined in the same way as a moment around the axis. The method is called 

weighted averaging. The location of the indentor can be more finely located by the 

weighted averaging of the response of neighboring elements, based on the following 

relationship:  
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where x  and y  are the expected location of the indentor, and ix  and  iy  are the 

grid location of a sensor unit ),( ji , and ),( jif  its output. The results are shown in figure 

4.13, which compares the locations predicted from the above formula (represented 

by dots) to the actual indentor positions set by the x , y  stage (represented by 

circles).  

 

 
Figure 4.13 Accuracy of point source localization using a weighted average 

 
Figure 4.13 shows that the expected location of the indentor using the 

weighted averaging method and the actual location of the indentor were always the 

same; in other words, the estimation was 100 percent correct. Consequently, this 

method can be used to define the contact location of object acting on the tactile 

surface.  
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 4.3.3 Tactile Performance  
 
 Shape Determination from Force Distribution  

 

 The shape of an object can be determined by pressing it against the tactile 

sensor and recording the resultant data profile. This ability is especially desirable 

when a visual inspection is impossible, such as when a manipulator end-effector 

obscures the view. The spatial resolution results of the previous section indicate that 

the sensor shape-discrimination ability should be good. To verify this, several small 

objects were pressed against the tactile surface, and the data outputs recorded. 

Figure 4.14 shows threshold filtered binary versions of the sensor output for these 

objects. The response is shown in this form to demonstrate the outline of the objects. 

 

 
Figure 4.14: Threshold filtered sensor output 

From left to right: a ball, a ring, and a cylinder pressed on the tactile surface;  

a rectangular cube pressed on the tactile surface at different angles 

 

 Data from the tactile arrays are used to show the force distribution at the robot 

finger to forecast the shape of contact points. Figure 4.14 exhibits the two-

dimensional shapes of the object grasped between the robot fingers, using the 

‘binary threshold’ techniques. Tactile elements with ADC values above the threshold 

value are represented as black, whereas those below with ADC values below the 

threshold value are in white. The pictures in the first three columns of figure 4.14, 

from left to right, represent a ball, a ring and a cylinder. Those in the last three were 
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derived from a cuboid being pressed against the tactile sensor surface at different 

angles. 
 
  Surface fitting 

 
 The previous section discusses only two-dimensional shapes of objects using 

the threshold corresponding to each tactile element. In this section, the signal from 

each tactile element will be interpolated at the surface to examine the model fitting 

between the tactile element and the shape of the object under prehension. 

 

 There are many techniques available for the construction of three-dimensional 

surfaces which correspond to data arranged in array format, such as Spline Surface, 

Basier Surface, Polynomial surface, and NURBS Surface as defined in section 2.4, 

etc. For all these techniques, constructing surfaces from discrete data requires 

interpolation. However, with the NURBS method the parameter from the surface will 

have special properties not found in other techniques [Piegl and Tiller 1996]. That is, 

the parameter yielded by the NURBS technique undergoing rotation, translation, 

scaling, and projection represents the actual force on the surface. Consequently, 

parameter data from the tactile sensor during prehension can be compared with 

similar data in order to determine whether it is the same object despite different 

positions and orientations on the tactile sensor surface, or if several objects with 

different sizes have similar shapes.  

 

 The first sample of the surface generated by the NURBS technique is shown 

in figure 4.15. It was recorded during the prehension of a ball by the robot. The figure 

consists of two planes of the tactile sensor surface. The program illustrating the 

surface of the object was executed on the PC2, which used data from the database 

engine which stores data from the tactile sensor. 

 

 In the figure, tactile force images are shown. The data are displayed using 

three dimensional plots. The height of each pair of images corresponds with the 

tactile element data output. The first image at the far left is derived robotic 

prehension of a ball. The second image represents a toroidal ring of approximately 
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1.4 cm diameter. The third image is that of a cylinder. The final three images show 

the tactile surfaces when a metal cuboid was pressed against it at different angles. In 

all cases, variations in the pixel height along an object’s edges resulted from 

variations in pressure distribution during indentation of the object against the sensor 

surface.  

 
Figure 4.15: NURBS surface interpolation 

(NURBS = Non-Uniform Rational Basis Spine) 
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4.4 Summary 
 

 Due to the cyclic application of forces experienced by the tactile sensor, the 

resistive medium within the foam will migrate over a period of time. Additionally, the 

foam will become permanently deformed, leading to permanent deformation of the 

sensor. This causes the sensor to have a poor long-term stability. As a result, the 

sensor must be replaced after extended periods of use. 

 

Hysteresis in a tactile sensor may not necessarily pose a major problem as 

some researchers have suggested. The tactile sensing ability used in this study is 

well equipped to handle complicated manipulation tasks. In addition, a robotic system 

can compensate for response variations by recording temporal history of manipulator 

motion. Since increasing or decreasing force on an object is directly attributable to 

robot motion, it is possible to select an appropriate half of the hysteresis curve in 

order to translate the sensor output into force.  
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CHAPTER FIVE 
Experiments and Applications for Optimization Grasping Force 

 
 Numerous research studies and experiments have been conducted in an 

attempt to attain firm and active object manipulation. [Bicchi, 2000] presented an 

overview of grasping and mentioned that one of the most needed advances in robotic 

prehension was to estimate object compliance. [Coelho et al. 2001] developed 

models of grasp policies and controls which were then verified through simulation. 

Combining tactile sensing with vision, [Hosada et al. 2002] invented a system that 

learned to detect slip from tactile sensor information. Using information from an 

intrinsic sensor, [Bicchi, 2000] developed a method to reduce the risk of slippage by 

controlling the normal force. [Laschi et al. 2002] presented an anthropomorphic 

robotic grasping platform developed for evaluation of neurophysiological and other 

physiologically inspired theories such as biologically-inspired grasping coordination. 

As one of the most refined robotic hands to date, the DLR dextrous hand has been 

used with respect to both mechanics and control, in studies using the neural 

approach to software development. [Borst et al. 2003] demonstrated that the DLR 

hand was able to catch a ball, play the piano, and to do other tasks. They have also 

implemented impedance control essential to more autonomous tasks. 

 

 Despite their variety in object manipulation and manipulation force control, 

these methods share the same principles. Robotic manipulation is sensitive to both 

object characteristics and contact conditions between the robot grippers and the 

prehended object. Consequently, any changes in contact conditions resulting from 

the environment will play a significant part on any prehension strategy. This factor 

needs to be investigated in order that an appropriate response to maintaining a firm 

grip can be achieved. Although impactive parallel jaw robot grippers are usually 

capable of prehending only simple object shapes such as cuboids or cylinders, much 

demands may be placed on force control ability should minimum prehension force be 

a requirement. To derive force control efficiency, two experiments have been 

conducted in this study: optimization of grasping force and contact identification 

which will be separately discussed in chapter 6. 
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5.1 Introduction to Optimization Grasping Force 
 
 There is a great deal of previous research in the field of grasp analysis and 

synthesis. [Pollard 1994] developed a parallel system capable of computing high 

quality grasps using prototype grasps as input data. [Fischer and Hirzinger 1997] 

created a system that used a heuristic approach to repeatedly choose 3 contact 

points on an object and to check whether these points could be realized by the robot 

hand. Given the goal of minimizing the sum magnitude of contact forces, [Kirkpatrick 

et al. 1990] proposed a general measure of quality for an n-contact grasp, defining it 

as the radius of the largest wrench space ball just fitting within the unit grasp wrench 

space. [Ferrari and Canny 1992] developed this measure further and proposed 

another measure minimizing the maximum contact force. [Li and Sastry 1988] noted 

that these measures were not invariant to the choice of torque origin and proposed 

using the volume of the grasp wrench space as an invariant quality measure. Li and 

Sastry also developed a quality measurement using task ellipsoids to better model 

the space of wrenches required for a specific task.  

 
 Robot gripper control has been employed widely in industry. One important 

aspect of this is simultaneous position and force control ([Raibert and Craig 1981], 

[Yoshikawa et al. 1988]) as the robot must interact with complex environments during 

its operation. However, most presently used robots control only position because a 

simultaneous control of both is complicated in practice. A major problem is that 

dynamic characteristics of the environment affecting the system are unknown. 

Moreover, although some features may be known, they usually have variable 

properties. Consequently, unless such characteristics are exactly known or pre-

determined, robot control must be able to adapt itself in accordance with dynamic 

characteristics of the environment.  

 

 The stability in object prehension depends on two factors. The first factor is 

the adequacy of the grasping force. The second factor is the correct contact location. 

Numerous researchers have investigated robot gripper manipulation control. [Mason 

1981], and [Mason and Salisbury 1985], for example, explained that the main 
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problem concerning prehension force was involved with a change in the contact 

location during pre-contact and post-contact. 

 

 In grasping and manipulating objects firmly, it knowledge of only the normal 

force is usually not enough: a more precise measurement of force is required. In 

addition to the normal force, shear forces are also important in many situations. 

Shear forces also play an important role in predicting object slippage which may be 

detected by specific algorithms [Cuttino et al. 1988].  

 

Piezoelectric thick-film sensors are a primary transducer for a slip detection 

sensor. These sensors produce electrical charge across their surfaces when 

mechanically deformed. This is known as the direct piezoelectric effect. They have 

typical sensitivity of up to 130 pC/ Newton [Torah 2004] compared with a PVDF 

sensor of only 20–30 pC/ Newton [Yamada et al. 2001, Canepa et al. 1998]. Thick-

film piezoelectric sensors have proved their ability to detect vibrations caused by slip 

[Cranny et al. 2005a, 2005b]. However, the sensors ability has not previously been 

quantified in terms of the initiation of object slip.  

 

The piezoresistors can measure a force in the range of 0.1–8 Newtons with a 

maximum spatial resolution of 1-mm, which is the maximum resolution that a human 

fingertip can differentiate between two different objects [Howe and Cutkosky 1989]. 

Piezoresistors have been successfully used to detect normal forces on an object, as 

well as movements of the object associated with slippage. Howe and Cutkosky 

presented an experimental confirmation of the ability to detect the onset of slip. 

However, their slip sensing capabilities cannot be characterized directly because 

they depend on an accelerometer which is attached to the inner surface of the sensor 

skin. Large local accelerations can be measured when areas of the skin stick and slip 

while the sensor moves against the surface.  

 

 When compared with previously available slip sensors, the electrically resistive 

foam types used in this research have proved more sensitive. According to Figure 

4.8, a maximum sensitivity of 700 Ω/Newton is available with indentation depths of up 

to 0.1-mm. Moreover, such systems are inexpensive and can be easily tailored to the 
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desired application. 

 

 The proposed tactile sensor will be applied in grasp experimentation by 

identifying the least force required for prehension - the method appropriately called 

pre-slip detections. The subjects used for the experiments consist of objects with 

different sizes and weights. 

 
 This dissertation introduces a new way to detect pre-slip using a resistive 

tactile sensor without additional sensors. The concept is based on principles of shear 

strain distribution. The tactile sensor detects the partial incipient slip of a tactile 

surface by sensing micro vibrations which are caused by an expansion of the slip 

regions within the contact area during variations in tangential forces. The micro 

vibrations are detected by an array of electrodes under the tactile surface. The 

location of the local slip is not specified but the occurrence of the local slip can be 

predicted immediately following occurrence of the micro vibrations. 

 
5.2 Experiment Overview for Optimization of Grasping Force 
 

Many different slip sensor solutions have been investigated by a number of 

researchers with limited success. Although today there are still no real slip sensors 

included in any commercially available robot hand [Cotton et al. 2007], the idea of 

including them into a design can be tracked back to 1960s [Childress 1985]. 

 
 However, in many practical cases, it is unacceptable to wait until total slip 

occurs. It has become apparent that there is a great need to detect the pre-slip and 

predict the imminence of total slip in order to prevent premature release. A more 

detailed review of many different slip detection techniques can be found in [Ibrahim 

and Abdel-Malak 2005]. 

 
 Various factors, including environmental influences, must be considered in 

order to manipulate an object and prevent it from slipping when external loads 

exceed the frictional prehension forces. When an object is retained in the human 

hand, gripping forces are adjusted according to the object weight and surface friction 
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(e.g. [Johansson and Westling 1984], [Westling and Johansson 1984a], [Cadoret and 

Smith 1996]).  

 

 [Johansson and Westling 1984] explained the role of tactile signals need to 

achie a precise grip during humans manipulation. However, the task selected for their 

series of studies was relatively simple. An object was grasped between the thumb 

and index finger, lifted vertically off the table, and subsequently replaced on the table. 

This task is divided into Grasp-Lift-Replace phases where a transition from one 

phase to the next is triggered by one or more events signaled from tactile units on the 

fingertips such as slip or touch signals.  

 

 Nevertheless, Johansson and Westing’s studies are interesting because the 

relationship between the prehension and load forces could be determined. In a 

typical lifting task the ratio between these forces remains constant after initial contact 

with the object. However, to perform the manipulation task smoothly, it is necessary 

to sense the coefficient of friction at the point of contact. It can be seen that the 

series of experiments conducted by Johansson and Westling contribute much to an 

understanding of how tactile sensors in the hands can contribute to control in fine 

manipulation tasks.  

 

 To determine whether similar mechanisms would be of help in the control of 

robot manipulation tasks, [Howe and Cutkosky 1989, 1996] applied hypotheses from 

human studies to robotic systems. Their robotic Grasp-Lift-Replace task involved five 

phases, i.e. approach, loading, manipulation, unloading, and release, linked together 

by four contact events. A change in the contact events marked the transition from 

one phase to another. Robotic tactile sensors described in [Howe and Cutkosky 

1989, 1993], detect the contact events and trigger the transitions through the phases 

of the Grasp-Lift-Replace task. The specialized sensors detect slip during finger or 

object contact as well as information concerning vibration to identify the remote 

contact events. 

 
 The human hand is unrivaled in its ability to grasp and manipulate objects, but 

all its complexities are not yet understood. However, one benefit the robot fingers in 



 

 

92 

this study have over traditional robot hands is the fact that they conform to a grasped 

object’s shape, giving rise to larger contact areas and the ability to apply larger 

frictional forces.  Furthermore, a new contact optimization method which provides a 

better account of deformation is proposed.  

 

 In this research, the grasp experiments which account for the ability of a 

deformed finger to apply normal forces over an area larger than a point is introduced. 

In addition, the way in which simple methods, such as determination of contact area 

geometries together with frictional forces and moments, can be used for analysis and 

optimization of soft contact characteristics is described. 

 
 Specifically, the proposed tactile sensor is applied in grasp experimentation by 

identifying the least force required for prehension. The objects used consist of four 

different sized solid cylinders. Two experiments are conducted. In the first 

experiments, each of the four objects, placed on a surface, are prehended by a robot 

and the minimum prehension force determined by active force variation. Thus, the 

minimum grasping force is determined. This experiment is divided into phases. In 

each phase, the signals sensed by the tactile sensors and the techniques used in 

controlling it are presented. 

 

 

Figure 5.1: Grasp-Lift-Replace Experiments (GLR) 

 

 In the second experiments, each of the objects is prehended between the 

robot fingers above the surface. Prehension forces are then reduced until the first 
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occurance of pre-slip is detected and the applied force noted as the minimum 

retention force. 

 

 

Figure 5.2: Grasp-Optimize-Replace Experiments (GOR) 

 

 The experiments also presented the results on grasp-span weights. The robot 

was subjected to picking objects of different weights and sizes as shown in Figure 

5.3 and then was determined for the minimum grasped force. 

 

Figure 5.3: A set of test objects 
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The grasped objects were cylinders, and they were grasped across the narrow 

part (24.5 or 25.6 mm) of the objects, i.e. the neck of cylinders. The robot would 

apply the grasped force, which was enough to lift or hold the test weights selected in 

this order: 608 grams, 480 grams, 302 grams and 105 grams. 

 

 A standard lifting platform was used for the experiment. The gripper was in a 

fixed initial opening distance of 4.5 cm. The opening distance was able to be fixed 

according to the maximum stroke of the robot-gripper and the grasped position, and 

the problem of gripper’s threshold, which shall be described in Chapter 7, was able to 

be avoided. The necks of objects were guided to be grasped in the middle of robot-

fingers. The same instructions were given as to how to lift the weight, but all objects 

were observed to be lifted by about 10 cm over the platform and were held 

momentarily. Then grasped force was decreased, and those objects were placed 

down again depending on the test cases. 



 

 

95

 
5.3 Experiment Setup for Optimized Grasping Force 
5.3.1 Process 

 

Grasp analysis methods use a variety of contact models to describe the 

possible forces and torques transmitted from one object to another through an 

interface. When two rigid objects come into contact at a point, there is always some 
amount of friction on the tangent contact plane. Static friction tangential to the plane 

of contact always exists in a single point contact situation. If one object is 

deformable, then the contact will not only occur at a single point but will spread over 

a contact area that increases with increasing normal force. Moreover, it is possible for 

the contact area to support larger frictional moments than in simple single point 

contact scenarios. The ability to resist friction depends on the magnitude of tangential 

friction not existent when the contact is just a point. This being applied to the present 

experiment, contacts on the robot fingers will be able to resist some disturbance 

moments within the contact tangent plane, leading to further deformation of the 

fingers and thus larger resistive moments in different directions.  

 

Several theories and experimental results have presented the analysis of 

deformation contact models. [Goyal et al. 1991] presented the concept of limit 

surface, characterizing the relationship between relative motion and frictional forces 

as well as moments for planar contacts. [Howe and Cutkosky 1996] discussed the 

shape of the limit surface for different contact pressure distributions and developed 

practical methods for constructing the limit surface using experimental results.  

 

Deformation contact is considered as an efficient object gripping method as it 

can be applied to intrinsic contact commonly found in practical manipulation such as 

that in humans. For example, when humans use their thumb and index finger to 

grasp a pen, the cylinder-shape curvature of the pen will replace the retracted space 

between the two fingers, which is called soft finger contact. Theoretically, soft finger 

contact occurs between the real body of the two objects in contact, causing a force 

distribution of the mass of one object into the other along the contact surface.  
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However, where the sensor is covered by a soft material, force distribution is a 

complicated continuum-mechanical science. While the retracted space is not 

symmetrically replaced by the mass of the other object, the nature of the force 

distribution requires a complete contact and is interrelated with the surface of the 

retractable object. These complexities cause difficulties in implementing the 

proposed sensor startegy: real-time sensory robotic manipulation is complicated and 

difficult to apply and places enormous computational demands on the control system.  

 

One widely used solution, which will be followed in this study, uses electrodes 

arranged in an array to measure the shape and characteristics of force distribution. 

The limitation to this method is that it can only measure or sense normal-force 

components. Nonetheless, it is able to reduce the amount of information to process 

and is applicable to force-control devices. The information processed in the 

experiment is in the form of sets of points with electrodes functioning as tactile 

elements. This enables tracking of the shape and movement of the object being 

grasped and calculation of the centroid relative to the localized contacts. 

 
Figure 5.4: Tracking the localized contacts by centroid determination 
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A number of studies have been conducted on tracking localized contacts (cf. 

[Nakamura et al. 1986], [Maekawa et al. 1992]) and on the changing positions of 

centroid. There are three main methods used: simple centroid, threshold centroid, 

and peak centroid.  

 

The simple centroid is a method that uses the center of force from every tactile 

element on the side of surface contact for calculating the centroid. The threshold 

centroid uses only tactile elements with more than 50% force from the maximum 

force of a certain localized contact for calculating the centroid, thus reducing the 

sensitivity to threshold noises in tactile elements not close to the contact point. The 

peak centroid (or peak detection) employs quadratic equations to fit the approximate 

point with the highest force of localized contact, and the maximum force regardless of 

its degree is used. Besides, this method interpolates information of the tactile 

elements close to the point with the highest force in order to track the position with 

the highest degree of strain at a localized contact point. 

 

The peak centroid has been applied in a number of studies. For example, 

[Fearing 1990] used sinusoidal curves to fit localized contact information, and applied 

gradient methodology to find the highest degree of strain for contact localization. This 

enabled identification of contact points with a resolution of up to one-hundredth of the 

tactile element width and is thus considered to be an efficient method. [Son et al. 

1994] used similar methods except that a quadratic equation was used to fit 

information around localized contacts to find the point with the highest strain 

representing the contact point. The resolution resulting from this method was also 

finer than that from simple tactile element distance (sensor resolution).  

 

However, the amount of time consumed for CPU processing in both studies 

above is very high, which is inappropriate for real-time tasks. Moreover, the peak 

centroid is relatively unstable compared with other methods. For example, when 

there is no single force maximum, i.e., several local force maxima, the calculation will 

yield results outside the actual location of the tactile sensors.  
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 In this study, the method chosen for tracking localized contacts is that of 

“threshold centroid” for three reasons. First, this method enables a better estimation 

of contact localization than do the other two methods. Although threshold centroid is 

limited in terms of noise from the normal and shear force, this problem exists for all 

three methods as they follow the principles of solid mechanical models. The model 

postulates that the surface of the tactile sensors acts as a linear elastic half-space 

and that the value for each tactile element results from both normal and tangent force 

components to the surface of the tactile sensors. Nevertheless, as for threshold 

centroid, if the signal resulting from shear force does not reach the threshold, it can 

be assumed that the shear force signal does not occur. This enables a better 

estimation of contact localization. Second, sensitivity to threshold noise is reduced. 

Finally, the time required for CPU processing is relatively low. 

 

 Since the shear force at the contact point is a variable causing slip, and noise 

is random, predicting the movement caused by the tangent force component to the 

tactile sensors is relatively inaccurate. Tracking speed in relation to the changing 

pattern of localized contacts is another important variable. The conditions that 

correspond with the behavior of the tactile sensors in measuring the changing signals 

whilst maintaining low micro-controller energy consumption seem to be the best 

option. 

 

 In this study, both sides of the tactile sensors in contact with the object are 

updated 100 times per second. Thus, the time required for information processing 

and tracking the pattern of localized contacts depends on the speed of the PC and 

the processing algorithm. The image data of localized contacts are kept in the 

database and processed on the computer. The frequency measurement, the 

amplitude, center of force and average value of the signals resulting from contacts on 

both sides are processed by the micro-controller in the tactile module. 
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Figure 5.5: The center of force 
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The method for calculating the center of force on the tactile sensor surface is as 

follows: First, the vertical and horizontal axes of the tactile sensor plane are 

determined. The array elements 1B , 2B , …, nB  show summation of the data in 

columns 1, 2, …, n. Similarly, the array elements 1C , 2C , …, mC  show summation of 

the data in rows 1, 2, …, m. The bottom left corner of the Figure when compared with 

the Cartesian coordinate system is the coordinate (0,0). From this coordinate, an 

upward direction corresponds to an increasing y-coordinate. Likewise, a rightward 

direction corresponds to an increasing x-coordinate.  
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The symbol )y,x(A  shows the data of the sensor element at the horizontal x-

coordinate and the vertical y-coordinate. The summation of data can be done by 

totaling the value of each tactile element in the respective column or row. Then the 

moment on the x-axis and y-axis is calculated. Finally, the center of force of both the 

horizontal and the vertical axes will be represented by x-bar and y-bar respectively, 

as represented in formulas 9, 10 and 11. 
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Slip Detection  
 
 For slip detection on the contact surface, frequencies of vibration must be 

determined by analyzing the tactile data. 

 

 Figure 5.6 graphically shows the sensor data of each tactile element at the 

time the robot grasps the ball while an external force is applied on it. The shape of 

the graph indicates that it is difficult to express this data by simple mathematical 

functions. The reason is that the graph consists of a convolution of various 

mathematical functions. As a consequence, the micro-controller is not able to identify 

the frequency of slip occurring between the tactile sensor surface and the object 

surface with complicated mathematics even when using information from all tactile 

elements in the array. Consequently, it is proposed that signals from only one tactile 

element be used for describing how frequency from the grasp data are measured, as 

shown in Figure 5.7. 

 

Figure 5.6: Ball Grasping 
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Figure 5.7: Algorithm to find cycle of signal 

 
 As discussed above, the signal cycle at each tactile element is not a pure 

sine-function, but a combination of various mathematical functions. Calculating the 

number of signal cycles is a simple procedure. Half a signal cycle is the period 

between a local maximum and the next local minimum. In Figure 5.7 above, there are 

three cycles. To calculate the local maximum or local minimum in a short duration of 

time, the threshold Δ, must be determined. These are the actual operations of the 

computer programs running on the micro-controller for control of tactile sensor 

operations. From figure 5.7, it can be seen that the micro-controller operates on only 

the signals from one sensor element. Both sides of the tactile surface consist of 64 

elements making 128 simultaneous micro-controller operations necessary. 
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Figure 5.8: Memory queue for the routine to find cycle 

 

 Calculation methods consuming low CPU time should be used. In addition, 

they should be suitable for the speed of the micro-controller that has to keep time for 

other tasks. As shown in Figure 5.8, data from the two sensor arrays are queued in 

micro-controller memory as two tables consisting of two sets of 64 rows and a history 

stack of 10 columns, each of which represents the operations of one contact side. 

The numbers 1 to 64 represent the data in the 64 tactile elements on each side of the 

tactile surface which are simultaneously stored in corresponding micro-controller 

memory. The duration of time (∆t) to keep the stored data will be programmed in the 

micro-controller. This is changeable when receiving commands from the BrainThread 

program in the PC2.  

 

 The time duration (∆t) during which the data is retained is determined by the 

program. As the data in each column are from different times, filling data into the 

tables requires a data pointer which gives the present time (t) indicating the most 

recent data. The data in the immediate left column are represented by the time at t-

∆t, and those in the next by the time at t-2∆t, respectively. The data is arranged as a 

circular queue which means when the data pointer points to a location above 10, the 

data pointer will be relocated to location number one.  
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Then the value in the first column will be more current than the value in the tenth 

column. Scanning (shown on dotted lines) is carried out from the oldest to the most 

recent of the 128 entries. 

  
5.3.2 Experiment Model 

 

Friction plays a central role in a variety of physical systems and thus has been 

a topic of focused research for more than 500 years. The fundamental experiments 

of Coulomb in 1785 have evolved into sophisticated surface and interface 

characterization techniques seen today. Paralleling these experimental efforts, 

friction models, both phenomenological and empirical, have emerged to provide 

predictive capabilities and design tools. Friction modeling is an important tool across 

a variety of engineering disciplines such as contact mechanics, system dynamics and 

controls. It can help describe and guide the algorithm for applying a tactile sensor in 

robot applications. The required degree of sophistication for friction models varies 

widely across application areas, depending on the nature of problems under 

investigation. Some of these problems, central to the present study, will be explored.  

 
Point Contact with Friction 
  

An understanding of the nature of physical contacts will aid in analyzing 

robotic prehension. When two objects come into contact, they will exert force on the 

contact point. The contact model of this study together with important variables will 

be described as follows. A contact coordinate frame is defined as an origin of strain, 

called a pressure weighted center, of the contact area. The z-axis is the axis parallel 

to the normal contact point n and normal forces are represented by nF . Contact 

friction forces perpendicular to the normal force are represented by tF . Contact 

friction forces on the x and y axes are represented by xF  and yF , respectively. The 

frictional moment is represented by zM . The contact point shared by two objects is 

called a point contact with friction. The tangential frictional force that does not result 

in movement can be explained by Coulomb’s model, in which case there is no 

frictional moment, i.e. 0=zM . 
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2222

nyx FFF μ≤+      (12) 

 

Deformation Contact with Friction 
 
 This case is more complicated in that the contact is not a point but an area 

whose dimensions are dynamically changing during the prehension process. 

Although the contact begins as a point, it rapidly conforms to the shape of the object 

[Ciocarlie et al. 2005]. Consequently, a new contact model must be developed. 

 

 Hertzian or uniform pressure methods can be used to find the frictional 

moment resulting from pressure distributions around a contact point. Although it is 

applicable only to certain types of problem, [Howe and Cutkosky 1989] demonstrate 

that the pressure distribution can be estimated by an ellipsoid model. The maximum 

tangential frictional force and the frictional moment are shown to be related. When 

the tangential frictional force increases, the frictional moment around the normal 

contact will reduce. When the frictional moment at the contact point is equal to zero, 

the friction force around the contact will be equal to the multiplication of friction 

coefficient and the normal force [Ciocarlie et al. 2005]. 

 

 From its basic shape principles, the ellipsoid model may be considered as a 

circular equation with the radius equal to nFyx ),(μ . Therefore, it can be represented 

by the equation: 

22
2

2
22 ),( n

z

z
yx Fyx

e
MFF μ≤++ ,                                                    (13) 

whereby the variable 2
ze  represents the eccentricity parameter that is related to the 

maximum zM  to the friction coefficient ),( yxμ  and the normal force nF . Thus, the 

equation for the maximum frictional moment value is nzz FyxeM ),()max( μ=  [Ciocarlie 

et al. 2005]. This equation can be applied in analyzing contact surface when the 

tangential frictional force is considered to be zero, and the variable 2
ze  thus changes 
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according to the characteristics of contact area such as shape, size, and pressure 

distribution [Ciocarlie et al. 2005]. 

 Considered in a differential form, the pressure at the contact area can be 

represented by the equation dAyxpdFn ),(= , where ),( yxp  is represented by the 

pressure distribution function, and dA  is represented by any small areas of ),( yx . 

Thus, the tangential frictional force vector at those contact points 

is dAyxpyxdFf ),(),(μ= , where ),( yxμ represents the coefficient of friction. If the 

direction of such frictional force is represented by ),( yxU , the subsection of the local 

frictional force vector can be represented by dAyxUyxpyxdFf ),(),(),(μ−= . Therefore, 

the total friction force can be calculated by integrating the previously described 

equations across the whole contact area: 

 

                               ∫−=⎥
⎦

⎤
⎢
⎣

⎡
= s

y

x
t dAyxUyxpyx

F
F

F ),(),(),(μ ,                                         (14) 

 

where S  stands for contact area. 

 

 The frictional moment is equal to the cross product of the vector R  (the vector 

from the contact area ( dA ) to the center of rotation, which may be called velocity 

vector) and the direction of the frictional force acting on the area. Thus, the total 

moment zM  can be calculated by integrating the following equation. 

 

                           ∫−=
s

z dAyxpyxyxxUyxRM ),(),()],(),([ μ                                      (15)  

 

As the velocity and vector R  are always on the same plane, the frictional moment will 

thus be normal to the area. 

 From these two equations, the size of force and moment corresponding with 

the movement at a contact area can be identified. 

 

 The known pressure distribution ),( yxp  and coefficient of friction ),( yxμ  can 

be used as parameters for finding solutions using optimization methods. However, 
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these can only be formulated without any guarantee of a unique solution. 

Furthermore, it is difficult to find the frictional forces in actual applications because of 

the wide variety of surface combinations and lubrication possibilities; the non-linear 

relationship between the contact pressure ),( yxp , the sliding speed, and the 

coefficient of friction; the effect of temperature rise due to frictional heating on the 

coefficient of friction. 

 

In classical friction, Amontons (1663-1705) rediscovered Leonardo da Vinci's 

two laws of friction: the frictional force is directly proportional to the normal load, and 

the size of object does not affect the friction [Bowden and Tabor 1950, 1974].  

 

In this study, however, the coefficient of friction ),( yxμ  is a function of the 

coordinate system, which is different from Amantons’ theory. The surface contact 

between two objects results in deformation, whose degree depends on the size of the 

applied force, i.e. the coefficient of friction ),( yxμ . The type of deformation can be 

classified into a temporary shape change and a permanent shape change. The 

temporary shape change is reversible on removal of the force, so that the object 

returns to its original shape. This type of deformation is called elastic deformation, 

which refers to a change in material shape at low strains which is recoverable after 

the strain is removed. It involves the stretching of atomic bonds without slip. On the 

other hand, permanent shape change occurs when there is breaking of a number of 

atomic bonds by the dislocations. This type of deformation is called plastic 

deformation. 

 

When the contact area is small, the frictional forces on the surface are high, 

expanding the contact area due to its deformability. If the local plastic pressure νσ is 

set as a constant, the area receiving the pressure iN  will be equal to
v

i
i

NA
σ

= . Thus, 

the total area receiving the pressure will be: 

 

σσσσ
NNNNAAAA

v

i

vv
iT =++=+++= ...... 21

21    (16) 
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where N  represents the vector sum of all the normal forces. For hard objects, the 

actual contact area will be proportional to the magnitude of the force.  

However, the situation becomes more complicated with less rigid, compliant 

viscoelastic surfaces such as the polymer foams found in tactile arrays. 

 

 However, in the case of contact with polymeric materials, deformation is 

viscoelastic and so the frictional forces cannot be calculated using the above 

formulas. In addition, the deformation does not only depend on the size of the normal 

force N  but also on its direction and length, which in turn depends on the shape of 

the object in contact. If the deformation and the degree of force are held constant, 

then the contact area can be represented by the formula βN , where 1
3
2

≤≤ β . As an 

illustration, for an elastic solid like rubber, 
3
2

=β  [Lincoln 1952], which is a general 

characteristic of most polymers. The effective coefficient of friction will reduce as the 

size of the exerted force increases. In other words, the compressive area, as shown 

in Figure 5.10c, has a lower coefficient of friction than the tensile area. 

 

Due to the viscoelastic properties of polymers, when a polymer is in contact 

with another surface for a period of time, the asperities start to creep under the 

normal load. This increases the actual area of contact, thereby increasing the 

frictional limit. This creep explains why there is a greater difference between static 

and dynamic coefficients of contact friction between polymeric materials than with 

contact between two rigid objects. 

 

Howell’s equation [Howell and Mazur 1953] of friction force can be 

reorganized as NKNF )( 1−= β , where )( 1−βKN  is supposed to be equal to the 

coefficient of friction. This equation shows the complexity of the relationship between 

the normal force and the coefficient of friction, which consists of two variables. The 

first variable is force. The second variable is hysteresis loss at the point of contact 
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resulting from the surface characteristics of polymeric materials such as roughness 

or strength of molecular bonds.  

The generation of roughness induced dynamic grasping at a deformable 

contact may be viewed most simply in the context of the model shown in Figure 5.9. 

The Maxwell model predicts that a material will act as if it were composed of an 

elastic spring in series with a dashpot. The Kelvin-Voight Model places the ideal 

spring in parallel with a dashpot. We introduce qualitative models to describe the 

behaviour of a typical polymer. The Kelvin-Voigt model gives retarded elastic 

behaviour, and represents a crosslinked polymer. The Maxwell model gives steady 

state creep, and would represent an uncrosslinked polymer. With the composition 

model as shown, it can describe both types of behaviour. The models are simple and 

suitable for experimental representation of any polymer over an extended period of 

time. 

 

 
Figure 5.9: Dynamic model [Petchartee and Monkman 2007a, 2008a] 

 

The smooth rider sits in contact with a rough surface moving at a constant 

velocity V .  The rider is connected to a frame through a suspension characterized by 

a spring stiffness ak , a damping constant ac  and a degree of static friction ),( yxμ .  

The normal contact stiffness sk and any associated damping sc are lumped between 

the mass and the moving surface. The normal stiffness, linearized about the mean 

rider position, can be computed from Hertzian theory. 
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The normal motion of a rough surface when the rider moves along the 

direction V  depends on an excitation )(tzie  and the object mass, resulting from the 

roughness of the surface, the deformation of the normal contact point and the relative 

velocity of the rider, xV − . Normal motion is governed by the differential equation: 

 

0)()( =−+−+ iesies zzkzzczm &&&&                                       (17) 

 

Newton’s 2nd law of motion states that mass multiplied by acceleration is equal 

to force. The zcs &−  term represents shock forces resulting from velocity and the zks−  

term is spring force. If the frictional coefficient is constant throughout the rider motion, 

the normal force will have a vibration characteristic, which can be estimated by 

multiplying the frictional coefficient with the normal load resulting from the object 

weight and gravity. However, in reality the situation is often more complicated. 

 

 In this experiment, the force exerted on the contact surface is assumed to 

result from the weight of the object, thus the normal motion force will be a function of 

the normal acceleration z&&  and object weight m , according to the equation: 

 

zmtF &&−=)(                                                   (18) 

 
If the frictional coefficient is held constant throughout the rider motion, the 

normal force will have a vibrational characteristic, which can be estimated by 

multiplying the frictional coefficient with the normal load resulting from the object 

weight and gravity. However, this is a simplified formula and real relationships can be 

more complicated. 

 

With regard to constant friction, the argument is that in order for friction to 

change, the real contact area, and thus the mean normal separation, of the surface 

must change [Ibrahim 1994]. Efforts to verify this were made by [Godfrey 1967] who 

demonstrated a reduction in friction due to normal vibration. With the measured 

frictional shear force being a function of real contact area, an apparent reduction in 

friction in the presence of normal vibrations can be expected. The idea was that 
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normal vibrations could influence the mean surface separation and hence the real 

area of contact.  

The two models in Figure 5.9 can be applied to explain the operation of robot 

gripper fingers covered by such tactile sensors, as shown in Figure 5.10. 

 

 
Figure 5.10: (a), (b) Object prehension,  

(c), (d) area of contact deformation and pressure distribution. 

 

From Figure 5.10, (a) side and (b) plan views of the prehension operation can 

be seen. Figure 5.10c shows the maximum deformation of the tactile sensor surface 

when the object is normal to the motion of the gripper jaws. Both compression and 

elongation strains are apparent and shown as internal pressure distributions in Figure 

5.10 d. 

 

Also shown in this picture is the direction of object movement V . The 

coordinate system ),( yx  in Figure 5.10 is consistent with that in figure 5.9. When this 

model is applied, equation 17 is no longer zero as shown in expression 19: 

 

                                   )()()( tFzzkzzczm Niesies =−+−+ &&&&      (19) 

 

 The normal and frictional force at the contact area are each composed of 

average components, F  and GM  respectively and fluctuating components )(tFN  

and )(tFG . GM  is the object weight and F  the prehension force. )(tFN  is the 

fluctuating force normal to the tactile surface while )(tFG  is the fluctuating friction 
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force. The average kinetic coefficient of friction is usually measured as
G

k M
F

=μ , but 

the actual friction, occurring during oscillation is dynamic and denoted by ),( yxμ . The 

fluctuating part of the frictional force becomes )(),()( tFyxtF GN μ= . ),( yxμ  will change 

according the object surface: the middle part of Figure 5.10c  results from an area 

with a high pressure, as described in the coefficient of friction for polymeric materials. 

The equation of the object surface will be estimated by the parabolic cylinder 

equation 022 =− pzy . 

From this relation, the instantaneous coefficient of friction becomes 

))(/())(( tFMtFF GGNi ++=μ . Tangential oscillations are governed by equations 20: 

 

                                              )(tFxkxcxm Gaa =++ &&&                                           (20) 

 

whereby ak is the tactile surface hardness, defined as the stress/strain ratio 
ε
σ  

and ac is the damping constant; 

 
 
Mathematical proof of experimental results 
 

Pre-sliding refers to the movement of an object that occurs when the relative 

displacement between two points on contacting surfaces is microscopic. There are 

also points of unbroken contact between the two contacting surfaces resulting in 

displacement hysteresis which denotes frictional behaviour. Above the force 

threshold, the system will be critically stable. Displacement will not remain constant 

for a constant applied force: the object will suddenly accelerate; all contact points are 

broken, and slidingtakes place. Sliding refers to the movement of an object that 

occurs when the relative displacement is macroscopic. This phenomenon is 

associated with the stick-slip behaviour (sometimes called “sticktion”). This is the 

term first used by Bowden and Tabor [Bowden and Tabor 1964], when describing the 

relative motion of two surfaces in contact. They noted that the motion is governed by 
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a kinematic friction law while the surfaces are "slipping" and by a static law when 

there is no relative motion, "sticking". 

 

From a mathematical point of view, understanding pre-sliding friction is 

important for high precision position control applications. The friction force usually 

relates to the resistance to motion during sliding. It usually has its maximum value at 

the commencement of motion (static friction) and then decreases with increasing 

relative velocity (dynamic or kinetic friction).  

 

To develop a friction law that is fairly well suitable for modelling self-excited 

vibrations, it is thus necessary to review static and kinematic models and bring them 

to a point where synthesis is possible. In the "stick" phase, the applied tangential 

force tF  is exactly balanced by the friction force F . That is, the greater the applied 

force, the greater the force due to static friction becomes. However, there is a limiting 

value which is given by: 

mgFFT μ=≤ max .       (21) 

 

It is only when the applied force exceeds this value that slippage can take place. 

 

To simplify the analysis as much as possible, but to retain the essential 

features to be investigated, the vibration considered at a contact point is a finite-cubic 

block attached to a rigid wall by a simple spring and dashpot. The system is 

controlled by the frictional forces between the finite-cubic block and the moving belt 

upon which it is resting. This results in a simple one-degree-of-freedom structure with 

a non-linear excitation term. A similar analysis including a many-degrees-of-freedom 

model for the wheel vibration, yet using only simple models for the friction, has been 

performed by Heckl and Abrahams [Heckl and Abrahams, 1996]. The governing 

second order equation for this system is 

 

),( xxFsxxrxm &&&&&& =++       (22) 
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where m  is the mass of the finite-cubic block, s  is the spring constant, and r  is the 

damping coefficient. The friction force is given by ),( xxF &&& , although it may be more 

natural to think of it as varying with time.  
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First Case: Grasp-Optimize-Replace 
 

The governing equations for the contact surface, obtained by summing forces 

on the rider mass are 

 

)()()(
)()()(

tFzzkzzczm
tFxxkxxcxm

Niesies

Gieaiea

=−+−+
=−+−+

&&&&

&&&&
          (23) 

)(),()( tFyxtF NG μ=  

 
)(tFN  is the fluctuating force normal to the tactile surface while )(tFG  is the 

fluctuating friction force. [Anand and Soom 1984] equates )(tFN  to )(tFG  using the 

reciprocal of ),( yxμ  as shown in (24). It is important to note that the deformation has 

a z  component because some material passes underneath the contact which means 

that sliding speed in x  and stainrate z& , normal to the surface, are directly coupled 

[Vellinga and Hendrinks 2001]. 

 

))()((1)()( ieaiea
D

iesies xxkxxcxmzzkzzczm −+−+=−+−+ &&&&&&&&
μ

  (24) 

 
When one of the contact points slips, the relation between displacement and time will 

be approximated to a linear function; i.e. [Howe and Cutkosky 1989].  

 

 
Figure 5.11: Slip displacement functions. 
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In linear cases as mention by [Howe and Cutkosky 1989], the slip displacement can 

be described as: 

 

Htx = ,      (25) 

 

where H is slope of figure 5.11. 

 

Substituting x  in equation (25) into the right hand side of equation (24) gives: 

)(
),(

1)()( HtkHc
yx

zzkzzczm aaiesies +=−+−+
μ

&&&& . 

The deformation surface between the object and tactile surfaces can be presented by 

 

022 =− pzy ,   

and from Howell’s definition [Howell and Mazur 1953]  1),( −= βμ KNyx , with 
3
2

=β  

and 1=K . 

Then, the minimized form is 

 

    )()()( 3/2 HtkHcyzzkzzczm aaiesies +=−+−+ &&&& , and 

BtAzzkzzczm iesies +=−+−+ )()( &&&& ,    (26) 

 

where HcyA a
3/2=  and HkyB a

3/2= . 

 

The solution to the differential equation 0=++ zzz &&&  will be in the form: 

)()()( tztztz pc +=  

)
2
3sin()

2
3cos()( 2

2
2

1 teCteCtz
tt

c

−−
+=  

dt
zzW
tgzzdt

zzW
tgzztz p ∫+∫−=

),(
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)()(

21

1
2

21

2
1        

where )
2
3cos(2

11 teCz
t

−
=  , )

2
3sin(2

22 teCz
t

−
= , BtAtg +=)(  . 
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The dominator, ),( 21 zzW , is called the Wronskian parameter [Arterburn 1984] denoted 

as 

)()(
)()(

),(
21

21
21 tztz

tztz
zzW

&&
=  .       

Following substitution, ),( 21 zzW  equals 2
212

3 t

eCC
−

.  

Solving the integral equation gives the solution of )(tz p  which becomes 

3
2

3
2

)1()( HyktHyCtz aap +−= . 

In the case of a nonlinear or polynomial function, such as: dtbt ceaex += or 

pbtatx nn +++= − ...1  then nevertheless the model yields a single frequency solution. 

Then, the completed solution to the differential equation is: 

 

3
2

3
2

2
2

2
1 )1()

2
3sin()

2
3cos()( HyktHycteCteCtz aa

tt

+−++=
−−

.   (27) 

 

The slip on some contact points (local slip) will appear before total slip occurs. 

This slip can be detected by checking the oscillation frequency (fluctuation signal) 

and is identified as a pre-slip condition for the whole object. In the experiment of 

Grasp-Optimize-Replace, the object was held between the robot gripper fingerss. 

The robot would then decrease the prehension force until it could detect slipping at 

some contact points which in turn would be indicative of complete slippage. The rule 

sets can be adapted by checking the oscillation frequency (fluctuation signal) in the 

tactile array. If there exist some tactile elements having the same frequency of 

vibration, then whole slippage can be recognized. 
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Second Case: Grape-Lift-Replace 

In the second experiment, the equation 022 =− pzy  or 
p

yz
2

2

=  would not be 

correct any more because there exists additional deformation of the contact surface 

when the robot tries to lift the object.  

 

[Dundurs and Comninou 1983] presented the solution for the shear 

tractions, )(xS  with dislocation distribution on an elastic material. He introduced 

geometry of the problem for elastic contact as depicted in Figure 5.12. The two 

components of force, shear force- )(tP  and normal force- )(tQ , can vary 

independently and introduced as shear traction. The contact between objects is 

separated into three zones corresponding to point locations along the x -axis. He 

described the shear traction based on the locations of points in the slip zone ( a ) and 

stick zone (b ) when they are dislocated. 

 

 

Figure 5.12: Geometry of the problem [Dundurs and Comninou 1983] 

 

Point locations a  and b  along the x -axis at initial distributions will be moved 

to location 1a  and 1b  when variation of )(tP  and )(tQ  along the x -axis occurs. Then 

shear traction along the x -axis will be a function of x . By defining a set of regime 

(rules), Dundurs presented the existence of shear traction fluctuations as shown in 

Figure 5.13. 
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Figure 5.13: Distributions of shear tractions for loading from (P1, Q1): (A)-Initial 

distribution; (B)-regime I; (C)-regime II; (D)-regime III with k > 0; (E)-regime III with k 

< 0 [Dundurs and Comninou 1983]. 

 

From the conclusions made by Dundurs, this means there exists an extra term 

varying with time in the equations pertaining to surface deformation, i.e. )sin(at . Then 

the equation of surface deformation will be )sin(
2

2

at
p

yz += . 

With Howell’s definition [Howell and Mazur 1953], the friction coefficient will 

be 3
12

))sin(
2

(),(
−

+= at
p

yKyxμ  or 3
1

)sin(),(
−

+= atDCyxμ , where 
p

yKC
2

2
3−=  and 

3−= KD . 
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Equation (24) will be )()sin()()( 3
1

HtkHcatDCzzkzzczm aaiesies ++=−+−+ &&&& , and 

)())sin(()( 3
1

HtkHcatDCtg aa ++= . 

 

The same method can be used to find the solution to the differential equations, but 

)(tz p  will be different. The Wronskian’s method [Arterburn 1984] denoted as 
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   (28) 

It may not be necessary to find the integral solution because somehow the 

solution, )(tz p , will always contain the term “ )sin(at ”. That means in this case, there is 

more than one of oscillation frequency (different numbers of fluctuation cycles) in the 

tactile array. One frequency comes from the solution of )(tzc , another one comes 

from the solution of )(tz p . 

 

 In this experiment, the rule sets can be expressed: if there are more tactile 

elements that have different frequencies of oscillation (different numbers of 

fluctuation cycles), then the commencement of pre-slip can be assumed. 

 

On the contact surface, there exists stress. A fluctuation in tactile element data 

is an interval of time during which a sequence of stresses is cyclically applied to the 

specimen at the contact point. The stress waves used in experiment are generally 

triangular, square, or sinusoidal, and the typical cycles of stress are reverse stresses, 

fluctuating stress, and irregular or random stress [Dieter 1981]. 
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5.3.3 Real Experiment  
5.3.3.1 Grasp-Lift-Replace Experiments 
  

 In this experiment, after the robot grippers successfully approach the object, 

the robot will use test lift the object using minimum prehension force. Then it will 

examine the information from the tactile sensors in at attempt to identify slip. If slip is 

detected the robot will place the object down and recommence object prehension 

with a larger force. It will repeat the process until at a certain force, lifting is possible 

without slip, upon which the robot will notify acoustically.  
 

 
Figure 5.14: Minimum prehension force determinate by increasing the applied force. 

 

Point B of Figure 5.14 is when the robot first senses slip. Force is then 

increased until the tactile data increases to point C. If slip frequency is not sensed, 

the robot will prolong that degree of force while examining the response.  
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At point D when the frequency at the tactile sensor surface meets the slip 

conditions, the robot will increase the force until the sensed tactile data reaches point 

E. The lower graph of Figure 5.14 exhibits the results of frequency response sensed 

from all 64 tactile elements. The final decision as to whether slip has occurred or not 

depends on analysis of the complete data. Points B, C, and D in Figure 5.14 are 

found to have slip, and the least possible force needed to lift the object shown by the 

tactile sensors is approximately 150 (dimensionless ADC data). 

 
5.3.3.2 Grasp-Optimize-Replace Experiments 
 

The experiment starts with the manual stage in which the object to be grasped 

is placed between the robot fingers. Then the robot commences gentle prehension of 

the object. As the gripper fingers close, the robot will analyze the information from the 

tactile sensors to determine the least force needed to retain the object and then notify 

acoustically when this force has been identified.  

 

The second experimental results are illustrated in the upper part of Figure 

5.15, which shows the basic control of the robot grippers, to whose fingers the tactile 

sensors are attached. At the outset, the robot will use a predetermined force to grasp 

the object. When the inner surface of the grippers make contact with the object and 

the tactile data are approximately 90 (dimensionless ADC data) at point A, the robot 

will decrease the prehension force, i.e. by incrementally increasing the distance 

between the fingers. The tactile data will gradually decrease to point B, upon which 

the frequency response will be sensed and follow the conditions described in the 

lower graph of Figure 5.15.  

 

The lower graph of Figure 5.15 exhibits the results of frequency response 

sensed from all 64 tactile elements. To reach a decision as to whether a slip 

condition has been reached or not requires another account as the sensed signals do 

not all result from slip (see the analysis in section 5.4). For instance, they may result 

from the nature of the material used to develop the surface of the tactile sensors 

(which is in this study foam). Many tactile arrays are made from polymeric materials 

and in many types of foam.  
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These have physical characteristic which differ enormously from those of rigid 

materials such as metals. Slow shape restoration results in unstable foam mass, 

causing the frequency response to fluctuate. Hence, the response does not result 

from slip, but from the characteristics of the tactile sensor surface material. 

 
Figure 5.15: Minimum prehension force determined by decreasing the applied force. 

 

From the behavior of the localized contacts between tactile sensor and object 

surfaces, the minimum force cannot be determined by a unidirectional increase or 

decrease in applied force. This means the same degree of force exerted at different 

times will result in different prehension stabilities. To exemplify, at a certain point in 

time the force at point E lies between that at point A and C and is adequate for object 
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prehension without slip. The force required to grip the object now must be equal to or 

greater than that at point E. 
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5.4 Analysis of result 
Slip detection during operation for Grasp-Lift-Replace experiments 
 

Active vibration techniques are used in this study to examine slip during 

robotic manipulation with no other equipment added. The slip signal is the frequency 

superimposed on the signal measured from the response to the force at the time of 

object manipulation. The superimposed signal is caused by the force on the object 

needed for horizontal motion along the surface of the tactile sensors. In other words, 

the normal force component to the surface of the tactile sensors produce a direct 

current signal, but the slip signal is in the form of an alternating signal. 

 
 Figure 5.16 Explanation of algorithm used to measure slip 
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The alternating currents will disperse in numerous tactile elements. When slip 

occurs, some of the elements will be considered. When the robot is gripping an 

object, the tactile sensor surface will retract in accordance with the shape of the 

prehended object. The tangential force component causing slip will affect only some 

elements under the surface in contact with the object. On commencement of 

movement, the object will cause signal fluctuation in these tactile elements. Analysis 

of slip actually requires a high-bandwidth and fast-response system. 

 

The alternating currents disperse throughout numerous tactile elements. 

When slip occurs, some of the elements give rise to signal changes. During 

prehension, the tactile sensor surface retracts in accordabce with the shape of the 

object. Slip causing tangential force components affects only certain tactile elements. 

To rapidly measure the slip signal during prehension the computer memory may be 

organized in stacks. The locations T1, T2,..,Tn hold information from tactile sensors in 

the form of x-bar (average x-axis coordinate of force) and y-bar (average y-axis 

coordinate of force), vibrating cell (position of x, y with signal presence), and vibration 

frequency (number of sensed vibrating waves). The subscript to T is the time of data 

collection -  the number with the highest value in the stack being the most recent one.   

 

To compare stack data index (pointers) called ‘index 1’ and ‘index 2’ are used 

to scan the data. Index 1 locates the starting point of the scan or the oldest stored 

data, whereas index 2 locates the finishing point of the scan or the data next to those 

located by index 1. The data located by index 1 is compared with those located by 

index 2. Index 2 values are continually compared with Index 1 figures and increased 

until the latest data is located. The location of index 1 is repeatedly scanned until 

index 2 locates the most recent data which means that the process is complete. 

 

From Figure 5.16, index called ‘index 1’ and ‘index 2’ will be used to scan the 

data in the memory stack. Index 1 will locate the starting location of the scan or the 

oldest data stored, whereas index 2 locates the finishing location of the scan or the 

data next to those located by index 1. The data located by index 1 will be compared 

with those located by index 2.  
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Index 2 figures will be continually compared with Index 1 figures and 

increased until the latest data located by it is shown in the memory stack. The 

location of index1 is repeatedly scanned until index 2 locates the oldest data which 

means that the process is complete.  

 

 There will be four conditions which if true indicate slip. The first one is unequal 

x-bar and y-bar coordinates determined by index 1 and 2. The second one is unequal 

vibrating cells determined by index 1 and index 2. The third one is the frequency of 

vibration determined by index 2 - which must be larger than index 1. The final 

condition is that the first three conditions are simultaneously true on any of the 

fingers. To check these slip conditions, two simultaneous sets of these procedures, 

each responsible for each side of the tactile sensors contacting the prehended 

object, will be conducted.  

 
Slip detection during operation for Grasp-Optimize-Replace experiments 
 

Parallel jaw robotic manipulators have been used in a variety of settings. To 

optimize their applications, controlling the force to avoid damage from slip and over-

force is very important. Various techniques compiled by [Dubey et al. 1997] have 

been employed. However, some of these are not applicable to real-time tasks, 

particularly when adjustments to an additional force need to be accounted for. For 

example, during robotic prehension, movement of the object into any direction 

depends on the weight of the object and the end-effector acceleration which causes 

additional external forces. Therefore, these two factors must be known. 

 

Surface curvature is also a factor in determining the minimum slipless 

prehension force. It significantly affects the prehension stability [Jenmalm et al. 

1997]. Moreover, different curvatures on each side of the object result in different 

force distributions on the gripper surfaces causing the slippage on the side with the 

lowest force distribution to occur first [Turrell et al. 2001]. Alternatively, should each 

side of the robot gripper fingers have the same of force distribution then the 

responsibility will be equally shared.  
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Hence, [Jones and Hunter 1992] suggest that the shear force element 

between the robot gripper and the object changes in accordance with the direction of 

the force from the object surface onto the surface of the robot gripper. 

 

From Figure 5.17, there are three conditions which successfully indicate 

slippage. The first one is different vibrating cells determined by index 1 and index 2. 

The second one is equal frequency of vibration determined by index 1 and index 2. 

The last condition is that the first two conditions must both be simultaneously true for 

both sides of gripper to conclude that slip occurs. To check these conditions, two sets 

of these procedures, each responsible for each side of the tactile sensors contacting 

the gripped object, have been done simultaneously. 

 

In conclusion, the measurement method to attain the least prehension force is 

similar to that used in measuring slip in order to find an appropriate degree of force. 

Slight differences are the measurement conditions which will be analyzed for both 

sides of the tactile sensors contacting the object. True conditions on both sides 

suggest that the present force is less than that required and more force should be 

exerted. A detailed explanation of this procedure has been presented here and the 

successful results can be used to confirm the proposed model. 

. 
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Figure 5.17: Explanation of algorithm using the least force in object 

manipulation. 
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5.5 Statistic Tested Results 
5.5.1 With dead weight 
A statistical experiment was designed in order to obtain appropriate results, 

which can be analyzed by using statistical methods, and to reach valid and objective 

conclusions. It is also important to properly indicate the precision with which each 

measurement is made. Variation of the measured values corresponds to the 

measurement precision, and accuracy of the measured values shall be expressed in 

terms of standard errors. The knowledge that any individual measurement made in 

the laboratory lacks perfect precision often leads to taking multiple measurements at 

some independent variable level. This group of values will cluster about the true 

value that we are trying to measure. The mean value of the data, the standard 

deviation, and the standard error are used to represent the overall distribution of the 

data. 

 

Experiments that cannot be reliably reproduced are generally not considered 

to provide useful scientific evidence. Alternatively, results that prove to be highly 

reproducible are typically given more credence by scientists. This is based on an 

intuitive application of the principle of induction, rather than on the application of the 

principles of falsifiability. 

 

When selecting the dependent response or variables, the experimenter must 

be certain that the response that will be measured actually provides useful 

information about the process under study. In designing the experiment, the average 

of the measured characteristic is usually the response variable; therefore, replicates 

should be made [Box et al. 1978]. 

 
In these experiments it was necessary to use metal balls to weight the 

grasped object in order to evaluate the minimum grasping force before the object 

was forcibly released from the robot gripper. Each metal ball weighed 3.5 gram and 

the experiments were repeated thirty times for both Grasp-Lift-Replace and Grasp-

Optimize-Replace and the number of balls recorded every time for statistical 

evaluation.  
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Figure 5.18: Statistical experiments 

 

In this case, the types of experiment are independent variables being 

manipulated, and the numbers of balls are dependent variables being recorded. For 

clarity, the data for the dependent variables (numbers of balls) were plotted on the 

scatter plot in different colours and symbols for two types of experiments. Notice that 

the numbers of balls recorded for each of the experiments. For Grasp-Lift-Replace 

and Grasp-Optimize-Replace experiments (shown in Figure 5.18 in blue and red 

respectively), the numbers of balls all hover around 3. On the other hand, at both 2 

and 4 balls, the values are spread over a larger range.  In fact, the means calculated 

for both experiments are close to each other, and the values approximately 

correspond to three balls showing that there is little difference in the numbers of balls 

resulting from both Gasp-Lift-Replace and Grasp-Optimize-Replace experiments.  
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To find the measurements uncertainties, the standard deviationσ , of the 

measured values must be calculated. Standard deviation is a measure of variation of 

at least thirty data points ),...,( 1 NXX  about an average value, x , and is typically 

called the uncertainty in a measurement. The average or mean value, x , of a set of 

thirty or more measurements is calculated as: 

∑
=

=
N

i
ix

N
x

1

1  

Once the mean value of the measurements is determined, it is helpful to define how 

much the individual measurements scatter around about the mean. The deviation, id , 

of any measurement, x  , from the mean is given by  

xXd ii −=  

Since the deviation may be either positive or negative, it is often more useful to use 

the mean deviation, or d  , to determine the uncertainty of the measurement. This is 

found by averaging the absolute deviations, xxd ii −= ; that is,  
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The standard deviationσ , (sometimes called the root-mean square) is given by  

∑
=

=
N

i
id

N 1

21σ  

Finally, the experimental result vE , can then be written as  

σ±= xEv  

where σ  gives the measure of the precision of the measurement. We use the value 

of the standard deviation to serve as a data error. In Figure 5.19, the vertical bars 

located before and after the mean value (indicated by the 68% range) are the minus-

one standard error and the plus-one standard error data ranges, respectively. 

 

The standard deviation under repeatability conditions is often used as a 

measure of precision, although it should be noted that "precision" is most often used 

qualitatively. Reproducibility is one of the main principles of scientific methods and 

refers to the ability of a test or experiment to be accurately reproduced or replicated. 
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The term is very closely related to the concept of testability and may require the test 

or experiment to be falsifiable. 

 
Figure 5.19: Standard deviation of experimental results 

 
It can be shown that there is a 68% likelihood that an individual measurement 

will fall within one standard deviation ( σ± ) of the true value. Furthermore, it can be 

shown that there also exists a 95% likelihood that an individual measurement will fall 

within two standard deviations ( σ2± ) of the true value. 

 

We can include additional information to indicate how closely the means are 

likely to reflect the true values. We can do this using standard errors - the 

commonest way to statistically describe uncertainty in measurements. Since what we 

are representing is the means in the graph, the standard error is an appropriate 

measure to be used to calculate errors. 
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Test Number Grasp-Lift-Replace Grasp-Optimize-Replace 
1 3 4 
2 3 3 
3 4 3 
4 2 2 
5 3 3 
6 4 4 
7 3 2 
8 2 2 
9 3 3 
10 4 4 
11 2 3 
12 4 2 
13 3 3 
14 2 4 
15 3 3 
16 4 4 
17 3 3 
18 4 2 
19 3 2 
20 2 4 
21 3 3 
22 3 2 
23 2 4 
24 3 3 
25 3 3 
26 2 2 
27 3 3 
28 4 4 
29 3 3 
30 2 3 

Mean 2.966 3 
Standard Error 0.128 0.133 

Standard Deviation 0.706 0.730 
Table 3: Experiment 1 Results 

 

The standard error is calculated by dividing the standard deviation by the 

square root of the number of measurements that make up the mean (often 

represented by N). In this case, 30 measurements were made. So, the standard 

deviation is divided by the square root of 30. By dividing the standard deviation by 

the square root of N, the standard error grows smaller as the number of 
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measurements (N) grows larger. This reflects the greater confidence in the mean 

value as more measurements are made. It can be stated that, based on 30 

measurements, the impact ball at Grasp-Lift-Replace is 2.96 +/- 0.128 balls and at 

Grasp-Lift-Replace is 3 +/- 0.133 balls.    

 

The +/- values are the standard errors and express a level of confidence that 

the mean values (which are 2.96 and 3) represent the true values of the balls. 
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 5.5.2 With acceleration sensor 
 

The GOR experiment (see 5.2) has been verified by the accelerometer chip to 

confirm the sensitivity of proposed algorithm. As shown in figure 5.20, the 

accelerometer is attached on the surface of a grasped object. Whenever the grasped 

object slipped or moved away from the gripper finger, the acceleration sensor would 

notify. The output vibrations produced by an acceleration sensor and the display 

were then recorded while the robot decreased its grasping force. Overall, the 

response of the system was adequate for the purpose of testing the effectiveness of 

proposed algorithm. The system is capable of logging the acceleration and it does 

this with a sample frequency of 200 Hz. The acceleration signal is also sampled with 

a frequency of 200 Hz. The acceleration sensor is shown in figure 5.20 where the 

accelerometer is the small chip on the printed circuit board. The acceleration sensor, 

SCA3000 chip, is a three-axis accelerometer consisting of a 3D-MEMS sensing 

element. The sensor offers acceleration information via the SPI interface, and the 

measurement resolution is 0.75 2/ smm . The measured response amplitude was flat 

within ± 2 2/ sm  across. There appeared to be severe mechanical vibrations or 

acceleration when the grasped object slipped from the finger gripper. 

 
Figure 5.20: The GOR experiment evaluated with the acceleration sensor 
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In observing ten trials of experimental results, it can be confirmed that 

proposed algorithm is faster and more sensitive than the delectability of the 

acceleration sensor. The ranges of the warning of a slip are three to six decreasing 

steps before the grasped objects begins slipping and falls down from the gripper 

finger. The robot will vocally warn “I found pre-slip signal” when it finds the pre-slip 

and then keeps decreasing the grasping force until the grasped object falls down. 

The impressive results are even when the robot are warning the pre-slip, acceleration 

sensor does not yet notify any vibrating status. Until the massive slips are happing, 

then the vibrating status can be captured by acceleration sensor. 

  

To verify the GLR experiment with the acceleration sensor, there exist 

additional steps in-between when the robot senses the pre-slip signal from its finger. 

As shown in flowchart of figure 20, the robot will decrease the grasping force while 

another monitor program is executing the read data from the acceleration sensor. 

The numbers of decreasing steps are statistically analyzed after ten identical 

experiments have been conducted.  

 

 
 

Figure 5.21: Flowchart of the GLR experiment evaluated with the acceleration sensor 
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In the GLR experiments, pre-slip detection will apply while the grasped objects 

are being lifted up. The grasped object will slip relatively to the gripper finger, but not 

to the earth, and hence two acceleration sensors are needed in this case. One 

accelerometer attached to the grasped object is used to indicate the acceleration of 

the grasped object relative to the earth. Another accelerometer is also attached to the 

tip of the robot finger, which indicates the acceleration of the robot finger relative to 

the earth as well. To notify the slip between the grasped object and the robot finger 

while lifting up the object, the transformation between two different frames of those 

sensor’s coordination are needed before the slip status can be found in their 

comparisons. 

 
Figure 5.22: The GLR experiments evaluated with the acceleration sensor 

 
The GLR experiment has been repeated ten times and yielded the same results as 

the GOR experiment. Every time the robot finds the pre-slip signal, it will verify that 

signal by decreasing the grasping force until the grasped object falls down. The 

interval of the decreasing steps is perfectly in range of three and six. 

 



 

 

139

 The experiments showed some of the limitations of the acceleration sensor to 

indicate the pre-slip in both experiments. It is for instance quite limit to integrate those 

acceleration sensors to the robot to get a measurement of pre-slips over time. When 

it comes to using an accelerometer for a real-time control, it is disturbing to see how 

many vibrations in the floor and the surroundings affecting the measurements of the 

accelerometer. It is also obvious from the experiments that much better equipment is 

needed to make a thorough examination of the tactile sensor. The tactile is capable 

of measuring near static acceleration which is interesting to investigate. A proposed 

method for calibrating the tactile data to the measured pre-slip is useful. 
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5.6 Conclusions 
 
 The fact that two fingers of the gripper enclose the prehended object, the 

combination of force and compliance provides a firm grasp. However, if the grasped 

objects are different in shape from the ones used in these experiments, the grasp 

with global minimum forces might not always be obtained. A single incident of 

prehension does not always provide global solutions for the all possible grasped 

points. The contact points, in turn, provided additional minor rules that resulted in 

global minimum forces. Placements of the grasped points on the object boundary 

may affect the prehension quality. The grasping forces depend on the selection of the 

contact points and grasping forces must be minimized in order to ensure stability 

without damage to the object. This criterion may be violated in a poor selection of 

contact points [Abu-Zitar and Al-Fahed Nuseirat 2001]. 

 
Optimal contact points and minimum forces must be considered together. A 

large amount of literature has been published regarding the problem of firm 

prehension of rigid bodies [Bicchi 1992, Montana 1992, Stavroulakis et al. 1996, Al-

Fahed Nuseirat et al. 1999]. The ultimate goal was to end up with minimum forces 

applied by the finger to the grasped object. Linear programming techniques as well 

as heuristic search methods were used in finding the best solutions [Liu 1999, Abu-

Zitar and Al-Fahed Nuseirat 2000]. Those techniques and methods consume much 

computation time and power, and their corresponding algorithms have only been 

simulated and have not been realized on real robot grippers.  

 

Most techniques available only focus on formulating a cost function and then 

minimizing this cost or energy function in order to satisfy some constraints. In 

contrast, the techniques proposed in this research use less computing power, even 

when applied to multiple-finger hands. 

 

A predictive model has been proposed which uses a basic method adapted for 

real application in grasp optimization. Prevention of premature release with minimum 

prehension force is addressed without measuring the coefficient of friction between 

object and robot gripper. Predictive models have been used to develop a set of rules 
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which predict the presliding based on fluctuations in tactile signal data. This 

predictive model represents a significant step forward in developing useful 

applications to which no known analytical or parametric models have been identified. 

 
The robot encountered some difficulties using its gripper at the time of the 

experiments. The robot-gripper did not always move linearly with the controlled 

commands. It could miss a control step while running the experiments. These were 

the effect of gripper’s threshold which will be concluded in Chapter 7, section 7.4. 

While the robot kept decreasing the grasped force, the friction on movements in the 

griper-finger also exerted effort on holding the objects. For example, with 302 grams 

or 105 grams objects, the grasped objects sometimes might be held with the zero 

grasped force applied by the gripper. This kind of situation depended on how much 

the contact areas were consumed between the gripper and grasped objects and 

orientations of the gripper were with respected to the earth.  

 

 Moreover, the experiments revealed that the weight of the grasped objects 

was related with the decision time loop--the times spent for the robot to read and to 

process the tactile data until it was able to determine the slip. At 608 grams, the 

grasped object sometimes had fell down before the robot announced the slip-state. 

This was the problem of communication bottleneck in the test system. There existed 

much time delay in the test system. For example, after the previous step of 

decreasing the grasped force, the tactile controller had to re-scan the tactile arrays 

and wait for the polling messages in the CANBUS from C40 networks which were 

commanded from PC1.  

 Then, whenever PC1 received the data, it would store that data in the 

database inside PC2. There were still negotiation messages between both PCs. PC2 

would decide the grasping states by processing the tactile data and tactile events 

inside the database. Referring to section 3.1 of Chapter 3, the hardware architectures 

of the test system did not encourage a real-time system.  However, with the 480 

grams object, it seemed to be perfectly avoiding both problems. 
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CHAPTER SIX 
Experiments and Applications for Touch identification 

 
6.1 Introduction to touch identification 

 

The 3-D recognition process is an integral part of computer and robot vision 

systems and still presents itself as a topic of high interest in both fields. The 

importance of this type of registration system comes generally from the fact that it is 

found in different applications including surface matching in [Zhang 1994], 3-D 

medical imaging in [Thirion 1994], pose estimation in [Lavallee and Szeliski 1995], 

object recognition in [Dorai and Jain 1997], [Chua and Jarvis 1996], [Johnson and 

Helbert 1998] and data fusion in [Bergevin et al. 1995], [Soucy and Laurendeau 

1998]. Tactile sensing systems of robot for object recognition should essentially 

emulate biological haptic perception mechanisms ([Lederman et al. 1992], [Tzafestas 

2003]).  

A number of approaches have been put forward to process the output of 

tactile sensors in order to yield useful characterizations of contact surfaces for 

applications such as characterizing the surface textures for different manipulations as 

well as object identification. For example, the output of a single-point sensor sliding 

over different textures has been used to identify surfaces based on the frequency 

power spectrum of the sensor response [Baglio et al. 2002]. 

 

Pattern recognition, a kind of object recognition, is a more complicated task in 

tactile perception than in visual perception. This is because there are a number of 

additional factors which affect the quality of tactile images such as complex strain-

stress relationships in elastic overlays, amount of force, and contact angle during the 

tactile perception process. Due to these limitations, tactile sensing is used mostly as 

an aid to vision only in object recognition applications (e.g. [Allen 1988]). 

 

 The experiment in this study proposes a surface recognition algorithm that 

determines the types of contact surface by fusing information collected by the tactile 

sensor system. Due to the relatively long slow tactile sensor time constants, a simple 

and speedy method of shape representation, where accumulated data can be 
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analysed and used to predict the shape and identity, is required. This algorithm can 

recognize and localize 3-D objects using a 2-fingered robot hand, on which tactile 

sensors are mounted. The sensors are capable of measuring the position and normal 

vector of the test object at the contact point.   

 
6.2 Experimental Overview for touch identification 
 

The shape recognition by tactile sensing arises when we try to manipulate an 

object with the aid of a robotic hand [Famularo and Muraca 1995]. Many papers have 

been written about this problem but we can split them into three classes: the first one 

describes the contact problem between an object and the tactile sensor in terms of 

relations obtained with the aid of linear elasticity [Fearing and Hollerbach 1985, 

Hayes, et al. 1972, Zhang and Chen 2000, Iwata and Sugano 2003]; the second one 

discusses implementation rules and different types of transducers [Nicholls and Lee 

1989, Maekawa et al. 1993, Shinoda and Ando 1994, Nagata et al. 1999, Yuji and 

Shida 2002]; the third one considers and examines inversion techniques in detail 

[Pati et al. 1988, Fearing et al. 1986, Worth and Spencer 1992, Kinoshita et al. 2001]. 

 

Hitherto, there have also existed techniques for contact identification based a 

tactile sensing. For examples, [Ibrayev and Jai 2004, 2005] proposed the recognition 

of low-degree polynomial curves based on minimal tactile data. In their application, 

Euclidean differential and semi-differential invariants were derived for quadratic and 

special cubic curves. Those invariants, independent of translation and rotation, were 

evaluated over the differential geometry at up to three points on a curve. The contact 

locations were then found on the curve, thereby localizing them to a specific contact 

sensor. Unfortunately, no implementation methods or experiment results were 

presented. 

 

[Kim et al. 2005] classified surface textures by using a polymer-based 

microelectromechanical systems (MEMS) tactile sensor array using a statistical 

approach. Five simple textures were distinguished using a 4 × 4 strain gauge sensor 

array serving as a transduction element. Five of the texture arrays were diagonal, 

enlarged diagonal, check pattern, four corner pixels, and perimeter pixels only. 
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Texture classification was achieved by using a maximum likelihood decision rule that 

optimally classified patterns in the presence of random noise and noise produced by 

texture variation. Their final results were analyzed by using cross validation to yield 

an acceptable overall performance of 68% correct classification. Their research 

strategies can be distinguished from those presented this dissertation: 1) sample 

textures are bound to only 4 x 4 tactile elements, 2) the experiments cannot cope 

with neither rotation nor translation invariants. 

 

There exist some research works on tactile shape recognition based on planar 

shapes using neural networks. The neural network for classification generally 

requires that planar shapes be presented in a fixed position, orientation and 

dimension. To avoid this problem, a pre-processing stage is required to normalise the 

shape of the input data after all of prehended object data are obtained. Examples 

using the radius vector method of shape representation have shown good results 

with neural network classifiers [Lynch and Rayner 1989, Ng 1989, Yan 1990]. 

Another example [Ng et al. 1991] uses angles and lengths of planar polygons to 

represent the differences among the grasped objects. The objects data is acquired 

by robotic tactile sensors, and a neural network is then used to recognise the shape. 

Ng’s method is straight-forward and seems to work well on simple shapes. It is also 

rotation, translation, and scale invariant, but he uses only fixed-size shapes 

presented in his experiments. [Ohka et al. 2006] presented research work in tactile 

sensing using both a neural network model based on human tactile sensation and a 

tactile-oriented associative memory model to enable a robot to recognize object 

contours. In their model, the direction vectors belonging to segments of the object 

contour were quantized by the chain-symbolizing method and stored in a memory 

matrix that accumulates matrix-products between the vector and its transposition. In 

the recalling process, complete vectors could be remembered even if some input 

vector elements had disappeared. In their experiments, a tactile sensor was installed 

into a robotic manipulator. Introduced into the experiments were five types of contour: 

a circle, a square, a triangle, a star, and a hexagon. After the robot had memorized a 

complete contour, it could then recognize the same contour by touching some part of 

it. In using planar shapes for shape recognition, the apparent problem is how to 

distinguish between objects having the same planar shape but differences in surface 
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curvature. The neural network is unable to recognise partial angle and length 

sequences of planar shapes. 

 

In this study, an algorithm that can discriminate between types of contact 

surfaces and recognize objects at the contact stage is proposed. A tactile sensor 

array is used because it provides several types of meaningful information unavailable 

or difficult to acquire by a single sensor. Tactile arrays can recognize surface types 

on contact, making it possible for a tactile system to recognize translation, rotation, 

and scaling an object independently. The type of contact surfaces obtained by the 

tactile system will be determined from the shape of the object image which can then 

be characterized using the mathematical properties of quadric surface (see details in 

6.3.2).  

 

To identify the properties of the quadric surface, the eigenvalues of the contact 

surface will be calculated. The term eigen is a German word first used by Hilbert in 

1904. It can be translated as ‘own’, ‘characteristic’ or ‘individual’, emphasizing the 

importance of eigenvalues in defining the unique nature of a specific transformation. 

Eigenvalue problems occur in stability problems, dynamics and vibrations, and 

several other application areas. They appear whenever a problem has a valid 

solution for only certain specific values. Such special values are called characteristic 

values or eigenvalues. Specifically in this study, the eigenvalue represents the matrix 

properties of the quadric surface of object prototypes calculable from the eigenvalue 

trajectory of the object types. The types of contact surface can be classified, for 

instance, into: elliptic, plane, cylindrical and spherical surfaces.  

 

However, the proposed method does not consider the variation of the image of 

the contact surface obtained by the tactile sensor on the imposed force, which is the 

same problem as that in the study of IAN and James; [IAN and James 1984]. IAN 

and James experimented on surface recognition by characterizing the lengths of long 

and short axes, using the ratio of the long and short axes of the image that could be 

calculated by finding its eigenvector. The problem for his recognition method was an 

unstable recognition rate. Following the research of IAN and James, [Dong-Hwan 
and Hahn 1996] proposed the fuzzy data fusion algorithm that was less influenced by 
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the variation of contact surface area on the magnitude of the imposed force than that 

of IAN and James. However, Dong-Hwan and Hahn developed only formulas and 

theories with no experimental results. 

 

 By the method proposed in this study, when an object is pressed with either 

increasing or decreasing force, the trajectory of eigenvalues will not vary according to 

the position of contact, rotation or translation. Therefore, other criteria as well as the 

ratio of axes for the identification of the types of contact surfaces need not be 

considered, which is different from the experiments of IAN, James, Dong-Hwan and 

Hahn. 

 

 Four shapes of object have been used to test the robot’s ability in recognizing 

object types. The robot makes contact with these objects, and the data from the 

tactile sensor is stored and analyzed. Later, one of the four objects is grasped again 

but with different magnitudes of force and in different positions and rotations. The 

ability to distinguish between object types is calculated. To determine the contact 

similarity between an object and the original object, their shape must be three 

dimensionally compared. However, in this study, surface shape comparison will be 

conducted using the parameters of surface shapes instead of the actual surface 

shapes. This will be explained further in 6.3.3. 

 

 

 Figure 6.1: Quadric Surface in the experiments of Object Identifications. 
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The tested objects are an oval object with two major axes of 14 mm and 11.7 mm, a 

cylindrical object with 6.0 mm in diameter and 20 mm in length, a cube with 

dimensions 10 x 15.9 x 10 mm and a ball with a diameter of 9.5 mm respectively.  
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6.3 Experimental Arrangement for touch identification 
6.3.1 Process 

 

 Regarding the algorithm identifying the similarity or difference between contact 

surfaces, this experiment uses mathematical calculation of 3-D shapes for which 

indices are established to enable model matching. The basic principles in 

constructing the 3-D shapes are fast calculation, low data storage requirement, ease 

of indexing, and independence from transformations made on the shapes such as 

translation, rotation, and scaling. 

 

 Previous research on 3-D model matching can be classified according to their 

approach into three types. The first types are statistically based methods where an 

object is presented in the form of a feature vector in multidimensional space. The 

vector in the space will be coded to contain the object shape. For example, [Ankerst 

et al. 1999] proposed a 3-D image recognition system using a histogram that divides 

an object into its components around the model’s centroid. [Osada et al. 2002] used 

probability distributions of geometric properties for their image modeling method, in 

which points of the object surface were randomly selected for calculation. However, 

statistically based methods do not yield adequately fine object discrimination. 

 

 The second type of approach is the topology-based method. [Hilaga et al. 

2001] compared the similarity of 3-D shapes by constructing multiresolutional graphs 

(MRGs) having different coding structures according to each shape resolution. The 

MRG method performs continuous functions on the 3-D shapes, particularly those 

involving geometric distance of a curved shape. However, this technique is unable to 

actually discriminate between types of object. 

 

 The final type of approach is a geometry-based method. For example, 

[Novotni and Klein 2001] proposed a mathematical calculation drawing on differences 

in the volumes of the original object surfaces and of a sequence of offset hulls 

belonging to the 3-D images to be tested. [Tangelder and Veltkamp 2002] 

reconstructed a 3-D shape with a weighted point set. Identification of the similarity 

between two objects would be done by weighted transportation. [Funkhouser et al. 
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2003] developed an algorithm that matched 3-D shapes using spherical harmonics in 

recognizing object similarities or differences. Kazhdan [Kazhdan et al. 2003] used the 

method called reflective symmetry descriptor in measuring the symmetry of various 

model shapes on every plane through the model’s center of mass. The geometry-

based method mainly takes into account geometric shapes, and the shape models 

are described by mathematical functions. However, it is inconvenient to search for a 

specific model for the object being compared in case there are several models. In 

addition, the method has only limited abilities in object classification. 
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6.3.2 Experimental Model 
 

The 3-D shape classification method used in this experiment makes use of 3-

D object with geometric features independent of the resolution of the tactile sensor. 

Nonetheless, the method must prove that it has good surface classification 

properties. In the experiments, the eigenvalue based method is found to be stable as 

a result of single eigenvalues and sensitivity to outliers. The proved results will be 

discussed in 6.4. Here, the way in which 3-D surface from the tactile data can be 

presented is discussed.   

 

The shape representation designed for this study is both rotation and 

translation invariant. The quadric surface seems to be a simple, yet adequate, 

method for the proposed tactile sensor as the dimension of the tactile array (16x4) 

cannot represent a complex object surface. The basic way of creating quadric 

surfaces uses least squares interpolation. Considering a general 3-D surface 

expressed in the contact point as 

   0),,( =zyxf                       (29) 

 

the general surface function can be approximated locally at the contact point as the 

following second order polynomial equation [Bangert and Prautzsch 1999]: 

 

0222222222 =+++++++++ kjzhygxfxzeyzdxyczbyax     (30) 

 

Equation (30) can be rewritten in a quadratic form of matrix equation: 
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The properties of surfaces represented by Q  can be easily translated, rotated 

and scaled. Given a 4 x 4 transformation matrix M  of the form developed, the 

transformed quadric surface [Dai and Newman 1998] *Q  is: 

 

      1T1* M.Q.)M(Q −−=                          (32) 

 

 The general transformation matrices ( M ) are of the Denavit-Hartenberg type 

combining both translation and rotation. Examples of the transformation matrices 

M that contain translation, rotation and scale are shown below. 
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Basic operations on the surface matrix 

 
Some of the operations required for later adaptation are demonstrated below. 

(Further details on their proofs can be found in [Beyer 1987], [Hilbert and Cohn-

Vossen 1999] and [Mollin 1995].  

1. Addition and/or subtraction: 

The surface Q  as a result of the addition and/or subtraction of two 

surfaces 1Q  and 2Q  is 21 QQQ ±= . 

This property implies that a complicated surface can be represented as 

the sum or difference of some simple primitive surfaces. 

2. Frame transformation: 
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The surface Q  as a result of the coordinate transformation from the 

primitive surface 0Q  can be represented as )()( 1
0

1 −−= TQTQ T . 

This transformation will preserve all the properties and operations of 

surface matrix. 

3. Surface normal: 

The surface normal )n,n,n(n zyx= at the point )z,y,x(x 000=  is given  

by )z,y,x(X*Q*2N 000= . 

 

3D Surface Interpolation 
 
The least-square problem arises when the polynomial is being fit [Dai and Newman 

1998] 

0kjz2hy2gx2fxz2eyz2dxy2czbyax 222 =+++++++++  

 

at some data points )}y,x{( ii , i = 1, . . . , m , where m  is greater than or equal to 

the number of unknown variables.  A further generalization of the linear least-square 

problem is to take a linear combination of basic functions 

)}y,x(f),...,y,x(f),y,x(f{ mm2211 . Firstly, thec , e  and f  variables of Q  are set 

to zero to get an explicit form as shown below: 

 

                    khy2gx2dxy2byax)y,x(fz 22 +++++==                           (33) 

 

z  or )y,x(f represents the tactile data of the tactile elements at the location )y,x( . 

The problem of fitting this polynomial can be written as: 
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which denotes a system of linear equations. Also, recall that the x ,  y  and z  are 

given and that the a ,b ,d , g , h  and k  are the unknowns. 

In the matrix form ZAc ≈ , A  is a square matrix, the unknown c  is a column 

vector, and Z  is also a column vector: 
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The residual vector is: Aczr −= . 

 
The least-squares problem becomes: 

 

                                                               2Aczmin − .                                                (34) 

 

A solution of the least-squares problem is the solution c  to the linear system: 

 

zAAcA TT = , 

 

that is known as a normal equation. The solution of the least-squares problem is 

obtained by analyzing the singular value decomposition [Akritas and Kotsireas 2002] 

of A  as shown below. As SVUA T= and: 

 
22T2T2 SVcUz)SVcUz(USVcUzAcz −=−=−=−  

 

If Uz is substituted by d and Vc  by r , then: 
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where .  denotes the determinant of the matrix. 

To minimize this problem, each term in this summation will be equated to zero. Then, 

the coefficients of the system equation are obtained by iii dr δ/=  respectively. The 

solution to the least-squares problem is then obtained from rVc T= . 

 

At this point, we do not aim to prove that the smallest eigenvalue can facilitate 

contact identification, but the proof can be obtained elsewhere [Petchartee and 

Monkman 2007b, 2007c, 2008b]. The conclusions of those proofs confirm that the 

smallest eigenvalue of the Quadric parameter is identical with the Quadric parameter 

itself. This means the smallest eigenvalue of the Quadric parameter yields identical 

characteristic to the Quadric shape. Consequently, it is reasonable to use the 

smallest eigenvalue to classify the contact surfaces. Every symmetric matrix has this 

property, including its covariance which is also a symmetrical matrix. In order to 

achieve better noise tolerance in real applications, using the covariance of Q  in 

finding the smallest eigenvalue is reasonable. Everson and Roberts [Everson and 

Roberts 2000] also demonstrate a proof for the covariance matrix in terms of the 

effect of noise arising in all eigenvalues by variance 2σ , where σ  is the standard 

deviation of random noise. Moreover, the variation in eigenvalues will coincide 

with +− +≤≤+ bb nnn
22 σλωσλ , where TNyyb /,)1( 2 =±=±  and N  is the dimension 

of the vector space for a number of samples T . 
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6.3.3 Real Experimental  
 
Fitting Accuracy 
 

We have been experimenting with quadric surfaces with an arbitrary set of 

data points. The fitting accuracy evaluation is to use a simple root-mean-squared 

(RMS) error function where each error value is the distance from a tactile data point 

to the point on the interpolation surface.  

 

There may be many surfaces that fit the data with little RMS error, but some 

will have lower RMS values than others. For more noisy data, there may be a trade-

off between the quality of the fitting and smoothness. We have sets of data points 

forming a surface in 3D-space, and we wish to fit a quadratic form to this surface. 

Specifically, we are trying to fit the surface 

   

khy2gx2dxy2byax)y,x(fz 22 +++++== , 

 
where ),,( zyx  are the coordinates of the data points in the coordinate frame. The z  

direction of a quadric surface is a function of second order equations in x  and y  

which together represent a three dimensional space. We can use a simple mean 

square error to measure the fitting accuracy based on the distance between the 

surface and data points of the tactile element along the ),( yx  coordinate. 

 

To account for the spatial error under the surface, an RMS error was 

calculated for the average square of different errors with an interpolation period: 
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where I  is the total number of grid points in the x  direction; i  is the index of those 

points; J  is the total number of points in the y  direction; j  is the index of those 
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points; and N  is the total number of grid points. Also, ),( jizo  is the data of tactile 

element at location ),( ji , and ),( jizr  is the value of the interpolation on a surface at 

location ),( ji . 

 
The bar graphs in figure 6.2 are grouped into four different types of object 

shapes. The random noise was simulated using the Matlab ‘randn’ function. It 

generates normally distributed random numbers, whose values are in the range [1, 

20] mixing with the tactile data sets. The best fit surface through all the data points 

still can be shown, and a close agreement between the data points and the fitted 

surface can be clearly seen. 

 

Figure 6.2 shows the mean square distance deviation over 10 iterations of the 

experiments on different data sets. It was attempted to minimize this quantity in each 

interpolation period. The lower RMS error gives the minimum square distance 

deviation. The random noise inserted into the tactile data leads to a decrease in 

surface fitting accuracy. From the experiment, an RMS deviation of 2 to 27 is 

reached after 10 interpolation periods, and the maximum RMS deviation is 

dependent on object shape.  

 

The random noise associated with the interpolation in a real application can 

generate variations in eigenvalues. This requires an investigation into the eigenvalue 

trajectory under random noise. Consequently, the variation in eigenvalue levels with 

different periods of interpolation under the influence of random noise must be 

presented. 
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Figure 6.2: Fitting Accuracy 

 

The eigenvalue trajectory of covariance in the quadric-surface matrix (Q ) 

In the proposed method, the property of the quadric surface (Q ) will be used 

to calculate the eigenvalue but not in a direct way. Instead, the Q  matrix will be 

multiplied with its transpose, to produce the covariance matrix. This covariance 

matrix is then used to find the eigenvalue trajectory. 
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The covariance matrix of the same data set is T
xx XX ))(( μμ −− , where xμ  is 

the mean value of X . However, for a simple covariance matrix, it can be presented 

as TXX . Thus, the simple covariance matrix equation is: T
x QQC = .  

The components of xC , denoted by ijc , represent the covariances between 

the random variable components iq and jq . The component ijc  is the variance of the 

component iq . The variance of a component indicates the spread of the component 
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values around zero. If the two components iq  and jq  of the data are uncorrelated, 

their covariance is zero 0cc jiij == . The covariance matrix is, by definition, always 

symmetric.  

 

The exact value is not as important as its sign (i.e. positive or negative). If the 

value is positive, as it is here, both dimensions ( iq and jq ) increase together. That is, 

generally as the number in iq  increases, the number in jq  will also increase. When 

the value is negative, if one dimension ( iq ) increases, the other dimension ( jq ) will 

decrease. In the last case, if the covariance is zero, it indicates that the two 

dimensions are independent of each other. 

Physical problem behaviour can sometimes be expressed as XXA λ= or 

[ ] 0=− XIA λ  where I,X,A  and 0  represent a known square matrix, a column 

vector of variables, a unit matrix, and a zero vector, respectively.  The parameter λ  

is the eigenvalue for the matrix A , while X  is the corresponding eigenvector.  If A is 

a nxn  matrix, then there will be n  eigenvalues and n  corresponding eigenvectors.   

If [ ] 0=− XIA λ , then the determinant IA λ−  must vanish.  The equation:  

                                                 0=− IA λ                                                  (36) 

is a short form for the polynomial equation: 
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where, iα represent simple coefficients. In this study, the dimension of A  is 4 by 4, 

then the value of n  is 4. Any solution in terms of λ  for the above polynomial gives 

valid eigenvalues. In this case, there exist four eigenvalues. If a valid eigenvalue is 

substituted in the equation [ ] 0=− XIA λ  and the vector X  is solved, the result will 

be the corresponding eigenvector associated with the particular eigenvalue. 

Eigenvalues are the roots of a characteristic polynomial with coefficients simply 

derived from the elements of the matrix. 
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In this experiment, the training procedure is done to check classification 

performance, as shown table 4. The quadric surface properties are modified by 

multpilying with transformation matrix for translation, rotation and scaling operations. 

 

Object Quadric 

Surface 

Scale 

Ratio 

(time) 

Translation

in x-axis 

(mm.) 

Translation

in y-axis 

(mm.) 

Rotation

About 

 x-axis  

(radian) 

Rotation 

About 

 y-axis 

(radian) 

Rotation 

About  

z-axis 

(radian) 

 
 

 

0.1 to 4 

 

-2 to 2 

 

-4 to 4 

 

0 to 2π 

 

0 to 2π 

 

0 to 2π 

  

 

0.1 to 4 

 

-2 to 2 

 

-4 to 4 

 

0 to 2π 

 

0 to 2π 

 

0 to 2π 

 

 

0.1 to 4 

 

-2 to 2 

 

-4 to 4 

 

0 to 2π 

 

0 to 2π 

 

0 to 2π 

  

 

0.1 to 4 

 

-2 to 2 

 

-4 to 4 

 

0 to 2π 

 

0 to 2π 

 

0 to 2π 

Table 4: Procedure for the evaluation of eigenvalue trajectories 

 

By descending order of eigenvalues (largest first), an ordered orthogonal basis 

with the first eigenvector having the direction of largest data variance can be created. 

In this way, directions in which the data set has the most significant amount of energy 

can be found. To classify the type of contact, the smallest eigenvalue is used. From 

the experiment, there are four eigenvalues, the smallest one being in the range of  

10-3, and the largest one in the range of 102. Thus, the eigenvalues in the first three 

columns ordered ascendingly are not used while the one in the last column is utilised 

because it is the smallest eigenvalue. 

This experiment applies several numerics, symbolic and graphical techniques 

to study the behavior of matrix eigenvalues after the matrix elements change. This 

change normally requires numerical analysis and perturbation theory, but the 
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technique called “eigenvalue trajectory analysis”, illustrated in Figure 6.3, is more 

widely applicable and will be adopted.  

 
Figure 6.3: Eigenvalue trajectories of quadric parameters 

under different tested objects. 

 

This graph shows the smallest eigenvalue of the covariance matrix of the 

quadric surface property independent of translations in all two axes (along x-axis, 

along y-axis), of rotations around any axis (around x-axis, around y-axis, around z-

axis), and of scalable values. After the trajectory of the eigenvalue is derived, it can 

be used to classify to the contact surface of object by matching the level of 

eigenvalue of surface-property matrix belonging to the object prototype. 
There are many different numerical methods for solving equation 36 for the 

eigenvalues λ. In summary, a relatively straightforward algorithm extracts the 

eigenvalues by solving a n  degree polynomial, and then derives the eigenvector 

space for each eigenvalue. An important tool for describing the eigenvalues of 

square matrices is the characteristic polynomial. Conversely, this equation has 

exactly n  roots. 
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In considering the machine hardware, each arithmetic operation is generally 

affected by round-off errors because the hardware can only represent a subset of 

real numbers (floating-point numbers). As an illustration, after an addition, 

subtraction, multiplication or division, the true value of an operation cannot be 

represented exactly as a floating-point number. Instead, it must be approximated by 

a nearby floating-point number before it can be stored in the memory. The difference 

between this approximation and its true value counterpart is denoted as a round-off 

error. Thus, an arithmetic operation is said to round correctly according to the 

machine precision.  

 

In considering the software, the most common problems resulting from the 

round-off errors occur either when two quantities very close to each other are 

subtracted, or when a number is divided by another number which is close to zero. 

Other sorts of round-off errors can also occur when there exist operations attempting 

to convert a high-order number (64-bit number) to a low-order number (16-bit 

number) or when integers were converted to decimal numbers in C. This means that 

round-off errors in finding eigenvalues mainly depend on the arithmetic operation 

methods. 

 

Eigenvalues of large matrices should not be computed using the characteristic 

polynomial: computing the polynomial becomes expensive in itself, and exact 

(symbolic) roots of a high-degree polynomial can be difficult to compute. For 

instance, the Abel–Ruffini theorem implies that the roots of high-degree polynomials 

cannot be expressed simply using thn  roots [Edgar 1930]. Moreover, although 

effective numerical algorithms for approximating the roots of polynomials exist, small 

errors in the eigenvalues can lead to large errors in the eigenvectors. Then, the 

eigenvalues using the characteristic polynomial give unexpected results in our tests. 

General algorithms for finding eigenvectors and eigenvalues are often iterative, but 

only a few iterative methods can provide round-off errors small enough to be useful 

for our purposes.  
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The easiest method is the power method in which a random vector v  is 

chosen and computed as Av , v2A , v3A , ... The aim of the power method is to find 

only the largest eigenvalue 1λ . For example, if matrix A  consists of several 

eigenvalues, ranging from n321 ... λλλλ ≥≥≥> , 1λ will be the dominant value of the 

matrix. If matrix nxnA  has n  linearly independent eigenvectors, the vector 0X can be 

represented by nnVcVcVcX +++= ...22110 , whereby the vector set }V,...,V,V{ n21  is the 

set of linearly independent eigenvectors with n  variables. Thus, the equations can be 

rewritten as: 

nnn VcVcVcAX λλλ +++= ...2"21!10  

nnn VcVcVcXA 2
2

2
221

2
110

2 ... λλλ +++=  

n
m
nn

mmm VcVcVcXA λλλ +++= ...2221110  

When the last equation is divided by m
1λ , the following equation is derived: 

n
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If m  is larger, making the terms 
m

n

m

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

11

1 ,...,
λ
λ

λ
λ approaching zero under the 

condition 1/,...,1/ 112 << λλλλ n , then it can be concluded that for large m :  

110
1

1 VcXAm
m ≅
λ

 

From this equation, when 1c is not equal to zero, 1λ can be estimated when the 

number of interpolations ( m ) is large. The problem with this method is that should 

matrix A  not have a dominant eigenvalue, the time consumed for finding 1λ  will tend 

to be longer.  
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Moreover, if the data in matrix A  has errors, the square of mA will exacerbate them 

leading to higher round-off errors. Although the modified method enables estimation 

of the smallest eigenvalue, these two limitations are inevitable. 

 

This algorithm is easy to apply for the smallest eigenvalue, but not very useful 

due to round-off errors. Even though the level enabling classification of objects is 

only in the range of 10-3, the computing method to find an eigenvalue needs a very 

small round-off error. Moreover, there are some methods used in finding the roots of 

polynomials via eigen-functions like those in Matlab. The algorithms simply involve 

computing the eigenvalues of the companion matrix. Although it is possible to prove 

that the results produced are the exact eigenvalues of a matrix within given round-off 

errors of the given companion matrix, this does not mean that they are the exact 

roots of the polynomial with coefficients within the same round-off errors. And, it has 

been tested in our experiments yielding a useless result. So, these methods may not 

be used for our contact identification. 

 

On the other hand, popular methods such as the QR algorithm used in the 

LaPACK library (Linear Algebra Software Package), have good classification ability 

since a precise resolution within the range of 10-3 is possible with very small round-off 

errors. The QR algorithm can be used for either general matrix or non-symmetric 

matrix. According to the QR algorithm, matrix A  will be transformed into a 

Hessenberg matrix using householder convergence. Then this matrix is used to 

calculate the eigenvalue. An important step is the factorization iii RQA = , which 

undergoes the iteration process using the equation ii
T
iii1i QAQRQA ==+ . The pseudo 

code of the QR method is as follows: 

1) 0i =  
2) AAi =  
3) Repeat 
4) Factor iii RQA =  
5) ii

T
iii1i QAQRQA ==+  

6)  1ii +=  
7) until convergence. 
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6.4 Analysis of results 
 

Effects of Random Noise on Eigenvalue Trajectory 
 

This section investigates the sensitivity to noise of contact identification 

algorithms developed earlier. The effect of noise on the classification accuracy is 

considered when the incoming trajectories are corrupted with noisy data. Noise is 

simulated using a random function with a normal distribution with values in the range 

[1, 20]. Then, they are added to every tactile data element. The analysis of the 

simulation results shows varying abilities of the algorithms to cope with the noise 

perturbations.  In most instances, high prediction robustness was achieved. Few of 

the simulations showed sensitivity to noise.  

 

An emphasis should be placed on demonstrating the existence of noise and 

showing that small, as well as large, peaks can lead to significant errors in 

eigenvalue trajectory. The variation of noise peaks indicates that noise changes the 

magnitudes of eigenvalues of different object types and their surface transformations.  

 

Figure 6.4 indicates that noise on the trajectory dampened some graph levels 

during the test experiments. Nonetheless, it did not reduce contact classification 

capability with respect to the overall error growth. Contact classification can still be 

achieved through level checking. 

 

All of the eigenvalue trajectories were tested with noise levels ranging from 1 

to 20, for 10 iterations. The noise levels for all tactile elements were randomly and 

simultaneously increased, yet only to the maximum values of 8% of ADC’s maximum 

(255), and the performance of algorithms was demonstrated as shown in figures 6.4. 

This leads to the conclusions that if the noise level is kept below 8% it will not be 

statistically meaningful for, nor affect, classification. 

 

By experimenting, it is also clear that classification capability reduces if the 

random noise peaks are greater than 8% of the ADC’s maximum value. Invalid 

classification was tested by increasing noise to a level higher than 8%, and 
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consequentially, the crossing levels of eigenvalue trajectory appear. As a result in 

figure 6.6, contact classification cannot be achieved by simple level checking.  

 
Figure 6.4: Noise Tolerances 

 

By observation, the use of a noise filter on the tactile data reduces the effect of 

noise on the eigenvalue trajectory, and such a filtration must be performed before 

surface interpolation was applied.  
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 Margin of classification 
 

The principal idea that is used to classify the contact is in the matched 

threshold of the eigenvalue trajectory. For example, in figure 6.5, the ‘a’ level can be 

used to distinguish between object A and object B; the ‘b’ level can be used to 

distinguish between object A and object C, and so on. As formerly mentioned, 

random noise has an effect on the eigenvalue trajectory. The windows of different 

sizes (A, B, C) have their uses on defining different thresholds for the eigenvalue 

trajectory, and classification by thresholds has to be adjusted dynamically. 

 
Figure 6.5: Windows of Margin 

 

In cases where the noise amplitude falls outside the range [1, 20], this 

classification method cannot guarantee correct classification of object shapes. 

Experimental results are presented in figure 6.6. Another limitation of the algorithm is 

the differences of the object shapes and noise affected in surface interpolation. If the 
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shapes of the test objects are not much different, the classification will fail as random 

noise can reduce the window size to zero. Also, some object shapes are very 

sensitive to noise which leads to them being identified wrongly in the interpolation 

process. As displayed in figure 6.6, object A and object B yield little difference in 

terms of the smallest eigenvalues, which lead to a classification failure. In reality, the 

noise mixed with the tactile data also has an effect on the smallest eigenvalue. If the 

window size is too small, then the added noise will make the classification capability 

approach zero. 

 
Figure 6.6: Mixed threshold  

 

In terms of actual implementations using tactile sensors, the set of objects and 

other criteria also affect the optimal classification performance. It also seems 

reasonable to think that the degree of deviations or differences between any two 

object shapes should eventually entail classification performance between them, and 

our experiments appear to have uncovered such a case. 
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In the experiment, the training procedure is done as shown as Pseudo-code in 
Algorithm1. The inputs consist of N Quadric surfaces ( D ) which are randomly 
selected by the number I . 

The Quadric surfaces are transformed by translation, rotation and scaling 
matrices. The smallest eigenvalues are calculated and stored in the variable ( traject ) 
from which the trajectory is generated. The threshold of classifications ( ,...ˆ,ˆ,ˆ,ˆ dcba ) 
are then determined. The smallest eigenvalue of the selected surface I  is compared 
to this threshold of classifications. The algorithm returns the output in the variable T 
as an index.  
 
Algorithm 1. Contact-Classify( ),,( 4444 ×××= IDNT N ) 
1. Initialization: Objnum , i  
2.  while NObjnum ≤  
3.    for 4;1.0;1 ≤== scalestepscale  
4.        for 2;1.0;2 ≤=−= tranXYsteptranXY  
5.            for ππ 2;8/;0 ≤== scalesteprotXYZ  
6.       ),,),(( rotXYZtranXYscaleObjnumDTransformtmpMatrix =  
7.             )()( tmpMatrixMinEigenitraject =  
8            iIncrease  
9.            end for 
10.         end for 
11.    end for 
12     ObjnumIncrease  
13.  end while 
14. [ ] )(,...,,, trajectoldFindThreshdcba =

))))  
15. ))(,...,,,,( IMinEigendcbaCheckLevelT

))))=  
 

According to figure 6.4, the thresholds of object 1, object 2, object 3, object 4 

correspond with oval, cylindrical, cube and ball shapes, respectively. Each object has 

a different eigenvalue in the eigenvalue trajectory with no particular increasing or 

decreasing order in terms of their levels. This leads into misclsssification in case of 

two very close threshold values. Table 5 demonstrates the test results, whose testing 

were performed ten times on each object shape. The classification results reveal 

correct recognition as well as misrecognition. These differences may indicate that 

there are indeed limitations on the ranges of classification due to the similarity of test 

objects, fitting performance, and random noise. 
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Percent of misclassify in object class Object 
Features Oval Cylinder Box Ball 

Percent 
Error 

(1) Oval 0 0 10% 0 10% 
(2) Cylinder 0 0 0 0 0% 
(3) Box 10% 0 0 0 10% 
(4) Ball 0 0 0 0 0% 

 

Table 5: Statistic error of classification 

 

For examples, the oval object can be misclassified as a box object by 10%. Yet, the 

oval may be less likely misclassified as a cylinder object, because their thresholds 

are not in neighbouring ranges. 
 
 
 
6.5 Conclusions 
 

A technique for recognizing objects using tactile sensor arrays, and a method 

based on the quadric surface parameter for classifying grasped objects is described. 

It has been shown that the covariance matrix from parameter of quadric surfaces by 

interpolation of tactile data may be formulated by eigenvalue decomposition and can 

reflect under all contact geometries. The smallest component of an eigenvalue can 

be used to estimate and identify object shape without using any other references, 

whereas classification is used as the principal indication of surface identity. The 

shape reflectance parameter pertaining to (unique to) each surface may be 

recovered and identified. It has been shown that the reliability of the surface 

classification method and the accuracy of transformation are independent of object 

shapes. The Authors also proposed methods to improve the classification 

performances using boundary alignment based multivariate regression [Petchartee 

and Monkman 2007b] and forth-order perturbation of SVD [Petchartee and Monkman 

2007c]. 
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CHAPTER SEVEN 
SUMMARY AND OUTLOOK 

 
This Chapter concludes the dissertation by providing a summary of the results 

obtained in the preceding chapters, a description of major contributions and 

conclusions drawn from those results, and suggestions of areas for future work. 

 

7.1 Summary of Results 
 

This dissertation has investigated the sensing capabilities of conductive foam 

tactile sensors for attachment to robot gripper fingers through sensory experiments. 

The analyses mainly concerned the ascertaining of minimum grasping forces, contact 

classification, and a neural network model for the inverse tactile problem. The 

optimized grasping force and manipulation of objects have been demonstrated. 

Subsequently, it has been shown that quadric surfaces can provide contact location 

information necessary for obtaining shear and moment force sensing. Estimation of 

shear and moment forces was shown to be more difficult to attain, especially during 

the grasp process. Nevertheless, this yields a better understanding of the capabilities 

of such sensors and how they should be used.  

 

This research also recognizes the importance of contact surfaces. Contact 

identification can be utilized to determine unknown object properties, primarily the 

shape. Contact identification and prehension can be accomplished by any robotic 

hand and tactile sensors used to reposition or reorientate the object in order to 

access different areas of the objects surface. 

 

One significant result emanating from this research is a method for detecting 

and identifying surfaces in the context of tactile prehension with robotic fingers. A 

wide variety of two-fingered robot grippers are commercially available and most 

rectangular-shaped fingers are adequate for prehension by effectively mimicking the 

geometry of human fingers and thumb.  
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By choosing the appropriate shape for the fingertips, in conjunction with a 

robot having the necessary articulation, the object may be firmly grasped. Based on 

the definition of certain features of quadric parameters, a set of algorithms have been 

developed for such contact identification. 

 

It is also well-known that the coefficients of friction of the contact area play an 

important role in terms of prehension. Consequently, it is interesting to observe its 

importance in tactile sensing as has been shown in the first experiments, namely 

grasping force optimization. This may be achieved by allowing the robot to effectively 

modulate the frictional parameters between fingers and grasped object. To these 

ends, changes in the contact area (increasing the grasping force) corresponding with 

fluctuations in tactile signal, may be used as feedback to control the effective contact 

area. 

 

In Chapter 3, the development of the resistive tactile sensor, its applications, 

and system configuration of the test robot are described. Here, the mechanism of the 

resistive tactile sensor was introduced and the signal processing method described. 

Measuring the resistive changes and the parameters of the tactile sensor in Chapter 

4, the contact location and the slip detection conditions were obtained. Furthermore, 

the principal behavior of the tactile sensor under rotation and translation of the 

contact object were introduced. With NURBS interpolation, the contact surface in 

experiments which gave local curvature information at the contact point on the object, 

were presented.  

 

As seen in Chapter 4, contact localization is also an important factor which a 

tactile sensor can provide. With this sensor, accuracy of point source localizations 

was very good, and grasp stability analysis became relatively simple to achieve.  

 

Chapter 4 also revealed the importance of calibration techniques on the 

reliability of curvature estimates from tactile data. Although it was clear that data from 

all sensor elements fit the nonlinear elastic model (four parameter models), it implied 

that nonlinear elastic models can be used to describe the capabilities of tactile 

sensors and to predict responses from real sensors.  
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This approach was shown to almost halve the variance of the estimated 

curvatures. To predict responses, it is actually better to fit nonlinear mapping 

between the pressure distributions and the sampled strain values, but theoretically, 

we do not know the pressure distribution and stress value as only, strain sensing is 

obtained. Newer nonlinear techniques might produce better results, though at this 

point it can be said that the questions brought up in Chapter 4 have been adequately 

addressed. In this chapter shape sensing capabilities within the class of a sphere, a 

torous, a cylinder and a cuboid using a tactile array under 20 mm by 55 mm of the 

contact area were also investigated. With the current construction techniques, it was 

possible to make contact shapes with the existing tactile sensor array density. 

 

In Chapter 5, the grasping force optimization problem was considered. The 

optimization problem becomes a set of rule-based problems. Using the tactile 

feedback information and contact kinematic equations, the local coordinates at the 

contact point could be updated in real-time. Hence, optimization of the robots 

grasping force could be achieved. Adopting memory queue computing techniques, a 

real-time algorithm based on tactile sensor feedback was implemented.  

 

For touch identification in chapter 6, the algorithm in which object classification 

is theoretically possible given the current sensor noise was also investigated. It was 

shown that an eigenvalue of the property matrix of a quadric surface interpolated 

from the tactile data is identical to the contact object under the variation of any 

transformation. 
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7.2 Review of Contributions 

 
Major contributions of this research are summarized here along with rationales 

based on the above summary of results. A procedure for combining manipulation and 

tactile information of an unknown object under prehension is the main contribution. A 

method for accomplishing this with a minimal grasping force for a two-finger gripper 

with different object weights and sizes has been developed. This procedure 

emphasizes the importance of the link between manipulation and tactile information. 

In addition, parallel surfaces created by the two-finger gripper can be used for 

contact identification. Thus, tactile sensor data is necessary for this purpose. 

Algorithms for performing contact identification on robotic fingers in three dimensions 

were successfully tested. A contact procedure was developed and tested so to 

enable gripper fingers to identify contact features. Algorithms employing surface 

parameters for tracking the trajectories of eigenvalues were also capable of 

discriminating between different levels of eigenvalues. The above results form a 

cohesive procedure for contact identification of objects under prehension. The 

general procedure and algorithms can be extended to many different types of robotic 

hands and objects.  
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7.3 Future Works  
 

There are many intriguing avenues emanating from this research. Some 

possibilities are direct extensions of the work documented in this dissertation, while 

others suggest the application of some of the concepts developed here in other 

subject areas. Following directly from this dissertation, it is important to develop 

further sensing methods for tactile sensors. The parameter matrix of a quadric 

surface may be analyzed using a logical decomposition method that produces a 

series of smaller matrices. If there are other surface regions added to the original 

contact surface whose features modify the surface boundary, then it may be 

desirable to perform local interpretation on that surface region in order to generate a 

strain tensor as proposed by [Frederick and Chang 1965].  

 

It may also be desirable to develop a global algorithm to prove that all strain 

tensor components of additional regions may be used to explain the characteristics of 

the shear and moment components on the tactile surface. Efficiency of various 

decomposition techniques can also be investigated. In performing the experiments 

for this dissertation, it became evident that, while the state of the tactile surface has 

certainly improved over the strain tensor fields, there is still no existing decomposition 

technique that is ideal for this purpose. While there exist many kinds of tactile 

sensors that have the same structure and characteristics to which this solution is 

applicable, it is the solution of a single sensor measuring signals in only one axis 

which can sense physical values in six axes or directions. Consequently, many other 

forms of tactile sensor could also be utilized. In addition, the application of tactile 

sensing and its evaluation as described here may eventually have an influence on 

robotic hand design. 
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Moving on to the broader extensions of this work, one particularly interesting 

topic is the development of a reality-based modeling system that can measure other 

types of object property. While this dissertation focuses on contact identifications, 

there are many other properties that can be explored, such as mass/inertia, friction, 

temperature, texture, and stiffness. While roughness has been characterized using 

fractal [Allison et al. 2000] and stochastic ([Donald and Salisbury 1997], [Juhani and 

Dinesh 1996]) methods, texture is still a nebulous concept and is therefore difficult to 

detect, identify, and model. Some other properties, such as friction [Christopher et al. 

1999] and impact dynamics ([Eberman and Salisbury 1994], [Allison et al. 1998]), 

have been automatically identified. 

 

The proposed control scheme only considers the robotic manipulation of an 

object in a fixed contact prehension scenario. How to design an event-based motion 

reference for a multi-fingered robotic hand under sliding contact is still an open 

problem which consitutes a future research area. Some tactile sensing-based 

schemes to produce coordinated gripper motions and to optimize grasping forces 

have been proposed. [Maekawa et al. 1995, 1997] considered manipulation and 

dynamic grasping of an unknown object by a multi-fingered hand with rolling contact.  

 

[Bicchi et al. 1996, 1998 and 1999] presented some results on manipulating 

unknown objects. They discussed a method for building an approximation of the 

surface of an unknown object from data gathered by exploring the object through 

rolling motions. Generating coordinated motions and optimizing grasping forces by 

using tactile sensor feedback for an unknown object is another intriguing further 

research issue. However, improvements in tactile sensing and data interpretation are 

still needed to support general manipulation of unknown objects. 
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7.4 Problem Solution 
 

Robot gripper control was found to be a problem during this research and is 

an issue which needs to be discussed further. The internal structure of the gripper 

used employs a 12-volt DC motor as prime mover. The gripper receives commands 

via a CAN-bus. To control the gripper the robot receives a set of 8-bit signed 

numbers, the PWM values. 

 
Figure 7.1: Graph showing the relationship between  

PWM values and resulting forces 

 

To control the robot gripper for prehension or retention (close), negative 

numbers within the range from –300 to –20 must be sent to the robot. The larger the 

modulus of the negative numbers the greater the holding forces. On the other hand, 

positive numbers within the range from 20 to 300 must be sent in order to achieve 

object release (open). The greater the positive number, the lower the retention force 

on the object.  
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Figure 7.1 exhibits the graph showing the relationship between the PWM 

values sent to the robot gripper and the resulting retention forces which agree with 

the output from the FSR sensor. Normally, manufacturers of robot grippers provide 

design formulas or equations making the calculation of prehension forces simple. 

However, in the case of the gripper used in this research, the actual relationship is 

not so simple since the internal operational mechanism of the robot gripper relies on 

a wheel and axle. Over projected use, the wheel and axle can become loose causing 

imbalance in the two jaw forces. Consequently, their respective shear force 

components will increase or become unstable (hysteresis).  

 

 
Figure 7.2: Graph showing the lowest PWM values for gripper movement 
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From Figure 7.2, it can be observed that the robot gripper has a maximum 

stroke of 5.5 cm. In case of maximum closing, the distance is zero. With different 

distances during opening and the closing, the minimum PWM values required for the 

gripper movement will vary. Put another way, a certain minimum threshold of PWM 

values is necessary to cause the gripper to open or close. Degree of 

closeness/openness is prior to the command to drive the grippers to open/close. A 

larger openness always requires the least PWM values which are lower than does a 

smaller openness. This result from the threshold values is to control the operation of 

the grippers. These values depend on the direction of finger movement. 

 

 
Figure 7.3: Solutions to gripper threshold 
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From the problem discussed above, a simple solution is proposed. That is, the 

difference in the threshold shown in Figure 7.3 should be compensated for. At the 

instigation of prehension movement at time T0, a minus PWM value to create a 

desirable force will be sent to the gripper. However, from the lower part of the same 

Figure, the force shown by the tactile sensors is still stable from time T0 to T1, 

implying that the PWM value sent to the gripper is not sufficient to move the gripper.  

 

To solve this problem, a higher minus PWM value (to cause closure) will be 

sent to the gripper at time T1. At the point where the value reaches the nonstop level, 

(i.e., the highest threshold), the gripper will certainly move, e.g. to close or to open 

depending on the plus or minus sign. When a high negative value is sent to the 

gripper for a short period of time during T1 and T2 and followed by the desired PWM 

value, the force from the tactile sensors will show if there is any change. In case 

there is no change in T2, a higher negative PWM value must be sent again but with a 

prolonged duration from T3 to T4. This is then followed by the desired PWM value, 

after which the force from the tactile sensors is read. These steps must be repeated 

over a prolonged duration with a high PWM value until a stable force is signaled by 

the tactile sensors. 
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Figure 7.4: Speed of communication protocols and devices 
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Using CPU, micro-controllers, and digital-signal processors with different 

speeds and communication protocols to form a network or a robotic system as 

described in Chapter 3 causes several problems with respect to robotic manipulation 

based on force control. One problem is the asynchronous speed of operation. The 

tactile sensor micro-controllers operate at a speed of 20 MHz and transmit data via 

the CAN-bus to the CAN-master (which in this case is the IPackTIM module installed 

on the C40 module) at the rate of 250 Kbits/sec. Hence, data transmission using the 

CAN-protocol is carried out by hardware on the IPackTIM module controlled by the 

DSP Chip on the C40 module. A program to control this operation has also been 

developed. 

 

However, there are several parallel operating programs on the C40 module. 

For instance, the program controlling the mobile platform operation shares the same 

DSP on the C40 module as the above for data transmission to and from the host PC. 

This process uses a hardware transputerlink which adjusts the signal to the RS485 

system - a requirement for mobile-platform data transmission. Another program 

operating on the C40 module is used to transmit data between the C40 module and 

other processors connected to the DSP network. 

 

A significant problem to this parallel processing is that the three programs 

used as examples above operate simultaneously. An overload in any of the programs 

will cause the DSP to slow down, resulting in slower operation for the other programs 

as they share the same processing unit. For example, when the tactile controller 

transmits data through the CAN-bus via the DSP network to the PC, and a point 

exists along the transmission line which cannot respond to the operation promptly, 

then the data from the tactile controller will encounter an overrun error. Thus, old 

data that have not yet been transmitted will be overwritten by new ones and the old 

data will be lost. 
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Programs interacting with the DSP do not have differing priorities because it is 

difficult to determine and set appropriate priorities. In transmitting data to other parts 

of the network, a program operating on the DSP will depend on other programs 

sharing the same DSP. However, this relationship is not one-to-one as the 

destination to (or from) which the data is transmitted can frequently be shared by a 

third program. For instance, despite their set priority in relation to the second 

program, the first and the third programs will encounter an overrun error during 

simultaneous transmission as one program will function faster than the other. Thus, 

setting priorities is not really helpful in solving this problem. The use of dynamic 

priorities may help in that priorities can be allocated dependant on computational 

workload. 

 

One proposed solution to this problem is to employ secondary memory (a 

circular queue) to temporarily store the data. This mitigates problems in cases where 

the program at the data source happens to transmit data faster than it can receive it 

from the destination (or a problem in the transmission is encountered). The circular 

queue has an index to identify the location of the data already transmitted and the 

most recent data not transmitted. The circular queue can be tested to determine its 

current size. Figure 7.4 shows the circular queue used to connect the data from the 

CAN-bus to the program which reads and transmits the data to other DSP’s on the 

DSP Network. 
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7.5 Conclusions 
 

The tactile sensors used in this research are simple to construct and also not 

difficult to apply for the basic robot applications. However, it is important to note that 

the sensor can be used in a “nonlinear” manner during manipulation tasks. For 

example, when the finger first makes contact with an object the stress distribution 

under the finger skin varies rapidly. Similarly, small slips at the edge of the contact 

area just before a grasped object begins to slide produce rapid stress transients. In 

many cases a simple threshold technique will be sufficient for robotic applications. 

Since these phenomena represent important transitions in the mechanical state of 

the hand-object system, this sensor can be used to improve the robustness of robotic 

manipulation throughout a range of tasks. However, for advance applications (i.e. 

multiple-axis sensing), it seem to be unable to adapt for (based on its structure) 

because it can provide only a limited number of useful data.  

 

Another improvement might be derived from using additional electrodes to 

better determine the actual deformation of the tactile surface during prehension. 

Improvements to this design include the introduction of floating electrodes to better 

measure the support reactions. One intriguing alternative boundary condition is 

mounting electrodes inside the tactile material to permit greater flexure of the tactile 

material during prehension. For ease of construction and improved sensing ability, 

the first of these orientations was selected so that the displacements between the 

floating electrodes are regularly spaced within the center of the tactile material.  

 

Similarly, the design of tactile images can be improved by referring to research 

on the perception and cognition of tactile information. However, such an approach 

has not yet been applied to tactile cartography in a systematic way. Furthermore, this 

model represents a useful starting point for the development of high resolution 

surface tactile sensors. It provides physical insight into the sensor’s functioning, 

indicates improvements to the sensor design, and suggests further lines of 

investigation into tactile sensing of fine surface features. 
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The principal lesson we learned from this research effort was the importance 

of designing the sensor for the task. Better task specification and consideration of 

many transduction methods present many opportunities for improvements in tactile 

sensing. 
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