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Abstract 

Due to the recent improvements to 3D object acquisition, visualisation and modelling 

technologies, the number of 3D models available on the web is more and more growing, 

and there is an increasing demand for tools supporting the automatic search for 3D 

objects in digital archives. Traditional methods for 3D shape retrieval roughly filter 

shape information or perform a punctual comparison of models.  

In this paper, we discuss on the advantages of approaching the shape matching problem 

through 3D graph-like descriptors, which decompose the shape into relevant subparts. 

In our approach, shapes are compared using a graph matching technique that includes a 

structured process, which identifies the most similar object portions. In particular, we 

investigate on the properties of these descriptors and of our matching method in the 

CAD context. 
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1 Introduction 

The needs to extract knowledge from massive volumes of digital content rapidly 

increases and new forms of content are coming in evidence, such as 3D animations and 

virtual or augmented reality. Whilst it has become relatively easier to generate 3D 

information and to interact with the geometry of shapes, it is harder to structure, filter, 

organise and retrieve it. These considerations are changing the approach to 3D object 

modelling. Until now a primary challenge in computer graphics has been how to build 



and render complete and effective models, now the key issue is how to find and 

interpret them. In this sense, methods for automatically extracting the semantic content 

of digital shapes and generating shape models in which knowledge/semantics is 

explicitly represented will become more and more necessary. This will allow browsing 

the web or digital object repositories using enhanced search engines not simply based 

on text-searches but on shape and semantics (e.g., content and context based search 

engines capable of answering semantics-based queries) [53].  

In our understanding the knowledge of a digital shape may be organised at three 

different levels of representation: geometric, structural and semantic level [15]. A first 

organisation of the shape data into a computational structure gives access to the 

geometric level of representation, where different types of geometric models can be 

used to represent the same object form. As examples, we can list polygons, surface 

models (splines, NURBS, implicit surfaces,…) [34], solid models (3D mesh, Brep, 

CSG) [22][28][36], clusters of pixels or voxels (shapes segmented within an image or 

volume) [36], etc. In a geometric model, topological and geometric information are 

coded explicitly or implicitly in a computer processable structure. 

Then, a structural level of representation is reached by organising the geometric 

information and/or shape data to reflect and/or make explicit the association between 

parts/components of shapes. Examples of structural models are: multi-resolution and 

multi-scale models [27], curvature based surface decompositions [52][14], topological 

decompositions [12][13], shape segmentations, etc.. 



At the highest level of segmentation, the semantic one, there is the association of a 

specific semantics to structured and/or geometric models through annotation of shapes, 

or shape parts, according to the concepts formalised by the semantic domain. Therefore, 

a semantic model is the representation of a shape embedded into a specific context. 

The method discussed in this paper approaches the problem of using a structural 

representation for shape comparison purposes. The first step to fulfil this task is to 

associate a signature, that is a so-called shape descriptor, to a geometric model. In 

particular, we would desire that the chosen shape descriptor concisely represents the 

shape features, is invariant to rigid and similarity transformations, is insensitive to noise 

and small extra feature, is robust with respect to topological deformations, is suitable 

for multi-scale analysis and is computationally efficient and simple to store. Moreover, 

it is our opinion that a signature that organises the object shape in a topologically 

consistent framework provides a relation between shape structure and semantics. 

Several methods have been proposed to extract the salient information stored in a 

model; such as descriptors based on shape distributions [33], spherical harmonics 

[16][39], statistical distribution of the shape points in the space [48] or the high-

curvature regions [20], while others try to organise and interpret the shape features 

through a graph representation, such as skeletal curves [46] and Reeb graphs 

[5][21][42]. In particular, we will discuss on the advantage of considering a skeleton 

based representation of the shape as the signature for approaching the 3D shape 

comparison problem and on the possible extension of the application domain from free-

form models to mechanical ones. Furthermore, we will give a novel interpretation of 



our approach, showing that the heuristic method we presented in [6] may be deduced 

from the more general problem of approximating the maximum common sub-graph 

[30]; in addition, the heuristic choices we proposed in [6] can be modularly inserted in a 

general methodology and other approximations may be introduced. 

The reminder of this paper is organised as follows. First, an overview of the 

existing skeletal representations and their use on shape representation and retrieval is 

proposed, focusing, in particular, on the Reeb graph and the matching approaches based 

on that structure. Then, our approach to 3D shape comparison is described and arranged 

in the general graph isomorphism context. Examples and results are proposed in section 

4 and compared with those obtained through the spherical harmonics approach in [16]; 

in addition, the suitability of our method for object matching is discussed. Conclusions 

and future developments end the paper. 

 

2 Related Work on shape representation and retrieval 

Existing techniques can represent the geometry of a shape with high detail, typically 

through a dense mesh of simple basic elements such as triangles, tetrahedra, etc. Such 

meshes can approximate the geometry of a shape arbitrarily well, but they fail in 

describing the morphological structure of the shape, which has a fundamental 

importance for shape classification and understanding. On the contrary, iconic models, 

intended as concise, part-based representations of a shape, provide more structured 

descriptions, even if sometimes less accurate. In this context shape distributions [33], 

which evaluate the distribution on the surface of a shape function that measures the 



geometric properties of the model, and spherical harmonics [16] are expressive tools. 

The latter descriptor, in particular, decomposing the model into a collection of functions 

defined on concentric spheres with respect the centre of mass, is invariant to object 

rotations. The original shape cannot be recovered from these shape descriptors but 

comparison may be efficiently accomplished using traditional distances between 

functions. Furthermore, these descriptors do not identify the correspondence between 

the most similar object sub-parts preventing any reasoning based on the shape structure 

(e.g.: reasoning about building differences between mechanical artefacts). 

In advanced fields, such as virtual human modelling, available modelling tools 

to represent structured geometry are focused on adding a skeleton to the 3D geometry in 

order to animate it and provide different degrees of realism (from segmented non-

deformable bodies to anatomically accurate deformable meshes). In addition, there has 

been a considerable amount of work in the literature on extracting critical features 

(point, integral lines, etc.) from 2D scalar fields describing grey-level images and 

terrains, and more recently some work has been done on volume data, again on 

extracting a critical net or on representing the topological structure of the iso-surfaces 

through the so-called contour tree. 

2.1 Skeletal descriptions 

A skeletal structure should encode the decomposition of a shape into relevant parts, or 

features, which may have either a geometric or an application-dependent meaning. 

Therefore, it is important to detect salient features over non-significant ones and define 

a mapping between the skeleton and the full geometry, so that the two levels can be 



easily interchanged. Moreover, we expect that a skeletal representation is topologically 

equivalent to the original model, stable, in the sense that local changes of the shape 

should be locally reflected on the skeleton and invariant to the object position [32]. 

Skeletons have been studied independently in image analysis by using a discrete 

geometry approach and in geometric modelling by using continuous computational 

geometry techniques. 

In computer graphics literature no general definition of skeleton exists and many 

different skeletal structures have been defined. The most popular skeletal representation 

of a bi-dimensional shape is the Medial Axis (MA) or Symmetry Set [32], which was 

described by Blum [7] as a fire front which starts at the boundary of the shape and 

propagates isotropically towards the interior. Then, the medial axis is defined by the 

locations at which the fire fronts collide. The power of this representation is that the 

shape boundary and its MA are equivalent and the one can be computed from the other 

(the original shape can be recovered from its medial axis using a simple distance 

transform); therefore, a two-dimensional object is effectively compressed into a one-

dimensional graph-like structure. The notion of shock graph [23] extends that of medial 

axis, associating to each arc of the MA the direction of increase of the distance 

transform, see figure 1(a,b). As discussed in [18], both representation methods are 

independent of the object position and provide a concise description that naturally 

decomposes the shape in its more meaningful portions. Moreover, the MA is sensitive 

to tiny perturbations of the boundary; therefore extra edges may appear in the graph 

with no distinction between main and secondary features [1]. To solve this problem and 



highlight the portions of the skeleton that correspond to the shape part with higher 

perceptual relevance, in [1] a method for pruning the medial axis of 2D and 3D 

triangulation has been provided. However, when calculated for a 3D shape, these 

structures are more complex and contain not only lines but also surface elements [37], 

figure 1(c), and their extraction is computationally expensive.  

 

 (a) (b) (c) 

Figure 1 The Medial axis (a) and the shock graph (b) of a curve; the medial 

representation of a solid (c) may contain also surface elements 

 

In applications that require curvilinear structures, such as animation [50] and 

virtual medicine [51], the medial representation should be as thin as possible, such that 

it may coded in a linear skeleton. Many methods have been proposed for extracting a 

curvilinear skeleton [16][26][49][51], also known as curve skeleton or centerline [43]. 

Depending on the complexity of the curve skeleton extraction, many approaches focus 

on 2D images and employ thinning techniques [38], such as boundary erosion [24] 

distance transform [8], which correspond to a rough approximation of the medial axis. 

The thinning approach to 3D objects is mainly based on a constrained distance 

transform [50] or a potential field of an object as discussed in [16]. Main drawback of 

these structure is that the resulting curve skeletons might not preserve the object 



topology and, even, lose the connectedness of the descriptor. Thus, the resulting skeletal 

graph representation, which, for example, may be obtained through the approach 

proposed in [46], could have an arbitrary number of cycles, independently of the object 

handles. Moreover, the need of having a curve-like description of the shape conflicts 

with the goal of having an exact reconstruction of the object. The curvilinear structures 

proposed in figure 2, which are obtained using the potential field erosion proposed in 

[44], show some examples of this phenomenon. 

 

 

             

Figure 2 Three objects and the corresponding curve skeletons, (these images are 

available at http://www.caip.rutgers.edu/vizlab.html) 

 

Differential topology suggests another approach to shape description, which 

mainly relates to Morse theory [19][31]. Since a finite collection of level sets of a 

smooth function f defined on the surface is sufficient to fully describe the surface shape, 

the level set evolution of f may be coded in a topological graph, called a Reeb graph, 

that collapses in a point each component of the level sets [35]. More formally, the Reeb 

quotient space of a surface S with respect to a real valued function f has been defined as 



the quotient space that identifies two points P, Q of S if they have same value of f and 

belong to the same connected component of the pre-image of f, (f -1). Then, the Reeb 

quotient space may represented as a graph, in which nodes represent the critical levels 

of f  that correspond to the creation, merging, split or deletion of a contour, and arcs are 

associated to surface portions that connect two critical levels. Moreover, an orientation 

may be associated to each arc, according to the increasing direction of the function f. In 

figure 3, an example of the Reeb graph representation of a mechanical model is shown 

with respect to the height function f, in particular, figure 3(b) represents the contour 

levels of f, while figure 3(c) highlights the Reeb quotient space obtained collapsing each 

contour in its centre of mass; finally the Reeb graph is shown in figure 3(d). 

The Reeb graph may be represented by a 1D structure that is topologically 

equivalent to the original shape and roughly describes the shape features that are 

relevant with respect to the function chosen. Since also geometric information may be 

stored in the graph. it is more satisfactory than the simple knowledge of the global 

object topology [28]. Furthermore, the flexibility of the choice of the mapping function 

makes this graph suitable for different tasks, such as shape analysis [1][42][25], 

similarity [21] and matching [6] and different application contexts, such as CAD [3], 

free-form meshes [1][25], contours [42], medical imaging [41] and DTM[10], where the 

Reeb graph is also known as contour tree. Finally, an overview of the possible choices 

of the mapping function (e. g. height distance, geodesic distance, distance from a point 

in the space, geodesic distance from curvature extrema, etc.) and a discussion on their 

properties and efficacy has been proposed in [5]. 



 

 

 

  (a)  (b) (c) (d)  

Figure 3 In (b) the contouring of the object (a) with respect to the direction f is shown; 

the quotient space obtained by collapsing the level sets and the Reeb graph 

representation are depicted in (c) and (d), respectively 

2.2 Shape matching 

Concerning 3D shapes, there is a great number of techniques for shape matching. The 

methods developed so far vary from coarse filters suited to browse very large 3D 

repositories on the web, to domain-specific approaches to assessing similarity of part 

models containing semantic as well as structural information.  

A method for a coarse estimation of the similarity between two 3D models has 

been proposed in [11]. The authors propose to describe the shape of a 3D model with 

respect to its convex hull and bounding box. Four simple descriptors are used: the ratio 

of the longest to the shortest axis of the bounding box; the ratio between the area of the 



model and the area of the convex hull; the percentage of the convex hull volume not 

occupied by the original model, and, finally, the hull compactness; that is the ratio of 

the hull’s surface area cubed over the volume of the convex hull squared. Since this 

approach is robust to small model shape perturbations and is computationally efficient, 

it is a good coarse filter in the application context of the CAD/manufactured 3D model 

retrieval; on the contrary the coarse nature of this shape descriptor does not allow an 

accurate structural analysis of the object features.  

The method proposed in [46] compares two skeletal structures, which are 

obtained through an erosion process from a 3D model voxel representation, by 

following the approach described in [43]. The basic idea of such an approach is to 

transform the graph extracted from the skeleton in a rooted tree and, then, to map the 

nodes of two trees visiting them from their roots. The mapping process is based on an 

indexing mechanism that maps the topological structure of a tree into a low-dimensional 

vector space based on an eigenvalue characterization of the connectivity of the tree.  

In [3] the comparison between CAD models, based on the Multiresolutional 

Reeb Graphs (MRG) similarity computation proposed in [21] is presented. The 

similarity estimation between 3D models is processed using a coarse-to-fine strategy 

preserving the consistency of the graph structures, which results in establishing the 

correspondence between the parts of objects. The basic idea is to demonstrate the 

efficacy of the MRG to the problem of the manufacture-model retrieval. Some 

experiments has been proposed to show the performance of the MRG technique on 

primitive CAD models, such as cubes and spheres, on more complex models, such as 



LEGO and mechanical parts, and finally, on complex CAD models. The results of such 

experiments show that MRG comparison produce rather acceptable results, nonetheless 

several problems arise from this technique. For example, the 3D model has to be two-

manifold; furthermore, the comparison process may produce false positive results and it 

is more sensitive to the geometry of a model rather than its topology. The constraint of 

using only two-manifold models could be relaxed, but problems dealing with the 

computational complexity and the shape representativeness of the graph may occur.  

The same authors in [4] presented a new methodology to compare two 

manufactured models; however, their method could be applied to free form 3D models 

too. Here, a hierarchical decomposition of the object features is stored in a rooted tree 

where each node represents a feature and its descendents corresponds to its sub-

features. Since the nodes of the tree represent parts of the object and the edges 

connecting two nodes represent either the adjacent relation or the containment relation 

between them, the feature/sub-feature rooted tree is a representation of the structure of 

the object. Therefore, under the assumption that the similarity between two features is 

closely related to the similarity between their sub-features, the similarity between two 

3D objects is evaluated through the comparison of the corresponding rooted-trees and 

its efficacy has been shown. 

Finally, also the shape matching method we have proposed in [6] is based on the 

Reeb graph structure. On the contrary to the approaches previously described, such a 

method directly works on the graph structure and deals with the graph comparison 

problem using the notion of error tolerant sub-graph isomorphism proposed in [9]. 



Since the exact computation of the maximal common sub-graph is a NP-complete 

problem, some heuristics that simplify the matching algorithm and locally solve the 

problem, have been introduced. In particular, these heuristics may modularly be 

inserted in a more global process of extraction of the maximal common sub-graph, as 

we will show in section 3.2. Due to intuitiveness of the Reeb graph for free-form 

models, such as animals and human bodies, until now this method have been used for 

comparing such a class of objects, while in this work we tackle the problem of adopting 

that method for mechanical models. 

3 Our approach to 3D object retrieval 

First of all we discuss how to describe the shape of 3D objects represented by a closed 

triangle mesh and use the resulting coding for similarity evaluation and matching 

purposes.  

As shown in section 2, skeletons and Reeb graphs provide an efficient coding of 

the surface shape, which may be represented as a directed graph. This property may be 

exploited during the graph comparison process, in fact it is reasonable that two arcs can 

be mapped only if they have same orientation. Moreover, since each node also identifies 

the sub-graph starting from it as shown in [6], its relevance in the graph depends on the 

size of the sub-graph. Therefore, the graph matching is accomplished through a priority 

queue that takes into account the relevance of the graph entities, where the relevance of 

an arc is given by the difference of the function values calculated along its end nodes. 

The comparison of two shapes may be effectively performed on the graph 

representation instead of the whole geometric model adding to each arc (and node) a set 



of attributes, which represent the geometry and topology associated to them. Finally 

nodes and arcs mapping obtained through the error tolerant sub-graph isomorphism 

allows sub-part object mapping. 

3.1 From a shape to a graph representation 

To be effectively available for shape matching purposes a structure should be 

independent of object position, rotation and scaling. For example, skeletons satisfy 

these requirements, while for the Reeb graph the choice of the mapping function has to 

be restricted to those functions that do not depend on the shape embedding in the space.  

As proposed in [46] and [6] both a skeleton and a Reeb graph may be represented as an 

a-cyclic, directed graph. However, the skeletal structure requires a number of 

simplification steps and artefacts [46], which might alter the topology of the signature, 

while the Reeb graph is mathematically well-defined and there is a strict relationship 

between the object topology and the graph structure; therefore we have chosen the 

second structure for our experiments. 

Beside the topological information stored in the graph structure, attributes have 

been associated to arcs and nodes to represent the main geometric characteristics of the 

corresponding features. Therefore the Reeb graph better describes the shape, the better 

the function does. In Figure 4, the Reeb graph of two models with respect to the 

distance from the centre of mass (barycentre) of the object, the geodesic distance from 

the curvature extrema in [14] and the integral geodesic function introduced in [21] is 

proposed. The two models are almost identical, except on the handle. In this case, the 

Reeb graph based on a spatial-based function such as the distance from the centre of 



mass is less sensitive to a small change of the object topology (the breaking of the 

handle) than those provided by surface-based distances as the geodesic one. 

 

 

 

 

 

 

 

Figure 4 The Reeb graph of two models with respect to different functions 

 

On the contrary, functions based on the surface shape, such as the geodesic 

distance, highlight object protrusions and cavities and are useful in those contexts 

where an object has to be recognised despite curling or stretching deformations. 

The computation of the Reeb graph is performed through the contouring 

approach proposed in [2]. As shown in [21], a multi-resolution representation of the 

Reeb graph is given by computing a sequence of Reeb graphs at different resolutions, 

which are obtained by doubling, at each step, the number of slicing contours. In our 

approach, critical areas are considered instead of critical points. A node is associated to 

each critical area, while arcs are detected through a region growing process.  



3.2 Graph matching 

By the assumption that our graph representation encodes the main shape features and 

the most significant spatial relations between them, the target of our approach is to map 

together the structural parts of our signature; that is achieved through an isomorphism 

between two graphs. Such a graph isomorphism should  highlights how much the two 

shape overlap. As discussed in [30][6], the existence of a graph isomorphism implies 

that the graphs must be equivalent; however, such a strong requirement can be relaxed 

using a weaker similarity measure based on the weak notion of isomorphism proposed 

in [30], where the definition of the Error Tolerant Graph Isomorphism (ETGI) is 

introduced to estimate the similarity between two 3D models. By an intuitive point of 

view, constructing an ETGI means obtaining a common sub-graph as big as possible, 

that is a Maximum Common Sub-graph (MCS). Unfortunately, the construction of the 

MCS is a well-known NP-complete problem; thus, its exact computation is time 

consuming, when the shape descriptors are composed by a large numbers of nodes and 

edges. Therefore, several strategies and heuristic assumptions have been adopted to 

simplify this problem [30][43][6]. 

In this section we discuss how the heuristics we have introduced into the graph 

matching algorithm in [6], may be viewed as an approximation of an algorithm for 

graph comparison that exactly computes the MCS. 

The simplest algorithm for the MCS construction between two graphs  and A B  is 

the enumeration of all the possible mappings among the nodes of  and A B ; 

unfortunately this simple method does not evidence how heuristics based on object 



topology and geometry information may approximated the MCS. Thus, in the 

following, we propose a general graph matching approach, which extends the method 

described in [6] and characterises the MCS problem in a modular framework, allowing 

heuristics based on the shape structure. Moreover, we recall that the edge orientation 

induces a sub-graph for each node and, once two nodes are mapped, also their sub-

graphs must verify the isomorphism constraints. We observe that the extraction of the 

MCS satisfies the following considerations: 

1. the maximum common sub-graph  originated mapping two nodes 

 is obtained by recursively considering, among all possible pairs of 

children of  and b , the one that originates the best induced common sub-

graph. We name that pair 

baMCS →

,Aa∈ Bb∈

a

)jb,( ia ′′ , Aa ∈' b, B∈'

a b

. The element (  may be 

added to the isomorphism map; moreover, in order to continue the  

construction, also all pairs obtained from the children of  and b  have to be 

joined to the pairs of the children of  and . 

), ji ba ′′

j′

baMCS →

ia′

2. For each single pair , there exists another pair of nodes (),( ba ),ba ′′

baMCS →

, with 

and b , such that  is bigger or equal than . Then, 

the maximum common sub-graph  is obtained by recursively 

expanding, at the same time, both  and 

aa ′≠ b′≠ babaMCS ′→′→ ,

MCS

a →

baba ′→′→ ,

b ba ′→′  as explained in the 

previous point. 

3. More generally, denoting M  be the set of all possible bijective mappings 

among the nodes of  and A B  and  the maximum common sub-graph 

induced by a map 

mMCS

Mm∈ , there exists m M∈'  such that  is equal or 

bigger than . In particular, since the set 

'mMCS

mMCS M is finite, the maximum 

common sub-graph of  and A B  is always induced by at least a map. 



 Starting from these considerations and recalling that the input of the matching 

algorithm is an attributed, a-cyclic and directed graph, heuristics may be introduced 

either in all the three steps of the previous pipeline or once at time, furthermore, the 

pipeline assures that improving the heuristics results in a better approximation of the 

MCS. The heuristics we have proposed in [6] introduce a simplification of the matching 

algorithm by considering a local solution of the problem and strongly reducing the 

computational complexity from exponential to cubic (O( ), where  is the number of 

graph nodes). For example, the problem of extracting the maximum common sub-graph 

of a node pair is reduced by considering a node description that measures the 

importance of such a node by taking into account both the attribute values and the 

number of nodes/edges of the induced sub-graph. In addition, through considerations on 

the distribution of the graph nodes with respect to its attributes, an initial map among 

the nodes of the two graphs is detected and the common sub-graph is achieved by 

starting from that map. 

3n n

In Figure 5 an example of our matching method is proposed: in Figure 5(a) the initial 

state and the first best candidate pair, which is represented by a filled square, are shown, 

while the final matching is depicted in Figure 5(b). 

 

 

 

 

 



 

 

 

 (a) (b) 

Figure 5 The matching algorithm 

Finally, we observe that the usual definition of the MCS in [9] does not consider 

the graph attributes, thus the MCS maximizes the number of nodes and edges involved 

in the match but does not takes into account their relevance in the shape. This implies 

that the choice of the representative of the MCS is important and, in our approach, the 

MCS is chosen as that minimizes the sum of the differences of the edge pairs. In Figure 

6 two possible choices of the mapping that individuates the maximum common sub-

graph are proposed; both sub-graph configurations are topologically identical but the 

mappings are different; in our assumption the best mapping is that in Figure 6(b) 

because it minimizes the sum of the difference of the edge pairs. 
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 (a) (b) 

Figure 6 Two possible maximum mappings between two simple trees are shown; 

numbers represent the value of the edge attributes while the line style represents the 

edge mapping 



3.3 Distance measure 

The definition of a distance between two graphs is a well-known problem in graph 

theory; in particular, the approach proposed in [9] considers the maximum common 

sub-graph as the term of comparison between two graphs. According to that, in [6] we 

proposed a distance that evaluates how far two graphs are; in particular, the bigger the 

common sub-graph defined by the error tolerant isomorphism is, the smaller the 

distance should be. More formally, the distance measure is a real function 

d:GxG→[0,1] where G represents the set of all the attributed graphs. Therefore, given 

two graphs G1 and G2 and their common sub-graph S,  the distance d is defined as 

follows: 
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where  are the attribute values of an edge in the i-th graph and the symbol | • | 

indicates the number of edges of a graph. 

1−
iµ

Such a distance takes into account both the structure and the edge distribution of 

the two graphs. However, from a mathematical point of view, this distance is a semi-

metric: in fact, it satisfies the properties of uniqueness, identity, non-negativeness, and 

symmetry but does not verify the triangular inequality.  

 



4 Results and discussion 

As discussed in section 3.1, the behaviour of the different choices of the function in the 

Reeb graph representations has to be taken into account during the similarity analysis: 

in fact each function emphasizes different aspects of the object shape. 

Figure 7 highlights how the choice of the function in the Reeb graph 

representation influences the matching results. In fact, the topology of the teapot has 

been modified and the graphs result much different. The graph obtained through the 

distance from the barycentre function is a representation of the spatial distribution of the 

object with respect to its centre of mass: even if a part of the handle has been removed, 

the remaining part folds on itself, generating a critical points in the Reeb function. On 

the contrary, the graph based on the integral geodesic does not take into account the 

spatial embedding, thus the broken handle of the teapot results in a maximum critical 

point with respect to the geodesic distance, neglecting the shape of the handle itself.  

 

 

 

 



Figure 7 Matching between the three Reeb representations of the teapot and its modified 

version proposed in Figure 4 and their similarity evaluation. Thick arcs and nodes with 

same colour represent the graph mapping  

 

Concerning the distance from the curvature extrema, the modification of the 

teapot handle results in a new curvature extreme generating a new maximum critical 

point. Since in a manufacturing model high curvature points may be not isolated and 

individuate large regions, above all in correspondence of sharp features, the latter 

function does not seem to be a good choice for the mapping function in the CAD 

context. 

Experimental results of our matching method obtained by using the CAD 

models in the two databases (http://www.designrepository.org/SM03 and 

http://www.designrepository.org/DECT03) proposed in [3] and [4] are shown in Figure 

8, where the five top objects retrieved by our matching algorithm on two query models 

(a linkage and a socket) are shown. In our experiments the algorithm performs more 

than 10.000 graph comparisons in less than 10 seconds on a AMD Athlon 1GHz with 

512 Mb of RAM. Results are arranged according to their similarity value with respect to 

the query models, in decreasing order from left to right. For both, we compare the Reeb 

graph representations with respect to the choice of the mapping function f: line a) 

corresponds to the distance from the barycentre while line b) to the integral geodesic 

distance.  



 

 

Figure 8 Matching results for two query models 

Some comments can be done. Since the matching approach is based on both the 

Reeb graph representation and the edge attributes, for each function, the best match was 

the model itself. Moreover, each family of objects is correctly detected, even if some 

false positives are possible; see Figure 9 for the representation of the object groups in 

the database. For instance, the query results of the linkage correctly recognize in the 

first three top positions all similar linkages; while the choice of other two models 

depends on the function. In particular, the distance from the barycentre favours the 

choice of models whose shape is lengthened while the integral geodesic distance selects 



objects having similar features, even if spatially distributed in a different manner. This 

fact is further emphasized for the socket model, where the fourth object retrieved, which 

has the same number of holes and the same smoothed appearance of the query model, is 

preferred to a socket with a different number of holes. 

 

(a) 

 

(b) 

Figure 9 The groups, in our database, of the linkage models (a) and the socket ones (b) 

 

In figure 10, we show the Reeb graph of two objects both with respect to the 

distance from the barycentre, pictures (b,e), and with respect to the integral geodesic 

distance, (c,f). Since the subparts of the graphs (c) and (f), which are highlighted in the 

circles, are almost identical, we observe that the graph (f) does not distinguishes the 

sharp corner highlighted in (d) from the corresponding smooth region in (a). On the 

contrary, since the distance from the barycentre classify the sharp corner as a minimum, 



a new arc appear in (e) and, indeed, the graph representations in (b) and (e) differ more 

significantly. 

 

 

Figure 10 Matching of the Reeb graphs of the objects (a) and (d) with respect to the 

distance from the barycentre (b) and (e) and the integral geodesic distance (c) and (f) 

 

The use of topological structures to represent model features allows a good 

representation both for topology and structural aspects, while the ability of taking into 

account both topological and geometrical/structural aspects of the model shape strongly 

depends by the comparison process adopted. Finally, we observe that mechanical 

models may differ from small features, number of holes or smoothness: however, also 



in these cases our algorithm has performed in a satisfactory manner, emphasizing these 

differences and grouping objects with similar shape. 

A statistical description of the performance of our method is proposed in Figure 

11 and Figure 12, where the queries to our database are represented with respect to a 

standard evaluation of information retrieval systems: the precision/recall curve. In 

particular, the recall is given by the proportion of the relevant models retrieved in 

answer to a query while the precision represents the proportion of retrieved models that 

are actually relevant, [47]. In other words, the recall and precision descriptors attempt to 

measure the effectiveness of the retrieval method measuring the ability of the system to 

retrieve relevant documents and discard non-relevant ones. 

In Figure 11 we show the matching results obtained with our graph comparison 

method with respect to different resolutions of the Reeb graph. In particular, the Reeb 

graph has been extracted in a multi-resolution way, computing, respectively, 16, 32 and 

64 subdivisions of the interval [fmin, fmax]. The results in Figure 11(a) are obtained using 

the distance from the barycentre (DB), while Figure 11(b) shows the results with 

respect to the integral geodesic distance (IG). We observe that the Reeb graph with 

respect to distance from the barycentre performs better at a lower resolution while the 

one with respect to the integral geodesic distance improves when the number of 

subdivisions of [fmin, fmax] increases. This fact is not surprisingly because the distance 

from the barycentre induces a uniform slicing of the object that highlights the more the 

main shape structure of the object, the rougher the slicing is. On the contrary, since 

contour levels of the integral geodesic distance concentrate on the object protrusions 



and cavities, it induces a non-uniform surface slicing and the resulting Reeb graph 

codes more handles and shape features the more the number of contour levels increases. 

This fact, emphasises, once more, the different nature of the mapping functions: spatial 

based the first and shape based the second. 
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 (a) (b) 

Figure 11 Multi-resolution matching approach with respect to the distance from the 

barycentre (a) and the integral geodesic distance (b) 

In Figure 12 the results of our approach are compared with those obtained with 

the spherical harmonics method in [16]. Results of the method in [16] were obtained 

using the executables available at [53] and adopting the same shape classification and 

the same database when testing our method. When compared with our method, the 

approach based on spherical harmonics globally performs very well and, in general, the 

object classes are correctly recognised. Nevertheless, we have observed that the 

distinction provided by the Reeb graph structure is finer than that of the spherical 

harmonics and individuate the object parts that better overlap. For instance, the models 



in figure 13 do not belong to the same class of our database but, being both elongated, 

they are not distinguished by the spherical harmonic descriptor while the Reeb graph 

correctly classify them.  
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Figure 12 The precision/recall curve of the graph matching with respect to the distance 

from the barycentre, the integral geodesic distance and the spherical harmonics method 

for our database, over 200 models of CAD and free form objects 

 

       

(a)    (b) 

Figure 13 Two CAD models 



 

Finally, we highlight that, differently from the approach proposed in [21] and 

adopted in [3], our method uses the graph representation induced by the Reeb graph 

instead of a similarity measure deduced on the surface segmentation. This fact allows 

the construction of a not necessarily connected common sub-graph, which is able to 

detect and map together similar parts of the model object (partial matching), and makes 

the algorithm robust with respect to slight structural and topological deformation. 

Therefore, the proposed approach should not be considered as a coarse filter but as a 

finer shape analysis tool where structure and topology are taken into account.  

Moreover, even if the adopted matching approach is mainly based on the 

topological information stored in the graph, as a future development we are planning to 

consider a greater number of geometric attributes, which should improve the results so 

far obtained. 

 

5 Conclusions and future work 

No existing shape descriptor satisfies to all the ‘ideal’ requirements for shape matching. 

In fact, we have shown that curve skeletons may be topologically non equivalent to the 

original shape and, both curve skeletons and Reeb graphs, may depend on shape details. 

On the contrary spherical harmonics are more stable but do not allows the 

reconstruction of the original model and there is not correspondence between the 

descriptor and the shape of the object subparts. Furthermore, we have shown that 

matching methods based on skeletal-based descriptors are better suitable for tasks for 



which it is fundamental to decompose the shape in salient portions, while other 

approaches, such as those based on shape distributions and spherical harmonics 

[16][39], better performs in retrieval tasks if partial matching and reasoning about 

subparts differences is not needed. 

Open issues of our graph matching framework are how to improve the graph 

comparison method; for example we are planning to consider a larger number of 

attributes and define a distance measure that is also a metric. Moreover, our approach is 

available only for closed and manifold triangle meshes. This fact implies that it is not 

suitable for triangle soups such as it is easy to find in the Internet repositories. Currently 

we are investigating how to solve this problem and extend our method to generic 

surfaces with boundary. 

Since the choice of the mapping function in the Reeb graph representation 

determines the characteristics of the resulting shape descriptor and, usually, each 

function highlights a shape property at time, we are investigating how to contemporarily 

use and integrate different mapping functions. Moreover, in our opinion it is necessary 

and useful to combine our method with other matching approaches, such as coarse 

filters [11], shape distributions [33] or spherical harmonics [16][39], in a multi-step 

approach which considers these filters to progressively refine the set of geometrically 

similar candidates, and/or a multi-modal query mechanism that could provide a 

combination of various measures of shape similarities, corresponding to function, form 

and structure analysis of 3D shapes. Finally, it would be interesting to test our method 

in other application fields, such as virtual human analysis and to deduce editing 



operations from the graph isomorphism, in order to topologically and structurally align 

two different shapes. 
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