231 research outputs found

    Polyhedral Gauss Sums, and polytopes with symmetry

    Full text link
    We define certain natural finite sums of nn'th roots of unity, called GP(n)G_P(n), that are associated to each convex integer polytope PP, and which generalize the classical 11-dimensional Gauss sum G(n)G(n) defined over Z/nZ\mathbb Z/ {n \mathbb Z}, to higher dimensional abelian groups and integer polytopes. We consider the finite Weyl group W\mathcal{W}, generated by the reflections with respect to the coordinate hyperplanes, as well as all permutations of the coordinates; further, we let G\mathcal G be the group generated by W\mathcal{W} as well as all integer translations in Zd\mathbb Z^d. We prove that if PP multi-tiles Rd\mathbb R^d under the action of G\mathcal G, then we have the closed form GP(n)=vol(P)G(n)dG_P(n) = \text{vol}(P) G(n)^d. Conversely, we also prove that if PP is a lattice tetrahedron in R3\mathbb R^3, of volume 1/61/6, such that GP(n)=vol(P)G(n)dG_P(n) = \text{vol}(P) G(n)^d, for n{1,2,3,4}n \in \{ 1,2,3,4 \}, then there is an element gg in G\mathcal G such that g(P)g(P) is the fundamental tetrahedron with vertices (0,0,0)(0,0,0), (1,0,0)(1, 0, 0), (1,1,0)(1,1,0), (1,1,1)(1,1,1).Comment: 18 pages, 2 figure

    Intrinsic Volumes of Polyhedral Cones: A combinatorial perspective

    Get PDF
    The theory of intrinsic volumes of convex cones has recently found striking applications in areas such as convex optimization and compressive sensing. This article provides a self-contained account of the combinatorial theory of intrinsic volumes for polyhedral cones. Direct derivations of the General Steiner formula, the conic analogues of the Brianchon-Gram-Euler and the Gauss-Bonnet relations, and the Principal Kinematic Formula are given. In addition, a connection between the characteristic polynomial of a hyperplane arrangement and the intrinsic volumes of the regions of the arrangement, due to Klivans and Swartz, is generalized and some applications are presented.Comment: Survey, 23 page

    New Strings for Old Veneziano Amplitudes III. Symplectic Treatment

    Full text link
    A d-dimensional rational polytope P is a polytope whose vertices are located at the nodes of d-dimensional Z-lattice. Consider a number of points inside the inflated polytope (with coefficient of inflation k, k=1,2, 3...). The Ehrhart polynomial of P counts the number of such lattice points (nodes) inside the inflated P and (may be) at its faces (including vertices). In Part I (hep-th/0410242) of our four parts work we noticed that the Veneziano amplitude is just the Laplace transform of the generating function (considered as a partition function in the sence of statistical mechanics) for the Ehrhart polynomial for the regular inflated simplex obtained as a deformation retract of the Fermat (hyper) surface living in complex projective space. This observation is sufficient for development of new symplectic (this work) and supersymmetric (hep-th/0411241)physical models reproducing the Veneziano (and Veneziano-like) amplitudes. General ideas (e.g.those related to the properties of Ehrhart polynomials) are illustrated by simple practical examples (e.g. use of mirror symmetry for explanation of available experimental data on pion-pion scattering) worked out in some detail. Obtained final results are in formal accord with those earlier obtained by Vergne [PNAS 93 (1996) 14238].Comment: 48 pages J.Geom.Phys.(in press, available on line

    On stringy cohomology spaces

    Full text link
    We modify the definition of the families of AA and BB stringy cohomology spaces associated to a pair of dual reflexive Gorenstein cones. The new spaces have the same dimension as the ones defined in the joint paper with Mavlyutov \cite{BM}, but they admit natural flat connections with respect to the appropriate parameters. This solves a longstanding question of relating GKZ hypergeometric system to stringy cohomology. We construct products on these spaces by vertex algebra techniques. In the process, we fix a minor gap in \cite{BM} and prove a statement on intersection cohomology of dual cones that may be of independent interest.Comment: 21 pages, LaTe
    corecore