33 research outputs found

    Review of Polarimetric and ionospheric effects on Sar, Insar and Palsar systems: requirements and correction methods

    Get PDF
    Este estudio proporciona una actualización de las herramientas polarimétricas que se utilizan actualmente para la extracción óptima de la información a partir de imágenes de Radares de Apertura Sintética, SAR, de imágenes Interferométricas de SAR, InSAR e imágenes polarimétricas de SAR en la banda L, PALSAR. Los fundamentos de la teoría polarimétrica son discutidos en el contexto del radar de apertura sintética (SAR). Se revisa la calibración polarimétrica SAR, que es un tema importante para la extracción de información. Es considerada la extracción de información usando los parámetros de ondas dispersadas recibidas. Se proponen algunos esquemas de corrección ionosférica para las ondas transmitidas por el radar de apertura sintética (SAR) y para la interferometría SAR polarimétrica (PolInSAR) en el espacio. La variación temporal y espacial de la densidad de electrónica en la alta atmosfera afecta la propagación del pulso de radar dando lugar a distorsiones de la imagen. Se estima el Contenido Electrónico Total (CET) mediante la aplicación de la ecuación de Appleton-Hartree debido a distorsiones de enfoque, polarimetría e interferometría. Se propo-ne un estimador combinado que produce estimaciones diferenciales de CET. Se discute además el efecto de la estructura vertical de la ionosfera desde la fase interferométrica y se describen instrucciones importantes para la investigación futura.This study provides an update of the polarimetric tools currently used for optimal extraction of information from polarimetric SAR (Synthetic Aperture Radar), INSAR (Interferometric Synthetic Aperture Radar) and PALSAR (Phase Array L-band Synthetic Aperture Radar) imagery. The fundamentals of polarimetric theory are discussed in the context of synthetic aperture radar (SAR). Polarimetric SAR calibration, which is important for the extraction of subject information, is reviewed. Extraction of information using the received scattered wave is considered. Some schemes for ionospheric correction to synthetic aperture radar (SAR) and the wave interferometry (PolInSAR) are proposed. Temporal and spatial variations of the electronic density in the upper atmosphere affect radar pulse propagation and, thereby, result in distortion of the image. Due to distortions of focus, polarimetry and interferometry, the Total Electron Content (TEC) has been estimated by applying the Appleton-Hartree equation. We propose a combined estimator that reliably estimates of TEC differentials. We also discuss the effect of the vertical structure of the ionosphere from the interferometric phase and outline important avenues for future research.Fil: Rios, Victor Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Departamento de Fisica; Argentin

    Imaging ionospheric inhomogeneities using spaceborne synthetic aperture radar

    Get PDF
    We present a technique and results of 2-D imaging of Faraday rotation and total electron content using spaceborne L band polarimetric synthetic aperture radar (PolSAR). The results are obtained by processing PolSAR data collected using the Phased Array type L-band Synthetic Aperture Radar (PALSAR) on board the Advanced Land Observation Satellite. Distinguished ionospheric inhomogeneities are captured in 2-D images from space with relatively high resolutions of hundreds of meters to a couple of kilometers in auroral-, middle-, and low-latitude regions. The observed phenomena include aurora-associated ionospheric enhancement arcs, the middle-latitude trough, traveling ionospheric disturbances, and plasma bubbles, as well as ionospheric irregularities. These demonstrate a new capability of spaceborne synthetic aperture radar that will not only provide measurements to correction of ionospheric effects in Earth science imagery but also significantly benefit ionospheric studies

    Elevation and Deformation Extraction from TomoSAR

    Get PDF
    3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM-X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. This DEM co-registration method aligns two DEMs irrespective of the linear distortion model, which improves the quality of DEM vertical comparison accuracy significantly and is suitable and helpful for DEM quality assessment. A systematic TomoSAR algorithm and method have been established, tested, analysed and demonstrated for various applications (urban buildings, bridges, dams) to achieve better 3D & 4D tomographic SAR imaging results. These include applying Cosmo-Skymed X band single-polarisation data over the Zipingpu dam, Dujiangyan, Sichuan, China, to map topography; and using ALOS L band data in the San Francisco Bay region to map urban building and bridge. A new ionospheric correction method based on the tile method employing IGS TEC data, a split-spectrum and an ionospheric model via least squares are developed to correct ionospheric distortion to improve the accuracy of 3D & 4D tomographic SAR imaging. Meanwhile, a pixel by pixel orbit baseline estimation method is developed to address the research gaps of baseline estimation for 3D & 4D spaceborne SAR tomography imaging. Moreover, a SAR tomography imaging algorithm and a differential tomography four-dimensional SAR imaging algorithm based on compressive sensing, SAR interferometry phase (InSAR) calibration reference to DEM with DEM error correction, a new phase error calibration and compensation algorithm, based on PS, SVD, PGA, weighted least squares and minimum entropy, are developed to obtain accurate 3D & 4D tomographic SAR imaging results. The new baseline estimation method and consequent TomoSAR processing results showed that an accurate baseline estimation is essential to build up the TomoSAR model. After baseline estimation, phase calibration experiments (via FFT and Capon method) indicate that a phase calibration step is indispensable for TomoSAR imaging, which eventually influences the inversion results. A super-resolution reconstruction CS based study demonstrates X band data with the CS method does not fit for forest reconstruction but works for reconstruction of large civil engineering structures such as dams and urban buildings. Meanwhile, the L band data with FFT, Capon and the CS method are shown to work for the reconstruction of large manmade structures (such as bridges) and urban buildings

    Single-pass polarimetric SAR interferometry for vessel classification

    Get PDF
    This paper presents a novel method for vessel classification based on single-pass polarimetric synthetic aperture radar (SAR) interferometry. It has been developed according to recent ship scattering studies that show that the polarimetric response of many types of vessels can be described by trihedral- and dihedral-like mechanisms. The adopted methodology is quite simple. The input interferometric data are decomposed in terms of the Pauli basis, and hence, one height image is derived for each simple mechanism. Then, the local maxima of these images are isolated, and a 3-D map of scatters is generated. The correlation of this map with the scattering distribution expected for a set of reference ships provides the final classification decision. The performance of the proposed method has been tested with the orbital SAR simulator developed at Universitat PolitÈcnica de Catalunya. Different vessel models have been processed with a sensor configuration similar to the incoming TanDEM-X system. The analysis of diverse vessel bearings, vessel speeds, and sea states shows that the map of scatters matches reasonably the geometry of ships allowing a correct identification even for adverse environmental conditions.Peer Reviewe

    Parameters affecting interferometric coherence and implications for long-term operational monitoring of mining-induced surface deformation

    Get PDF
    Includes abstract.Includes bibliographical references.Surface deformation due to underground mining poses risks to health and safety as well as infrastructure and the environment. Consequently, the need for long-term operational monitoring systems exists. Traditional field-based measurements are point-based meaning that the full extent of deforming areas is poorly understood. Field-based techniques are also labour intensive if large areas are to be monitored on a regular basis. To overcome these limitations, this investigation considered traditional and advanced differential radar interferometry techniques for their ability to monitor large areas over time, remotely. An area known to be experiencing mining induced surface deformation was used as test case. The agricultural nature of the area implied that signal decorrelation effects were expected. Consequently, four sources of data, captured at three wavelengths by earth-orbiting satellites were obtained. This provided the opportunity to investigate different phase decorrelation effects on data from standard imaging platforms using real-world deformation phenomenon as test-case. The data were processed using standard dInSAR and polInSAR techniques. The deformation measurement results together with an analysis of parameters most detrimental to long-term monitoring were presented. The results revealed that, contrary to the hypothesis, polInSAR techniques did not provide an enhanced ability to monitor surface deformation compared to dInSAR techniques. Although significant improvements in coherence values were obtained, the spatial heterogeneity of phase measurements could not be improved. Consequently, polInSAR could not overcome ecorrelation associated with vegetation cover and evolving land surfaces. However, polarimetric information could be used to assess the scattering behaviour of the surface, thereby guiding the definition of optimal sensor configuration for long-term monitoring. Despite temporal and geometric decorrelation, the results presented demonstrated that mining-induced deformation could be measured and monitored using dInSAR techniques. Large areas could be monitored remotely and the areal extent of deforming areas could be assessed, effectively overcoming the limitations of field-based techniques. Consequently, guidelines for the optimal sensor configuration and image acquisition strategy for long-term operational monitoring of mining-induced surface deformation were provided

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version

    Regression-Based Retrieval of Boreal Forest Biomass in Sloping Terrain using P-band SAR Backscatter Intensity Data

    Get PDF
    A new biomass retrieval model for boreal forest using polarimetric P-band synthetic aperture radar (SAR) backscatter is presented. The model is based on two main SAR quantities: the HV backscatter and the HH/VV backscatter ratio. It also includes a topographic correction based on the ground slope. The model is developed from analysis of stand-wise data from two airborne P-band SAR campaigns: BioSAR 2007 (test site: Remningstorp, southern Sweden, biomass range: 10-287 tons/ha, slope range: 0-4 degrees) and BioSAR 2008 (test site: Krycklan, northern Sweden, biomass range: 8-257 tons/ha, slope range: 0-19 degrees). The new model is compared to five other models in a set of tests to evaluate its performance in different conditions. All models are first tested on data sets from Remningstorp with different moisture conditions, acquired during three periods in the spring of 2007. Thereafter, the models are tested in topographic terrain using SAR data acquired for different flight headings in Krycklan. The models are also evaluated across sites, i.e., training on one site followed by validation on the other site. Using the new model with parameters estimated on Krycklan data, biomass in Remningstorp is retrieved with RMSE of 40-59 tons/ha, or 22-33% of the mean biomass, which is lower compared to the other models. In the inverse scenario, the examined site is not well represented in the training data set, and the results are therefore not conclusive

    The Impact of System Effects on Estimates of Faraday Rotation From Synthetic Aperture Radar Measurements

    Get PDF
    Radio waves traversing the Earth's ionosphere suffer from Faraday rotation with noticeable effects on measurements from lower frequency space-based radars, but these effects can be easily corrected given estimates of the Faraday rotation angle, i.e., Ω. Several methods to derive Ω from polarimetric measurements are known, but they are affected by system distortions (crosstalk and channel imbalance) and noise. A first-order analysis for the most robust Faraday rotation estimator leads to a differentiable expression for the bias in the estimate of Ω in terms of the amplitudes and phases of the distortion terms and the covariance properties of the target. The analysis applies equally to L-band and P-band. We derive conditions on the amplitudes and phases of the distortion terms that yield the maximum bias and a compact expression for its value for the important case where Ω = 0. Exact simulations confirm the accuracy of the first-order analysis and verify its predictions. Conditions on the distortion amplitudes that yield a given maximum bias are derived numerically, and the maximum bias is shown to be insensitive to the amplitude of the channel imbalance terms. These results are important not just for correcting polarimetric data but also for assessing the accuracy of the estimates of the total electron content derived from Faraday rotation

    On Small Satellites for Oceanography: A Survey

    Get PDF
    The recent explosive growth of small satellite operations driven primarily from an academic or pedagogical need, has demonstrated the viability of commercial-off-the-shelf technologies in space. They have also leveraged and shown the need for development of compatible sensors primarily aimed for Earth observation tasks including monitoring terrestrial domains, communications and engineering tests. However, one domain that these platforms have not yet made substantial inroads into, is in the ocean sciences. Remote sensing has long been within the repertoire of tools for oceanographers to study dynamic large scale physical phenomena, such as gyres and fronts, bio-geochemical process transport, primary productivity and process studies in the coastal ocean. We argue that the time has come for micro and nano satellites (with mass smaller than 100 kg and 2 to 3 year development times) designed, built, tested and flown by academic departments, for coordinated observations with robotic assets in situ. We do so primarily by surveying SmallSat missions oriented towards ocean observations in the recent past, and in doing so, we update the current knowledge about what is feasible in the rapidly evolving field of platforms and sensors for this domain. We conclude by proposing a set of candidate ocean observing missions with an emphasis on radar-based observations, with a focus on Synthetic Aperture Radar.Comment: 63 pages, 4 figures, 8 table
    corecore