98,779 research outputs found

    Large enhancement of deuteron polarization with frequency modulated microwaves

    Get PDF
    We report a large enhancement of 1.7 in deuteron polarization up to values of 0.6 due to frequency modulation of the polarizing microwaves in a two liters polarized target using the method of dynamic nuclear polarization. This target was used during a deep inelastic polarized muon-deuteron scattering experiment at CERN. Measurements of the electron paramagnetic resonance absorption spectra show that frequency modulation gives rise to additional microwave absorption in the spectral wings. Although these results are not understood theoretically, they may provide a useful testing ground for the deeper understanding of dynamic nuclear polarization.Comment: 10 pages, including the figures coming in uuencoded compressed tar files in poltar.uu, which also brings cernart.sty and crna12.sty files neede

    A Scalar Wigner Theory for Polarized Light in Nonlinear Kerr Media

    Get PDF
    A scalar Wigner distribution function for describing polarized light is proposed in analogy with the treatment of spin variables in quantum kinetic theory. The formalism is applied to the propagation of circularly polarized light in nonlinear Kerr media and an extended phase space evolution equation is derived along with invariant quantities. We further consider modulation instability as well as the extension to partially coherent fields.Comment: 6 page

    Hysteresis effect in \nu=1 quantum Hall system under periodic electrostatic modulation

    Full text link
    The effect of a one-dimensional periodic electrostatic modulation on quantum Hall systems with filling factor \nu=1 is studied. We propose that, either when the amplitude of the modulation potential or the tilt angle of the magnetic field is varied, the system can undergo a first-order phase transition from a fully spin-polarized homogeneous state to a partially spin-polarized charge-density-wave state, and show hysteresis behavior of the spin polarization. This is confirmed by our self-consistent numerical calculations within the Hartree-Fock approximation. Finally we suggest that the \nu=1/3 fractional quantum Hall state may also show similar hysteresis behavior in the presence of a periodic potential modulation.Comment: RevTeX, 4 page, 3 EPS figure

    Tailoring Chirp in Spin-Lasers

    Full text link
    The usefulness of semiconductor lasers is often limited by the undesired frequency modulation, or chirp, a direct consequence of the intensity modulation and carrier dependence of the refractive index in the gain medium. In spin-lasers, realized by injecting, optically or electrically, spin-polarized carriers, we elucidate paths to tailoring chirp. We provide a generalized expression for chirp in spin-lasers and introduce modulation schemes that could simultaneously eliminate chirp and enhance the bandwidth, as compared to the conventional (spin-unpolarized) lasers.Comment: 4 pages, 3 figure

    Spin Modulation in Semiconductor Lasers

    Full text link
    We provide an analytic study of the dynamics of semiconductor lasers with injection (pump) of spin-polarized electrons, previously considered in the steady-state regime. Using complementary approaches of quasi-static and small signal analyses, we elucidate how the spin modulation in semiconductor lasers can improve performance, as compared to the conventional (spin-unpolarized) counterparts. We reveal that the spin-polarized injection can lead to an enhanced bandwidth and desirable switching properties of spin-lasers.Comment: 4 pages, 3 figure

    Shape-dependent Depinning of a Domain Wall by a Magnetic Field and a Spin-Polarized Current

    Full text link
    The effect of sample shape on the depinning of the domain wall (DW) driven by an applied magnetic field or a spin-polarized current is studied theoretically. The shape effect resulting from the modulation of the sample width (geometric pinning) can essentially affect the DW depinning. We found a good agreement between the ratios of the critical values of the magnetic field and the spin-polarized current predicted by the theory and measured in the experiment.Comment: 9 pages, 5 figure

    Tunable plasmon-enhanced birefringence in ribbon array of anisotropic 2D materials

    Get PDF
    We explore the far-field scattering properties of anisotropic 2D materials in ribbon array configuration. Our study reveals the plasmon-enhanced linear birefringence in these ultrathin metasurfaces, where linearly polarized incident light can be scattered into its orthogonal polarization or be converted into circular polarized light. We found wide modulation in both amplitude and phase of the scattered light via tuning the operating frequency or material's anisotropy and develop models to explain the observed scattering behavior

    Ballistic spin transport through electronic stub tuners: spin precession, selection, and square-wave transmission

    Full text link
    Ballistic spin transport is studied through electronic tuners with double stubs attached to them. The spins precess due to the spin-orbit interaction. Injected polarized spins can exit the structure polarized in the opposite direction. A nearly square-wave spin transmission, with values 1 and 0, can be obtained using a periodic system of symmetric stubs and changing their length or width. The gaps in the transmission can be widened using asymmetric stubs. An additional modulation is obtained upon combining stub structures with different values of the spin-orbit strength.Comment: 3 pages, 4 figure

    A Sensitive Faraday Rotation Setup Using Triple Modulation

    Get PDF
    The utilization of polarized targets in scattering experiments has become a common practice in many major accelerator laboratories. Noble gases are especially suitable for such applications, since they can be easily hyper-polarized using spin exchange or metastable pumping techniques. Polarized helium-3 is a very popular target because it often serves as an effective polarized neutron due to its simple nuclear structure. A favorite cell material to generate and store polarized helium-3 is GE-180, a relatively dense aluminosilicate glass. In this paper, we present a Faraday rotation method, using a new triple modulation technique, where the measurement of the Verdet constants of SF57 flint glass, pyrex glass, and air were tested. The sensitivity obtained shows that this technique may be implemented in future cell wall characterization and thickness measurements. We also discuss the first ever extraction of the Verdet constant of GE-180 glass for four wavelength values of 632 nm, 773 nm, 1500 nm, and 1547 nm, whereupon the expected 1/{\lambda}^{2} dependence was observed.Comment: 4 pages, 2 figures Updated version for RSI submissio
    • …
    corecore