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Tunable plasmon-enhanced birefringence in ribbon array of anisotropic
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We explore the far-field scattering properties of anisotropic two-dimensional materials in ribbon array
configuration. Our study reveals the plasmon-enhanced linear birefringence in these ultrathin metasurfaces,
where linearly polarized incident light can be scattered into its orthogonal polarization or be converted into
circular polarized light. We found wide modulation in both amplitude and phase of the scattered light via tuning
the operating frequency or material’s anisotropy and develop models to explain the observed scattering behavior.
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Introduction. Metal-based metasurfaces can allow ways
to manipulate light not possible in natural media, such as
anomalous reflection and refraction [1], photonic spin Hall
effect [2], subwavelength imaging [3], among many other
optical phenomena [4–6]. Although one can tailor the optical
response of these metasurfaces with geometry and choice
of constituent metals, such metasurfaces cannot be cast in
reconfigurable photonics, where real time control over the des-
ignated functionality is demanded [7]. As alternate platforms,
two-dimensional (2D) materials [8,9], such as graphene, which
allow for the active modulation of optical properties via
electrical [10], chemical [11], and optical [12] means, garner
attention as natural material choice for application in tunable
planar photonics [13–15].

The linear birefringent effect, which denotes direction-
dependent phase accumulation of linearly polarized light,
relies on anisotropic property of the host medium [16]. In
metasurfaces, the latter can be achieved through artificial
manipulation of surface itself (with anisotropic doping [17]
or patterning [18,19]) or its surroundings (through integration
with an array of anisotropic metallic or dielectric patches
[20,21]). Alternately, with recent isolation of anisotropic 2D
materials [22–25], one can exploit the inherent anisotropy
of the crystal lattice to induce the phase anisotropy [26,27].
In homogeneous form, such 2D materials with anisotropic
[28,29] and hyperbolic [30,31] polaritonic properties can be
regarded as ideal material platforms to be used as ultrathin
linearly birefringent retarders.

In this Rapid Communication, we study light scattering
properties in anisotropic 2D materials and show how
plasmon excitation in ribbon array (RA) configuration can
enable a wide range of control over the amplitude, phase, and
polarization state of the scattered light. Through the inspection
of various scenarios, we found that the mere rotation of the
array plane relative to the incident field polarization, or the
modulation of material Drude weights through the control
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of its carrier density or effective mass, can be adopted to
drastically tune the RA optical response.

Homogeneous anisotropic surface. To avoid additional
scattering effects due to index contrast, we focus our study
on a free-standing anisotropic surface. The 2D crystal resides
on the x-y plane, where x and y are set to be along the lattice
high-symmetry directions, i.e., x = xp and y = yp, with xp

denoting the crystal axis with the highest static conductivity;
see the schematic illustration in Fig. 1(a).

For a linearly polarized plane wave impinging normally on
the anisotropic 2D lattice, the scattered fields, in general, are
elliptically polarized plane waves with the scattered power,
given as [32]

|ς |2 = |ςx |2 + |ςy |2 tan2 θ0

1 + tan2 θ0
, (1)

and ellipse major-axis rotation of

�θς = 1
2 arctan(Aς ,Bς ) − θ0,

Aς = 2|ςxςy tan θ0| cos ψς,

Bς = |ςx |2 − |ςy |2 tan2 θ0. (2)

In Eqs. (1) and (2), ς → r(t) for the reflected (transmitted)
wave and arctan (·,·) is the four-quadrant inverse tangent func-
tion. θ0 is the angular detuning and denotes the angle between
the incident polarization vector and x axis; see Fig. 1(a). Here,
ςj with j ∈ {x,y} is the scattering amplitude, defined as the
ratio of the scattered field along the j axis over the field
component of the incident wave parallel to the same axis. For
the homogeneous surface, the latter can be calculated through

rj = −σ
p

jj

2Y0 + σ
p

jj

, tj = 2Y0

2Y0 + σ
p

jj

, (3)

where Y0 = √
ε0/μ0 is the intrinsic admittance of the free

space. A Drude-like expression is used to model the dynamic
conductivity of the anisotropic surface,

σ
p

jj (ω) = iDj

ω + iδ/h̄
, (4)

where δ accounts for the finite carrier lifetime, taken to be
10 meV in this work, and Dj denotes the Drude weight along
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FIG. 1. (a) The schematic illustration of a plane wave interaction with a homogeneous anisotropic 2D material. Contour plots of the
reflected (b) power and (c) absolute rotation angle (in degrees) vs frequency and angular detuning. (d) and (e) are similar to (b) and (c) for the
transmitted field.

the corresponding axis, j [33]. We note that for a homogeneous
surface, off-diagonal conductivity elements are zero in the
basis of the principal axes. The Drude model would suffice for
terahertz frequencies since the band gaps of known anisotropic
2D materials are in the midinfrared to visible [34–36]. Take,
for instance, a 10 nm black phosphorous film, with a doping
of 0.3 eV, which yields the pair of Drude weights Dx = 162
and Dy = 59 GHz/
 (see Supplemental Material [37]).
Throughout this study, unless mentioned otherwise, these
Drude weights are assumed. The quantity ψς = ∠ςy − ∠ςx

measures the phase retardation between the components of the
scattered field along the two coordinate axes. To determine the
polarization type of the scattered field, we compute the ellip-
ticity angle φς , defined as tan 2φς = tan ψς sin 2(�θς + θ0),
where φς = 0◦/45◦ identifies the scattered field as a plane
wave with linear/circular field polarization [32].

The homogeneous surface response and its dependence on
frequency and angular detuning are summarized in Figs. 1(b)–
1(e). When incident light is linearly polarized along the
principal axes, the scattered field remains linear with zero
rotation of the polarization plane. The corresponding power in
this case is simplified to |ς |2 = |ςx/y |2 for θ0 = 0◦/90◦ angular
detuning. However, when the incident polarization is not
aligned with the crystal high-symmetry axes, the anisotropic
Drude absorption renders the scattered fields to be of elliptical
form with nonzero ellipse rotation. The observed trends in
this scenario suggest a trade-off between the scattered power
and �θς , where one can identify a maximum for the ellipse
rotation angle �θmax

ς at a particular angular detuning, θ
max,ς

0 .
These quantities can be well approximated by [37]

θ
max,ς

0 � arctan

√∣∣∣∣ςx

ςy

∣∣∣∣,
�θmax

ς � arctan

[
1

2

(√∣∣∣∣ςy

ςx

∣∣∣∣ −
√∣∣∣∣ςx

ςy

∣∣∣∣
)]

. (5)

From Figs. 1(c) and 1(e), the maximum rotation angle is higher
for the reflected wave compared to that of the transmitted wave.
Moreover, θ

max,r
0 > θ

max,t
0 . Equations (3) and (5), along with

|σp
xx | > |σp

yy |, can be invoked to justify these observations.
From Eq. (5), the linear birefringent effect and its induced

ellipse rotation is directly dependent on the ratio of the
scattered amplitudes. Thus, to engineer the ratio, one may
pattern the homogeneous 2D surface into a periodic array of
microribbons, where the scattered amplitude, perpendicular to
the ribbons, can be enhanced through excitation of localized
plasmons [38,39]. In the following, we verify how effective
patterning is in tuning the linear birefringence.

Periodic array of microribbons. To properly model the
plane wave interaction with patterned anisotropic metasur-
faces, one needs to resort to numerical approaches for solving
the Maxwell’s equations in conjunction with the appropriate
boundary conditions. For this purpose, we use the periodic
method of moments technique, which has been widely adopted
for the simulation of patterned conductive metasurfaces in
the past decades [40,41]. The method offers a straightforward
implementation of the anisotropic conductivity and provides
a versatile platform for analyzing the plane wave interaction
[42,43]. In line with the study we conduct for the homogeneous
surface, here again we are interested in a free-standing array
under normal illumination.

In conjunction with the numerical results, we also de-
rived an approximate analytical model, which helps develop
physical intuition on the diffraction problem. For metal grid
reflectors at a dielectric boundary, using a transmission line
analogy, an effective conductivity tensor can be defined as
σ t = f (Zm + f Zg)−1, where f is the filling factor and Zm

(Zg) is the impedance tensor of the metal (gap) region [44]. For
the metallic segment, the impedance tensor written in a x-y
coordinate system can be calculated as Z−1

m = MασpM−1
α ,

where Mα is the 2D rotation matrix and σp is the principal
conductivity tensor with its nonzero elements given in Eq. (4).
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FIG. 2. (a) The schematic representation of ellipse major-axis rotation in the scattered fields of a microribbon array. The angular detuning
and frequency dependence of the (b) power, (c) absolute rotation angle (in degrees), and (d) absolute ellipticity (in degrees) of the reflected
field for RA with α = 0◦, L = 6 μm, and f = 0.5. (e), (f), and (g) are similar to (b), (c), and (d), respectively, for the transmitted field. In
(c) and (d), the black dashed, red solid, and purple dotted lines denote data points corresponding to ψr = 90◦, Er

x = Er
y , and |�θr | = 90◦,

respectively, obtained with the analytical method. In (f) and (g), green dotted-dashed lines show the analytical results for ψt = 0◦. The black
arrows denote the fundamental plasmon frequency obtained from the analytical model. The analytic expressions clearly reproduce the key
features in full-wave numerical results.

Note that for the array configuration, x and y axes are chosen
to be parallel and perpendicular to the strips. Thus, depending
on the patterning angle α, these axes may not coincide with
the crystal principal directions; see Fig. 2(a). The coupling
impedance tensor, which models the gap portion, is computed
through Zg = i

ωCc
x̂x̂, where Cc = 2ε0L

π
ln {csc [π (1 − f )/2]}

denotes the near-field coupling capacitance and L is the grid
period [45].

With the homogenized-surface description of the RA at our
disposal, the scattered amplitudes of the patterned surface are
obtained as [37]

rx = −�−1
[
σ t

xx

(
2Y0 + σ t

yy

) + σ t
xy

(
2Y0 tan θ0 − σ t

xy

)]
,

ry = −�−1
[
σ t

yy

(
2Y0 + σ t

xx

) + σ t
xy

(
2Y0 cot θ0 − σ t

xy

)]
,

tx = �−1
[
2Y0

(
2Y0 + σ t

yy − σ t
xy tan θ0

)]
,

ty = �−1
[
2Y0

(
2Y0 + σ t

xx − σ t
xy cot θ0

)]
, (6)

where � = (2Y0 + σ t
xx)(2Y0 + σ t

yy) − (σ t
xy)2. These quanti-

ties are substituted in Eqs. (1) and (2) to compute the scattered
power and rotation angle of the RA.

For the array geometry, we first consider the simplest setup:
Ribbons are patterned along the crystal high-symmetry direc-
tions (α ∈ {0◦,90◦}) and the incident field has polarization par-
allel (θ0 = 90◦) or perpendicular (θ0 = 0◦) to the ribbon axes.
In terms of ellipticity and rotation angle, the array response
resembles the homogeneous surface with θ0 ∈ {0◦,90◦}, as
scattered fields exhibit neither polarization rotation nor linear-
elliptic polarization conversion. The scattered power, however,
deviates from that of the 2D surface. For parallel polarization,
the reflected (transmitted) power decreases (increases) almost
uniformly with patterning, in accordance with the reduced

filling factor of the ribbons. For perpendicular incidence,
however, the reflected (transmitted) spectra manifests a peak
(dip) due to excitation of the localized plasmons.

Next, we proceed to the case where θ0 /∈ {0◦,90◦}, while
the array is still assumed to be cut along the high-symmetry
axes, i.e., α ∈ {0◦,90◦}. We discuss mainly the case where
α = 0◦, for which the conductivity elements are simplified
to (σ t

xx)−1 = (f σ
p
xx)−1 − (iωCc)−1, σ t

xy = σ t
yx = 0, and σ t

yy =
f σ

p
yy . As shown in Figs. 2(b) and 2(e), the power spectrum for

θ0 ∈ (0◦,90◦) still exhibits the plasmon resonance, although
its strength, in terms of the reflection peak or transmission
drop, decreases with angular detuning. Focusing on the
characteristic angles, the reflected field ellipse undergoes a
major-axis rotation as large as 90◦ at pairs of angular detuning
and frequency which satisfy the following relation,

tan2 θ0 = cos ψr − |rx/ry |
cos ψr − |ry/rx | , (7)

where rx and ry are given in Eq. (6). As shown in the Figs. 2(c)
and 2(d), the frequency for which �θr = 90◦ increases with
angular detuning, until it reaches a point where the reflected
field acquires circular polarization. Quantitatively, the latter
can be tracked with the following criteria, Re{ry/rx} = 0 and
|Im{rx/ry}| = tan θ0, corresponding to 90◦ phase retardation
and amplitude equality of the reflected field components
along the two coordinate axes. For the transmitted wave, as
illustrated in Figs. 2(f) and 2(g), the field maximum rotation
occurs at plasmon resonance. Furthermore, irrespective of
θ0, the transmitted field remains linearly polarized at the
plasmon frequency, for which the equivalent condition reads
as Im{ty/tx} = 0, with tx and ty as given in Eq. (6).
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FIG. 3. The reflected wave (a) power, (b) ellipse
rotation angle (in degrees), and (c) ellipticity (in
degrees) as functions of γ and frequency for RA
with (α = 0◦, θ0 = 35◦). (d)–(f) are similar to (a)–(c),
respectively, for the transmitted field of the array
with α = 25◦, θ0 = 35◦. For all panels, L = 6 μm
and f = 0.5.

As a final remark in this section, we emphasize that
various configurations may be adopted to enhance the linear
birefringence through coupling the parallel and perpendicular
responses of the RA. These include scenarios when (1)
ribbons are patterned along the crystal axes, but illuminated
with θ0 /∈ {0◦,90◦}, (2) the incident field is polarized along
the principal axes, but the array is cut with α /∈ {0◦,90◦},
or (3) a hybrid scheme of (1) and (2) is incorporated.
Although our discussion so far covers mostly scheme (1),
the analytical framework developed here can be used for
other configurations as well. As we shall discuss below, these
schemes provide additional degrees of freedom in tuning the
operating point of the metadevices based on these anisotropic
surfaces.

Tunability of the linear birefringent effect. To assess the
impact of anisotropy on the electromagnetic response, we
define γ = (Dx − Dy)/(Dx + Dy) as a measure to quantify the
degree of anisotropy in the material. We vary γ by increasing
Dx or Dy , while leaving the sum unchanged, Dx + Dy = 200
GHz/
. γ = 0 implies the isotropic material, while |γ | = 1
denotes extreme anisotropy where conductivity is zero along
one of the crystal axes. We stress that the γ factor depends
primarily on the Fermi level and crystal effective masses,
quantities which can be tuned in experiments with electrostatic
gating [22], in situ doping [46], or strain engineering [47].

According to Figs. 3(a) and 3(d), the plasmon resonance
exhibits a blueshift as γ approaches unity. Furthermore, a
redshift in the plasmon frequency can be observed with
increasing the patterning angle. These trends are consistent
with

√
Dx cos2 α + Dy sin2 α dependence, calculated using

the plasmon dispersion of an anisotropic homogeneous surface

in quasielectrostatic limit [19,33]. Comparing the reflected
mode results in Figs. 2(c) and 2(d) with those in Figs. 3(b)
and 3(c), it is apparent that the frequency range at which
linear-circular polarization conversion takes place can be
widely tuned with modulation of the anisotropy parameter
and angular detuning. Furthermore, from Figs. 3(d)–3(f), the
transmitted field polarization, although exhibiting nonzero
rotation, remains linear at plasmon frequencies. The tunability
of the plasmon resonance with γ and patterning angle thus
renders the RA configuration a dynamic polarization rotator
in the transmitted mode.

Conclusion. In summary, through full-wave calculation
and intuitive analytical formulation, we discuss linear bire-
fringence in ribbon array of anisotropic 2D materials. We
found, relative to the extended surface, that both phase
retardation and amplitude attenuation of the scattered field can
be altered more drastically in the array geometry. This includes
scenarios where the array exhibits linear-circular polarization
conversion in its reflected mode, while it concurrently acts
as a polarization rotator in the transmitted mode. The wide
tunability of the array’s response, with simultaneous control
of the angular detuning and anisotropic Drude weights, renders
the anisotropic ribbon array as a viable platform to be used in
dynamic metadevices.
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