201 research outputs found

    Evaluation of Chinese Quad-polarization Gaofen-3 SAR Wave Mode Data for Significant Wave Height Retrieval

    Get PDF
    Our work describes the accuracy of Chinese quad-polarization Gaofen-3 (GF-3) synthetic aperture radar (SAR) wave mode data for wave retrieval and provides guidance for the operational applications of GF-3 SAR. In this study, we evaluated the accuracy of the SAR-derived significant wave height (SWH) from 10,514 GF-3 SAR images with visible wave streaks acquired in wave mode by using the existing wave retrieval algorithms, e.g., the theoretical-based algorithm parameterized first-guess spectrum method (PFSM), the empirical algorithm CSAR_WAVE2 for VV-polarization, and the algorithm for quad-polarization (Q-P). The retrieved SWHs were compared with the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis field with 0.125ยฐ grids. The root mean square error (RMSE) of the SWH is 0.57 m, found using CSAR_WAVE2, and this RMSE value was less than the RMSE values for the analysis results achieved with the PFSM and Q-P algorithms. The statistical analysis also indicated that wind speed had little impact on the bias with increasing wind speed. However, the retrieval tended to overestimate when the SWH was smaller than 2.5 m and underestimate with an increasing SWH. This behavior provides a perspective of the improvement needed for the SWH retrieval algorithm using the GF-3 SAR acquired in wave mode

    ALOS-2/PALSAR-2 Calibration, Validation, Science and Applications

    Get PDF
    Twelve edited original papers on the latest and state-of-art results of topics ranging from calibration, validation, and science to a wide range of applications using ALOS-2/PALSAR-2. We hope you will find them useful for your future research

    ย Ocean Remote Sensing with Synthetic Aperture Radar

    Get PDF
    The ocean covers approximately 71% of the Earthโ€™s surface, 90% of the biosphere and contains 97% of Earthโ€™s water. The Synthetic Aperture Radar (SAR) can image the ocean surface in all weather conditions and day or night. SAR remote sensing on ocean and coastal monitoring has become a research hotspot in geoscience and remote sensing. This bookโ€”Progress in SAR Oceanographyโ€”provides an update of the current state of the science on ocean remote sensing with SAR. Overall, the book presents a variety of marine applications, such as, oceanic surface and internal waves, wind, bathymetry, oil spill, coastline and intertidal zone classification, ship and other man-made objectsโ€™ detection, as well as remotely sensed data assimilation. The book is aimed at a wide audience, ranging from graduate students, university teachers and working scientists to policy makers and managers. Efforts have been made to highlight general principles as well as the state-of-the-art technologies in the field of SAR Oceanography

    Remote Sensing in Mangroves

    Get PDF
    The book highlights recent advancements in the mapping and monitoring of mangrove forests using earth observation satellite data. New and historical satellite data and aerial photographs have been used to map the extent, change and bio-physical parameters, such as phenology and biomass. Research was conducted in different parts of the world. Knowledge and understanding gained from this book can be used for the sustainable management of mangrove forests of the worl

    ํ›ˆ๋ จ ์ž๋ฃŒ ์ž๋™ ์ถ”์ถœ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๊ธฐ๊ณ„ ํ•™์Šต์„ ํ†ตํ•œ SAR ์˜์ƒ ๊ธฐ๋ฐ˜์˜ ์„ ๋ฐ• ํƒ์ง€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€, 2021. 2. ๊น€๋•์ง„.Detection and surveillance of vessels are regarded as a crucial application of SAR for their contribution to the preservation of marine resources and the assurance on maritime safety. Introduction of machine learning to vessel detection significantly enhanced the performance and efficiency of the detection, but a substantial majority of studies focused on modifying the object detector algorithm. As the fundamental enhancement of the detection performance would be nearly impossible without accurate training data of vessels, this study implemented AIS information containing real-time information of vesselโ€™s movement in order to propose a robust algorithm which acquires the training data of vessels in an automated manner. As AIS information was irregularly and discretely obtained, the exact target interpolation time for each vessel was precisely determined, followed by the implementation of Kalman filter, which mitigates the measurement error of AIS sensor. In addition, as the velocity of each vessel renders an imprint inside the SAR image named as Doppler frequency shift, it was calibrated by restoring the elliptic satellite orbit from the satellite state vector and estimating the distance between the satellite and the target vessel. From the calibrated position of the AIS sensor inside the corresponding SAR image, training data was directly obtained via internal allocation of the AIS sensor in each vessel. For fishing boats, separate information system named as VPASS was applied for the identical procedure of training data retrieval. Training data of vessels obtained via the automated training data procurement algorithm was evaluated by a conventional object detector, for three detection evaluating parameters: precision, recall and F1 score. All three evaluation parameters from the proposed training data acquisition significantly exceeded that from the manual acquisition. The major difference between two training datasets was demonstrated in the inshore regions and in the vicinity of strong scattering vessels in which land artifacts, ships and the ghost signals derived from them were indiscernible by visual inspection. This study additionally introduced a possibility of resolving the unclassified usage of each vessel by comparing AIS information with the accurate vessel detection results.์ „์ฒœํ›„ ์ง€๊ตฌ ๊ด€์ธก ์œ„์„ฑ์ธ SAR๋ฅผ ํ†ตํ•œ ์„ ๋ฐ• ํƒ์ง€๋Š” ํ•ด์–‘ ์ž์›์˜ ํ™•๋ณด์™€ ํ•ด์ƒ ์•ˆ์ „ ๋ณด์žฅ์— ๋งค์šฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ๊ธฐ๊ณ„ ํ•™์Šต ๊ธฐ๋ฒ•์˜ ๋„์ž…์œผ๋กœ ์ธํ•ด ์„ ๋ฐ•์„ ๋น„๋กฏํ•œ ์‚ฌ๋ฌผ ํƒ์ง€์˜ ์ •ํ™•๋„ ๋ฐ ํšจ์œจ์„ฑ์ด ํ–ฅ์ƒ๋˜์—ˆ์œผ๋‚˜, ์ด์™€ ๊ด€๋ จ๋œ ๋‹ค์ˆ˜์˜ ์—ฐ๊ตฌ๋Š” ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ฐœ๋Ÿ‰์— ์ง‘์ค‘๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ํƒ์ง€ ์ •ํ™•๋„์˜ ๊ทผ๋ณธ์ ์ธ ํ–ฅ์ƒ์€ ์ •๋ฐ€ํ•˜๊ฒŒ ์ทจ๋“๋œ ๋Œ€๋Ÿ‰์˜ ํ›ˆ๋ จ์ž๋ฃŒ ์—†์ด๋Š” ๋ถˆ๊ฐ€๋Šฅํ•˜๊ธฐ์—, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์„ ๋ฐ•์˜ ์‹ค์‹œ๊ฐ„ ์œ„์น˜, ์†๋„ ์ •๋ณด์ธ AIS ์ž๋ฃŒ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ธ๊ณต ์ง€๋Šฅ ๊ธฐ๋ฐ˜์˜ ์„ ๋ฐ• ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ์‚ฌ์šฉ๋  ํ›ˆ๋ จ์ž๋ฃŒ๋ฅผ ์ž๋™์ ์œผ๋กœ ์ทจ๋“ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ด์‚ฐ์ ์ธ AIS ์ž๋ฃŒ๋ฅผ SAR ์˜์ƒ์˜ ์ทจ๋“์‹œ๊ฐ์— ๋งž์ถ”์–ด ์ •ํ™•ํ•˜๊ฒŒ ๋ณด๊ฐ„ํ•˜๊ณ , AIS ์„ผ์„œ ์ž์ฒด๊ฐ€ ๊ฐ€์ง€๋Š” ์˜ค์ฐจ๋ฅผ ์ตœ์†Œํ™”ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์ด๋™ํ•˜๋Š” ์‚ฐ๋ž€์ฒด์˜ ์‹œ์„  ์†๋„๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ๋„ํ”Œ๋Ÿฌ ํŽธ์ด ํšจ๊ณผ๋ฅผ ๋ณด์ •ํ•˜๊ธฐ ์œ„ํ•ด SAR ์œ„์„ฑ์˜ ์ƒํƒœ ๋ฒกํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ์œ„์„ฑ๊ณผ ์‚ฐ๋ž€์ฒด ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๋ฅผ ์ •๋ฐ€ํ•˜๊ฒŒ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ์ด๋ ‡๊ฒŒ ๊ณ„์‚ฐ๋œ AIS ์„ผ์„œ์˜ ์˜์ƒ ๋‚ด์˜ ์œ„์น˜๋กœ๋ถ€ํ„ฐ ์„ ๋ฐ• ๋‚ด AIS ์„ผ์„œ์˜ ๋ฐฐ์น˜๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ์„ ๋ฐ• ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ›ˆ๋ จ์ž๋ฃŒ ํ˜•์‹์— ๋งž์ถ”์–ด ํ›ˆ๋ จ์ž๋ฃŒ๋ฅผ ์ทจ๋“ํ•˜๊ณ , ์–ด์„ ์— ๋Œ€ํ•œ ์œ„์น˜, ์†๋„ ์ •๋ณด์ธ VPASS ์ž๋ฃŒ ์—ญ์‹œ ์œ ์‚ฌํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ๊ฐ€๊ณตํ•˜์—ฌ ํ›ˆ๋ จ์ž๋ฃŒ๋ฅผ ์ทจ๋“ํ•˜์˜€๋‹ค. AIS ์ž๋ฃŒ๋กœ๋ถ€ํ„ฐ ์ทจ๋“ํ•œ ํ›ˆ๋ จ์ž๋ฃŒ๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ•๋Œ€๋กœ ์ˆ˜๋™ ์ทจ๋“ํ•œ ํ›ˆ๋ จ์ž๋ฃŒ์™€ ํ•จ๊ป˜ ์ธ๊ณต ์ง€๋Šฅ ๊ธฐ๋ฐ˜ ์‚ฌ๋ฌผ ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ์ •ํ™•๋„๋ฅผ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์ œ์‹œ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ์ทจ๋“ํ•œ ํ›ˆ๋ จ ์ž๋ฃŒ๋Š” ์ˆ˜๋™ ์ทจ๋“ํ•œ ํ›ˆ๋ จ ์ž๋ฃŒ ๋Œ€๋น„ ๋” ๋†’์€ ํƒ์ง€ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, ์ด๋Š” ๊ธฐ์กด์˜ ์‚ฌ๋ฌผ ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ‰๊ฐ€ ์ง€ํ‘œ์ธ ์ •๋ฐ€๋„, ์žฌํ˜„์œจ๊ณผ F1 score๋ฅผ ํ†ตํ•ด ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•œ ํ›ˆ๋ จ์ž๋ฃŒ ์ž๋™ ์ทจ๋“ ๊ธฐ๋ฒ•์œผ๋กœ ์–ป์€ ์„ ๋ฐ•์— ๋Œ€ํ•œ ํ›ˆ๋ จ์ž๋ฃŒ๋Š” ํŠนํžˆ ๊ธฐ์กด์˜ ์„ ๋ฐ• ํƒ์ง€ ๊ธฐ๋ฒ•์œผ๋กœ๋Š” ๋ถ„๋ณ„์ด ์–ด๋ ค์› ๋˜ ํ•ญ๋งŒ์— ์ธ์ ‘ํ•œ ์„ ๋ฐ•๊ณผ ์‚ฐ๋ž€์ฒด ์ฃผ๋ณ€์˜ ์‹ ํ˜ธ์— ๋Œ€ํ•œ ์ •ํ™•ํ•œ ๋ถ„๋ณ„ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด์™€ ํ•จ๊ป˜, ์„ ๋ฐ• ํƒ์ง€ ๊ฒฐ๊ณผ์™€ ํ•ด๋‹น ์ง€์—ญ์— ๋Œ€ํ•œ AIS ๋ฐ VPASS ์ž๋ฃŒ๋ฅผ ์ด์šฉํ•˜์—ฌ ์„ ๋ฐ•์˜ ๋ฏธ์‹๋ณ„์„ฑ์„ ํŒ์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ ๋˜ํ•œ ์ œ์‹œํ•˜์˜€๋‹ค.Chapter 1. Introduction - 1 - 1.1 Research Background - 1 - 1.2 Research Objective - 8 - Chapter 2. Data Acquisition - 10 - 2.1 Acquisition of SAR Image Data - 10 - 2.2 Acquisition of AIS and VPASS Information - 20 - Chapter 3. Methodology on Training Data Procurement - 26 - 3.1 Interpolation of Discrete AIS Data - 29 - 3.1.1 Estimation of Target Interpolation Time for Vessels - 29 - 3.1.2 Application of Kalman Filter to AIS Data - 34 - 3.2 Doppler Frequency Shift Correction - 40 - 3.2.1 Theoretical Basis of Doppler Frequency Shift - 40 - 3.2.2 Mitigation of Doppler Frequency Shift - 48 - 3.3 Retrieval of Training Data of Vessels - 53 - 3.4 Algorithm on Vessel Training Data Acquisition from VPASS Information - 61 - Chapter 4. Methodology on Object Detection Architecture - 66 - Chapter 5. Results - 74 - 5.1 Assessment on Training Data - 74 - 5.2 Assessment on AIS-based Ship Detection - 79 - 5.3 Assessment on VPASS-based Fishing Boat Detection - 91 - Chapter 6. Discussions - 110 - 6.1 Discussion on AIS-Based Ship Detection - 110 - 6.2 Application on Determining Unclassified Vessels - 116 - Chapter 7. Conclusion - 125 - ๊ตญ๋ฌธ ์š”์•ฝ๋ฌธ - 128 - Bibliography - 130 -Maste

    SAR data and field surveys combination to update rainfall-induced shallow landslide inventory

    Get PDF
    The Campania region has been recurrently hit by severe landslides in volcanoclastic deposits. The city of Naples, and in particular the Camaldoli and Agnano hills (Phlegraean Fields), also suffered several landslide crises in weathered volcanoclastic rocks as a consequence of intense rainfalls or wildfires. To identify slope failures phenomena occurred in the winter season 2019โ€“2020 an innovative procedure has been proposed. The purpose of this procedure is to highlight areas where major land cover changes occurred within our area of study, which can be potentially related to mass movements. The amplitude of spaceborne SAR images has been exploited for the change detection analysis and the output derived from the segmentation procedure has been compared with field observations. The amplitude-based method has been already applied in the detection of landslides, but never on the event with limited extensions, such as for this application. The achieved outcomes allowed the mapping of 62 new landslides that have been used to update the current landslide inventory database. This type of information is expected to help decision-makers with land planning and risk assessment

    Review on Active and Passive Remote Sensing Techniques for Road Extraction

    Get PDF
    Digital maps of road networks are a vital part of digital cities and intelligent transportation. In this paper, we provide a comprehensive review on road extraction based on various remote sensing data sources, including high-resolution images, hyperspectral images, synthetic aperture radar images, and light detection and ranging. This review is divided into three parts. Part 1 provides an overview of the existing data acquisition techniques for road extraction, including data acquisition methods, typical sensors, application status, and prospects. Part 2 underlines the main road extraction methods based on four data sources. In this section, road extraction methods based on different data sources are described and analysed in detail. Part 3 presents the combined application of multisource data for road extraction. Evidently, different data acquisition techniques have unique advantages, and the combination of multiple sources can improve the accuracy of road extraction. The main aim of this review is to provide a comprehensive reference for research on existing road extraction technologies.Peer reviewe

    A Study of Types of Sensors used in Remote Sensing

    Get PDF
    Of late, the science of Remote Sensing has been gaining a lot of interest and attention due to its wide variety of applications. Remotely sensed data can be used in various fields such as medicine, agriculture, engineering, weather forecasting, military tactics, disaster management etc. only to name a few. This article presents a study of the two categories of sensors namely optical and microwave which are used for remotely sensing the occurrence of disasters such as earthquakes, floods, landslides, avalanches, tropical cyclones and suspicious movements. The remotely sensed data acquired either through satellites or through ground based- synthetic aperture radar systems could be used to avert or mitigate a disaster or to perform a post-disaster analysis

    Direct Ocean Surface Velocity Measurement for Chinese Gaofen-3 SAR Satellite

    Get PDF
    Spaceborne Synthetic Aperture Radar (SAR) is one important way to obtain the information of ocean surface velocity. The Doppler Centroid Anomaly (DCA) estimation, which obtain the radical velocity based on the difference between the measured Doppler centroid and the predicted Doppler centroid, have be used to most onboard spaceborne SAR. GaoFen-3 (GF-3), the first full-polarimetric SAR satellite of China. This paper shows the experiments of direct ocean surface velocity measurement for GF-3 SAR Satellite. Comparing the results to the actual ocean current, the proposed method of ocean surface velocity measurement for GF-3 SAR is validated. Thus, GF-3 has the similar ability to retrieve the radical ocean surface velocity as Sentinel-1 and Radarsat-
    • โ€ฆ
    corecore