53 research outputs found

    PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The elucidation of transcriptional regulation in plant genes is important area of research for plant scientists, following the mapping of various plant genomes, such as <it>A. thaliana</it>, <it>O. sativa </it>and <it>Z. mays</it>. A variety of bioinformatic servers or databases of plant promoters have been established, although most have been focused only on annotating transcription factor binding sites in a single gene and have neglected some important regulatory elements (tandem repeats and CpG/CpNpG islands) in promoter regions. Additionally, the combinatorial interaction of transcription factors (TFs) is important in regulating the gene group that is associated with the same expression pattern. Therefore, a tool for detecting the co-regulation of transcription factors in a group of gene promoters is required.</p> <p>Results</p> <p>This study develops a database-assisted system, PlantPAN (Plant Promoter Analysis Navigator), for recognizing combinatorial <it>cis</it>-regulatory elements with a distance constraint in sets of plant genes. The system collects the plant transcription factor binding profiles from PLACE, TRANSFAC (public release 7.0), AGRIS, and JASPER databases and allows users to input a group of gene IDs or promoter sequences, enabling the co-occurrence of combinatorial transcription factor binding sites (TFBSs) within a defined distance (20 bp to 200 bp) to be identified. Furthermore, the new resource enables other regulatory features in a plant promoter, such as CpG/CpNpG islands and tandem repeats, to be displayed. The regulatory elements in the conserved regions of the promoters across homologous genes are detected and presented.</p> <p>Conclusion</p> <p>In addition to providing a user-friendly input/output interface, PlantPAN has numerous advantages in the analysis of a plant promoter. Several case studies have established the effectiveness of PlantPAN. This novel analytical resource is now freely available at <url>http://PlantPAN.mbc.nctu.edu.tw</url>.</p

    AtPAN: an integrated system for reconstructing transcriptional regulatory networks in Arabidopsis thaliana

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Construction of transcriptional regulatory networks (TRNs) is of priority concern in systems biology. Numerous high-throughput approaches, including microarray and next-generation sequencing, are extensively adopted to examine transcriptional expression patterns on the whole-genome scale; those data are helpful in reconstructing TRNs. Identifying transcription factor binding sites (TFBSs) in a gene promoter is the initial step in elucidating the transcriptional regulation mechanism. Since transcription factors usually co-regulate a common group of genes by forming regulatory modules with similar TFBSs. Therefore, the combinatorial interactions of transcription factors must be modeled to reconstruct the gene regulatory networks.</p> <p>Description For systems biology applications, this work develops a novel database called <it>Arabidopsis thaliana </it>Promoter Analysis Net (AtPAN), capable of detecting TFBSs and their corresponding transcription factors (TFs) in a promoter or a set of promoters in <it>Arabidopsis</it>. For further analysis, according to the microarray expression data and literature, the co-expressed TFs and their target genes can be retrieved from AtPAN. Additionally, proteins interacting with the co-expressed TFs are also incorporated to reconstruct co-expressed TRNs. Moreover, combinatorial TFs can be detected by the frequency of TFBSs co-occurrence in a group of gene promoters. In addition, TFBSs in the conserved regions between the two input sequences or homologous genes in <it>Arabidopsis </it>and rice are also provided in AtPAN. The output results also suggest conducting wet experiments in the future.</p> <p>Conclusions</p> <p>The AtPAN, which has a user-friendly input/output interface and provide graphical view of the TRNs. This novel and creative resource is freely available online at <url>http://AtPAN.itps.ncku.edu.tw/</url>.</p

    TF2Network : predicting transcription factor regulators and gene regulatory networks in Arabidopsis using publicly available binding site information

    Get PDF
    A gene regulatory network (GRN) is a collection of regulatory interactions between transcription factors (TFs) and their target genes. GRNs control different biological processes and have been instrumental to understand the organization and complexity of gene regulation. Although various experimental methods have been used to map GRNs in Arabidop-sis thaliana, their limited throughput combined with the large number of TFs makes that for many genes our knowledge about regulating TFs is incomplete. We introduce TF2Network, a tool that exploits the vast amount of TF binding site information and enables the delineation of GRNs by detecting potential regulators for a set of co-expressed or functionally related genes. Validation using two experimental benchmarks reveals that TF2Network predicts the correct regulator in 75-92% of the test sets. Furthermore, our tool is robust to noise in the input gene sets, has a low false discovery rate, and shows a better performance to recover correct regulators compared to other plant tools. TF2Network is accessible through a web interface where GRNs are interactively visualized and annotated with various types of experimental functional information. TF2Network was used to perform systematic functional and regulatory gene annotations, identifying new TFs involved in circadian rhythm and stress response

    Transcriptional regulation of MdmiR285N microRNA in apple (Malus x domestica) and the heterologous plant system Arabidopsis thaliana

    Get PDF
    Malus x domestica microRNA MdmiR285N is a potential key regulator of plant immunity, as it has been predicted to target 35 RNA transcripts coding for different disease resistance proteins involved in plant defense to pathogens. In this study, the promoter region of MdmiR285N was isolated from the apple genome and analyzed in silico to detect potential regulatory regions controlling its transcription. A complex network of putative regulatory elements involved in plant growth and development, and in response to different hormones and stress conditions, was identified. Activity of the \u3b2-Glucoronidase (GUS) reporter gene driven by the promoter of MdmiR285N was examined in transgenic apple, demonstrating that MdmiR285N was expressed during the vegetative growth phase. Similarly, in transgenic Arabidopsis thaliana, spatial and temporal patterns of GUS expression revealed that MdmiR285N was differentially regulated during seed germination, vegetative phase change, and reproductive development. To elucidate the role of MdmiR285N in plant immunity, MdmiR285N expression in wild-type apple plants and GUS activity in transgenic apple and Arabidopsis thaliana plants were monitored in response to Erwinia amylovora and Pseudomonas syringae pv. Tomato DC3000. A significant decrease of MdmiR285N levels and GUS expression was observed during host-pathogen infections. Overall, these data suggest that MdmiR285N is involved in the biotic stress response, plant growth, and reproductive development

    Molecular cloning, expression and Insilco analysis of drought stress inducible MYB transcription factor encoding gene from C4 plant Eleusine coracana

    Get PDF
    Drought is one of the key abiotic stresses that critically influences the crops by restraining their growth and yield potential. Being sessile, plant tackle the detrimental effects of drought stress by modulating the cellular state by changing the gene expression. The transcriptional syndicate essentially drives such alteration of gene expression. Transcription factors (TF) are the key regulatory protein that controls the expression of their target gene by binding to the cis-regulatory elements present in the promoter region. Myb-TF, ubiquitously present in all eukaryotes belong to one of the largest TF family, and play a wide array of biological functions in plants, including anthocyanin biosynthesis, vasculature system, cell signalling, seed maturation and abiotc stress responses. The present performed isolation and molecular cloning of full length Myb TF from Eleusine corocana. The isolated full-length coding sequence has 1053 bp and 350 aa was submitted to NCBI (Accession number MT312253). The transcript level of EcMYB increases under different abiotic stress treatments including dehydration, salinity, and high-temperature stress. The promoter region of EcMyb1 was found to be enriched in stress-responsive cis-regulatory elements such as DRE, HSE, ABRE etc. In phylogenetic analysis, EcMyb1 appeared to have high homology with its monocot orthologs particularly Sateria italica, Hordeum vulgare, Saccharum barberi and Oryza sativa. The three-dimension protein structure was generated based on homology modeling and structural aspects were discussed. Further, Insilco analysis was conducted to explore the physiological properties, subcellular localization, potential posttranslational modification sites (phosphorylation and glycosylation sites), and molecular and biological function of the full-length protein. Overall, the expression profiling and Insilco analysis of EcMyb1 strongly indicated its potential role in abiotic stress response in Eleusine corocana.

    In silico study of cis-acting elements revealing the plastid gene involved in oxidative phosphorylation are responsive to abiotic stresses

    Get PDF
    In order to study plastid gene response to abiotic stresses, the chloroplast genome of Brassica nigra and studied cis-acting elements were downloaded. All upstream regions of genes were determined and searched for the presence of known cis-acting elements. In these regions, 83 types of cis-acting elements were recognized. Unnamed elements (139 times), CAAT-box (96 times), and TATA-box (92 times) were in high frequency, whereas ATCC-motif, Box III, CE1, CE3, C-repeat/DRE, E2Fb, Gap-box, L-box, RY-element, and TGA-box occurred only one time. All of the cis-acting elements were grouped into seven categories, which 17% of cis-acting elements placed into abiotic and biotic-related elements. ARE (31 times) and LTR (21 times) elements were in high frequency. Among 42 genes with abiotic stress-related elements, 29 genes showed co-expression. Our results show that in response to anaerobic conditions and cold stress, chloroplast alters the genes-encoding proteins involved in complex I and V in oxidative phosphorylation pathway. This process, probably, is to reduce electron flow and convert NADPH and FADH forms to ATP form. These actions could decrease generating reactive oxygen species under stressful conditions. These findings could offer new insights on the strategies which chloroplasts take into account for preventing oxidative damage

    Isolation and characterization of a copalyl diphosphate synthase gene promoter from Salvia miltiorrhiza

    Get PDF
    The promoter, 5' UTR, and 34-nt 5' fragments of protein encoding region of the Salvia miltiorrhiza copalyl diphosphate synthase gene were cloned and characterized. No tandem repeats, miRNA binding sites, or CpNpG islands were observed in the promoter, 5' UTR, or protein encoding fragments. The entire isolated promoter and 5' UTR is 2235 bp long and contains repetitions of many cis-active elements, recognized by homologous transcription factors, found in Arabidopsis thaliana and other plant species. A pyrimidine-rich fragment with only 6 non-pyrimidine bases was localized in the 33-nt stretch from nt 2185 to 2217 in the 5' UTR. The observed cis-active sequences are potential binding sites for trans-factors that could regulate spatio-temporal CPS gene expression in response to biotic and abiotic stress conditions. Obtained results are initially verified by in silico and co-expression studies based on A. thaliana microarray data.The quantitative RT-PCR analysis confirmed that the entire 2269-bp copalyl diphosphate synthase gene fragment has the promoter activity.Quantitative RT-PCR analysis was used to study changes in CPS promoter activity occurring in response to the application of four selected biotic and abiotic regulatory factors; auxin, gibberellin, salicylic acid, and high-salt concentration

    Recent advances in exploring transcriptional regulatory landscape of crops

    Get PDF
    Crop breeding entails developing and selecting plant varieties with improved agronomic traits. Modern molecular techniques, such as genome editing, enable more efficient manipulation of plant phenotype by altering the expression of particular regulatory or functional genes. Hence, it is essential to thoroughly comprehend the transcriptional regulatory mechanisms that underpin these traits. In the multi-omics era, a large amount of omics data has been generated for diverse crop species, including genomics, epigenomics, transcriptomics, proteomics, and single-cell omics. The abundant data resources and the emergence of advanced computational tools offer unprecedented opportunities for obtaining a holistic view and profound understanding of the regulatory processes linked to desirable traits. This review focuses on integrated network approaches that utilize multi-omics data to investigate gene expression regulation. Various types of regulatory networks and their inference methods are discussed, focusing on recent advancements in crop plants. The integration of multi-omics data has been proven to be crucial for the construction of high-confidence regulatory networks. With the refinement of these methodologies, they will significantly enhance crop breeding efforts and contribute to global food security

    Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet

    Get PDF
    Hossain MS, El Sayed AI, Moore M, Dietz K-J. Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet. Journal of Experimental Botany. 2017;68(5):1283-1298.Fine-tuned and coordinated regulation of transport, metabolism and redox homeostasis allows plants to acclimate to osmotic and ionic stress caused by high salinity. Sugar beet is a highly salt tolerant crop plant and is therefore an interesting model to study sodium chloride (NaCl) acclimation in crops. Sugar beet plants were subjected to a final level of 300 mM NaCl for up to 14 d in hydroponics. Plants acclimated to NaCl stress by maintaining its growth rate and adjusting its cellular redox and reactive oxygen species (ROS) network. In order to understand the unusual suppression of ROS accumulation under severe salinity, the regulation of elements of the redox and ROS network was investigated at the transcript level. First, the gene families of superoxide dismutase (SOD), peroxiredoxins (Prx), alternative oxidase (AOX), plastid terminal oxidase (PTOX) and NADPH oxidase (RBOH) were identified in the sugar beet genome. Salinity induced the accumulation of Cu-Zn-SOD, Mn-SOD, Fe-SOD3, all AOX isoforms, 2-Cys-PrxB, PrxQ, and PrxIIF. In contrast, Fe-SOD1, 1-Cys-Prx, PrxIIB and PrxIIE levels decreased in response to salinity. Most importantly, RBOH transcripts of all isoforms decreased. This pattern offers a straightforward explanation for the low ROS levels under salinity. Promoters of stress responsive antioxidant genes were analyzed in silico for the enrichment of cis-elements, in order to gain insights into gene regulation. The results indicate that special cis-elements in the promoters of the antioxidant genes in sugar beet participate in adjusting the redox and ROS network and are fundamental to high salinity tolerance of sugar beet. The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology
    corecore