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Abstract

Malus x domestica microRNA MdmiR285N is a potential key regulator of plant immunity, as it has been predicted to
target 35 RNA transcripts coding for different disease resistance proteins involved in plant defense to pathogens. In
this study, the promoter region of MdmiR285N was isolated from the apple genome and analyzed in silico to detect
potential regulatory regions controlling its transcription. A complex network of putative regulatory elements involved
in plant growth and development, and in response to different hormones and stress conditions, was identified.
Activity of the B-Glucoronidase (GUS) reporter gene driven by the promoter of MdmiR285N was examined in transgenic
apple, demonstrating that MdmiR285N was expressed during the vegetative growth phase. Similarly, in transgenic
Arabidopsis thaliana, spatial and temporal patterns of GUS expression revealed that MdmiR285N was differentially
regulated during seed germination, vegetative phase change, and reproductive development. To elucidate the role of
MdmiR285N in plant immunity, MdmiR285N expression in wild-type apple plants and GUS activity in transgenic apple
and Arabidopsis thaliana plants were monitored in response to Erwinia amylovora and Pseudomonas syringae pv.
Tomato DC3000. A significant decrease of MdmiR285N levels and GUS expression was observed during host-pathogen
infections. Overall, these data suggest that MdmiR285N is involved in the biotic stress response, plant growth, and
reproductive development.

Introduction

Plant microRNAs (miRNAs) are a large subclass of
endogenous non-coding RNAs with 20-22 nucleotides
taking part in posttranscriptional gene silencingl’z. The
biogenesis of plant miRNAs occurs in the cell nucleus and
involves transcription of MIRNA genes, processing of
primary miRNA transcripts by DICER-LIKE proteins into
miRNA:miRNA* duplexes, and loading of mature miRNA
strands into ARGONAUTE-containing RNA-induced
silencing complexes (RISC)"*. After RISC loading, the
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mature miRNA guides the RISC machinery to com-
plementary target sequences on messenger RNAs
(mRNA) leading to miRNA-mediated RNA degradation
or translational repression™?.

By functioning in RNA silencing and posttranscriptional
regulation of gene expression, plant miRNAs coordinate a
wide range of biological processes in different cells, tis-
sues, and organs. Since their initial discovery, several
functional analyses elucidated the importance of these
bio-regulators in almost all aspects of plant growth and
development™, in the crosstalk between phytohormone
signaling pathways®, and in response to environmental
stimuli®, abiotic stresses’, and pathogen invasions®.
Besides their relevance in fundamental research, miRNAs
are also very important from an applicative point of view
to manipulate specific agricultural traits by modulation of
plant gene expression’ ''. Over the last decades, miRNA-
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mediated crop improvement was successfully achieved by
the use of different molecular strategies, including con-
stitutive, stress-induced, or tissue-specific expression of
miRNAs'2, RNA interference'®, and artificial miRNAs'%.
However, most of these studies have focused on the
analysis of miRNAs especially in non-woody plant species,
such as A. thaliana, rice, wheat, and tomato, while limited
investigations have been performed on miRNAs in agro-
nomically and economically important woody plant
species.

Apple (M. x domestica) is one of the most widely cul-
tivated woody plant species in the world, with a total
worldwide production of 85 million tonnes and a global
value of 45 billion dollars in 2017'°. As a result, the sci-
entific attention on this fruit crop has drastically grown in
the last years, focusing not only on different aspects of
apple horticulture, but also on its fundamental biology,
such as the study of miRNAs. To date, ~300 apple miR-
NAs were deposited in miRBase (www.mirbase.org,
release 22.1: October 2018). Some studies were performed
to identify apple miRNAs involved in the regulation of
plant tissue development'®~'%, shoot growth'*?°, flower
induction®®?, and fruit production®”*, Others focused
on the identification of miRNAs associated with apple
response to different diseases, such as apple ring rot**,
Alternaria leaf spot>*, Glomerella leaf spot®’, Valsa
canker®, and fire blight*”. One study reported a series of
miRNAs involved in the response of the plant to drought
stress®’. Although a considerable amount of data is now
available, many gaps still exist for apple miRNAs research.
Indeed, most of the above studies exploited microarray
and next-generation sequencing to screen for putatively
novel or stress-responsive miRNAs, but very few studies
have been published on the functional characterization of
the plethora of candidate miRNAs identified. More efforts
are thus required to better characterize miRNAs and their
functions in this important plant species.

In this study, as part of a long-term goal to identify
promising miRNAs for potential genetic improvement of
apple, we focused our attention on MdmiR285N, a novel
apple miRNA which is 21 nucleotides in length and pre-
dicted to target 35 RNA transcripts®’. The mRNAs
putatively regulated by this miRNA code for different
disease resistance proteins belonging to the families of
Toll-interleukin-1 receptor/nucleotide-binding site/leu-
cine-rich repeat (TIR-NBS-LRR), SUPPRESSOR of NPR-1
CONSTITUTIVE (SNC1), and calcium-dependent pro-
tein kinase (CDPK). These resistance proteins are well-
known to play key roles in plant response to pathogen
infections®'~*>, Within this framework, MdmiR285N was
thus hypothesized to act as a crucial regulator of plant
immunity. Here, a first characterization of the
MdmiR285N promoter region was carried out in silico to
identify putative cis-acting regulatory elements and their
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cognate transcription factors. After isolation from the M.
x domestica genome, a 2-kbp promoter region of
MdmiR285N was analyzed in vivo both in M. domestica
and A. thaliana to examine putative roles of MdmiR285N
in plant growth, development and especially pathogen
resistance. In particular, tissue- and organ-specific
expression patterns of S-glucoronidase (GUS) driven by
the promoter of MdmiR285N were analyzed in transgenic
apple and A. thaliana plants. With the aim of elucidating
the function of MdmiR285N in plant immunity,
MdmiR285N expression in wild-type apple plants and
GUS activity in transgenic apple and A. thaliana plants
were investigated in response to Erwinia amylovora
(E. amylovora) and Pseudomonas syringae (P. syringae) pv.
Tomato DC3000 infections.

Results
Selection of transgenic apple and Arabidopsis thaliana
plants

In this study, Prom_MdmiR285N::GFP-GUS transgenic
apple (M. x domestica cultivar ‘Gala’) and A. thaliana
(ecotype Columbia-0) lines (PMd and PAt, respectively)
were generated by Agrobacterium tumefaciens (A. tume-
faciens)-mediated transformations.

For apple, the summary of transformation results is
shown in Supplementary Table S1. By infecting 770 leaf
explants, five plants were regenerated ~5 months after
transformation and cultured on selective medium, thus
screened by PCR for T-DNA integration. Four transgenic
apple lines were obtained as demonstrated by PCR
amplification of Nptll (the selectable marker of the T-
DNA cassette) and lack of VirG amplification (therefore
free from A. tumefaciens contamination), resulting in a
transformation efficiency of 0.5%. Among the obtained
lines, PMd1 and PMd2 were selected for further analyses.
The other two lines showed a severe vitrified phenotype
compared with wild-type plants, most likely due to the
transformation event (data not shown) and were dis-
carded from further analyses. The two selected lines were
characterized for the number of T-DNA integration
events by quantifying the copy number (CN) of the NptlI
marker gene. The line PMd1 showed a NptII CN mean of
2.01 £ 0.12 which corresponded to two T-DNA integra-
tion events (Supplementary Table S1). The line
PMd2 showed a NptII CN mean of 1.00 +0.45, which
reflected the presence of a remarkable T-DNA chimeric
profile. In fact, for this line the presence of T-DNA chi-
meric tissues was attributed to a NptIl CN value lower
than 1 in some biological replicates tested.

For A. thaliana, the summary of transformation results
is shown in Supplementary Table S2. Eight lines showed a
single T-DNA insertion event as characterized by a ger-
mination ratio Kanamycin®®**"":Kanamycin®"*cePtiPle
significantly not different from 3:1 (X*<3.84, P> 0.05,
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Supplementary Table S2). Among those lines, T4 homo-
zygous seeds of two representative lines (PAt6 and PAt28)
were used for further experiments.

In silico prediction of putative transcription factor binding
sites in the promoter of MdmiR285N gene

To identify the likely transcription factor (TF) binding
sites (TFBSs) and corresponding TFs of MdmiR285N
gene, its promoter region was analyzed by the Plant
Promoter Analysis Navigator PlantPAN 2.0°*, When
using as reference the database of M. x domestica species,
24 unique TFBSs distributed fairly evenly along the
MdmiR285N promoter sequence were identified (Fig. 1a;
Supplementary Table S3). Overall, the TFBSs fell into 17
different TFs families. Interestingly, among them C2H2,
CSD, HD-ZIP, NAC, and WRKY families, which are
known to play key roles especially in plant development
and stress responsiveness®>>’, were the most frequent,
being characterized by multiple TFBS sequences (Fig. 1a).
Moreover, consistent results were found when the pre-
sence of putative TFBSs was investigated in the hetero-
logous database of A. thaliana (Fig. 1 and Supplementary
Table S3). However, being A. thaliana a model plant
species for which the availability of information is sig-
nificantly greater compared with other plants, the number
of putative TFBSs identified (n = 40) was higher than that
reported in M. x domestica species (Fig. 1a). Nevertheless,
almost all TFBSs clustered into the same TFs families
previously predicted for M. x domestica. Indeed, only two
TFs families namely BES1 and Dof, which are involved in
several plant physiological processes and stress respon-
ses?®* were identified only with A. thaliana matrixes
(Fig. 1a).

Using the available gene ontology information con-
cerning the biological processes associated with each TF
detected (Supplementary Table S3), a putative functional
profile of MdmiR285N gene promoter was generated (Fig. 1b).
Results were consistent using either M. x domestica or A.
thaliana matrixes and only few discrepancies, mostly due
to the previously mentioned lack of information in apple,
were identified. In both cases, MdmiR285N promoter was
found to be potentially regulated during several biological
processes linked to plant growth and development,
especially seed formation, vegetative (leaf and root) and
reproductive (inflorescence) development, organs senes-
cence and secondary metabolism (Fig. 1b). In addition, a
putative functional profile was associated with phyto-
hormones biogenesis and signaling pathways, particularly
to those of abscisic acid, ethylene and jasmonic acid
(Fig. 1b). Finally, potential responses to multiple physio-
logical stimulus and stress conditions, especially light
intensity, water availability, temperature conditions, and
bacterial infections, were also predicted (Fig. 1b).
Although interesting, information obtained from this in
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silico analysis should be validated by experimental
evidences.

Tissue- and organ-specific expression pattern of
MdmiR285N gene in apple and Arabidopsis thaliana plants

According to the in silico analysis, to test the hypothesis
that MdmiR285N is associated with plant growth and
development (Fig. 1b), its tissue- and organ-specific
expression pattern was investigated in transgenic apple
and A. thaliana plants by histochemical GUS assay. Since
apple was maintained in vitro by clonal propagation, the
tissue- and organ-specific expression pattern of
MdmiR285N was analyzed only during the vegetative
growth phase (Fig. 2). However, by using A. thaliana as
heterologous plant system the activity of MdmiR285N
promoter was investigated during the entire plant life
cycle, including seed germination, juvenile-to-adult
vegetative phase change, and reproductive development
(Figs. 3, 4).

Histochemical expression pattern of MdmiR285N during
vegetative development in apple

In apple, the histochemical GUS staining revealed that
MdmiR285N is expressed during the plant vegetative
development (Fig. 2). In shoots, GUS expression was
detected in the shoot apical meristem (SAM) and in the
stem (Fig. 2a). Moreover, all leaves were stained (Fig. 2a),
although a stronger GUS signal was observed in young
leaves (Fig. 2a, n =9-14; Fig. 2b) compared with adult
leaves (Fig. 2a, n=1-8; Fig. 3c). Indeed, while in adult
leaves GUS staining was observed only in vascular tissue
(Fig. 2¢), in young leaves also parenchyma cells proximal
to vessels appeared stained (Fig. 2b). In general, the vas-
cular tissue was always stained with no intensity variation
between different parts of a leaf (Fig. 2d, e). In roots,
strong GUS expression was detected in the tip of primary
and secondary roots and in the meristems of emerging
lateral roots, in the root vascular system, and in the root
elongation zone up to the root maturation region
(Fig. 2f-h). Despite the lines PMdl and PMd2 showed
different T-DNA (or Nptll) copy numbers values (Sup-
plementary Table S1), no significant discrepancy was
found in the pattern of GUS activity (data not shown).

Overall, these results were consistent with the previous
in silico analysis, according to which the MdmiR285N
gene promoter appeared to be potentially regulated by a
complex network of TFs involved in plant growth and
development. Indeed, several of the identified TFBSs,
namely those belonging to the ARR-B, G2-like protein,
HD-ZIP, and TCP TFs families, were associated with TFs
linked to the formation of leaf and root meristems, the
morphogenesis of shoot organs, and the development of
the vascular system through the regulation of xylem and
phloem differentiation (Supplementary Table S3).
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Fig. 1 Putative TFBS-based regulatory and functional profile of MdmiR285N gene. a Summary of TFBSs and corresponding TFs families
identified in the promoter region of MdmiR285N by PlantPAN 2.0 (http://PlantPAN2.itps.ncku.edu.tw), using M. x domestica and A. thaliana databases.
The spatial distribution of TFBSs along ~1 kb of genomic DNA sequence upstream of the transcription start site (ATG) is reported. Each TFBS is
highlighted with a different color based on the corresponding TFs family. b Heat map showing the putative TFBS-based functional profile of
MdmiR285N gene. According to the identified TFBSs and related TFs, TFs families and corresponding biological processes annotated (retrieved by
comparing information of both PlantPAN 2.0 and PlantTFDB 5.0 (planttfdb.cbipku.edu.cn) databases) are reported, respectively, on the upper and left
sides of the heat map. Below each TFs family, the total number of TFBS detected in M. x domestica (left column) and A. thaliana (right column) is
reported. BES1 and Dof families were identified only in A. thaliana. For each TFs family, the number of TFBSs recognized by at least one TF associated
with a certain biological process is reported within boxes. Black and red asterisks indicate data obtained exclusively in M. x domestica or A. thaliana,
respectively. For each biological process, the total number of associated TFBSs is reported on the right side of the heat map
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Fig. 2 Promoter activity of MdmiR285N during vegetative growth in apple. Pictures show the histochemical GUS staining in different tissues
and organs of 3-week-old apple plants carrying the construct Prom_MdmiR285N:GFP-GUS. a Developed apple plant. Numbers indicate the order of
leaf appearance. b, ¢ Young and adult leaf, respectively. d, e Vascular system in the apical and medial region of the leaf, respectively. f Secondary
roots. g Root buds. h Primary root tip. Results (a-h) were obtained by observations conducted after three independent experiments and are

representative of both PMd1 and PMd2 transgenic lines used. In each experiment, five biological replicates/plant line were investigated. Wild-type
plants were used as negative control and were never stained following the histochemical GUS protocol (data not shown). Black unit bars indicate

Histochemical expression pattern of MdmiR285N during seed
germination and vegetative development in Arabidopsis
thaliana

In A. thaliana, the histochemical GUS assay showed
that MdmiR285N expression was specifically and differ-
entially regulated during different stages of seed germi-
nation and vegetative development.

No MdmiR285N promoter-driven GUS expression was
observed in imbibed seeds (1 dap: day after plating, Fig. 3a).
In the later stages of seed germination, GUS staining was
evident in the root apical meristem (RAM) of emerging
seedlings (2 dap, Fig. 3b; 3 dap, Fig. 3c). Similarly, the RAM
appeared strongly stained in fully germinated and elongat-
ing seedlings (4 dap, Fig. 3d; 5 dap, Fig. 3e), although GUS
signal was also detected in the root elongation and
maturation zones and partially in the root vascular system.
The same expression pattern was maintained in the primary
and secondary roots of young seedlings (7 dap, Fig. 3f).
Besides roots, the aerial part was never stained at any of the
developmental stages mentioned above (1-7 dap).

A significant correlation was found between the
observed results and the in silico-predicted gene

regulatory and functional profile of MdmiR285N. Indeed,
among the TFs putatively involved in the regulation of
MdmiR285N promoter, multiple members of the ARR-B,
C2H2, MIKC-MADS, and WRKY TFs families were
associated with biological processes linked to the regula-
tion of root growth and development (Supplementary
Table S3). On the contrary, no functionality of
MdmiR285N was associated with seed activation and
cotyledons development (Supplementary Table S3).

In the later phases of vegetative growth (14 dap, Fig. 3g;
21 dap, Fig. 3h), in multiple organs of the seedling a
gradual increase of GUS signal was observed. Its max-
imum intensity was reached at the late stage of vegetative
development (Fig. 3h). Roots (Fig. 3g, h, k, 1) were strongly
stained according to the pattern previously described,
however strong GUS staining was also visible in the SAM
(Fig. 3g, h), in the parenchyma cells of leaves (Fig. 3g—j),
and in the leaf vascular tissue (Fig. 3g—j). As for apple, at
each stage (14 and 21 dap) the intensity of GUS signal was
reduced in adult leaves (Fig. 3g, n = 1, 2; Fig. 3h, n =1-4;
Fig. 3j) compared with young leaves (Fig. 3g, n=3-5;
Fig. 3h, n =5-8; Fig. 3i).
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Fig. 3 (See legend on next page.)
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Fig. 3 Promoter activity of MdmiR285N during seed germination and vegetative development in Arabidopsis thaliana. Pictures show the
histochemical GUS staining of A. thaliana plants carrying the construct Prom_MdmiR285N:GFP-GUS. a Imbibed seed (1 dap). b Emerging radicle from
seed coat (2 dap). ¢ Emerging hypocotyl and cotyledons from seed coat (3 dap). d Germinated seedling (4 dap). e Seedling in elongation (5 dap).
f-h Seedling at the juvenile, intermediate and late phase of vegetative development, respectively (7, 14, 21 dap). In (g) and (h), numbers indicate the
order of leaf appearance. i-l Different tissues of A. thaliana seedling at the late phase of vegetative development (h): young leaf (i), adult leaf (j), root
vascular system (k), root tip (I). Results (a-I), representative of both transgenic lines used (PAt6, PAt28), were obtained by observations conducted
after three independent experiments. In each experiment, 10 biological replicates/plant line/time point were investigated. Wild-type plants used as
negative control were never stained following the histochemical GUS protocol (data not shown). Black unit bars indicate 200 um in (a-c), (k), (I),
T mm in (d-g), (i), (j), and 1cm in (h)

a)

Fig. 4 Promoter activity of MdmiR285N during reproductive development in Arabidopsis thaliana. Pictures show the histochemical GUS
staining in reproductive organs of 5-week-old A. thaliana plants carrying the construct Prom_MdmiR285N:GFP-GUS. a Primary inflorescence. b Flower
set. ¢ Closed floral bud. d, e Mature flowers. f Elongating stigma after pollination. g Ovule. h Stigma apex. i Pollen grains on stigma apex. j Guard cells
of stigma. k Mature silique. I Abscission zone of mature silique. m Axillary bud. Results (@a-m), representative of both AtP6 and AtP28 transgenic lines,
were obtained by observations conducted after two independent experiments. In each experiment, the primary inflorescence of five biological
replicates/plant line was analyzed. Wild-type plants used as negative control were never stained following the histochemical GUS protocol (data not
shown). Black unit bars indicate 1 cm in (a), 1 mm in (b—f), (k), 200 um in (h), (I), (m), and 20 um in (g), (i), §)

Overall in A. thaliana, especially in the late phase of unexpected, as a significant similarity in the regulatory
vegetative growth (21 dap, Fig. 3h), the tissue- and organ- and functional profile of MdmiR285N promoter using
specific expression pattern of MdmiR285N was consistent ~ TFBSs specific for the two plant species was previously
with that reported in apple (Fig. 2a). This result was not  observed in silico (Fig. 1). As for apple, also in A. thaliana



Pompili et al. Horticulture Research (2020)7:99

multiple TFs belonging to the ARR-B, G2-like protein,
and TCP TFs families were involved in the morphogenesis
of shoot and root organs, and the histogenesis of the
vascular system (Supplementary Table S3). However, in A.
thaliana the same biological functions were also observed
for members of the C2H2, Dof, MYB-related, and WRKY
TFs families (Supplementary Table S3). Interestingly,
some TFs of the CSD and MIKC-MADS families were
associated with the vegetative to reproductive phase
transition of meristems (Supplementary Table S3). This
data supported the tremendous increase of MdmiR285N
expression during the later phases of vegetative growth in
A. thaliana (Fig. 3g, h).

Histochemical expression pattern of MdmiR285N during
reproductive development in Arabidopsis thaliana

In A. thaliana, MdmiR285N expression was regulated
also during the reproductive development (Fig. 4). In the
upper part of the primary inflorescence, strong GUS
expression was observed in the stalk and flowers (Fig. 4a,
b). A close-up examination of close floral buds and fully
open flowers revealed that GUS expression was particu-
larly evident in the organ abscission zone, and the veins of
flower petals and sepals (Fig. 4c—e). The MdmiR285N
promoter was also active during the initial developmental
stage of the silique. Indeed, GUS signal was observed in
the elongating stigma (Fig. 4f), particularly in the abscis-
sion zone (Fig. 4f), the ovule (Fig. 4g), the stigma apex
(Fig. 4h), the pollen grains on stigma (Fig. 4i), and the
guard cells of stigma cover (Fig. 4j). However, as the
silique became mature, the promoter activity of
MdmiR285N was drastically reduced to a level below
visual detection, remaining evident only in the abscission
zone (Fig. 4k, 1). Finally, strong GUS signal was also
observed in axillary buds (Fig. 4m).

The obtained results were clearly supported by the
previous in silico analysis. Indeed, in A. thaliana, except
for ARR-B, EIL, GATA, MYB-related, and Trihelix, all the
identified TFs families were characterized by TFs asso-
ciated with the morphogenesis of the inflorescence, the
maturation of pollen, the formation of plant ovule, and
the development of seeds (Supplementary Table S3).
Many other TFs, by acting as regulators of cell aging, were
also correlated to the regulation of leaf senescence and the
floral organs abscission (Supplementary Table S3).

Expression profile of MdmiR285N gene after host-
pathogen infection in apple and Arabidopsis thaliana
plants

Besides histological experiments, the investigation of
putative changes in the expression profile of MdmiR285N
in response to environmental stimuli, such as bacterial
infections, may provide insights into the biological roles of
this novel apple miRNA. Thus, the expression pattern of
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MdmiR285N gene was examined in apple and A. thaliana
plants following inoculation with E. amylovora strain
Ea273 and Pst DC3000, respectively.

In apple, when soil-acclimated wild-type plants used as
control were mock-inoculated by leaf wounding, no sig-
nificant fluctuation of mature MdmiR285N transcripts
was detected by real-time PCR 12, 24, 36, and 48 h after
the lesion (Fig. 5a). Differently, if plants experienced the
bacterium, the abundance of mature MdmiR285N tran-
scripts decreased significantly and specifically 24, 36, and
48 h after the application of the stress (Fig. 5a). Consistent
results were obtained when the stimulatory effect of E.
amylovora on MdmiR285N expression was investigated in
the transgenic apple lines PMd1 and PMd2 (Fig. 5b). A
decrease of GUS activity was confirmed 24 and 48 h after
infection. In A. thaliana, a similar pattern of expression of
the MdmiR285N promoter was observed in the transgenic
lines PAt6 and PAt28 throughout Pst DC3000 infection
(Fig. 5¢, d).

Discussion

In this study, we carried out the first functional char-
acterization of the novel apple miRNA MdmiR285N,
which was predicted to target 35 RNA transcripts coding
for resistance proteins TIR-NBS-LRR, SNC1, and
CDPK*. Many of these proteins accumulate within the
cell after pathogen attacks and are pivotal for the activa-
tion of defense responses, while their decrease attenuates
the activation of downstream defense signaling™*~*>. The
presence of a complex MdmiR285N-resistance gene reg-
ulatory module able to control the plant immune system
was thus hypothesized. Here, as initial characterization of
MdmiR285N in M. x domestica and in the heterologous
plant species A. thaliana, we investigated its promoter
region in silico (Fig. 1, Supplementary Table S3), by his-
tological assays (Figs. 2—4) and functional gene expression
analysis in response to the bacterial pathogens E. amylo-
vora and Pst DC3000 (Fig. 5).

Information regarding the presence of putative tran-
scription factor (TF) binding sites (TFBSs) in a given gene
promoter and their corresponding TFs is valuable for
understanding potential gene regulation and biological
functions. Over the past few years, different computa-
tional approaches have been developed to identify and
feature DNA sequences regulating the transcription of
genes®®*. In our work, the promoter region of
MdmiR285N was scanned by the Plant Promoter Analysis
Navigator PlantPAN 2.0°*, using both M. x domestica and
A. thaliana TFBSs databases as reference. In both plant
species examined, a considerable series of putative TFBSs
and corresponding TFs was identified regulating the
MdmiR285N gene promoter during different stages of
plant growth and development, and in response to mul-
tiple  phytohormones  signaling  pathways and
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Fig. 5 Expression pattern of MdmiR285N gene after host-pathogen infection in apple and Arabidopsis thaliana plants. a Transcripts levels of
mature MdmiR285N quantified by real-time PCR in M. x domestica wild-type (cv. ‘Gala’) at different time points (0, 12, 24, 36, and 48 h) after treatment
(mock and E. amylovora strain Ea273). b Fluorometric MdmiR285N Promoter-driven GUS activity in transgenic apple lines (PMd) at different time

points (0, 24, and 48 h) after treatment (mock and Ea273). ¢, d Histochemical and fluorometric MdmiR285N Promoter-driven GUS activity in transgenic
A. thaliana lines (PAt) at different time points (0, 24, and 48 h) after treatment (mock and Pst DC3000). Experiments were performed ex vitro (a) or
in vitro (b-d), in duplicate (a, b, d) or triplicate (c). For each experiment, 4 (a) and 3 (b-d) plant biological replicates/treatment/time point were used.
In (@) and (b-d), 1 biological replicate was made by pooling 3 leaf strips and 3 plantlets, respectively. Apple and A. thaliana wild-type plants used as
negative control did not show appreciable histochemical or fluorometric GUS activity (data not shown). In graphs (a), (b), (d), bars indicate the mean

values + SE. Considering mock- and pathogen-treatments separately, asterisks indicate statistically significant differences of datasets from the
corresponding dataset at time zero (0 h), according to one-way ANOVA followed by post hoc Dunnett’s test (a = 0.05)

environmental stresses (Fig. 1, Supplementary Table S3).
Taking into account that MdmiR285N is an endogenous
miRNA of apple, our results show that its putative TFBS-
based gene regulatory profile is conserved in the hetero-
logous system A. thaliana, thus suggesting also that the
regulation of genes involved in defense responses may be
similar between the two plant species examined. This is in
line with previous comparative studies showing the con-
servation of the regulatory networks in the promoter of
MIR168 in M. domestica and A. thaliana™®. Moreover,
such a heterogeneous network of gene regulatory ele-
ments indicates that the posttranscriptional activity of
MdmiR285N on its target resistance transcripts is differ-
entially regulated during various phases of the plant life
cycle and thus it is not only limited to the molecular
mechanisms triggered by plant—pathogen interactions.

To validate by experimental evidences whether
MdmiR285N expression was regulated during the plant
development, GUS histochemical observations were
conducted in Prom_MdmiR285N::GFP-GUS transgenic
apple and A. thaliana plants and the obtained results
correlated with the in silico data. At first, GUS analysis
conducted in germinating A. thaliana seedlings
(Fig. 3b—f) revealed that MdmiR285N is expressed only in
roots, thus suggesting that MdmiR285N has function
limited to root formation or nutrients uptake during the
early phase of vegetative development. Differently, the
expression of MdmiR285N drastically increases in multi-
ple organs of A. thaliana during the juvenile-to-adult
vegetative phase change (Fig. 3g, h). To date, it is well-
documented that miRNAs play an important role in
regulating vegetative phase change in plants*>*°. In A.
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thaliana (Fig. 3g), two weeks after plant germination such
a precise increase in the expression of MdmiR285N sug-
gests that this miRNA may be key during the transition
phase of meristems. Subsequent GUS analysis showed
that MdmiR285N is expressed in almost all tissues of fully
developed apple and A. thaliana plantlets (Figs. 2, 3h-1),
especially in newly and growing tissues of both root and
shoot systems, suggesting important roles of MdmiR285N
in the molecular mechanisms underlying actively dividing
tissues. Finally, strong expression of MdmiR285N was also
observed in A. thaliana reproductive tissues and in floral
organ abscission zones (Fig. 4). The role of miRNAs in the
control of flowering time, floral organ identity and
abscission is now reported®*%, Based on this information,
MdmiR285N may be likely involved also in cellular pro-
cesses responsible for plant reproduction.

In general, a close-up examination of histochemical
results may propose that the vascular system is the main
source of MdmiR285N. Within this context, miRNAs
localized in the vascular system have often roles in plant
long-distance signaling. Different studies reported the
presence of specific miRNAs moving over long distances
in grafts®>>*, Moreover, miRNA movement from shoots
to roots could be correlated with long-distance signaling
during nutrient starvation responses in A. thaliana®>* or
the regulation of specific developmental events in
potato®>®®, It is therefore possible that MdmiR285N
acquired a long-distance signaling role. However, it is also
known that many bacterial pathogens are specialized
parasites of plant vascular systems® ~>°, Based on these
observations, and given that MdmiR285N post-
transcriptionally regulate several disease resistance pro-
teins, its localization in the vascular system could also
reflect the presence of a putative defense mechanism
mediated by MdmiR285N against plant vascular
pathogens.

To confirm the putative role of MdmiR285N in
response to host-pathogen infection, MdmiR285N
expression in wild-type apple plants and GUS activity in
transgenic apple and A. thaliana plants were analyzed in
response to E. amylovora (for apple) and Pst DC3000 (for
A. thaliana) (Fig. 5). Overall, MdmiR285N appeared
downregulated in both plant species examined thus sug-
gesting an increase of its targeted disease resistance
transcripts during pathogen infection. To date, many
studies reported that plants are able to induce expression
of disease resistance genes by suppression of the miRNA-
mediated gene silencing pathway upon pathogen attack® %%,
Within this context, a fine regulation of disease resistance
proteins is also mandatory for a correct plant growth and
development. Disease resistance proteins were indeed
shown to have a cost to plants®® because if unregulated
they can trigger autoimmunity in the absence of pathogen
infection and inhibit plant growth®. Plants have thus
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evolved miRNA-disease resistance proteins regulatory
loops as counter-mechanisms to minimize the cost of
overexpression of disease resistance genes in the absence
of a pathogen, and to ensure rapid induction of disease
resistance proteins during pathogen invasion. This infor-
mation supports our findings, suggesting a similar
mechanism of action for MdmiR285N on its putative
resistance transcripts, and that MdmiR285N may act as
positive regulator of plant defense response upon
plant—pathogen interactions. These observations could
also explain the tissue and organ-specific expression
patterns of MdmiR285N, according to which this miRNA
was shown to be strongly induced in juvenile or devel-
oping plant tissues. The activity of MdmiR285N in those
tissues is thus probably required to suppress basal defense
mechanisms and allow growth and development of
actively dividing tissues.

In conclusion, in this study we provide in silico and
histological information regarding how MdmiR285N is
regulated during the growth and development of M. x
domestica and the heterologous plant species A. thaliana.
Moreover, we demonstrate that MdmiR285N is down-
regulated in response to plant—pathogen interactions.
This study sheds new light into the transcriptional reg-
ulation of MdmiR285N in apple, however, deeper analysis
must be performed for a better understanding of its
functions and to facilitate the designing of putative
MdmiR285N-based strategies in a view of genetic engi-
neering of apple.

Materials and methods
Plant materials and growth conditions

All experiments were performed with apple (M. x
domestica) cultivar ‘Gala’ plants and A. thaliana ecotype
‘Columbia-0’ plants grown in a growth chamber at 24 +
1°C with a 16/8-h light/dark period.

In apple, in vitro propagation, in vitro roots stimulation
and acclimation to soil were performed as described by
Pessina et al.°®. Before in vitro experiments (pathogen
inoculation followed by Bradford and fluorometric assays,
Fig. 5b; and histochemical GUS analysis, Fig. 2), to reduce
putative effects of medium ingredients on the regulation
of MdmiR285N gene and to minimize any difference with
A. thaliana culturing, in vitro rooted plants were trans-
ferred to a Murashige and Skoog basal medium (MS)
supplemented with 0.5% (w/v) sucrose and acclimated for
5 days. For ex vitro experiments (pathogen inoculation
followed by gene expression analysis, Fig. 5a), soil-
acclimated plants were grown at growth chamber condi-
tions to the stage of interest.

Regarding A. thaliana, the maintenance of plants lines
was ensured by sowing seeds in a 3:1 soil:perlite mixture
and growing plants to mature stage for seed harvesting.
Before in vitro experiments (see above, Figs. 3, 5¢, d),
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harvested seeds were sterilized using 70% (v/v) ethanol x
10 min followed by 100% (v/v) ethanol x 2 min, suspended
in 0.1% (w/v) agar, and vernalized for 3 days at 4 °C in the
dark. Thus, seedlings were germinated and grown to the
stage of interest in liquid MS basal medium supple-
mented with 0.5% (w/v) sucrose, using 24-well plates. For
ex vivo histochemical GUS analysis of the inflorescence
(Fig. 4), seeds were germinated in a soil:perlite mixture as
previously mentioned and plants were grown to the stage
of interest.

Construction of the transformation vector

To produce the binary vector used for apple and A.
thaliana transformations (Supplementary Tables S1, S2),
genomic DNA was extracted from apple leaf tissue using
the Illustra™ Nucleon DNA Extraction Kit PHYTO-
PURE™ (GE Healthcare). Extracted DNA was quantified
on the NanoDrop 8000 Spectrophotometer (Thermo
Fisher Scientific) and then used in a PCR aimed at
amplifying 2kb of intergenic genomic DNA sequence
upstream of the transcription start site of MdmiR285N
gene. PCR was performed on 40 ng of starting DNA using
the thermocycle-3000 (Biometra), the Phusion® High-
Fidelity DNA Polymerase (Thermo Fisher Scientific) and
the pair of primers attB-MdmiR285N_Prom reported in
Supplementary Table S4. The PCR product was directly
cloned into a pENTR/D TOPO vector (Invitrogen), and
subsequently the MdmiR285N promoter region was
recombined by LR reaction (Invitrogen) into the GATE-
WAY™ binary vector pKGWEFS7%” in-frame with the
downstream GFP-GUS gene fusion system.

Plant transformation and identification of transgenic lines

For the production of Prom_MdmiR285N::GFP-GUS
transgenic apple and A. thaliana plants, A. tumefaciens
strain GV3101-pMP90RK®® competent cells were trans-
formed by electroporation with the previously generated
pKGWES7 binary vector.

In apple (Supplementary Table S1), in vitro-propagated
wild-type plantlets were transformed as described by Joshi
et al.®, using 770 leaf explants for infections. After
transformation, regenerated plants were screened for T-
DNA. Genomic DNA was extracted from leaves and
quantified, as previously mentioned. Thus, genomic DNA
was amplified by PCR using the GoTaq® Green Master
Mix 2X (Promega, Fitchburg, MA) and the pairs of pri-
mers Nptll (used to detect T-DNA), MdUBQ (used as
endogenous control for genomic DNA amplification), and
VirG (used to verify the presence of residual A. tumefa-
ciens) listed in Supplementary Table S4. The identified
transgenic plants were collected and propagated in vitro.

In A. thaliana (Supplementary Table S2), soil-grown
wild-type plantlets were transformed by the A. tumefa-
ciens-mediated floral dip transformation method”.
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Following transformation, T1-independent transgenic
lines were retrieved using 2MS medium supplemented
with 0.5% (w/v) sucrose and 50 ng/pL kanamycin. Thus,
the germination profile of the T2 offspring of the identi-
fied transgenic lines was screened on selective medium
and only those lines that showed a germination ratio
Kanamycin®®**": Kanamycin®**“*P™¢ gjgnificantly near
to 3:1 were collected. Candidate lines selected in this
study were grown to the T4 generation and the obtained
T4 seeds were used for the experiments.

Quantification of Nptll copy number by Tagman real-time
PCR

In apple, the investigation of the NptII CN (Supple-
mentary Table S1) was performed to quantify the number
of T-DNA insertion events in in vitro transgenic plants
obtained by A. tumefaciens-mediated transformation. The
experimental procedure was conducted according to the
TaqMan real-time PCR method described by Dalla Costa
et al.”!. Primers and probes used for the amplification of
MdTOPO6 (endogenous gene) and Nptll (marker gene)
are listed in Supplementary Table S4.

In silico analysis of MdmiR285N gene promoter sequence
To detect putative TFBSs and corresponding TFs
involved in the regulation of MdmiR285N (Fig. 1, Sup-
plementary Table S3), its promoter sequence (~1kb
upstream of the translation start site) was scanned by the
‘Promoter Analysis’ tool of PlantPAN 2.0 (http://
PlantPAN2.itps.ncku.edu.tw; ref. %), using both ‘M. x
domestica’ and ‘A. thaliana’ databases as reference. The
similarity score for TFBSs calling was set to 0.95. Results
were downloaded and manually checked to remove
putative inconsistencies. For each TFs detected, corre-
sponding biological functions based on gene ontology
information were retrieved by using both PlantPAN 2.0
and PlantTFDB 5.0 (planttfdb.cbi.pku.edu.cn) databases.

Histochemical GUS assay

The histochemical GUS staining of apple and A. thali-
ana samples (Figs. 2—4, 5¢) were carried out following the
procedure described by Jefferson et al.”* with some var-
iations. Samples were immersed in 90% (v/v) acetone,
kept at —20°C for 30 min, then transferred into a GUS
staining solution containing 1 mM X-Gluc, 2.5 mM KjFe
(CN)s, 2.5mM KyFe(CN)g, 0.2% (v/v) Triton X-100
(Sigma-Aldrich), and 50 mM sodium phosphate buffer
(pH 7.0). Thus, samples were vacuum infiltrated (2 and
1 min for apple and A. thaliana, respectively) and incu-
bated for 12 h at 37 °C. After staining, the GUS reaction
was stopped by immersing samples in a 3:1 ethanol:acetic
acid solution for 6 h. Finally, samples were washed two
times with 100% (v/v) ethanol for 12h to remove the
chlorophyll, and subsequently conserved in 70% (v/v)
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ethanol. Imaging of stained tissues was performed using a
full-frame DLSR camera with a 100 mm macro lens
(Nikon), a Axio Imager 2 microscope (ZEISS), and a
MZ16 F stereomicroscope (LEICA).

Pathogen inoculation

For ex vivo inoculations of apple (Fig. 5a), wild-type
plantlets (grown for 3 weeks after acclimation to soil)
were inoculated according to the scissor inoculation
method described by Desnoues et al.”?, using E. amylo-
vora strain Ea273. E. amylovora was grown at 28 °C x 24 h
in liquid KADO medium”® supplemented with 0.3 g/L
MgSO,. Following growth, the bacterial cell density was
measured with a BioPhotometer (Eppendorf, Hamburg,
Germany), thus the inoculum solution was prepared by
adjusting bacterial concentration to 1 x 10° CFU/mL with
0.05M potassium phosphate buffer (pH 6.5). The three
youngest leaves of plants actively growing were transver-
sally cut using scissors dipped in the bacteria suspension
or potassium phosphate buffer (mock) as mechanical
damage control. After treatment, plants were maintained
at growth chamber conditions and subsequently sampled.
Approximately 5-mm-wide leaf strips, parallel to the
inoculation cut, were collected at 0, 12, 24, 36, and 48 h
postinoculation. Samples were frozen in liquid nitrogen
and kept at —80 °C for the further RNA extraction.

For in vitro inoculations of apple and A. thaliana
(Fig. 5b—d), the procedure was carried out according to
the flood-inoculation technique described by Ishiga
et al.”® with some modifications. For A. thaliana, inocu-
lations were performed using Pst DC3000”°. The bacterial
pathogen was grown at 28°C on Luria—Bertani (LB)
medium x 24 h. After growth, bacterial was suspended in
sterile distilled H,O and the bacterial cell density (ODgg)
was measured as previously mentioned. Thus, bacterial
inoculation solution (1 x 10° CFU/mL), prepared in sterile
distilled H,O containing 0.005% Silwet L-77 (Sigma-
Aldrich), was poured into 24-well plates containing 3-
week-old A. thaliana seedlings. Plants used as control
were treated using a mock solution prepared according to
the previous inoculation solution without the bacteria.
After 3min of immersion and low agitation at 50 rpm,
inoculation solutions were discarded and the liquid cul-
ture medium was replaced. Treated plants were main-
tained at growth chamber conditions and sampling was
performed at 0, 24, and 48 h postinoculation. Collected
plants were directly used in the histochemical GUS pro-
cedure as previously described, or frozen in liquid nitro-
gen and conserved at —80 °C for the further Bradford and
fluorometric MUG assays. For apple, E. amylovora was
grown as previously described and the inoculum solution
was prepared by adjusting bacterial concentration to 1 x
10° CFU/mL with 0.05 M potassium phosphate buffer (pH
6.5) and 0.005% Silwet L-77. For control experiments, a
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mock solution was made as the inoculum solution with-
out the bacteria. The treatment was performed by pouring
inoculation or mock solutions into baby jars containing 3-
week-old apple plantlets. After 6 min of flood-treatment
with low agitation at 50 rpm, solutions were discarded and
corresponding treated plants were kept at growth cham-
ber conditions. As for A. thaliana, plants were sampled at
0, 24, and 48 h postinoculation and conserved at —80 °C
for the subsequent Bradford and fluorometric MUG
assays.

Real-time PCR

For the expression analysis of mature MdmiR285N
transcripts (Fig. 5a), the experimental procedure was
conducted according to the protocol of Varkonyi-Gasic
et al.”” with minor variations. Samples were ground with a
mortar and pestle chilled with liquid nitrogen, and the
resulting powder was used for total RNA extraction using
the Spectrum™ Plant Total RNA Kit (Sigma-Aldrich).
Extracted RNA was quantified on the NanoDrop 8000
Spectrophotometer (Thermo Fisher Scientific) and sub-
sequently treated with DNase I (Sigma-Aldrich) to
remove genomic DNA contamination. One microgram of
DNase-treated RNA was applied for the MdmiR285N-
specific cDNA synthesis using the Superscript III RT kit
(Invitrogen), the MdmiR285N-stemloop primer (Supple-
mentary Table S4), and a pulsed reverse transcription
(1 cycle of 16°C for 30 min; 60 cycles of 30°C for 30s,
42°C for 30s, and 50 °C for 1s; and 1 cycle of 70 °C for
15 min). In parallel, MdU6 and MdACT2 genes (used as
internal controls) were retrotranscribed according to the
manufacturer’s instructions of the Superscript III RT kit
(Invitrogen). After RT reaction, the produced cDNA was
diluted ten times and then used in real-time PCR reac-
tions conducted in a 96-well plate with 5ng of starting
¢DNA, the SsoAdvanced™ Universal SYBR® Green
Supermix (Bio-Rad) and the couples of primers MdUS6,
MdACT?2, and MdmiR285N (F, R) reported in Supple-
mentary Table S4. Real-time PCRs were performed on a
C1000 thermal cycler (Bio-Rad) equipped with CFX96
real-time PCR detection system (Bio-Rad) and a data
analysis software CFX Maestro (Bio-Rad).

Bradford and fluorometric MUG assays

Collected apple and A. thaliana in vitro plantlets were
ground with a mortar and pestle chilled with liquid
nitrogen. Hundred milligrams of the resulting powder was
used for the quantification of GUS activity (Fig. 5b, d)
according to the experimental procedure described by
Dalla Costa et al.”®.,

Statistical analysis
Regarding the statistical analysis of segregation T-DNA
loci data in A. thaliana (Supplementary Table S2), the
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Chi-square (X?) test was used to assess the differences
between the observed values and the expected values.

For gene expression and GUS activity quantitative data
(Fig. 5), the statistical analysis was conducted with the
Dell™ Statistica™ Software version 13.1, considering
datasets of mock- and pathogen-treatments separately. A
one-way ANOVA followed by post hoc Dunnett’s test was
used to assess differences between datasets and the cor-
responding control dataset (0 h). Statistics was performed
with a = 0.05.
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