126 research outputs found

    A Tri-band-notched UWB Antenna with Low Mutual Coupling between the Band-notched Structures

    Get PDF
    A compact printed U-shape ultra-wideband (UWB) antenna with triple band-notched characteristics is presented. The proposed antenna, with compact size of 24×33 mm2, yields an impedance bandwidth of 2.8-12GHz for VSWR<2, except the notched bands. The notched bands are realized by introducing two different types of slots. Two C-shape half-wavelength slots are etched on the radiating patch to obtain two notched bands in 3.3-3.7GHz for WiMAX and 7.25-7.75GHz for downlink of X-band satellite communication systems. In order to minimize the mutual coupling between the band-notched structures, the middle notched band in 5-6GHz for WLAN is achieved by using a U-slot defected ground structure. The parametric study is carried out to understand the mutual coupling. Surface current distributions and equivalent circuit are used to illustrate the notched mechanism. The performance of this antenna both by simulation and by experiment indicates that the proposed antenna is suitable and a good candidate for UWB applications

    A compact UWB monopole antenna with penta band notched characteristics

    Get PDF
    A modified rectangular monopole ultra-wideband (UWB) antenna with penta notched frequency bands is presented. An inverted U shaped and slanted U-shaped on the radiating patch are inserted to achieve WiMAX and ARN bands rejection respectively, two mirrored summation Σ-shaped and four mirrored 5-shaped slots are inserted on the partial ground to achieve WLAN and X-band bands rejection respectively, finally rectangular shaped slot with partially open on the feed is inserted to achieve ITU-8 band rejection. The proposed antenna which was simulated has a compact size 30×35×1.6 m3. It is operated with impedance bandwidth 2.8-10.6 GHz at |S11| &lt; −10 dB, that supported UWB bandwidth with filtering the five narrowbands that avoid the possible interference with them. The simulated resonant frequency for notched filters received 3.55, 4.55, 5.53, 7.45, 8.16 GHZ, for WiMAX, ARN, WLAN, X-Band, ITU-8 respectively. The proposed antenna is suitable for wireless communication such as mobile communication and internet of everything (IoE). Throughout this paper, CST-EM software package was used for the design implementation. Surface current distributions for all notched filters were investigated and shown that it is concentrated around the feeding point and the inserted notched slots proving that there is no radiation to the space due to maximum stored electromagnetic energy around each investigated notch slot, proving that the slots play a role of a quarter wavelength transformer which generates for each notched band, maximum gain, and radiation pattern are also investigated

    A planar UWB semicircular-shaped monopole antenna with quadruple band notch for WiMAX, ARN, WLAN, and X-Band

    Get PDF
    This paper proposed quadruple notched frequency bands ultra-wideband (UWB) antenna. The antenna is a semicircular-shaped monopole type of a compact size 36x24 mm, covering frequency range of 3.02-14 GHz. Four rejected narrow bands including WiMAX (3.3-3.7GHz), ARN (4.2-4.5 GHz), WLAN (5.15-5.825GHz), X-Band (7.25-7.75) have been achieved using inserting slots techniques in the patch, feed line, and ground plane. The slots dimensions have been optimized for the required reject bands. The antenna design and analysis have been investigated by simulation study using CST-EM software package. The antenna characteristics including impedance bandwidth, surface current, gain, radiation efficiency, radiation pattern have been discussed

    A novel SWB antenna with triple band-notches based on elliptical slot and rectangular split ring resonators

    Get PDF
    In this paper, a wideband antenna was designed for super-wideband (SWB) applications. The proposed antenna was fed with a rectangular tapered microstrip feed line, which operated over a SWB frequency range (1.42 GHz to 50 GHz). The antenna was implemented at a compact size with electrical dimensions of 0.16 ¿ × 0.27 ¿ × 0.0047 ¿ mm3, where ¿ was with respect to the lowest resonance frequency. The proposed antenna prototype was fabricated on a F4B substrate, which had a permittivity of 2.65 and 1 mm thickness. The SWB antenna exhibited an impedance bandwidth of 189% and a bandwidth ratio of 35.2:1. Additionally, the proposed antenna design exhibited three band notch characteristics that were necessary to eradicate interference from WLAN, WiMAX, and X bands in the SWB range. One notch was achieved by etching an elliptical split ring resonator (ESRR) in the radiator and the other two notches were achieved by placing rectangular split ring resonators close to the signal line. The first notch was tuned by incorporating a varactor diode into the ESRR. The prototype was experimentally validated with, with notch and without notch characteristics for SWB applications. The experimental results showed good agreement with simulated results.Postprint (published version

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems

    Compact Planar Ultrawideband Antennas with Continuously Tunable, Independent Band-Notched Filters

    Full text link
    © 2016 IEEE. A compact planar ultrawideband antenna with continuously tunable, independent band notches for cognitive radio applications is presented. The antenna is fabricated using a copper-cladded substrate. A radiating patch with an inverted rectangular T-slot is etched on the top side of the substrate. A straight rectangular strip with a complete gap is embedded into the T-slot. By placing a single varactor diode across this gap, a frequency-agile band-notch function below 5 GHz is realized. On the bottom side of the substrate, a U-shaped parasitic element having an interdigitated-structure is placed beneath the radiating patch. The second narrow band notch is created by inserting a second varactor diode into the gap on one leg of the parasitic element. It has a frequency-agile performance above 5 GHz. The presence of the interdigitated structure suppresses higher order resonant modes and enhances the tunability of the notched bandwidth. Because these antenna structures naturally block dc, a very small number of lumped elements are required. The experimental results, which are in good agreement with their simulated values, demonstrate that both band notches can be independently controlled and the entire frequency-agile fractional bandwidth is as high as 74.5%, demonstrating a very wide notched frequency-agile coverage

    A miniaturized printed UWB antenna with dual notching for X-b and and aeronautical radio navigation applications

    Get PDF
    A low cost miniaturized UWB microstrip antenna with dual notched band for X band and aeronautical radio navigation (ARN) is presented in this article. The antenna (19 16×"&gt; 25 mm2) is composed of a half-circular ring as a radiation patch with an incomplete ground plane. The measured results indicate a fractional bandwidth of 112% for 16S11≤-"&gt; 10 dB between 3 to 10.6 GHz. The dual notched band has been achieved by incorporating window shaped microstrip closed ring resonators at the rear surface of the designed structure. The first notch band is centered at 7.5 GHz (7 8.1 GHz) to reject interference with X-band downlink (7.25 to 7.74 GHz) and second band centered at 9.1 GHz (8.6 9.4 GHz) to reject interference with aeronautical radio navigation (ARN) (8.7 to 9.2 GHz). The simulated and measured return loss, radiation pattern, and gain shows good agreement which confirms the applicability of the designed antenna for the intended UWB applications

    A Novel CPW Fed MIMO Antenna for UWB Applications

    Get PDF
    This paper presents two planar antennas designed from a compact novel CPW fed UWB antenna. The first antenna is single UWB antenna. The single UWB antenna covers the entire UWB frequency band. Single antenna operates in 2.8 GHz to 12.6 GHz. The second antenna is MIMO antenna which is made with orthogonal placement of two UWB antennas and MIMO antennas covers the entire UWB frequency band. The MIMO antenna with orthogonal placement of antennas operates in 2.9 GHz to 12.7 GHz band. The designed single antenna has dimensions of 27 X 34 X 1.6 mm3 and MIMO antennas have volume of 61 X 34 X 1.6 mm3 for orthogonal placement. Antenna has satisfactory performance in terms gain, radiation pattern, return loss, voltage standing wave ratio, envelope correlation coefficient and diversity gain for UWB MIMO application

    A Review: Circuit Theory of Microstrip Antennas for Dual-, Multi-, and Ultra-Widebands

    Get PDF
    In this chapter, a review has been presented on dual-band, multiband, and ultra-wideband (UWB). This review has been classified according to antenna feeding and loading of antennas using slots and notch and coplanar structure. Thereafter a comparison of dual-band, multiband, and ultra-wideband antenna has been presented. The basic geometry of patch antenna has been present along with its equivalent circuit diagram. It has been observed that patch antenna geometry for ultra-wideband is difficult to achieve with normal structure. Ultra-wideband antennas are achieved with two or more techniques; mostly UWB antennas are achieved from coplaner structures
    corecore