20 research outputs found

    Pitfalls in Ultralightweight RFID Authentication Protocol

    Get PDF
    Radio frequency identification (RFID) is one of the most promising identification schemes in the field of pervasive systems. Non-line of sight capability makes RFID systems more protuberant than its contended systems. Since the RFID systems incorporate wireless medium, so there are some allied security threats and apprehensions from malicious adversaries. In order to make the system reliable and secure, numerous researchers have proposed ultralightweight mutual authentication protocols; which involve only simple bitwise logical operations (AND, XOR & OR etc.) to provide security. In this paper, we have analyzed the security vulnerabilities of state of the art ultralightweight RFID authentication protocol: RAPP. We have proposed three attacks (two DoS and one Desynchronization) in RAPP protocol and challenged its security claims.  Moreover, we have also highlighted some common pitfalls in ultralightweight authentication protocol designs. This will help as a sanity check, improve and longevity of ultralightweight authentication protocol designs

    On the Improper Use of CRC for Cryptographic Purposes in RFID Mutual Authentication Protocols

    Get PDF
    Mutual authentication is essential to guarantee the confidentiality, integrity, and availability of an RFID system. One area of interest is the design of lightweight mutual authentication protocols that meet the limited computational and energy resources of the tags. These protocols use simple operations such as permutation and cyclic redundancy code for cryptographic purposes. However, these functions are cryptographically weak and are easily broken. In this work, we present a case against the use of these functions for cryptographic purposes, due to their simplicity and linear properties, by analyzing the LPCP protocol. We evaluate the claims of the LPCP resistance to de-synchronization and full disclosure attacks and show that the protocol is weak and can be easily broken by eavesdropping on a few mutual authentication sessions. This  weakness stems from the functions themselves as well as the improper use of inputs to these functions. We further offer suggestions that would help in designing more secure protocols

    Vulnerability Analysis of a Mutual Authentication Protocol Conforming to EPC Class-1 Generation-2 Standard

    Full text link
    In this paper we scrutinize the security properties of an RFID authentication protocol conforming to the EPC Class-1 Generation-2 standard. The protocol is suitable for Gen-2 passive tags and requires simple computations. The authors claim that the scheme provides privacy protection and authentication and offers resistant against commonly assumed attacks. We propose a de-synchronization and an impersonation attack in which the disclosing of the secret information (i.e. secret key and static identifier) shared between the tag and the reader is unnecessary to success in these attacks

    Vulnerability Analysis of a Mutual Authentication Protocol Conforming to EPC Class-1 Generation-2 Standard

    Get PDF
    In this paper we scrutinize the security properties of an RFID authentication protocol conforming to the EPC Class-1 Generation-2 standard. The protocol is suitable for Gen-2 passive tags and requires simple computations. The authors claim that the scheme provides privacy protection and authentication and offers resistant against commonly assumed attacks. We propose a de-synchronization and an impersonation attack in which the disclosing of the secret information (i.e. secret key and static identifier) shared between the tag and the reader is unnecessary to success in these attacks

    Toward designing a secure authentication protocol for IoT environments

    Get PDF
    Authentication protocol is a critical part of any application to manage the access control in many applications. A former research recently proposed a lightweight authentication scheme to transmit data in an IoT subsystem securely. Although the designers presented the first security analysis of the proposed protocol, that protocol has not been independently analyzed by third-party researchers, to the best of our knowledge. On the other hand, it is generally agreed that no cryptosystem should be used in a practical application unless its security has been verified through security analysis by third parties extensively, which is addressed in this paper. Although it is an efficient protocol by design compared to other related schemes, our security analysis identifies the non-ideal properties of this protocol. More specifically, we show that this protocol does not provide perfect forward secrecy. In addition, we show that it is vulnerable to an insider attacker, and an active insider adversary can successfully recover the shared keys between the protocol’s entities. In addition, such an adversary can impersonate the remote server to the user and vice versa. Next, the adversary can trace the target user using the extracted information. Finally, we redesign the protocol such that the enhanced protocol can withstand all the aforementioned attacks. The overhead of the proposed protocol compared to its predecessor is only 15.5% in terms of computational cost

    Cryptanalysis of two recent ultra-lightweight authentication protocols

    Get PDF
    Radio Frequency Identification (RFID) technology is a critical part of many Internet of Things (IoT) systems, including Medical IoT (MIoT) for instance. On the other hand, the IoT devices’ numerous limitations (such as memory space, computing capability, and battery capacity) make it difficult to implement cost- and energy-efficient security solutions. As a result, several researchers attempted to address this problem, and several RFID-based security mechanisms for the MIoT and other constrained environments were proposed. In this vein, Wang et al. and Shariq et al. recently proposed CRUSAP and ESRAS ultra-lightweight authentication schemes. They demonstrated, both formally and informally, that their schemes meet the required security properties for RFID systems. In their proposed protocols, they have used a very lightweight operation called Cro(·) and Rank(·), respectively. However, in this paper, we show that those functions are not secure enough to provide the desired security. We show that Cro(·) is linear and reversible, and it is easy to obtain the secret values used in its calculation. Then, by exploiting the vulnerability of the Cro(·) function, we demonstrated that CRUSAP is vulnerable to secret disclosure attacks. The proposed attack has a success probability of "1" and is as simple as a CRUSAP protocol run. Other security attacks are obviously possible by obtaining the secret values of the tag and reader. In addition, we present a de-synchronization attack on the CRUSAP protocol. Furthermore, we provide a thorough examination of ESRAS and its Rank(·) function. We first present a de-synchronization attack that works for any desired Rank(·) function, including Shariq et al.’s proposed Rank(·) function. We also show that Rank(·) does not provide the desired confusion and diffusion that is claimed by the designers. Finally, we conduct a secret disclosure attack against ESRAS

    A New Strong Adversary Model for RFID Authentication Protocols

    Get PDF
    Radio Frequency Identification (RFID) systems represent a key technology for ubiquitous computing and for the deployment of the Internet of Things (IoT). In RFID technology, authentication protocols are often necessary in order to confirm the identity of the parties involved (i.e. RFID readers, RFID tags and/or database servers). In this article, we analyze the security of a mutual authentication protocol proposed by Wang and Ma. Our security analysis clearly shows major security pitfalls in this protocol. Firstly, we show two approaches that an adversary may use to mislead an honest reader into thinking that it is communicating with a legitimate database. Secondly, we show how an adversary that has compromised some tags can impersonate an RFID reader to a legitimate database. Furthermore, we present a new adversary model, which pays heed on cases missed by previous proposals. In contrast to previous models where the communication between an RFID reader and a back-end server is through a secure channel, our model facilitates the security analysis of more general schemes where this communication channel (RFID reader-to-server) is insecure. This model determines whether the compromise of RFID tags has any impact on the security of the readerto-server communication or vice versa. In a secure protocol, the possible compromise of RFID tags should not affect the RFID reader-server communication. In this paper, we show that compromising of RFID tags in Wang and Ma protocol has a direct impact on the reader-server security. Finally, we propose a new authentication protocol that offers an adequate security level and is resistant against the mentioned security risks. The security proofs of the proposed protocol are supported with Gong-Needham-Yahalom (GNY) logic and Scyther tool, which are formal methods to evaluate the security of a cryptographic protocol

    A Secure RFID Authentication Protocol Adopting Error Correction Code

    Get PDF
    RFID technology has become popular in many applications; however, most of the RFID products lack security related functionality due to the hardware limitation of the low-cost RFID tags. In this paper, we propose a lightweight mutual authentication protocol adopting error correction code for RFID. Besides, we also propose an advanced version of our protocol to provide key updating. Based on the secrecy of shared keys, the reader and the tag can establish a mutual authenticity relationship. Further analysis of the protocol showed that it also satisfies integrity, forward secrecy, anonymity, and untraceability. Compared with other lightweight protocols, the proposed protocol provides stronger resistance to tracing attacks, compromising attacks and replay attacks. We also compare our protocol with previous works in terms of performance

    Security and Privacy Issues in IoT

    Get PDF
    Internet of Things (IoT) is a global network of physical and virtual ‘things’ connected to the internet. Each object has unique ID which is used for identification. IoT is the emerging technology which will change the way we interact with devices. In future almost every electronic device will be a smart device which can compute and communicate with hand-held and other infrastructure devices. As most of the devices may be battery operated, due to less processing power the security and privacy is a major issue in IoT. Authentication, Identification and device heterogeneity are the major security and privacy concerns in IoT. Major challenges include integration, scalability, ethics communication mechanism, business models and surveillance. In this paper major issues related to security and privacy of IoT are focused

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license
    corecore