8 research outputs found

    An Efficient Synchronous Checkpointing Protocol for Mobile Distributed Systems

    Get PDF
    Recent years have witnessed rapid development of mobile communications and become part of everyday life for most people. In order to transparently adding fault tolerance in mobile distributed systems, Minimum-process coordinated checkpointing is preferable but it may require blocking of processes, extra synchronization messages or taking some useless checkpoints. All-process checkpointing may lead to exceedingly high checkpointing overhead. In order to balance the checkpointing overhead and the loss of computation on recovery, we propose a hybrid checkpointing algorithm, wherein an all-process coordinated checkpoint is taken after the execution of minimum-process coordinated checkpointing algorithm for a fixed number of times. In the minimum-process coordinated checkpointing algorithm; an effort has been made to optimize the number of useless checkpoints and blocking of processes using probabilistic approach and by computing an interacting set of processes at beginning. We try to reduce the loss of checkpointing effort when any process fails to take its checkpoint in coordination with others. We reduce the size of checkpoint sequence number piggybacked on each computation messag

    Study and Design of Global Snapshot Compilation Protocols for Rollback-Recovery in Mobile Distributed System

    Get PDF
    Checkpoint is characterized as an assigned place in a program at which ordinary process is intruded on particularly to protect the status data important to permit resumption of handling at a later time. A conveyed framework is an accumulation of free elements that participate to tackle an issue that can't be separately comprehended. A versatile figuring framework is a dispersed framework where some of procedures are running on portable hosts (MHs). The presence of versatile hubs in an appropriated framework presents new issues that need legitimate dealing with while outlining a checkpointing calculation for such frameworks. These issues are portability, detachments, limited power source, helpless against physical harm, absence of stable stockpiling and so forth. As of late, more consideration has been paid to giving checkpointing conventions to portable frameworks. Least process composed checkpointing is an alluring way to deal with present adaptation to internal failure in portable appropriated frameworks straightforwardly. This approach is without domino, requires at most two recovery_points of a procedure on stable stockpiling, and powers just a base number of procedures to recovery_point. In any case, it requires additional synchronization messages, hindering of the basic calculation or taking some futile recovery_points. In this paper, we complete the writing review of some Minimum-process Coordinated Checkpointing Algorithms for Mobile Computing System

    A Smart Voting Subsystem for Distributed Fault Tolerance

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems Laborator

    Tailoring Transactional Memory to Real-World Applications

    Get PDF
    Transactional Memory (TM) promises to provide a scalable mechanism for synchronizationin concurrent programs, and to offer ease-of-use benefits to programmers. Since multiprocessorarchitectures have dominated CPU design, exploiting parallelism in program

    Distributed Simulation of High-Level Algebraic Petri Nets

    Get PDF
    In the field of Petri nets, simulation is an essential tool to validate and evaluate models. Conventional simulation techniques, designed for their use in sequential computers, are too slow if the system to simulate is large or complex. The aim of this work is to search for techniques to accelerate simulations exploiting the parallelism available in current, commercial multicomputers, and to use these techniques to study a class of Petri nets called high-level algebraic nets. These nets exploit the rich theory of algebraic specifications for high-level Petri nets: Petri nets gain a great deal of modelling power by representing dynamically changing items as structured tokens whereas algebraic specifications turned out to be an adequate and flexible instrument for handling structured items. In this work we focus on ECATNets (Extended Concurrent Algebraic Term Nets) whose most distinctive feature is their semantics which is defined in terms of rewriting logic. Nevertheless, ECATNets have two drawbacks: the occultation of the aspect of time and a bad exploitation of the parallelism inherent in the models. Three distributed simulation techniques have been considered: asynchronous conservative, asynchronous optimistic and synchronous. These algorithms have been implemented in a multicomputer environment: a network of workstations. The influence that factors such as the characteristics of the simulated models, the organisation of the simulators and the characteristics of the target multicomputer have in the performance of the simulations have been measured and characterised. It is concluded that synchronous distributed simulation techniques are not suitable for the considered kind of models, although they may provide good performance in other environments. Conservative and optimistic distributed simulation techniques perform well, specially if the model to simulate is complex or large - precisely the worst case for traditional, sequential simulators. This way, studies previously considered as unrealisable, due to their exceedingly high computational cost, can be performed in reasonable times. Additionally, the spectrum of possibilities of using multicomputers can be broadened to execute more than numeric applications

    Parallel and Distributed Simulation of Discrete Event Systems

    Get PDF
    The achievements attained in accelerating the simulation of the dynamics of complex discrete event systems using parallel or distributed multiprocessing environments are comprehensively presented. While parallel discrete event simulation (DES) governs the evolution of the system over simulated time in an iterative SIMD way, distributed DES tries to spatially decompose the event structure underlying the system, and executes event occurrences in spatial subregions by logical processes (LPs) usually assigned to different (physical) processing elements. Synchronization protocols are necessary in this approach to avoid timing inconsistencies and to guarantee the preservation of event causalities across LPs. Included in the survey are discussions on the sources and levels of parallelism, synchronous vs. asynchronous simulation and principles of LP simulation. In the context of conservative LP simulation (Chandy/Misra/Bryant) deadlock avoidance and deadlock detection/recovery strategies, Conservative Time Windows and the Carrier Nullmessage protocol are presented. Related to optimistic LP simulation (Time Warp), Optimistic Time Windows, memory management, GVT computation, probabilistic optimism control and adaptive schemes are investigated. (Also cross-referenced as UMIACS-TR-94-100
    corecore