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Abstract
In the field of Petri nets, simulation is an essential tool to validate and evaluate 
models. Conventional simulation techniques, designed for their use in sequential 
computers, are too slow if the system to simulate is large or complex. The aim of 
this work is to search for techniques to accelerate simulations exploiting the paral­
lelism available in current, commercial multicomputers, and to use these techniques 
to study a class of Petri nets called high-level algebraic nets. These nets exploit the 
rich theory of algebraic specifications for high-level Petri nets: Petri nets gain a great 
deal of modelling power by representing dynamically changing items as structured 
tokens whereas algebraic specifications turned out to be an adequate and flexible 
instrument for handling structured items. In this work we focus on ECATNets (Ex­
tended Concurrent Algebraic Term Nets) whose most distinctive feature is their 
semantics which is defined in terms of rewriting logic. Nevertheless, ECATNets 
have two drawbacks: the occultation of the aspect of time and a bad exploitation of 
the parallelism inherent in the models.

Three distributed simulation techniques have been considered: asynchronous con­
servative, asynchronous optimistic and synchronous. These algorithms have been 
implemented in a multicomputer environment: a network of workstations. The 
influence that factors such as the characteristics of the simulated models, the organ­
isation of the simulators and the characteristics of the target multicomputer have in 
the performance of the simulations have been measured and characterised.

It is concluded that synchronous distributed simulation techniques are not suitable 
for the considered kind of models, although they may provide good performance in 
other environments. Conservative and optimistic distributed simulation techniques 
perform well, specially if the model to simulate is complex or large - precisely the 
worst case for traditional, sequential simulators. This way, studies previously con­
sidered as unrealisable, due to their exceedingly high computational cost, can be 
performed in reasonable times. Additionally, the spectrum of possibilities of using 
multicomputers can be broadened to execute more than numeric applications.



To Chafla and Djamel



Acknowledgements
First and foremost I would like to thank my supervisors, Prof. Dennis Gilles and 
Prof. Mohamed Bettaz, for guiding my research over the course of my Ph.D. They 
have been a constant source of advice, encouragement and guidance diming my re­
search, and have always provided constructive criticism of my work. Prof. Bettaz’s 
enthusiasm for the subject has helped to make this a very enjoyable period of study 
for me.

I would also like to thank Dr Lewis Mackenzie for his time, his advice and for 
helping me in avoiding the pitfalls on the way to obtaining a Ph.D. degree.

Also, I would like to express my gratitude to the Computing Science Department at 
the University of Glasgow for providing such a stimulating and friendly environment 
to work in.

My research was supported by the Algerian Ministry of Higher Education and Sci­
entific Research, and the British Council in the form of a Split-Ph.D. Research Stu­
dentship during the period when I was visiting the University of Glasgow (September 
1993 - September 1997). I am grateful to them.



Declaration
This thesis is submitted in accordance with the regulations for the degree of Doctor 
of Philosophy in the University of Glasgow. No part of it has been previously sub­
mitted by the author for a degree at any other university and all results contained 
within axe claimed as original.

Section 5.4.2 contains ideas suggested by Nicol and Mao [NR91]. Section 5.6.4 con­
tains an algorithm inspired from ideas suggested by Thomas and Zahorjan [TZ91]. 
Sections 5.6 and 6.3 are revised versions of material published in [DBGM96a] and 
[DBGM95], respectively. Sections 5.7 and 6.4 cover material published in [DBGM96b] 
and [DBGM98].



Acronyms
Some frequently used abbreviations appearing in this thesis are listed here, together 
with a brief explanation of their meaning.

ATNet Algebraic Term Net
C Capacity
CATNet Concurrent Algebraic Term Net
CMB Chandy-Misra Bryant
CMB-DA Chandy-Misra Bryant with Deadlock Avoidance
CM-DDR Chandy-Misra Bryant with Deadlock Detection and Recovery
CPNets Coloured Petri Nets
CT Created Tokens
DDES Distributed Discrete Event Simulation
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ECATNet Extended Concurrent Algebraic Term Net
EP Efficient Partitioning
ES Event Stack
EVL Event List
GSPN General Stochastic Petri Net
GVT Global Virtual Time
IQ Input Queue
IC Input Condition
LP Logical Process
LVT Local Virtual Time
MPI Message Passing Interface
NOW Network of Workstations
OQ Output Queue
PDES Parallel Discrete Event Simulation
PE Processing Element
PN Petri Net
PP Physical Process
PVM Parallel Virtual Machine
QN Queueing Network
scs Separation of Concern Strategy
SPN Stochastic Petri Net
TC Transition Condition
TW Time Warp
TW-AC Time Warp with Aggressive Cancellation
TW-LZ Time Warp with Lazy Cancellation
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Chapter 1

Introduction

1.1 M otivation of the Work

The objective of the work presented in this thesis is to propose efficient, parallel 
ways to simulate high-level algebraic Petri nets. The interest of the work is twofold:

1. Our research group’s effort focuses on the study of distributed systems and 
their performance modelling. As a significant amount of simulation work is 
performed, we would like to find a way of accelerating these simulations be­
cause they are time consuming.

2. We are also interested in the use of currently available multicomputers. Sim­
ulation is an interesting application to parallelise in this context.

Next we elaborate these two ideas.

1.1.1 M odelling and A nalysis o f Real System s

During the last few years, our research group has been working on the analysis and 
use of high-level algebraic Petri nets. The effectiveness of our proposals has to be 
validated somehow, and there are tools considered for this purpose: analytical mod­
els and computer simulation. This situation is common to many fields of science and 
engineering. In this thesis, we will focus and speak, in general, about the evaluation 
of any kind of real (or proposed) system specified using high-level algebraic nets.

Analytical tools can be described as cheap and fast to use. Of course the devel­
opment of an analytical model of a system can be very complex, but once a set of 
equations has been developed, it is easy to extract information from it. Unfortu­
nately, this approach commonly requires the assumption of simplifications in some

5
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(or many) of the characteristics of the system, for the researcher to be able to solve 
the analytical problem. These simplifications can lead to a model whose behaviour 
may be far from the behaviour of the real system: the results might not be accurate 
if some of the simplifying assumptions are not realistic.

Computer simulation offers an interesting alternative: the system can be de­
scribed somehow (eg. using a simulation language) and then simulated using a 
computer. The description could include simplifying assumptions, like the analyti­
cal model, and then the simulation time would be short. In contrast, the description 
could be very detailed, containing as many elements as the real system, and then 
a highly accurate insight into the behaviour of the system would be obtained. But 
the accuracy comes at a price: simulation’s drawback is its long execution time. 
Computer simulation is very flexible and can be used in many contexts:

• to validate an analytical model;

• to see how an existing system works, when it cannot be easily instrumented;

• to study a non existing system, without building it. There are many reasons 
not to build a system: it might be very expensive, or it might be simply 
impossible;

• to analyse the effect of different design parameters, in an existing or a non­
existing system.

Those using simulators know that analysing large and/or detailed systems can be 
desperately slow. In this context, any possibility of increasing the execution speed of 
the simulation is welcome. The speed increments due to the advances in VLSI (Very 
Large Scale Integration) have been significant, but there always exists a demand 
for more. The introduction in the market of reasonably priced parallel systems has 
allowed researchers to accelerate many computations, and it seems logical to think 
that simulation may also benefit from this technology.

1.1.2 Parallel Im plem entation of High-Level N ets S im ulation A p­
plications

As researchers in the broad field of parallel computing, we are interested in making 
a good use of currently available parallel computers. During this research, we have 
had access to a parallel computing system: a Network of Workstations (NOW) with 
MPI (Message Passing Interface) and PVM (Parallel Virtual Machine) libraries at
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Glasgow. It was our interest to see how well traditional high-level Petri nets sequen­
tial simulation applications could be adapted to run on these machines. A good 
deal of work can be found in the literature reporting parallel algorithms to solve 
many problems, mainly in scientific and engineering fields, but most of those prob­
lems have some characteristics that make them easy to parallelise: big, partitionable 
data structures, simple communication patterns, reduced data dependencies, ...

While simulation is a tool commonly used by scientists and engineers, the algo­
rithms exhibit a behaviour that makes them difficult to parallelise: data structures 
are not always regular, communication among the parts of the model may follow 
arbitrary patterns, there are very strong data dependencies, and so on. But difficult 
does not mean impossible. As it will be explained in Chapter 3, simulation can be 
parallelised, provided that new algorithms axe developed, instead of simply trying 
to make in parallel some of the operations of the sequential programs.

Being successful in the search of parallel and distributed simulators is very impor­
tant, because it extends the domain of applications that can be run in an available 
parallel computer, increasing the usefulness of the investment, which is in general 
expensive.

Obviously, we are not the first research group working on the field of parallel 
and distributed simulation, as many work has been done in the last 10-15 years and 
many work is still being done. Most of the work discussed in the literature about 
Parallel Discrete Event Simulation (PDES) has been done using shared memory 
multiprocessors for two reasons: (1) many multiprocessors are available; (2) they 
allow a more optimised implementation of many algorithms compared to distributed 
memory systems. However, it is assumed that future massively parallel systems will 
be distributed memory systems. Many currently available machines are built this 
way using message passing for synchronisation and communication.

The use of a network of workstations as a fully distributed parallel system is also 
becoming very popular, because it is a very cost/effective alternative to a parallel 
computer [Tur96]. The most popular model of communication for these systems is 
also message passing, an approach followed in this work. While typically more loosely 
coupled than the ’single’ box parallel architectures described as parallel computers, 
network of workstations can provide an invaluable route for producing parallel code. 
Further to this, they offer the opportunity for users without the resources to buy 
massively parallel machines to gain some of the benefits of parallelism on machines 
available locally, and perhaps not used constantly.
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1.2 Tools

In the last years, a considerable effort has been devoted to the parallel and dis­
tributed implementation of discrete event simulators. The objectives were: (1) to 
exploit the parallelism available in current multicomputers and multiprocessors and, 
mainly, (2) to accelerate simulation runs.

For some simulations studies, it is necessary to run several simulations to study 
the influence of a certain set of parameters on the system under study. In these 
cases, the most convenient way of accelerating the job is simply running as many 
simulations as processors are available, each one with different input parameters. 
This technique is called replication. The achieved efficiency is very good, because 
the simulations are completely independent, and therefore there is no need of com­
munication or synchronisation among the involved processors.

However, it is not always possible to replicate the simulator. In some studies it 
is necessary to have the results of one simulation before starting with the next one; 
this is the case when the aim is to tune a set of parameters. It is also possible that 
the memory available at each processor is not large enough to keep a complete copy 
of the simulator. These limitations of the replication approach justify the need of 
solutions to parallelise a single simulation run.

The most promising techniques to perform parallel simulation uses the spatial 
model decomposition: the system to simulate is decomposed into several subsystems, 
and each subsystem is going to be assigned to a Logical Process (LP). As explained 
in chapter 3, a synchronisation mechanism is needed to maintain causal relation­
ships among the events in the simulation. In this work, we analyse three different 
synchronisation mechanisms: conservative, optimistic and synchronous. In all cases, 
each LP has its own local view of time, and the collection of LPs run concurrently. 
The difference between these mechanisms is how they deal with causality errors. In 
conservative and optimistic mechanisms, the parallel simulation is asynchronous. A 
conservative simulator never allows causality errors to occur. To do so, LPs block 
before executing an event, until it is totally safe to proceed. An optimistic simulator 
allows erroneous situations to arise (a new event might arrive from other LP, with 
a timestamp smaller than that of the last executed event), but those are detected 
and a rollback is done to jump to an error-free point in the (simulated) past. In 
a synchronous parallel simulation, all the LPs which form the simulator share the 
same vision of time, as if they had a global clock. Events are simulated in the same 
order a sequential simulator would choose, simulating in parallel only those events 
scheduled for the same time.
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On the other hand, concurrent simulation uses the concept of temporal model 
decomposition principles which could be an alternative approach to the application 
of multiple processors to discrete event simulation models on shared-memory. In this 
case, simulation processes are servers, each of which repeatedly waits for a pending 
event to become available for simulation and then simulates it. The concurrent 
pending-event set is central to this approach, and pending events are organised in 
chronological order. In addition, it must prevent events from being removed for 
simulation until there is an assurance that no events will be scheduled at earlier 
times. Mutual exclusion for access to the state variables of the simulation model is 
required due to the fact that multiple processes may simulate events in parallel.

1.3 Objectives

Previous research in parallel simulation shows that (1) the dynamic nature of par­
allel simulation problems is the principal reason that a “general” solution has been 
elusive; (2) that its efficiency is highly dependent on the characteristics of the system 
under study. For this reason it is not feasible to characterise the performance of the 
different parallel simulation algorithms in a general context. It is possible, however, 
to select a set of related models and extract conclusions about how a given algo­
rithm performs with that set of models. Our research will focus on the analysis of 
high-level algebraic Petri nets. We will consider ECATNets (Extended Concurrent 
Algebraic Term Nets) as models of our study. A detailed description of these models 
are found in Chapter 2.

Algebraic theories have proved to be of great use for the formal specification of 
abstract data types [EM85]. High-level algebraic nets have been introduced in order 
to exploit the rich theory of algebraic specifications for high-level Petri nets. To 
define classes of high-level Petri nets having structured individual tokens is a very 
fundamental goal for making nets actually usable in real concurrent system mod­
elling. A promising approach is that of combining nets with algebraic specification 
techniques. This results in a formal specification language which supports both as­
pects of system modelling, namely data structure and control structure modelling, 
with suitable abstraction notions.

The practical significance of the high-level algebraic Petri net concept has been 
shown in previous works [Bet91, BC92, BM93a, BMSB94, BM95] through the spec­
ification of problems mainly from the fields of communication networks, communi­
cation software, hardware diagnosis, and software testing. These are good examples
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where high-level algebraic nets play fundamental roles.
These studies concluded that ECATNets are good candidates for qualitative/quan­

titative performance evaluation. Fine-grain and/or coarse-grain parallelism inherent 
to these models has to be detected, then simulated on a computer. The work pre­
sented in this thesis has been focused on the simulation of Petri nets with these 
characteristics using a collection of processors which might be able to collaborate to 
solve problems.

Throughout the resarch we will focus on a better exploitation of the parallelism 
inherent in high-level algebraic Petri net models and programming in multicomputer 
environments.

A parallel computer may provide one or more of these programming paradigms: 
SIMD (Single Instruction, Multiple Data), means that all the processes rim the 
same program, instruction by instruction, at the same time, and MIMD (Multiple 
Instruction, Multiple Data), meaning that each process might run a completely 
different program. In particular, more restrictive case of MIMD is SPMD (Single 
Program, Multiple Data), where all the parallel processes run the same program.

Shared memory computers have multiple processors and provide a global shared 
memory. For efficiency reasons, each processor has also a local cache, which in 
turn creates the problem of maintaining cache coherence. Synchronisation might 
be provided by mechanisms such as semaphores. Message passing computers are 
connected by a message passing network. Each processor has its own memory space. 
Both communication and synchronisation are provided by means of messages sent 
between processors.

Our work has been developed in message passing environments. There axe several 
reasons for making this decision. Firstly, the use of a network of workstations because 
no parallel computer is available at Glasgow. The fact that our simulation protocols 
are built on top of the MPI message passing library makes them portable on a parallel 
computer. Secondly, message passing is a paradigm widely used not only on NOWs 
but also on certain classes of parallel computers, especially those with distributed 
memory. Thirdly, parallel simulation algorithms based on spatial decomposition axe 
described by means of a set of processes which interchange messages. Finally, the 
concept of Distributed Shared Memory (DSM, generally built on top of message 
passing) can be used to implement further concurrent simulation applications.

We are concerned by the hardware mechanism used for message passing because 
it greatly influences the performance of the communication functions, and thus, of 
the applications. In a network of workstations, the MPI message, passing library



Chapter 1. Introduction 11

uses TC P/IP  over an Ethernet local area network. This medium provides a raw 10 
Mb/s data rate, which must be shared among all the stations attached to it. The 
communication effort is performed by the workstations CPUs, with the aid of the 
Ethernet cards for accessing the medium.

Communication is different compared with a parallel computer. For example, 
in the Intel Paragon there is a good deal of hardware support for message passing: 
communication is separated from computation, by means of a collection of hardware 
message routers organised in a mesh topology. The communication links which join 
routers can move up to 1600Mb/s. Additionally, each node has a second processor 
specialised in communication, leaving the main processor free to spend its time 
performing computation.

In Chapter 4 we will give a deeper insight into the programming models provided 
by parallel systems, as well as particular descriptions of the environments used in 
this research.

1.4 Major Contributions

The major contributions of this work include:

• the introduction of the aspect of time in EGATNets. Since the introduction of 
ECATNets [Bet91], the behaviour of a modelled system was explained by for­
mal reasoning. The aspect of time is implicitly specified and by transforming 
the rewriting logic into a rewriting system, rapid prototyping and automatic 
proving of the system is possible. ECATNets enriched with temporal specifi­
cation are suitable for discrete event simulation;

• the implementation of a model of ECATNets which can be simulated using a 
discrete event simulator, along with four simulation engines able to work with 
that model: one is sequential, and the other three are parallel, testing three 
different synchronisation mechanisms in a multicomputing environment.

In this research we have characterised:

• which synchronisation mechanisms provide an adequate tool for our studies, 
and which others are not so good. The conservative and optimistic approaches 
perform well, while the synchronous approach does not seem to be the right 
one for our purposes;
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• the effect of the parameters of the ECATNet model on the performance of the 
simulators. Models of large size whose components interact frequently con­
stitute a challenge for sequential simulators, but simplify the synchronisation 
tasks of conservative and optimistic distributed simulators, offering good level 
of performance;

• the effect that the organisation of a simulator has in its performance. The 
partition of a ECATNet model into a set of submodels might be done in several 
ways such as a separation of concern partitioning leading to fine, medium or 
large grain LPs. Large grain LPs provide better performance than fine grain 
LPs but it is sometimes advantageous to assign several medium grain LPs to 
each processor;

• the influence of the target multicomputer on the efficiency of the simulation. 
Our simulators (sometimes) exploit a fine-grain parallelism which requires a 
fast message passing infrastructure. A network of workstations is not (always) 
efficient because communication is too costly compared to computation;

1.5 Overview of the Thesis

The previous sections have given an introduction to the work presented in this thesis. 
We summarise how it is organised.

Chapter 2 presents high-level algebraic Petri nets and focuses on ECATNets, 
a kind of high-level algebraic nets used in this thesis. We start with a general 
introduction to Petri nets then we describe how the aspect of time is handled in 
these nets. It is shown how the concept of time is used in high-level nets in general 
and how it is introduced in ECATNets.

In chapter 3 we provide a survey of parallel and distributed simulation tech­
niques. We start with a description of the general process of studying a system by 
means of simulation. After introducing the main discrete event simulation concepts, 
two common sequential simulation techniques are presented: time-driven and event- 
driven. Then, a description of the ways of exploiting the parallelism available in 
current multiprocessors is given, focusing on those techniques based on model de­
composition. After that, the conservative, optimistic and synchronous mechanisms 
are presented, along with a series of improvements and optimisations to the basic 
algorithms.

Chapter 4 gives an introduction to the programming environments available to 
parallel systems, with special attention to the network of workstations with the
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MPI library. This parallel system is a distributed memory system which provides a 
message passing mechanism for synchronisation and communication.

Chapters 5, 6 and 7 describe a conservative, an optimistic (based on Time Warp) 
and a synchronous simulator respectively. Each chapter includes a detailed descrip­
tion of the partitioning of the ECATNet model into submodels (each submodel to 
be simulated by a LP), the LPs’ communication interface and the simulation en­
gine’s algorithms. Performance results of preliminary experiments are presented. 
An ECATNet model from the area of communication networks is used to test how 
the three distributed simulators behave under the parameters of the model using 
different number of processors. It is observed that the partitioning of the ECATNet 
model into submodels has a great impact on the achieved performance for the case 
of the distributed simulators. Additionally, the performance of the optimistic sim­
ulator exceeds that of the conservative. The synchronous simulator exhibits poor 
performance. The conclusions of this preliminary experiment were tested by three 
later studies.

Chapter 8 describes the experiments performed on three case studies with the 
sequential and the distributed simulators. Each one is studied separately, present­
ing in first place the experiments, followed by the results and a series of partial 
conclusions. The availability of three different distributed simulation engines allows 
a characterisation of the obtained performance as a function of the synchronisation 
technique.

Finally, Chapter 9 summarises the contributions of this work, suggesting lines 
for further research.



Chapter 2

High-Level Algebraic N ets

This chapter presents high-level Petri nets and focuses on ECATNets, a kind of 
high-level algebraic nets used in this thesis. After a general introduction to Petri 
nets, it is shown how the concept of time is used in high-level nets in general and in 
ECATNets in particular.

2.1 Introduction

Petri nets is the oldest and perhaps the best established model of concurrent systems. 
In their various formats, they have been studied extensively since first proposed by 
Carl Adam Petri in the early 1960’s [Pet62] and several algorithms exist to determine 
the functional properties of nets. The chief attraction of Petri nets is the way 
in which the basic aspects of concurrent systems are identified both conceptually 
and mathematically. Another paradigm which is aimed at testing for functional 
correctness is that of process algebras or calculi for communicating systems.

This chapter is structured as follows. Section 2.2 gives a definition of Petri nets 
and a summary of their properties, methods of analysis and semantics. A review 
of the types of Petri nets is done in §2.3 and focuses on timed amd high-level nets. 
Section 2.4 is devoted to a presentation of Extended Concurrent Algebraic Term 
Nets as models of our study. The introduction of the aspect of time in these nets is 
explained in §2.5. Finally, some conclusions are summarised in section 2.6.

2.2 Petri Net Definition

Petri nets [Pet81, Rei85, Mur89] are a graphical and mathematical tool applicable 
to many systems. They are a promising tool for describing and studying informa-

14
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Figure 2.1: A Usual Petri Net (1) Before Transition t Fires; (2) After Transition t 
Fires.

tion processing systems that are characterised as being concurrent, asynchronous, 
distributed, parallel, nondeterministic and/or stochastic. A Petri net is a five-tuple 
PN =  (P, T, F, W, Mo) (sometimes noted (N, Mo)) where :
P =  {Pi> P2 ? •••, Pn} is a finite set of places called P-elements,
T =  {£i, 2̂ ) •••? tm] is a finite set of transitions called T-elements,
F C (P x T) U (T x P) is a set of arcs (flow relation),
W : F —>-{1, 2, . . . } i s a  weight function denoting the multiplicity of unary arcs 
between the connected nodes,
P fl T =  0 and P U T / 0
Mo is the initial marking of P-elements (initial state of PN).

Place/Transition nets (P /T) [Rei86] which were just called Petri Nets, are cer­
tainly the most common and the most extensively studied class of nets. Tokens are 
used in, the net to simulate the dynamic and concurrent activities of systems. Con­
ditions are modelled by places, and events are modelled by transitions. The places 
and transitions are represented by circles and bars, respectively. The conditions 
for the occurrence of an event are represented by the input places of a transition t. 
The output places designate the conditions after the occurrence of an event. The 
occurrence of an event is signaled by the firing of a transition and a transition fires 
only when it is enabled. In order to study the dynamic behaviour of a system, the 
enabling conditions of the transitions are expressed by the presence of tokens. The 
tokens, which reside in places, axe represented by black dots. A transition is enabled 
if each input place p of t is marked with at least w(p,t) tokens, where w(p,t) is the
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weight of the arc from p to t. A firing of the transition removes w(p,t) tokens from 
each input place p of t, and adds w(t,q) tokens to each output place q of t, where 
w(t,q) is the weight of the arc from t to q (Figure 2.1). The number of tokens M(p) 
at each place represents a marking of the graph (state). A token can be thought 
of as representing some condition or holding some data items associated with that 
place. When an interpretation is given to the entities of a PN to represent a system, 
the tokens’ movements will reflect the dynamic behaviour of the system.

Several examples can be given to introduce some concepts of Petri nets as useful 
modelling tools : finite-state machines, concurrency, dataflow computation, com­
munication protocol, synchronisation control, multiprocessors systems, ... Areas of 
applications reported in the literature include cache coherence protocols, computer 
aided software engineering, telecommunication system, database system, fault toler­
ant system, production system, real-time control system, communication protocols, 
computer architecture, formal methods ... This list is by no means exhaustive, there 
are often multiple references in an area, and there are many areas other than those 
listed above. Further examples of applications are found in [Pet81, Rei85, Mur89].

2.2.1 Behavioural Properties

A major strength of Petri nets is their support for analysis of many properties 
and problems associated with concurrent systems. Two types of properties can be 
studied with a Petri net model: those which depend on the initial marking, and 
those which are independent of the initial marking. The former type of properties is 
referred to as marking-dependent or behavioural properties, whereas the latter type 
of properties is called structural properties. Behavioural properties include :

• Reachability: is the fundamental basis for studying the dynamic properties of 
any system. The firing of an enabled transition will change the token dis­
tribution in the net according to the transition rule. A marking Mn is said 
to be reachable from a marking Mq if there exists a sequence of firings that 
transforms M q to Mn. The set of all possible markings reachable from M q is 
denoted by R(Mo).

• Boundedness: a place is k-safe or k-bounded if the number of tokens in that 
place cannot exceed an integer k. Safeness is a special case of boundedness, a 
place is safe if the number of tokens in that place never exceeds one.

• Liveness: a Petri net is said to be live if it is possible to ultimately fire any 
transition of the net by processing through some further firing sequence. This
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means that a live net guarantees deadlock-free operation.

• Coverability: a marking M is said to be coverable if there exists a marking M’ 
in R(Mo) such that M’(p) > M(p) for each p in the net.

• Persistence: a Petri net is said to be persistent if for any two enabled transi­
tions, the firing of one transition will not disable the other.

A conflict resolution strategy is needed if the net is not persistent. A decision place
is a place which is a source for more than one arc. Whenever it contains a token,
its output transitions are in conflict because the firing of one disables the other.

2.2.2 Analysis M ethods

Methods of analysis of Petri nets may be classified into the following three groups:

1. Coverability tree: given a Petri net (N, Mo), from the initial marking Mo we 
can obtain as many new markings as the number of enabled transitions. Prom 
each new marking, we can again reach more markings. This process results in 
a tree representation of the markings.

2. Incidence matrix and state equations: is based on a matrix view of Petri nets. 
Two matrices D~ and D + are defined to represent the input (to the transitions) 
and output (from the transitions) respectively. Each matrix equation is m rows 
(one for each transition) and n columns (one for each place). The solvability of 
these equations is somewhat limited, partly because of the non deterministic 
nature inherent in Petri net models and because of the constraint that solutions 
must be found as non-negative integers.

3. Reduction method: it reduces nets to simpler nets while preserving properties 
such as boundedness or liveness by applying transformations which preserve 
these properties. The resulting nets might then be simple enough to be anal­
ysed by one of the standard techniques.

2.2.3 Sem antics

Petri nets are a formalism that possess most of the desirable features :

• modelling and analysing concurrent systems;

• simplicity of the model;
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• formality of the model;

• immediate graphical representation;

• easy representation of asynchronous aspects;

• possibility of reasoning about important properties (reachability, liveness, bound­
edness).

Many different Petri nets semantics have been proposed in the literature. At the 
most basic operational level we have of course the “token game”. To account for 
computations involving many different transitions and for the causal connections 
between transition events, various notions of process have been proposed, but process 
models do not provide a satisfactory semantics denotation for a net as a whole. In 
fact, they specify only the meaning of single, deterministic computations, while the 
accurate description of the interplay between concurrency and nondeterminism is 
one of the most valuable features of nets 1.

Some semantics investigations, particularly those capitalising on the algebraic 
structure of Place/Transition nets, and the unification of the process-oriented and 
algebraic views are discussed in [Mes92b].

2.3 Types of Petri N ets

2.3.1 Background

Any developer of discrete event systems knows that the most important quality of the 
final system is that it must be functionally correct by exhibiting certain functional, 
or qualitative properties decided upon as being important. Once assured that the 
system behaves correctly, it is also important that it is efficient in that its running 
cost is minimal or that it executes in optimum time or whatever performance measure 
is chosen. While functional correctness is taken for granted, the latter quantitative 
properties will often decide the success (or otherwise) of the system.

Ideally the developer must be able to specify, design and implement his system 
and test it for both functional correctness and performance using only one formal­
ism. Petri nets, although graphical in format are somewhat tedious for specifying 
large complex systems but, on the other hand were developed exactly to test dis­
crete, distributed systems for functional correctness. With a Petri net specification 
one can test, eg., for deadlock, liveness and boundedness of the specified system.

^ S P  (Communicating Sequential Processes) [Hoa85] does allow nondeterminism.
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The major drawback of Petri nets, as originally proposed and process algebras 
(amongst others) is that quantitative analyses are not catered for. As a conse­
quence, the developer who needs to know about these properties in his system has 
to devise a different model of the system which, apart from the overhead concerned 
provides no guarantee of consistency across the different models. Because of the 
latter, computer scientists added time, in various forms, to ordinary Petri nets to 
create Stochastic Petri Nets (SPNs) [Ajm89] for performance modelling and a great 
deal of theory has developed around SPNs as these are generically known.

2.3.2 T im e A ssociation w ith  Petri N ets

Another aspect which also contributed significantly to the development of Stochas­
tic Petri nets is the fact that their performance analysis is based upon Markov 
theory. Since the description of a Markov process is a “tedious task” , abstract mod­
els have been devised for their specification. Of these, Queueing Networks (QNs) 
were originally the most popular, especially since the analysis of a large class of QNs 
(product-form QNs) can be done very efficiently. QNs cannot, however, describe 
system behaviours like blocking and forking and with the growing importance of 
distributed systems this inability to describe synchronisation naturally turned the 
focus to Petri nets as well.

Stochastic Petri nets are therefore a natural development from the original Petri 
nets because of (1 ) the advantage of their graphical format for system design and 
specification; (2 ) the possibility and existing rich theory for functional analysis with 
Petri nets; (3) the facility to describe synchronisation, and (4) the natural way 
in which time can be added to determine quantitative properties of the specified 
system.

The disappointing thing about Stochastic Petri nets is that the integration of 
time changes the behaviour of the Petri net significantly. So properties proven for 
the Petri net might not hold for the corresponding time-augmented Petri net. e.g., 
a live Petri net might become deadlocked or a non-live Petri net might become live. 
Thus, analysis techniques developed for Petri nets are not always applicable to SPNs. 
Also, using Stochastic Petri nets to specify the sharing of resources controlled by 
specific scheduling strategies is difficult. So certain concepts from queueing theory 
have been introduced to Queueing Petri Nets (QPNs) which offer the benefits of 
both worlds, Petri nets and queueing networks.
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A dding T im e to  P e tr i N ets

Time has been added as an extra feature to Petri nets in three different ways which 
are sketched here:

1. Each transition is associated with a time interval [MF76]. The lower (re­
spectively upper) bound of such interval gives the minimum (respectively the 
maximum) delay, computed with respect to the time instant at which the 
transition becomes enabled, from which (respectively to which) the transition 
fires, if not disabled by another transition firing in the meanwhile. When the 
maximum delay is reached and the transition has been continuously enabled 
from the minimum delay, the transition must fire.

2. Each transition is associated with a duration [Ram74, RH80]. When the tran­
sition is enabled, it immediately fires and removes the enabling tokens from 
the places of its preset. The tokens disappear and new tokens are created in 
the postset of the transition when the duration associated with the transition 
is elapsed.

3. Each place is associated with a duration [CR83]. A token created by a tran­
sition firing in a place becomes ready, i.e., it can participate in enabling a 
transition only after the delay associated with the place is elapsed. A transi­
tion fires instantaneously as soon as it becomes enabled.

2.3.3 Tim ed Petri N ets

Petri nets we described in §2.2 have a limited modelling power. To remedy this, a 
number of extensions have been proposed. A lot of properties of systems involving 
time, particularly issues of performance evaluation and simulation, can be covered 
by decorating Petri nets with requirements of timing: occurrence of transitions 
or residence of tokens in places are assumed to take a distinguished amount of 
time. These extensions have been widely adopted, either for necessity (eg. time is 
sometimes essential for performance evaluation) or for convenience purpose. Petri 
illustrates several semantics difficulties engendered by the introduction of time to 
nets [Pet8 6 ]. We show in this section how to consider the concept ,of time in Petri 
nets and present some kinds of timed Petri nets reported in the literature.

The introduction of time changes the semantics of firing. As an example, instead 
of tokens being deposited in transition’s output places at the instant of firing, the 
tokens are deposited after a delay chosen from the firing time distribution of the
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transition. There are various types of timed Petri nets reported in the literature. 
Timed Petri Nets (TPNs) are nets having deterministic delays [Mol85]. Stochastic 
Petri Nets (SPNs) are obtained by associating a nondeterministic delay (which rep­
resents the enabling time) with each transition. When a transition is enabled by a 
marking, a value is randomly chosen from the associated variable. This value reflects 
the duration of the transition enabling period after which the transition is fired. As 
a matter of fact, in a SPN, the transition fires after an exponentially distributed 
amount of time [Ajm89], Since the first definition of the SPN several extensions 
have been made. Generalized Stochastic Petri Nets [ACB84, ABC+91, ABC+95] 
are stochastic Petri nets which allow transitions with zero firing time (called im­
mediate transitions) and exponentially distributed firing time, inhibitor arcs and 
random switches. Timed transitions are assumed to have the lowest priority level, 
whereas transitions at other priority levels are said to be n-immediate, where n is the 
priority level. Subsequently, Extended Stochastic Petri Nets (ESPNs) are proposed 
in which the most additional feature is represented by the presence of probabilistic 
arcs that upon firing of a transition may deposit tokens on subsets of its output set 
depending on a probability distribution [DTGN84]. Deterministic Stochastic Petri 
Nets (DSPNs) [AC87] allow transitions with zero firing time or exponentially firing 
time or deterministic firing time.

Stochastic Petri nets represent a formalism that is particularly interesting for its 
peculiar feature of being a useful modelling language for studying the performance 
of parallel systems [Bal92, WH94]. For example, they represent a formalism that is 
capable of representing both the characteristics of the architecture (hardware) and 
the pecularities of the program (software) of a parallel computer in such a way that 
both validation and performance evaluation can be performed using basically the 
same model [BDF92]. They are also useful for studying the correctness of parallel 
programs, and for performance oriented parallel program design [BBCC92, Fer92].

It has been shown that Stochastic Petri nets are isomorphic to continuous time 
Markov chains due to the memoryless property of the exponential distribution of 
firing times. A stationary embedded Markov chain can be recognised [Ajm89]. The 
system is represented by a Stochastic Petri net, and the reachability graph is con­
structed. Some analytical performance results are obtained if the firing time distribu­
tion functions associated with the transitions are exponential. If they are completely 
arbitrary, it is necessary to resort to simulation. From the steady-state distribution, 
performances such as the sojourn time in a state, steady state probabilities of mark­
ing, flow of tokens through a transition, the expected value of the number of tokens,
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the mean number of firings in unit time can be computed [Mol85, Pag8 6 ].
Modelling with Petri nets in general has to be supported by computer tools 

[Fel93]. Analytical evaluation and discrete-event simulation of Petri net models al­
low researchers to perform qualitative as well as quantitative analysis of the systems 
they model. A number of simulators are available for different classes of Petri nets. 
GreatSPN (GRaphical Editor and Analyzer for Timed and Stochastic Petri Nets) 
[CFGR95] is a software package for the modelling, validation, and performance eval­
uation of distributed systems using GSPNs. TimeNET [Kel95] is a software package 
for the modelling and evaluation of SPNs in which the firing times of the transitions 
may be exponentially distributed, deterministic, or more generally distributed.

According to [CF93b] a Timed Transition Petri Net is a tuple TTPN =  (PN, II, 
A) where :
PN is a Petri Net,
n  : T N assigns priorities to T-elements,
A : T t-¥ R assigns firing delays to T-elements.

A complete list of references on the association of time with nodes of the mod­
els described with the Petri net formalism is found in [BBB+94]. The aspect of time 
in Petri nets is still an active area of research. Recently, processes have been defined 
and successfully utilised for some net classes with time [VdFC95, AL97].

2.3.4 High-Level P etri N ets

Ordinary Petri nets fail to represent complex functional aspects. Due to that, high- 
level Petri nets [JE91] have been proposed as a different class of extensions of Petri 
nets, and allow the representation of functional aspects in full details. They address 
the problem of dealing with data, their flow and transformations. Several high-level 
nets can be found in the literature. We briefly review the best known and applied 
net models.

Predicate-Transition Nets [Gen8 6 ] are defined as formal objects that can be in­
terpreted and manipulated in a mathematical way that is comparable to working 
with logical formulae and algebraic expressions. In a Coloured Petri Net [Jen92], 
an information is attached to each token. The information can be inspected and 
modified when transitions fire. Coloured nets and Predicate-nets are very closely 
related to each other.
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Stochastic High-Level Petri Nets axe based upon high-level nets augmented with 
exponentially distributed transition rates. They allow tokens with multiple at­
tributes, and the predicates associated with transitions may be expressed in terms 
of the attributes of the tokens present in the input places of the transitions [LM8 8 ]. 
Generalized Stochastic High-Level Petri Nets are obtained from stochastic high-level 
Petri nets by the introduction of immediate transitions with priorities, inhibitor axes 
and cases [Car89].

A Regular Net (RN) is a Coloured Petri Net in which the colour domains of places 
and transitions are made of any cartesian product of basic object classes, each class 
appearing no more than once in the product [DH90]. A Regular Stochastic Petri 
Net (RSPN) is a timed extension of a Regular Net, in which transitions axe either 
immediate or have exponentially distributed firing delays. Well Formed (Coloured) 
Nets (WN) axe formally defined as an extension of Regular Nets and have the same 
modelling power as general Coloured Petri Nets, i.e., any CPN can be translated into 
an equivalent WN model with the same underlying structure; only the expression of 
the colour functions and of the composition of colour classes is rewritten in a more 
explicit (and parametric) form, in terms of the basic constructs provided by the 
WN formalism. Stochastic Well-Formed Nets (SWN) [CDFH93] axe an extension of 
Regular Stochastic Petri Nets and Well-Formed (Coloured) Nets.

Environment/Relationship (ER) Nets axe high-level nets where tokens axe envi­
ronments, i.e., functions associating values to variables and an action is associated 
with each transition, describing which input tokens can participate in a firing and 
which possible tokens are produced by the firing [GMMP91]. An Interval Timed 
Coloured Petri Nets (ITCPN) is a coloured Petri net extended with time which 
models large and complex real-time systems [Van93]. Time is in tokens and tran­
sitions determine a delay (specified by an upper and lower bound, i.e., an interval) 
for each produced token.

Object Petri Nets [Lak95] support a complete integration of object-oriented con­
cepts into Petri Nets, including inheritance and the associated polymorphism and 
dynamic binding. In particular, Object Petri nets have a single class hierarchy which 
includes both token types and subnet types. Interaction between subnets can be ei­
ther synchronous or asynchronous depending on whether the subnet is defined as a 
super place or a super transition. The single class hierarchy readily supports mul­
tiple levels of activity in the net and the generation and removal of token has been 
defined so that all subcomponents are simultaneously generated or removed, thus 
simplifying memory management.
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A new class of timed Petri nets for the specification of temporal constraints and 
description of logical behaviour in distributed hypermedia systems is proposed in 
[SdSSW95].

2.3.5 High-Level Algebraic N ets

High-level algebraic nets have been introduced in order to exploit the rich theory 
of algebraic specifications for high-level Petri nets: Petri nets gain a great deal of 
modelling power by representing dynamically changing items as structured tokens 
whereas algebraic specifications turned out to be an adequate and flexible instru­
ment for handling structured items. Multisets over any domain can be specified by 
sorts, operations and equations. The concept of algebra semantics, relating terms 
to interpretations, appear to be directly applicable to high-level Petri nets.

Vautherin [Vau87] redefines the domains of coloured nets in algebraic terms 
and gives a number of interesting results for deriving properties of the modelled 
system through the application of standard analysis techniques to the underlying 
Place/Transition net. Reisig [Rei91] uses the algebraic formalism to construct Petri 
nets with structured tokens which turn out to be representable by established con­
cepts of algebraic specifications. A class of high-level nets (called OBJSA) which 
use algebraic techniques instead of (multi) set theory for specifying the individual 
tokens flowing into the net is proposed by Battiston et al. [BCM8 8 ]. OBJSA Net 
Systems axe a class of modular high-level algebraic Petri nets in which : (1) the 
net can be decomposed in state-machine components; (2 ) the domains to which in­
dividual tokens belong are defined as abstract data types using the language OBJ 
[GKK+8 8 ]. Briefly, an OBJSA Net System is a couple C =  (N, A) where N is an 
extended SA (Superposed Automata) net and A is an OBJ algebraic specification. 
The application of OBJSA nets to a realistic case study for what concerns dimen­
sions and complexity is found in [BBCC95]. The algebraic framework and Petri nets 
appear suitable to the study of properties of systems (eg. safety properties) which 
can be expressed by equations over the set of reachable states. Other properties like 
liveness for instance are more difficult to treat in general because they do not only 
depend on the set of reachable states, but also on the executions of these systems. 
Recently Schmidt proposed a symbolic approach for the verification of siphons and 
traps for algebraic Petri nets based on structural induction on the terms [Sch97].
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2.4 Extended Concurrent Algebraic Term N ets

2.4.1 Introduction

ECATNets (Extended Concurrent Algebraic Term Nets) are a kind of high-level al­
gebraic nets which combine high-level Petri nets with algebraic data types. They are 
used to model and simulate various aspects of distributed and parallel systems, com­
munication networks [BMSB93b], concurrent programming [CD97], manufacturing 
systems [MBBP97, BCD98] ...

ECATNets are given semantics in terms of a rewriting logic that differentiates 
them from other algebraic nets and makes them suitable to handle true concur­
rency. They are built around a combination of three formalisms. The first two 
formalisms constitute a net/data model, and are used for defining the syntax of the 
system, in other terms to capture its structure. The net model, which is an ordinary 
Petri net [Mur89], is used to describe the process architecture of the system; the 
data model, which is an algebraic formalism [EM85], is used for specifying the data 
structures of the system. The third formalism, which is a rewriting logic [Mes92a], 
is used for defining the semantics of the system, or in other words to describe its 
behaviour. According to this logic, the system behaviour may be explained by for­
mal reasoning. Transforming this logic into a rewriting system [BM93b] may be 
used for rapid prototyping and automatic proving of a system under design. More 
details about ECATNets, their motivation and relation to other works are found in 
[Bet91, BMSB92, BC92, BM93a].

2.4.2 From A TN ets to ECATnets

Motivating.ECATNets leads to motivating Petri nets, abstract data types, as well as 
their association into a unified framework. Petri nets are used for their foundation 
in concurrency and dynamics, while abstract data types are used for their data 
abstraction power and solid theoretical foundation. Their association into a unified 
framework is motivated by the need to explicitly specify process behaviour and 
complex data structures in real systems.

ECATNets are an extension of CATNets (Concurrent Algebraic Term Nets), 
which themselves evolved from ATNets (Algebraic Term Nets), introduced for the 
first time by Bettaz in [Bet91]. The main difference between ATNets and CATNets 
is a lack of semantics for the first ones disabling them to handle truly concurrent 
systems. The formal definition of CATNets (syntax and semantics) is given in 
[BM93a].
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Figure 2.3: A CATNet.

Definitions

In ordinary Petri nets [Mur89], places and arcs are annotated by multisets of black 
dots, called tokens. From a syntactical point of view, the only difference between 
usual Petri nets and simplified CATNets is that places and arcs in simplified CAT­
Nets axe annotated by multisets of algebraic terms (Figure 2.2), the syntax and 
semantics of which are given by abstract formal specifications called algebraic spec­
ifications [EM85]. Building of highly compact model often necessitates the use of 
powerful syntactic notations. For CATNets notations inspired from [WH87] axe used 
and consist mainly in (Figure 2.3):

• Distinguishing the multiset of enabling tokens (Input Conditions: IC(p,t)) 
from the multiset of tokens which have to be removed when a transition t is 
actually fired. The removed tokens are called Destroyed Tokens and denoted 
by DT(p,t). The deposited tokens are called Created Tokens and denoted by 
CT(p\t).

• Annotating not only places and arcs but also transitions. However the tran­
sitions axe annotated not by multisets of algebraic terms, but by boolean ex­
pressions, called Transition Conditions (TC(t)).

In some situations we are interested in firing a transition when its input place is 
empty. Bettaz et al. suggested in this situation to use the notation empty at the
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place of the multiset IC(p,t) [BMSB93a, BMSB93b]). In some other situations we 
would like to fire a transition if its input place does not contain a given multiset M 
of precised tokens. For this situation to use the notation ~M instead of the multiset 
IC(p,t) is also suggested in [BMSB93b].

Let CATNas(X) be a CATNet syntactic structure. The ECATNet syntactic struc­
ture denoted by CATNas(X)+ is defined inductively as follows:
CATNas(X) C CATNas(X)+ 
empty G CATNas(X)+
if [m]+ G CATNas(X) th e n  ~[m]+ G CATNas(X)+
CATNas(X) will be called the ECATNet syntactic substructure.

An ECATNet is a structure (P, T, s, IC, DT, CT, C, TC) [BMSB92] where:
P is a set of places and T is a set of transitions;
s: P —> S is a function that associates a sort with each place;
IC (Input Condition): (P x T) 4  CATNas(X)+ ;
DT (Destroy Tokens) : (P x T) —> CATNas(X);
CT (Created Tokens): (P x T) -> CATNas(X);
C (Capacity): P -* CATNas(0) is a partial function such that for every p G do- 
main(C), C(p) G CATNas(0);
TC (Transition Condition): T —> CATNas(X)&00/ is a function such that for every 
t G T, TC(t) G CATNas(X(t))b00/ where X(t) is the set of variables occurring in 
IC(p,t) (when defined), DT(p,t) and CT(p,t) for every p G P. X(t) will be called the 
transition context.

A marked ECATNet is an ECATNet with a function M: P —> CATNas(0) such 
that for every p G P, M(p) G CATNas(0) and M(p) C C(p) if p G domain(C).

In a generic ECATNet, IC, DT and CT are multisets of (equivalence classes of) 
terms, with ©, D, C, \  being respectively the multiset union, intersection, inclusion 
and difference, and (f>M the identity element. We let [x]© denote the equivalence class 
of x, w.r.t. the ACI (Associative, Commutative and with Identity element) axioms 
for 0 . The terms are defined by an algebraic specification of an abstract data type 
given by the user [EM85]. We let [x]E (or just [x]) denote the equivalence class 
of x, w.r.t. the axioms (equations) given by the user in his (her) specification. TC 
(Transition Condition) is a boolean expression which may contain variables occuring
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in IC (Input Condition), DT (Destroyed Tokens) and CT (Created Tokens). Each 
place is associated with a capacity C(p) defined as a multiset of closed (equivalence 
classes of) terms. The marking M(p) of a place p of the net, which is itself a multiset 
of closed terms, is defined w.r.t. the capacity (which may be infinite). The extensions 
are related only to IC, and may be considered as an equivalent of the inhibitor arc 
concept as defined in [Bil89],

Transition firing and its conditions are expressed by rewrite rules which axe 
strongly depending on the form of the syntactic notation used for representing IC. 
Those rewrite rules together with a set of deduction rules define a rewriting logic 
[Mes92a] which gives the semantics of the net. The left-hand and right-hand sides 
of the rewrite rules are multisets of pairs of the form (p,[m]®), where p is a place 
of the net and [m]© a multiset of algebraic terms. The multiset union on the pairs 
(p,[m]©) is noted 0 , and <f)B is the identity element for this case. Let us recall in the 
following part of this section the forms of the rewrite rules (metarules) to associate 
with the transitions of a given ECATNet [BM93a, BMSB92]. These metarules act 
as a parallelising compiler which tries to find sequences of “code” which may be 
executed in parallel. Examples on concrete instantiations and practical use of these 
metarules are found in [BMSB93a, BMSB93b, Bet93, BMSB94].

1 IC (p ,t)  is of th e  form  [m]©

Case l[IC(p,t)]® = [DT(p,t)]@
The form of the rule is given by: 
t: (p,[IC(p,t)]©) -> (p\[CT(p’,t)]©)
where t is the involved transition, p its input place, and p’ its output place.

Case 2[IC(p,t)](& n [DT(p,t)J® = </>M 
t: (p,[IC(p,t)]©) 0  (p,[DT(p,t)]©) fl [M(p)]© ->
(p,[IC(p,t)]©) 0  (p\[CT(p’,t)]©)

Case 3fIC(p,t)J® n /DT(p,t)]© ^  <f)M

This case may be solved in an elegant way by remarking that it could be brought 
to the two already treated cases [BM93a].

2  IC (p ,t)  is of th e  form  ~[m]©

t: (p,[DT(p,t)]©) n [M(p)©]
(p\[CT(p\t)]©) if «IC(p,t)]© \  «IC(p,t)]© fl [M(p)]©) =  (f)M) ->• [false]
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3 IC (p ,t)  =  em pty

t: (p,[DT(p,t)]0 ) fl [M(p)0 ]) ->
(p\[CT(p\t)]©) if ([M(p)]©) -> (f>M)

When the place capacity C(p) is finite, the conditional part of the rewrite rule 
includes the following component:

([CT(p,t) ] 0  © [M(p)]©) n [C(p)]©) -> [CT(p,t)]©© [M(p)]© (C ap)

In the case where there is a transition condition TC(t) the conditional part of our 
rewrite rule must contain the following component:[TC(t)] —> [true].

Note that if one or more output place(s) has (have) a finite capacity, the condi­
tional part of the rewrite rule must contain a component of the form denoted by 
(C ap) for each one of these places.

2 .4 .3  R e w ritin g  Logic

A logic is understood as a method of correct reasoning about some class of entities. 
Rewriting logic is a logic of becoming or change, not a logic of equality, where a 
sequent: [t]—>[t’] should be read as “[t] becomes [t’]”. The rules of rewriting logic 
are rules to reason about change in a concurrent system. They allow us to draw 
valid conclusions about the evolution of the system from certain basic types of 
change. For rewriting logic, the entities in question are concurrent systems having 
states and evolving by means of transitions. The rewrite rules in the theory describe 
which elementary local transitions are possible in the distributed state by concurrent 
local transformations. The distributed state of a concurrent system is represented 
as a term whose subterms represent the different components of the concurrent 
state. What the rules of rewriting logic allow us to reason correctly about is which 
general concurrent transitions are possible in a system satisfying such a description. 
Research has been carried out extensively on rewriting logic since it was introduced 
in the beginning of the nineties. A deeper presentation of this logic and its use as a 
semantic framework for concurrency is given in [Mes96].
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2.4.4 EC A TN ets Semantics

It is worth to mention that it is not easy to explain the behaviour of ECATNets 
merely by giving the equivalent of a firing-like rule. This is because of their level 
of abstraction as well as their concurrent behaviour. We may however informally 
comment on this behaviour in the following way (see Figure 2.3). A transition t is 
fireable when various conditions are simultaneously true. The first condition is that 
every IC(p,t) for each input place p is enabled. The second condition is that TC(t) 
is true. Finally the addition of CT(p’,t) to each output place p’ must not result 
in p’ exceeding its capacity when this capacity is finite. When t is fired DT(p,t) is 
removed from the input place p and simultaneously CT(p’,t) is added to the output 
place p \

ECATNets semantics enables the handling of truly concurrent systems. The 
rewrite rules describe Petri net transitions effects as elementary types of change. 
Such rules act in reality as the axioms of the higher mentioned rewriting logic. 
The axioms are in reality conditional rewriting rules describing transitions effects as 
elementary types of changes. The deduction rules allow us to draw valid conclusions 
about the evolution of the ECATNet from these changes. A rewrite rule is a structure 
of the form ”t: u —» v if boolexp”; where u and v are respectively the left and the 
right-hand sides of the rule, t is the transition associated with this rule, and boolexp 
is a Boolean term. More precisely u and v are multisets of pairs of the form (p, 
[m]®), where p is a place of the net, [m]® a multiset of algebraic terms, and the 
multiset union on these terms, when the terms are considered as singletons. The 
multiset union on the pairs (p, [m]®) will be denoted <g>. We let [x]® denote the 
equivalence class of x, w.r.t. the ACI axioms for <g>. An ECATNet state is itself 
represented by a multiset of such pairs where each place p is found at least once. 
Given a set R of rewriting rules (defining all the elementary types of changes), we 
say that R entails a sequent s -» s’ (defining a global change from a state s to a state 
s’) iff s -¥ s’ can be obtained by finite and concurrent applications of the following 
rules of deduction: Reflexivity, Congruence, Replacement, Splitting, Recombination 
and Identity [BM93a].

The reflexivity rule says that everything may be transformed into itself. The 
congruence rule says that elementary changes have to be correctly propagated. The 
replacement rule is used when variable instantiations are necessary. The splitting 
and recombination rules allow us, by ’’judiciously” splitting and recombining dif­
ferent multisets of equivalence classes of terms, to detect ECATNet computations 
exhibiting a maximum of parallelism. The identity rule allows to relate 0-e., the
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Figure 2.4: Firing in Parallel in ECATNets.

identity element of ©) with (i.e., the identity element of ®). Once reviewed the 
basic notions about rewriting logic and its use for describing the semantics of ECAT- 
Nets, let us. now recall the forms of the rewrite rules (i.e., the metarules) to associate
with the transitions of a given ECATNet. Examples on concrete instantiations and 
practical use of these rules are found in [BMSB93a, BMSB93b].

An ECATNet can be viewed as a model of concurrent system: if a certain num­
ber of transitions are enabled simultaneously and if they are not in conflict, they 
can be fired in parallel (Figure 2.4).
The rewrite rules associated with transitions ti and t2 are: 

ti: (p,d) -> (r,e ® f), 
t2: (p,a © b) (q,c)

and the initial state is given by: (p,a © b © c) <8> (q,0 ) <8 > (r,0 )

The deduction of the final state from the initial state may be performed using the
rewriting logic associated with the net. The decomposition rules are:
(p,a © b © c) <g> (q,0 ) ® (r,0 ) ->•
(p,a © b) <g> (p,d) ® (q,0 ) ® (r,0 ) -»
(q,c) <g> (r,e © f) <8 > (q,0 ) ® (r,0 ) (* application of the rewrite rules in parallel *) 
(q,c) ® (q,0 ) <8 > (r,e © f) ® (r,0 ) —> (* application of the structural axiom of com­
mutativity *)
(q,c) ® (r,e © f) ® (p,0 ) (* application in parallel of the structural axiom of identity

*)
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2.4.5 Exam ple of an EC ATNet

The objective of this example, borrowed from [BM93a], is not only to illustrate 
the use of ECATNets, but also to present their deficiences, in order to show the 
motivation of the proposed solution (§2.5).

The specification, from the area of computer networks [Tan96], deals with the 
behaviour of the Ethernet transmitting station. It comprises four modules (Figures
2.5 .. 2.8), each module is specified by an ECATNet model. The first module deals 
with the functions of formatting and transmitting starting. The second module is 
relative to the functions of transmission with success and acknowledgment. The third 
module treats essentially the functions of collision handling and acknowledgement. 
The fourth module is relative to the retransmission function.

The transmitter station transmits one frame at a time. The user is not allowed 
to request the transmission of a new frame before receiving the ackowledgement of 
the previous frame. The formatting function starts when a token of type “d,s,data” 
is deposited in place FROMJJSER. This token is considered as a primitive trans­
ferred from the user layer to the MAC layer for requesting the transmission of data 
“data”, from a source “s” to a destination “d”. The place FROM.USER is an inter­
face between the two layers. The frame “d.s.data.fcs” is then deposited as soon as it 
is composed in a transmission register (TRANS-REG). The formatting function is 
consisting of the concatenation of sequences of bits corresponding to the addresses 
“d” and “s”, to the data “data”, and to the error control sequence “fcs” previously 
computed. On the other hand, the MAC layer is listening to the medium (CAR- 
RIER-SENSE) in order to avoid any collision occurring with a current transmission. 
The place CARRIER-SENSE is an interface between the MAC layer and the physical 
layer. When the medium becomes free (a token “false” is present in place CAR­
RIER-SENSE), it waits a certain amount of time corresponding to the inter-frame 
spacing delay. Then, considering that the transmission may terminate with success 
(deposit of a token “false” in place BUSY-CHANNEL and a token “true” in place 
SUC-TRANS), it takes possession of the medium (CHANNEL-ACCESS) and the 
transmission starts (deposit of a token “true” in INIT-TRANS).
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When we started this research we found out that there was no explicit specification 
of time in ECATNets. For instance, time is specified implicitely in module “Starting 
of transmission” (inter-frame spacing delay (action DELAY)). In module “Retrans­
mission” , the random waiting time before retransmission is also implicitely specified. 
If a collision occurs during the frame transmission (several nodes start transmission 
more or less simultaneously), the transmission is aborted and has to be repeated 
from the beginning (this state is called backoff). The backoff time must be random 
to avoid repetitive collisions and prevent a deadlock. It is computed anew on every 
collision. A variety of methods are used to determine this time:

1 . make the backoff proportional to the nodes’address (ID): it is an efficient 
method but gives a certain type of priority to nodes with lower addresses. 
The address is defined so that every Ethernet station will have a unique ad­
dress which is built into the hardware;

2 . make the backoff time random: it does not have the implied priority property, 
but consecutive collisions may still happen. It is a uniformly random number 
of slot times chosen in the interval [0 ..2 **min(rc,1 0 )], where rc is the number 
of failed attempts.

2.5 Introducing Time in EC ATNets

Previous works [BMSB93a, BM93b, BMSB93b, Bet93, BMSB94] showed how ECAT- 
Nets are used for specifying and validating applications from the area of distributed 
and parallel systems. The achieved models have two drawbacks: the occupation of 
the problem of time and a bad exploitation of the parallelism inherent in the studied 
models. The objective of introducing time in ECATNets is twofold. The first objec­
tive is the need to specify practical applications where the explicit specification of 
time is “missing”. The second objective is the need to turn to simulation because 
the formal specification of ECATNets is based on implementation concepts rather 
on theoretical ones.

EC ATNets simulation is attractive because it can not only perform the validation 
of these models, but can evaluate their performances as well. Intuition suggests 
that simulation of these models may be amenable to parallel execution in order to 
exploit the inherent parallelism. It is worth mentioning that we are dealing with 
the parallelism at two levels: the inter-module level where parallelism is achieved 
by partitioning the “initial” models w.r.t. a “separation of concern” strategy, and 
the intra-module level where the detection of parallelism is permitted by the use of
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rewriting logic, since this logic may act as a “parallelising compiler” which tries to 
find sequences of “code” that can be executed in parallel.

2.5.1 A spect of T im e in EC A TN ets

The literature shows that Petri nets have been extended in different ways in order 
to incorporate the concept of time: associating time values with transitions or as­
sociating time values with places. We propose extensions for ECATNets which will 
permit to take into consideration the management of the aspect of time [DB94]:

1 . the introduction of the notion of time in the token itself [MPT91]. A timestamp 
is attached to each individual token in order to represent the time it was 
created. Tokens, which are algebraic terms, can carry as much information as 
needed, including time information. This will lead to the firing of a transition 
depending on the replication of the token in input places. Created tokens 
are then defined by a multiset of the form CT(q, t, ts) where ts is a variable 
representing the timestamp (firing time of t);

2 . in ECATNets, transitions are not labelled using multisets of algebraic terms, 
but using boolean expressions (transitions conditions (TC)). We may introduce 
in each transition a (marking) related rate. This will lead to take into account 
a firing time to perform the operations “remove/deposit tokens”.

Research has been done to put time in high-level Petri nets. The relationships 
between high-level Petri nets and timed Petri nets are investigated by Morasca et al. 
[MPT91], where the generality of time representation in Environment/Relationship 
nets is assessed. It is shown how the mechanism for time representation introduced 
in ER nets is extended to both Coloured Petri nets and Predicate/Transition nets. 
The authors use the definition of high-level nets simulation, which can be local, 
state-behaviour or local state-behaviour. A unifying Petri net based model for time 
representation using ER nets is proposed by Ghezzi et al. to generalise most time 
Petri net based formalisms which appeared in the literature [GMMP91]. We have 
chosen to inscribe ECATNet transitions for the following reasons:

1 . transitions are used to model the active parts of a system that can be assigned 
to a timed behaviour in a natural manner;

2. this choice allows to preserve the incremental approach used for defining ECAT- 
Nets;
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3. this choice preserves the semantic framework defined in terms of rewriting 
logic. Representing the concept of time at the level of places lea,ds to replicating 
the corresponding token in several places;

4. this choice does not obscure the state of the system modelled by the ECATNet 
during the time that a process is in execution.

In our approach the form of the rewrite rule associated with a transition must guar­
antee the following constraint: the timestamp of the created token (CT) should be 
equal to the time the transition starts firing augmented with its firing time (right 
hand side of the rule). In some situations it is necessary to specify an activity dura­
tion or an action which must be performed before its deadline. At the rewrite rules 
level the concurrent execution of the rewrite rules associated with the transitions 
must be controlled and monitored. The rewrite rule associated with a transition is 
marked when the firing starts, and unmarked when firing ends.

Inscribing transitions to integrate timing aspects in ECATNets is achieved by 
introducing a new syntactic notation. Each transition ti is specified with a firing 
rate A*. Let A : T —> 1Z assigns firing delays Ai to T-elements ti 6  T, three major 
types of transitions are specified:

1 . zero delays are associated with transitions that are called immediate;

2 . deterministic timed transitions are annotated with a firing rate A* where A» E 
71 is a deterministic value;

3. stochastic timed transitions where A* is an instance of a random variable.

Markings that enable timed transitions only are said to be tangible, whereas mark­
ings that enable immediate transitions are said to be vanishing. If T contains 
stochastic timed transitions, the firing-delay random variable is exponentially dis­
tributed.

2.5.2 Firing Semantics

ECATNets integrate two different kinds of timing aspects and both relate to tran­
sitions. EC ATNets offer delay times as defined for Stochastic Petri Nets [Ajm89]. 
They also provide firing times as defined for Timed Petri Nets [RH80], which are 
usually preferred for modelling an activity duration while delay times are more suit­
able to represent a waiting period or a preparation time. Two firing policies can be 
defined for ECATNets, leading different semantics and intents for different modelling 
domains:
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1. A transition firing is atomic, in that removing tokens from input places (DT) 
and depositing tokens in output places (CT) are a single indivisible operation 
(Figure 2.9). A delay elapses between the enabling and the firing of the tran­
sition ti , during which the enabling tokens reside in the input places (ti must 
be continuously enabled during the time A*, and must fire after that time; U 
can also become disabled by the firing of another transition). Considering the 
example of Figure 2.5, when transition DELAY is enabled to fire at time Tsim 
and a firing delay d is associated with this transition, then :

• at time Tsim the transition is enabled to fire;

• a firing delay is elapsing from Tsim to Tsim+d;

• at time Tsim +d the transition fires; appropriate tokens are removed from 
its input places (CARRIER_SENSE and SUC.TRANS) and deposited in 
its output places (SUC.TRANS and BUSY.CHANNEL).

0

0 0 6
(1) (2) (3)

Figure 2.9: Firing Behaviour in EC ATNets (Atomic Firing).

2. When the transition is enabled, it fires in three phases. It immediately removes 
the enabling tokens (DT) from the places of its preset. The tokens disappear 
and new tokens (CT) are created in the postset of the transition when the 
duration associated with the transition is elapsed (Figure 2.10). Examples of 
such firing semantics are found in chapter 8 .

These two different firing semantics affect the construction of the EC ATNets simu­
lation engine (sequential or parallel) because of the event-list management.
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0 0 0

0 0 0
(1) (2) (3)

Figure 2.10: Firing Behaviour in EC ATNets (Three Phase Firing).

2.6 Conclusion

In this chapter we have reviewed a series of concepts related to Petri nets in general 
and to high-level algebraic nets in particular. The presentation has been purposefully 
biased towards Extended Concurrent Algebraic Term Nets which are built around a 
combination of three formalisms: the net structure (a P /T  net), the data model (an 
algebraic formalism) and the rewriting logic (to describe the system’s behaviour). 
This decision has been motivated by the use of ECATNets as a powerful modelling 
tool for research.

This chapter has also served to introduce the reasons of our interest in adding 
time to ECATNets. There was no explicit specification of time in ECATNets when 
we started this research. These nets enriched with temporal specification are suitable 
to discrete simulation. This is an important step in their quantitative performance 
evaluation. In this sense, the use of transition timed Petri net formalism provides a 
substantial contribution to the implementation of efficient, general purpose discrete 
event simulation techniques. The reachability set of a timed ECATNet is identical 
to the one of the underlying P /T  net model with inhibitor arcs. Therefore some 
of the structural properties valid for the basic underlying Petri net are retained 
by the ECATNet model. At present, firing times of the transitions are immediate, 
deterministic or exponentially distributed. Obviously there is a great scope for 
further work in tailoring Petri net analysis techniques to ECATNets.

Modelling with ECATNets in general has to be supported by a computer tool. 
A main goal of our research project is to develop a user-friendly and efficient tool for 
modelling with ECATNets. Due to the concepts of token types which are algebraic 
terms and timing concepts of ECATNets, a formal analysis of ECATNet models is 
not an easy task: an ECATNet model must be simulated in order to get information
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on its features. Simulation can not only perform the validation of ECATNet models, 
but evaluate their performances as well. A problem with the simulation of any kind 
of model is that it takes enormous amount of time to execute, if large or complex 
systems have to be treated in a detailed manner. In this case simulation of these 
models could be amenable to parallel execution in order to exploit the inherent 
parallelism.



Chapter 3

Distributed Discrete Event 
Simulation

This chapter surveys the literature about parallel and distributed discrete event sim­
ulation, with the purpose of introducing the terminology and algorithms used, in the 
remainder of the thesis. After a general introduction to discrete event simulation, it 
is shown how the concept of causal order is the key element which allows the paralleli- 
sation of simulations, when used instead of temporal order. Three distributed sim­
ulation algorithms used in this research are then introduced: conservative (CMB), 
optimistic (TW) and synchronous (SYNC).

3.1 Introduction

Most of the fields of science and technology require the modelling and analysis of the 
behaviour of systems. Common to realistic models of time dynamic systems is their 
complexity, very often prohibiting numerical or analytical evaluation. Prototyping 
is a complementary tool to use, but in many cases it is very expensive and in others 
it is absolutely infeasible. For those cases, simulation remains the only tractable 
methodology. Also, simulation is an easily controlled and guided methodology.

As computer simulation is a wide field, our domain of study will focus on dis­
crete event systems simulation. We describe the sequential approaches of this class 
of simulation problems, then a survey of the currently available techniques to realise 
parallel and distributed discrete event simulation is made. The methods and ter­
minology described in this chapter will be repeatedly used in the remainder of the 
thesis.

In this chapter we start considering the general topic of analysing systems by

40
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means of computer simulation (§3.2), and then the sequential simulation algorithms 
for discrete event systems are introduced (§3.3). As these algorithms become very 
expensive in memory demands and execution time when the problem being simulated 
is large, the need of parallel processing to perform the simulations become evident. 
Several approaches to the parallelisation of discrete event simulators are presented, 
with special attention to event-driven simulations based on model decomposition 
(§3.4). Sections 3.5, 3.6 and 3.7 are devoted to the description of three important 
families of parallel simulators: asynchronous conservative, asynchronous optimistic 
and synchronous. The basic algorithms are introduced, with their most important 
variations or optimisations. In §3.8 a review of the literature on the application of 
DDES techniques to modelling tools is done, summarising the main results of studies 
similar to ours. Finally, some conclusions and some directions for an interest in a 
deeper insight into this field axe given in §3.9 .

3.2 M odelling and Simulation

The simulation of real systems using computers needs, at least, four steps:

1 . study of the real system in order to understand its characteristics;

2 . modelling the system;

3. simulation of the model;

4. analysis of the simulator’s output.

The systems to study can be separated into two categories: discrete or continuous. 
A system is discrete when its state changes only at discrete times, whereas a system 
is continuous when its state vaxies continuously in time.

A model being simulated can be classified as static or dynamic, deterministic or 
stochastic, and discrete or continuous. A model is static when it tries to capture 
snapshot of a system, at a particular instant of time, and it is dynamic if it tries to 
represent the evolution of the system along a certain interval of time. A model is 
deterministic when it generates, for a given set of input values, a single set of output 
values; it is stochastic when random variables are part of the input and, therefore, 
the output can only be considered as an estimate of the actual behaviour of the 
system.
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3.3 Discrete Event Simulation

A system to be simulated is defined to be a collection of entities that interact and 
operate to accomplish some logical end. These entities are discrete objects, each 
being separate from all the others. Entities possess certain properties called at­
tributes that affect the behaviour of the entities within the model. The system’s 
state is the collection of attributes or state variables that represent the entities of 
the system. An activity represents a time period of a specified length. Entities may 
be in one of two states: either they are busy, engaged in some activity, or they are 
idle, doing nothing but waiting for the arrival of an event. An event is defined as an 
instantaneous occurrence that may after the state of the system.

In discrete event simulation, changes in state of the model being simulated occur 
at discrete points in time. Fundamental to every simulation study is the mechanism 
to model the passage of time. Thus, every model contains a state variable called 
the simulation clock. Major world views, the lens through which the underlying 
modelling paradigm views the model, include Event Scheduling, Activity Scanning, 
and Process Interaction [LK91]. The differences between the world views lie in the 
way in which manner the model processes the events. The differentiation among 
world views is best captured using the concept of locality:

• Event scheduling provides locality in time: each event routine in a model 
specification describes related actions that may all occur in a single instant.

• Activity scanning provides locality of state: each activity routine in a model 
specification describes all actions that must occur due to the model assuming 
a particular state.

• Process interaction provides locality of object: each process routine in a model 
specification describes the entire action sequence of a particular model object.

The object-oriented approach provides powerful modelling concepts to support 
computer-based tools for complex system design. Discrete-event simulation 
has a long history of association with the object-oriented paradigm and pro­
vides the ability to study the dynamic behaviour of models that are defined 
with object-oriented means [Zei91].

We consider that a real system, or physical system is modelled as a physical process 
(PP) which evolves in time. It is assumed that a global clock exists which can be 
used as a reference of the advance of time in the system. A process is a sequence of



Chapter 3. D istributed Discrete Event Simulation 43

events that may contain several activities. The model also maintains a list of events 
that have been scheduled but that have not occurred yet, called the future event list, 
ordered by increasing occurrence time.

Events contain two fields of information: the event they represent, and the time 
where that event should happen (its time-of-occurrence). We assume that PP has 
a certain ability to predict the events that will occur in a next future. When PP 
knows that at time t (t > clock), it will schedule an event of type e, this scheduling 
action is modelled as an insertion of an event <e,t> in the future event list (also 
called event calendar or event queue). The restriction of t belonging to the future is 
self-explanatory: the past cannot be affected by a present event. The event <e,t> 
will be consumed in PP when the clock reaches the value t. As a result, P P ’s state 
will change accordingly to the class of interaction modelled by e. This state change 
can trigger the scheduling of new events for the future and, therefore, their insertion 
in the future event list.

Sometimes an event previously scheduled for the future needs to be cancelled 
before it actually happens (i.e., before the clock reaches the event’s time of occur­
rence). The time of occurrence of an event says when the event should happen. 
An already scheduled event for time t can be cancelled by means of another event 
timestamped less than t.

Once we have a system modelled the way just described, and expressed in an 
executable using either a simulation language or a general-purpose programming 
language, the model can be simulated in a computer. Simulation clock is advanced 
using one of the two approaches: fixed-increment time advance {time-driven), or 
next-event time advance {event-driven) [Gar90j.

3.3.1 T im e Driven Approach

In this approach, in each step of the algorithm the clock advances one time unit. 
After doing so, all the state variables are examined, to check which events must 
occur at that particular time: those whose time of occurrence equals the value of 
the clock. Then, those events are consumed. Consuming an event produces the 
following effects:

• a change in the state of the system, i.e., in its state variables;

• new events might be scheduled for the future;

• some previously scheduled events might be cancelled.
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These two steps (clock advance, event consumption) are repeated until the simula­
tion finishes. Usually this happens when the clock reaches a given end-of-simulation 
value, or when the system reaches a particular state. As it can be seen from the 
description, the advance of the clock determines the advance in the simulation, and 
in each step exactly one time unit is simulated. However, in many systems events 
occur with a large time difference between each other, in such a way that, in most 
of the iterations of the algorithm, there are none (or just a few) events to consume. 
In these cases we have a low event density where the event density is defined as the 
(average) number of events consumed per unit of simulated time.

3.3.2 Event Driven Approach

Low event density scenarios led to an event-driven approach, where the clock can 
advance faster than it does in a time-driven simulator. The main elements of an 
event-driven simulator are, as in the previous case, a clock, a set of state variables, 
and an event list.

The first message in the event list is the one with the minimum time-of-occurrence. 
In each step of the algorithm this message is removed and the clock advanced to 
reach that simulation time_of_occurrence. The event is consumed with the effects al­
ready described: change of the P P ’s state, scheduling new events, cancellation of old 
messages. The way of advancing the simulation clock determines the difference be­
tween time-driven and event-driven simulation: in the last case, after consuming an 
event, the clock advances to reach the value of the next event’s time_of_occurrence, 
with time jumps which might be larger than one unit of time.

3.3.3 Exploiting Parallelism

The sequential discrete event simulation algorithms become very expensive in mem­
ory demands and execution time when the problem being simulated is large. The 
need of parallel computers to perform the simulation becomes evident.

Since case studies may be given in a modular way using discrete systems, it 
seems reasonable that the inherent parallelism in these systems can be exploited 
by simulation. In discrete simulation, the inherently sequential nature of the global 
event list manipulation limits the potential parallelism of simulation models. By 
eliminating the global event list, additional parallelism can be obtained. Using 
multiple processors for this simulation appears to be a promising approach for a 
better modelling. The use of multiple processors can also improve the simulation 
execution time, because simulation of complex (discrete event) systems is usually
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exceedingly slow. There are five ways of decomposing a simulation for processing 
on multiple processors [RW89]:

• use of parallelising compilers: such compilers try to find sequences of the code 
that can be done in parallel and schedule them on separate processors. Such 
compilers ignore the structure of the problem and may exploit a small portion 
of the available parallelism;

• do separate runs on separate processors: the simulation is replicated on N 
processors and an average of the results is done in the end. There is no coor­
dination between the processors, but a long run simulation might be preferred 
to N short runs. Heidelberg considers the statistical properties of estimators 
obtained by running parallel independent replications of a discrete event sim­
ulation on a multiple processor computing system [Hei8 8 ];

• put different subroutines on separate processors: a set of processors is ded­
icated to some functions like random variable generation, statistics and file 
manipulation. This approach does not exploit any of the parallelism in the 
system being modelled;

• maintain a global event list and process the next event in the list by a processor 
as soon as it becomes available. A protocol for consistency is required for this 
approach since the next event in the list may be affected by events currently 
being processed;

• simulate different system components by different processors. This approach 
shows the greatest potential in terms of exploiting the inherent parallelism of 
the system.

In the next section, we introduce parallel discrete event simulation and show that it 
falls into two categories: conservative and optimistic. The main difference between 
these two mechanisms is how they deal with causality errors.

3.4 Distributed D iscrete Event Simulation

A simulation model may be used to predict the behaviour of a physical system 
under a variety of operating conditions. In the process-interaction approach to 
simulation, a physical system is assumed to consist of a set of Physical Processes 
(PP) that interact with each other at discrete points in time. In its simulation
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model, a Logical Process (LP) is used to model one or more Physical Processes. 
The events in the physical system are modelled by message exchanges among the 
corresponding Logical Processes in the model.

Parallel Discrete Event Simulation (PDES) refers to the execution of a single dis­
crete event simulation program on a parallel computer. The system being modelled 
is viewed as being composed of some number of PPs that interact at various points 
in simulated time. The simulator is constructed as a set of LPs, one per physical 
process. An event is represented by a timestamped message, LPs exchange times- 
tamped event messages to interact. However, relationship between events may exist, 
so concurrent execution of these events must be synchronised, otherwise causality 
errors can occur. So a certain sequencing constraints must be maintained in or­
der for the computation to be correct. Parallel Discrete Event Simulation falls into 
two categories [Fuj90]: conservative and optimistic. The conservative mechanisms 
strictly avoid the possibility of any causality error ever occurring [Mis8 6 ]. The opti­
mistic mechanisms use a detection and recovery approach, this means that causality 
errors are detected and a rollback mechanism is invoked to recover. The most well- 
known optimistic protocol is the Time-Warp mechanism based on the virtual time 
paradigm [JefSS]1. Notions such as causality, virtual time, clock synchronisation, 
organisation and exploitation of timestamps, and a lot of related concepts are re­
ported in [CM79, CM81, Mis8 6 , Jef85, Fuj90]. The idea in [Lam78] is meanwhile 
a standard concept in many models of concurrent computation. Parallel Discrete 
Event Simulation (PDES) refers to an implementation for a shared memory ma­
chine (tightly coupled multiprocessor) whereas Distributed Discrete Event Simula­
tion (DDES) refers to an implementation for a machine with communication based 
on message passing (loosely coupled multiprocessor). A survey of the literature on 
parallel simulation has been reported by Kaudel [Kau87], Fujimoto [Fuj90], Ayani 
[Aya93] and Ferscha [Fer96].

3.4.1 Event D ependencies

As mentioned in the previous section, the main challenge of DDES techniques is to 
guarantee that the causal dependencies among events are respected. The simulation 
of an event cannot be allowed to affect previously simulated events, otherwise the 
simulation would be incorrect. In a sequential event-driven simulation, events are 
processed in the right order, because in each iteration the event with the minimum

P rotocols such as the pro b a b ilis tic  one [CF95], a performance efficient compromise between the 
two classical approaches are found in the literature.
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timestamp is selected, and this choice guarantees that the event dependencies are 
observed. A formal proof of the correctness of the sequential simulation is found 
in [Mis8 6 ]. In this section we will formally define the classes of event dependencies 
that must be observed in any event-driven simulation, sequential or parallel.

D efin ition  1: we say that event e* affects the execution of ej if at least one of 
these situations arise:

• the execution of e* creates or cancels ê ;

• the execution of ej reads or updates state information that was created or 
altered by the execution of ej.

In any case, it is assumed that the timestamp of ej is strictly less than the timestamp 
of ej, because in a real system an event cannot influence past events.

D efinition 2: we say that event a causally affects event b (or that b causally 
depends on a) if there is some chain of events a =  eo, ei, e2 , ..., en =  b such that, 
for each pair ei and e^+i, the execution of e* affects the execution of ej+i.

D efin ition 3: given two events o and 6, if neither a causally affects b nor b causally 
affects a, then we say that a and b are causally independent. In particular, note 
that any two events with exactly the same timestamp are causally independent by 
assumption. The “causally affects” relation defines a partial order on the events in 
a simulation.

In a sequential simulation events are executed in non-decreasing timestamp order. 
As several events might have the same timestamp, they can be consumed in any or­
der, even concurrently. This gives us the idea that some actions can be parallelised 
in the simulator. However, if it is not common to have equally timestamped events, 
this does not mean that no parallelism is available.

The objective is, then, to concurrently execute events with different timestamps. 
To do so, we need to relax the requirements of executing events in temporal order, 
using instead the defined causal order. Given a traditional sequential event-driven 
simulator, and considering the previous definitions, a parallel simulator that executes 
all the pairs of causally dependent events in causal order satisfies these properties:

• exactly the same events are executed in the parallel simulator and in the 
sequential one;
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(b)

Figure 3.1: (a) List of Scheduled Events in Timestamp Order, (b) Sequence Ordered 
by Causal Dependencies.

• when a given event is executed, the portion of the state of the system that 
affects the simulation of that event is exactly the same in the parallel simulator 
and in the sequantial one.

In other words, a simulation that executes events in any order consistent with the 
causal order is indistinguishable from a simulation that executes events in temporal 
order. Obviously, the temporal order imposed by a sequential simulator is consistent 
with the causal order, but the opposite is not always true. For this reason, imposing 
a temporal order is unnecessarily restrictive. The most important asynchronous 
DDES methods precisely try to take advantage of the more relaxed causal ordering 
to simultaneously execute events with (potentially) different timestamps. Figure 3.1 
depicts an example of restrictions imposed by causal dependencies, and shows how 
the sequence of events (e2 , e4 , ee) can be executed in parallel with the sequence (e3 , 
es). However, if any event were simulated in parallel with e\, the causal dependencies 
would be violated.

3.4.2 M odel D ecom position

We describe in this section a set of common characteristics of the most important 
families of model decomposition-based DDES techniques. We consider, as defined 
in the beginning of the chapter, that the physical system to be simulated is com­
posed of a set of physical processes which only interact at discrete times by means
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of messages. The message has two fields: the event to occur and the timestamp 
or time when the event should occur. The LPs do not share any kind of informa­
tion among them, synchronisation and information interchange is done by message 
passing. Events are encapsulated into messages sent to other LPs. Each LP has 
its own Local Virtual Time (LVT) which indicates up to what point in simulated 
time the evolution of the corresponding PP has been simulated. The timestamp of a 
message scheduled by a LP must be greater (or equal) than the LVT of the LP: this 
is essential to maintain the causal relationship in the system. Each LP has one or 
several input queues, where incoming messages with events awaiting to be executed 
are stored in timestamped order. The LP selects, as the candidate to be executed, 
the message with minimum timestamp among those waiting in the input queues. 
As it happens in the sequential simulator, the effect of executing an event includes 
the advance of the LVT to reach the timestamp of the message. Additionally, the 
state of the PP (and thus, of the LP) might be changed and new messages can be 
sent to other LPs. It is important to remark that there is no global information 
shared by the set of LPs. In particular, there is not a global clock but a collection 
of local clocks, which might not have the same value at a given instant of real time; 
similarly, there is not a central event list, but a collection of input queues (and a 
local event list) which play the same role. In order to have a correct simulation, it 
is sufficient (although not necessary) to obey what it is known as the local causality 
constraint [Mis86]:

If each LP consumes messages in non-decreasing timestamp order, then the exe­
cution of the simlation is correct.

Here correct means that there are no causal errors in the simulation of events. 
Conservative simulators guarantee that the constraint is always obeyed, stopping 
a LP when it does not have enough information from the other LPs to continue 
safely. Optimistic simulators allow an aggressive execution of events, with the effect 
that situations may arise where the constraint is violated in some LPs, but these 
situations are detected and then the affected LPs rollback to the past, undo the 
erroneous computation, to reach a point where all the events were consumed in a 
correct causal order.
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3.4.3 M apping

For parallel execution, once we have the set of LPs which form the simulator, those 
processes must be mapped onto a set of processors. N LPs in the model have to 
be distributed among the available processors P. Each process has its own event list 
which stores the events for the entities that are mapped onto its processor.

A parallel program can be represented by a task graph, whose nodes represent 
program modules and edges indicate modules needing to communicate. The weights 
assigned to the nodes and edges denote the computation and communication times, 
respectively. Mapping a task graph to a parallel architecture requires partitioning 
the task graph into a number of partitions equal to the (available) number of proces­
sors, and assigning each partition to a processor. Algorithms for optimally mapping 
chain structured computations onto different models of parallel architectures that 
have a linear array interconnection network are found in [CN93J.

In DDES, we can have a task graph to which we can apply a heuristic algorithm 
to allocate LPs to processors. This task graph sometimes has precedence informa­
tion about the order of execution of tasks [WM93]. Nandy and Loucks developed an 
implementation of a parallel partitioning algorithm which is suitable for use in a con­
servative simulation and showed through an example that both the inter-processor 
communication traffic and the computation load balance have an impact on the sim­
ulation performance [NL93]. Boukerche and Tropper [BT94] addressed the problem 
of partitioning a conservative simulation on a parallel computer making use of a sim­
ulated annealing algorithm with an adaptive search schedule to find good partitions. 
A criterion for assignment of LPs to processors during an optimistic simulation is 
proposed by Som and Sargent [SS93]. The criterion aims at reducing the number of 
rollbacks by assigning to the same processor LPs which may have rollbacks caused 
by a common LP.

3.4.4 R eal World DD ES A pplications

DDES has been used with different degrees of success in many real world applica­
tions. Some of the domains are very specific such as VLSI circuit simulation [CH94], 
parallel computing [ACLS94, FW94], communication networks [CGU+94, CT96a], 
... Other domains such as computing systems, combat scenarios, health care system, 
and road traffic are reported in [Fuj90]. Some other refer to the simulation of mod­
els described using a kind of “specification language”, such as queueing networks or 
Petri nets, while the model itself can be anything from a supermarket to a factory.
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3.4.5 Perform ance M easures

DDES performance measures include:

• Execution time of the simulation;

• Speedup: is defined to be the time it takes a single processor to perform a 
simulation divided by the time it takes the multiprocessor system to perform 
the same simulation [Ert94]. The speedup can be thought of as the effective 
number of processors used for the simulation. Obviously, the ideal speedup 
with N processors is N;

• Efficiency: is defined to be the speedup divided by the number of processors 
used, and measures the effective utilisation of the processors.

Other measures may be the number of rollbacks, their distance, the number of 
messages (positive and negative), the static and dynamic lookahead, and the memory 
requirements. In all mechanisms (conservative, optimistic and synchronous), the 
number of processors, their speed, the cost of operating system overhead can be 
manipulated to achieve the best speedup.

3.4.6 The T im e-D ivision Approach

In DDES, most of the algorithms presented are based on the space-division approach, 
which means that the system to be simulated is viewed as a set of LPs communicating 
by sending messages. Parallelism can also be exploited using the time division 
approach where the simulation model is partitioned in the time domain [LL91b]. 
This means that :

1. the simulation time is partitioned into N subintervals, a processor is assigned 
to each subinterval. Knowledge concerning the initial state for each interval is 
needed;

2. at the end of the simulation, a comparison between the final state of the n th 
subinterval and the initial state of the (n 4- l ) tfl subinterval is made to see if 
they match.

A survey of three time-division algorithms by Chandy & Sherman, Greenberg, Mi- 
trani & Lubachevsky, and Heidelberger & Stone is found in [LL91b]. The time- 
division approach is out of the scope of this thesis and will not be considered.
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Messages to 
other LPs

Figure 3.2: A LP in a CMB Simulator.

3.5 The Conservative Mechanisms

In works by Bryant [Bry77] and, independently by Chandy and Misra [CM79], a 
method called conservative is proposed to realise DDES. The name conservative 
comes from the way the local causality constraint is enforced: an LP must wait, 
before consuming an event, until it is absolutely sure that no new message will 
arrive with smaller timestamp. To behave this way, some restrictions are imposed 
to the LPs:

• each LP maintains one input queue for each possible source of messages. The 
interconnection topology of the LPs must be static, and known since the be­
ginning of the simulation;

• each LP must send messages through each of its output channels in a non­
decreasing timestamp order.

In the conservative mechanisms, each LP is an execution model which contains a 
section of code, a portion of the system modelled state, a local clock (which denotes 
how far the process has progressed) and input/output links (Figure 3.2). Input 
links are characterised by queues of timestamped messages received from other LPs, 
sorted on time of occurrence. The LP will not process an event before it is sure it 
will not receive an event with a smaller timestamp. Each input queue has a clock 
denoting the timestamp of the first message in the queue if it is not empty, or de­
noting the timestamp of the last message extracted if it is empty. The LP always
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selects the input queue with the smallest clock value. If the queue is not empty, the 
Logical Process extracts the first message from the queue, processes it and advances 
the local clock time. If the queue is empty, the process blocks itself and conversely, 
waits for other interactions to resume its execution . The simulation engine deals 
with the messages (events) scheduled for/by the LP. The other part includes the 
description of the PP simulated by the LP. An analytical study of the performance 
of a conservative parallel discrete event simulation protocol is found in [Nic93].

A C-like language is used to express the algorithm which is as follows:

Cj  =  0 ;

for (each i) ccij =  0;
while (not end_of_simulation) {

while (input queues are empty) await message arrival; 
rrij = message with minimum timestamp;
Hj = mirii{ccij} 
while (mj.timestamp >  H j)  {  

await message arrival; 
rrij = message with minimum timestamp;
Hj = mirii{ccij}\

}
remove (mj)

C j — rrij .timestamp; 
execute(mj .event);

}

3.5.1 The Deadlock Problem

A LP cannot advance its simulation clock before it has received a message in each 
input queue. Since a process must block when its input queue with the smallest clock 
value is empty, a deadlock situation may occur. In Figure 3.3, all three processes 
are blocked even though there are event messages in other queues that axe waiting 
to be processed.

It is worth mentioning that deadlock in a Petri net is a transition (or set of 
transitions) which cannot fire whereas in DDES it is the simulation program that 
deadlocks. In a Petri net a transition is live if it is not deadlocked. This does not 
mean that the transition is enabled but rather that it can be enabled.
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empty

not empty

Figure 3.3: Deadlock Situation. Each process is waiting on the incoming link con­
taining the smallest link clock value because the corresponding queue is empty.

Two deadlock resolutions have been proposed in DDES: deadlock avoidance 
[CM79] and deadlock detection and recovery [CM81, Mis86]. It has been shown that 
the cost of deadlock detection and recovery is much higher than deadlock avoidance 
[Fuj90].

Deadlock Detection and Recovery

One solution to the deadlock problem is to allow the simulation to deadlock, detect it 
and recover. Thus, the simulation consists of a sequence of phases performing useful 
computation in parallel separated by phase interfaces, where computation takes 
place to break the deadlock and allows various LPs to proceed. Two drawbacks of 
this approach are apparent: the simulation is making no progress during the phase 
interfaces, and nothing is done to reduce the amount of blocking.

Deadlock Avoidance

An alternative to deadlock detection and recovery is deadlock avoidance which uses 
null messages. A null message does not represent any event in the simulated system. 
Instead, a null message (t,nult) sent from process p\ to process P2 is a control message 
which tells p2 that there will be no more messages from process p\ with timestamps 
less that t. The message (t,null) is determined by adding the minimum clock value 
of all input queues and the minimum time increment of any message passing through
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this process. Whenever a process finishes processing an event, it sends a null message 
on each of its output ports indicating its bound. Null messages are used only for 
synchronisation purposes, and do not correspond to any activity in the physical 
system. Another technique that yields substantial improvements in conservative 
parallel simulation include the use of appointments [Nic88]. An appointment is a 
promise not to send a message before a certain time; thus, it is equivalent to a null 
message. The difference is that the scheduling of appointments is demand-driven: 
when a LP is unable to receive a message because the timestamp of the message 
exceeds the appointment time of one or more of the LPs, the LP requests new 
appointments from those sources.

3.5.2 Lookahead

Lookahead is the process’ ability to predict what will happen, or more importantly, 
what will not happen in the simulated time as regards to its behaviour and when 
next it may affect other processes. If a process at simulated time Clock can predict 
with complete certainty all events it will generate up to simulated time Clock +  L , 
the process is said to have lookahead L [LL90]. The lookahead information is carried 
by null messages which axe used to break deadlock as well to improve the progress 
of a conservative simulation.

Experimental studies have indicated that the larger the lookahead values, the 
better the performance of the conservative simulation. Several techniques for looka­
head exploration are proposed in [Nic88, WL89, LL90]. The effectiveness of null 
messages depends greatly on the amount of lookahead available and is in general ap­
plication dependent. The number of null messages may become quite large during 
a simulation. Feedforward and feedback networks investigation for reducing their 
number is found in [Vri90].

3.6 The Optimistic Mechanisms

Optimistic mechanisms detect and recover from causality errors, they do not strictly 
avoid them. Each process has a single input queue, all arriving messages are stored 
in the input queue in order of increasing (virtual) receive time. When a LP de­
termines that an error has occured, a procedure to recover is invoked (a rollback) 
[Jef85]. A causality error is detected whenever an event message is received that 
contains a timestamp smaller than that of the LP’s local time clock. This event is 
called a straggler. Recovery is accomplished by undoing the effect of all events that
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have been processed prematurely by the process receiving the straggler. Each pro­
cess must maintain a state queue containing copies of its previous state. Whenever 
a (positive) message is sent to another LP, its (virtual) send time is copied from the 
sender’s virtual clock. Whenever a process rolls back to time t, antimessages are 
immediately sent for any previously sent positive messages with a timestamp larger 
than t to undo their effect. This is called aggressive cancellation. In lazy cancel­
lation, when a process resumes executing from its new logical virtual time (LVT), 
only messages that axe different from previously sent messages axe transmitted. A 
kernel of Time Warp, known as JPLTW (Jet Propulsion Laboratory Time Warp) 
has been developed by Jefferson’s team [JBW+87]. The performance of rollback is 
investigated by Lin and Lazowska [LL91a], and Lubachevsky et al. [LWS91]. Re­
cently, Das and Fujimoto proposed an adaptive protocol which reduces unnecessary 
optimism by economising memory usage and without undergoing any significant 
protocol related overheads [DF97].

3.6.1 Logical Processes in Tim e Warp

In Time Warp, an event is represented by a message, and contains the name of the 
sender process; the virtual send time; the name of the receiver process; the virtual 
receive time; a sign of the message (positive or negative). A process is defined by its 
name; its LVT; a state queue containing copies of the process’s recent states, ordered 
by LVT; an input queue containing all recently arrived messages ordered by receive 
time; an output queue containing ail the negative copies of the messages recently 
sent, ordered by send time (antimessages for unsending positive ones) (Figure 3.4). 
The Global Virtual Time (GVT) is the smallest timestamp among all unprocessed 
event messages (both positive and negative). The sequence of actions that each LP 
executes is as follows:

• If no unprocessed message is awaiting in the input queue, wait for new arrivals 
and then go to the next step;

• make a copy of the current state and save it in the state queue;

• consume the message pointed by next.event, i.e., advance LVT, change the 
status according to the class of event, and send new messages to other LPs;

• add an antimessage to the output queue per each message sent in the previous 
step;

• advance the nexLevent pointer. Go to step 1.
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Figure 3.4: A LP in a TW Simulator.

This algorithm can be interrupted each time a message arrives. The received mes­
sage can be positive or negative, and can belong to the past (if its timestamp is 
smaller than the local virtual time) or to the future (if its timestamp is larger than 
LVT). Depending upon the circumstances, one of these four actions must be taken 
(Figure 3.5):

P ositive m essage for th e  fu ture. This is the common case in any event-driven 
simulator. The message simply carries an event scheduled for the LP’s future. It is 
stored in the input queue, in the right position according to its timestamp. 
A ntim essage for th e  fu tu re. This is a kind of cancellation. The positive mes­
sage must be in the input queue (if the communication system delivers messages in 
order). After locating the positive message, both messages (positive and negative) 
are annihilated.
P ositive m essage for th e  past. This is a straggler. A rollback is needed because 
the local causality constraint has not been obeyed. All the effects of simulating mes­
sages with timestamp greater than the straggler must be undone, to be re-executed 
after consuming the straggler. The straggler is inserted in the input queue. The 
state is restored to the copy saved just before consuming the message that now 
follows the straggler in the input queue. All the copies of the state following the 
restored one are destroyed. All the antimessages generated during the erroneous 
computation are sent. The next.event pointer is set to point the straggler. After all 
these steps, the simulation can resume.

7357
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(* LPi'. arrival of a message with timestamp TT from L P j)  *) 

if TT > LVTi
then if TypeMessage == ’+ ’

then Insert (Message) into Buffer-In 
else (* TypeMessage == AntiMessage *)

Cancel Message in InputQueue 
else (* arrival of a straggler message, rollback *)

(* Restoration phase *)
insert (Message) into Buffer-In
Fetch in StateQueue for Statek /  LVTk <  TT
Restore Statek with LVTk
Discard states (L) in StateQueue /  LVTl > TT
(* Cancellation phase *)
Fetch in Buffer-Out for SendingTime STm /  STm >  T 
Send AntiMessages 
(* Coast forward phase *)

Figure 3.5: Message Execution in TW.

A ntim essage for th e  past. The corresponding positive message is searched for 
and located in the input queue, and both messages are annihilated. A rollback 
must be done, recovering the state associated to the destroyed positive message, 
destroying other copies of the state and sending the necessary antimessages. The 
next-event pointer is set to point the message just after the annihilated one. Normal 
computation can resume.

3.6.2 M essages Cancellation Phase

When a process receives an antimessage that corresponds to a positive message 
that it has already processed, then that process must also be rolled back to undo 
the effect of processing the soon-to-be annihilated positive message. Whenever a 
message is sent, its virtual send time is copied from the sender’s virtual clock. Each 
process has a single input queue which all arriving messages are stored in order 
of increasing virtual time. Some attempts have been made to reduce rollbacks in 
optimistic distributed simulation. Prakash and Subramanian presents an algorithm 
that limits the propagation of erroneous computations by keeping track of knowledge 
like the assumptions made in the generation of a message and the straggler events 
that have occurred in the simulation [PS91]. The algorithm presented by Som and
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Figure 3.6: Rollback with Infrequent Checkpointing.

Sargent in [SS93] uses the assignment of processes to processors and shows a gain 
in performance and a reduction of overall completion time. However, it can only be 
used when the connectivity among the LPs in the simulation model is known.

3.6.3 G lobal Control

Although most of the operations of the TW algorithm are done in a distributed 
fashion, with the LPs evolving autonomously, the system cannot work unless a series 
of global operations are done, satisfying these requirements:

Guarantee that simulation advances, even taking rollbacks into account. The 
LVT at a LP is not an accurate estimation at the actual situation of the 
simulation: an unexpected straggler might arrive, making the LP jump back 
to the past. A mechanism is needed to establish a fixed point in time, in such 
a way that no jumps before that time will ever happen.

• Detect the end of the simulation. When a LP reaches the end-ofsimulation 
time, it does not mean that it can finish: again, the possibility of a rollback 
exists, and some work might need to be re-done.

• An important problem to solve is memory management, a complex part in 
TW. From the descriptions of the data structures managed by the LPs, it can 
be deduced that those structures grow unboundedly while simulation advances: 
messages are stored in an input queue, copies of the state must be saved and 
an antimessage is stored for each sent message. All this information is stored 
because it might be needed to realise a rollback. However, the amount of 
memory available to the LP is finite (sometimes it is quite small), and this 
limits the growth of the data structures. Figure 3.6 shows an example of a 
rollback where not every event is checkpointed.
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To help solving these problems, a TW simulator needs a global control mechanism 
whose purpose is to keep an up-to-date measurement of the Global Virtual Time 
(GVT). This global time indicates up to what point of simulated time the simulation 
has been done, with a global rather than a local point of view. It is computed as 
the minimum of all non-executed messages in the simulator. A review of the most 
well known algorithms for GVT computation are found in [Fer96].

Taking as a restriction that the consumption of a message can never affect the 
past, it can be guaranteed that it is not possible to do a rollback to a time before 
the GVT. Therefore, all the memory space associated with events timestamped less 
than the GVT can be safely retrieved, because it will not be needed. This includes 
past messages in the input buffer, copies of the state stored before the execution of 
those messages and the antimessages stored as an effect of the execution of those 
messages. This process of retrieving memory space is known as fossil collection. The 
problem of signaling the end of simulation can also be solved when the GVT reaches 
the end-of.simulation value.

The complexity of the memory management in the LPs, and the need of a global 
control, makes implementations of TW quite tricky. In comparison, CMB and SYNC 
algorithms are much simpler. Additionally, TW needs much more memory space to 
work properly. Although some researchers demonstrated that a TW  simulator can 
work with a very reduced memory space, this does not mean that it will work 
efficiently. On the other hand, TW does not require the LPs to have a knowledge of 
the model being simulated to work properly as it was the case with CMB.

3.6.4 Variations of the Basic Tim e Warp

In [Fuj89], Fujimoto characterises four sources of overhead which appear when TW 
is used to do parallel simulations, in comparison with an equivalent sequential sim­
ulation. Those are:

• Keeping a log of the history of the LPs. That is, keeping the input queue, the 
state queue and the output queue;

• Message passing. This is common to all DDES techniques based on a distribu­
tion of the model among a collection of LPs. The overhead is not only the effort 
of passing messages, which can be very costly depending on the computer and 
the message passing software being used, but also the time to prepare them 
and extract information from them;
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• Cancellation, rollbacks. One rollback does not impose a big overhead, but in 
general rollbacks do not appear alone: one straggler might cause an avalanche 
of rollbacks, and this in turn means the movement of an important number of 
antimessages;

• Erroneous computations. All the (real) time that an LP devotes to execute 
events whose effects are undone afterwards is lost time.

Once the problems have been characterised, solutions might be searched. In the 
literature, several proposals can be found which try to improve TW by reducing its 
sources of overhead [LP91, GT93]. Next we discuss four variations of TW.

Lazy Cancellation

In the TW algorithm previously described, during a rollback a set of antimessages is 
immediately sent, one per positive message generated during the erroneous compu­
tation. This policy of sending antimessages is known as aggressive cancellation. An 
alternative to aggressive cancellation has been proposed, known as lazy cancellation 
[Fuj90]. This approach tries to minimise the overhead imposed by the treatment 
of antimessages and, at the same time, to reduce the chain reaction effect of the 
rollbacks. The optimisation is based on temporarily holding the antimessages to be 
sent as a consequence of the rollback. Instead of sending them immediately, the 
LP monitors the positive messages it sends during the normal advance phase which 
follows the rollback. If it sees that a newly generated message is identical to another 
generated during the erroneous phase, then the first message can be considered as 
correct, the antimessage need not be sent and the new positive message can be de­
stroyed. If the described situation is common, i.e. many of the messages generated 
by a LP are correct even when the LP is violating the local causality constraint, 
the advantages of lazy cancellation axe obvious: less antimessages are sent, and less 
rollbacks are triggered. However, in some cases lazy cancellation can be worse than 
aggressive cancellation. It requires additional overhead, and may allow erroneous 
computations to spread further than they would under aggressive cancellation.

Lazy re-evaluation

Basic TW also performs aggressive re-evaluation, which means that past copies of 
the LP state are immediately removed during the rollback procedure. A lazy re- 
evaluation approach also exists; in this case, copies of the state are not destroyed so 
promptly. After the straggler has been executed, the LP compares the copies of the
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state before and after that execution. If they are identical, then no further action is 
needed (no antimessages need to be sent, no copies of the state need to be removed), 
because the re-evaluation will produce exactly the same result as the original evalua­
tion. Thus, simulation may resume at the point where it was before the reception of 
the straggler, without any re-evaluation of events. This is true unless new stragglers 
are received. The advantages of this technique are evident, provided that stragglers 
that do not modify the state axe a majority. If this is not the case, the overhead 
imposed by state comparisons does not compensate the possible advantages. Both 
lazy cancellation and lazy re-evaluation have an additional negative effect: antimes­
sages or state copies are retained longer than in basic TW. On average, the data 
structures kept for logging purposes are longer than they would under the aggressive 
alternatives, so a larger amount of memory is needed to store them.

Conservative Time Windows

In many TW simulations, it has been observed that, when a LP runs its part of 
the simulation faster than the others (because it runs in a faster processing element 
or because is less loaded), it produces the apparition of cascades of rollbacks: some 
straggler can roll back the fast processor, which has generated many messages which 
are now cancelled. While the slower LPs axe busy annihilating message/antimessage 
pairs, some of them rolling back and generating additional antimessages, the fast LP 
may progress forward again. To avoid this scenaxio, the optimism of the LPs must 
be somehow controlled. A usual way of doing so is the imposition of time windows. 
For example, if the GVT is t, a LP is allowed to advance optimistically until time 
t + St. If all the messages in this windows axe consumed, and the remaining ones 
axe timestamped more than t 4- £t, the LP must block and wait until the window is 
advanced. The size of the window may be fixed, but then is a parameter difficult to 
tune: if the window is too wide, it is not effective; if it is too narrow, no optimism is 
allowed, and a synchronous simulation is performed. Instead of using a fixed window 
size, it is possible to tune it dynamically, i.e., to use an initial value and then make 
it vary according to the behaviour of the LP. The common approach is to increase 
the current window size if the LP is mainly doing useful work (i.e., if there is a 
significant advance without many rollbacks) and to narrow the window if the LP is 
rolling back too often. This approach is known as adaptive time windows.



Chapter 3. D istributed Discrete Event Simulation 63

Periodic and Incremental State Saving

Basic TW saves a copy of the state just before the execution of each message. This 
usually means that a huge amount of memory is consumed, specially if the size of 
the state to save is large. Using an optimisation called periodic state saving, copies 
of the state axe saved every N message executions, instead of after every message 
execution. This way memory demands are reduced considerably. However, if this 
optimisation is included, the rollback procedure is more complex: the LP must 
recover a copy of the state saved before the one actually needed, and the right state 
must be reconstructed by means of a re-execution of already executed messages (this 
is called the coast-forward phase of the rollback). During this phase no messages are 
sent to other LPs. The practical effect is that less memory is needed, but more CPU 
time is consumed, compared to basic TW. However, a state saving is also a time 
consuming operation, its reduction can compensate the cost of the coast-forward 
phases. Experience seems to demonstrate that this optimisation actually improves 
the performance of the simulator, reducing execution time and memory demands 
[LPLL93].

An alternative, but similax approach to periodic state saving is incremental state 
saving. With this optimisation the complete state of the LP is again saved every N 
message executions. In the rest of the cases only incremental changes in state axe 
saved. The coast-forward phase is then simpler: it is enough to find a full, old copy 
of the state and then update it by applying a sequence of increments to re-construct 
the required state value. It seems that, in general, this approach is more efficient 
than the previous one, specially when the cost of executing events is high and the 
amount of memory needed for an incremental state saving is low.

In either technique, we find again the problem of tuning the value of a parameter, 
in this case the interval between two full state copies. If this interval is too wide, the 
time spent saving copies of the state is reduced, but the coast-forward phase is very 
costly; if it is too narrow, no advantage is obtained over basic TW. As happened 
with the conservative time window optimisation, this interval can be dynamically 
tuned to optimise its width, and the same tuning procedure can be used: reduce the 
interval if the LP is suffering from too many rollbacks, extend it otherwise.

3.7 The Synchronous Mechanisms

In this section we describe a design for a synchronous, distributed event-driven 
simulator (SYNC), assessing its correctness and its performance potential. The
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Figure 3.7: A LP in a SYNC Simulator.

description is aligned with the definitions given in the previous section, although 
different algorithms could be given using different assumptions. We assume that the 
model to simulate is distributed among a collection of LPs.

A synchronous simulator processes events with the same timestamp in parallel. 
This protocol is often used in VLSI circuit simulation. Several studies investigated 
the potential speedup of this approach and showed limited potential. Each LP of the 
SYNC simulator keeps the same data structures of a single, sequential event-driven 
simulator (Figure 3.7): clock, state variables, statistics, input queue and event list. 
A global clock is shared among all LPs and always keep the same value. The rest 
of the data structures are private. A single input queue of incoming messages is 
needed, where all received messages are stored in timestamp order.
Each LP performs the following algorithm:

clock = 0;
while (clock < end_of_simulation) { 

t = minimum_timestamp(); 
clock = global_minimum(t); 
simulate.e vents (clock); 
synchronise ();

}

The algorithm works as follows: in the first step each LP obtains the minimum
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of the timestamp of (first message of its input queue, first message of its event list). 
Then a global operation is performed to compute the minimum among those times­
tamps. This value is assigned to the (shared) clock of all LPs. In the third step each 
LP consumes all the events whose timestamp equals the new value of the clock. The 
last step is needed to make the LPs start the next iteration at the same time. This 
synchronisation must be done after all the messages generated in the previous step 
have been delivered and safely stored in the corresponding input queues.

From this description, it is clear that the simulation performed by a SYNC 
simulator is correct: events are consumed in timestamp order preventing causality 
errors to occur. Only those events with the same timestamp are executed concur­
rently and they are causally independent. The design of the LPs and the barrier 
synchronisation ensures that the local causality constraint is always obeyed.

Regarding the performance of the SYNC simulator, it is guaranteed that at least 
one LP will consume one event in each iteration: the one that was used to compute 
the new clock. In other LPs this step might be void if the event density is very low 
or the events are not evenly distributed among LPs. In the worst case, the SYNC 
simulator behaves like the sequential one. But in case of a well balanced scenario, 
it efficiently exploits the avalaible parallelism with a moderate synchronisation cost. 
Two positive aspects can be found in this method: the simplicity of the design (which 
makes the simulator easy to build and to maintain) and the possibility of an efficient 
implementation on SIMD computers, while other approaches to model-distribution 
simulation are best suited for MIMD or SPMD systems.

3.8 Related work

In this section we will review the literature to introduce significant domains of appli­
cation of DDES techniques to modelling tools. These domains refer to the simulation 
of models described using a kind of “specification language”, such as queueing net­
works, finite state machines and Petri nets, while the model itself can be anything 
from a computer system to a factory. It should be clear that there are many other 
studies of parallel simulation algorithms. The ones presented here have been selected 
because of their similarity to our work.

3.8.1 Queueing Networks

A significant effort has been devoted to efficiently simulate queueing networks, as 
many real world applications can be modelled using this approach. Reed et al.
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analysed the performance of CMB algorithms when simulating several queueing 
networks in a Sequent Balance 21000 with 20 processors, a shared memory mul­
tiprocessor [RMM88]. The tests included both CMB-DA and CM-DDR variants 
of the conservative algorithm. No effort was made to exploit the lookahead of the 
studied models, mainly networks of FCFS (First Come, First Served) queues. Poor 
performances were reported. Many other researchers concentrated on methods to 
exploit the lookahead of this and other networks disciplines. Maybe the most in­
teresting works are those by Fujimoto [Fuj88], Wagner and Lazowska [WL89] and 
those by Nicol [Nic88, Nic92, NH93]. These works offer methods to efficiently exploit 
the lookahead of queueing systems to achieve good speedups when the CMB-DA is 
used. The techniques to exploit the lookahead are different for each queue discipline. 
Considered disciplines are FCFS, PS (Processor Sharing) and RR (Round Robin), 
with or without priorities, and with or without preemption. Other interesting works 
in the field include [RM91, MR94], where a workbench for queueing systems sim­
ulation over a network of transputers using the CMB-DA algorithm is presented. 
Characteristics about an object oriented conservative parallel simulator for simulat­
ing queueing networks designed for running under Windows NT in multiprocessor 
environment is found in [PSHH97].

3.8.2 F in ite State M achines

Attention has been given to communicating finite state machines by parallel simula­
tion researchers. Tropper and Boukerche [TB93] described a synchronisation/dead­
lock resolution mechanism for a network of communicating finite state machines 
implemented on an iPSC/2 hypercube. Good performance was reported.

3.8.3 P etri N ets

The simulation protocols we are proposing for ECATNets parallel simulation differ 
significantly from the protocols developed in [Tau88, BEM90, LKP92, KGS93]. The 
work by Taubner in [Tau88] was performed in the context of “Petri net driven execu­
tion” of distributed programs, where the firing of a transition causes the invocation 
of a procedure, with the net itself ( a Place/Transition net) used to determine the 
flow of control. Each transition firing results in a procedure execution, which yields 
an amount of overhead less important for execution of distributed programs than in 
the simulation context. In addition to that, the nets assumed are untimed, so there 
is no notion of simulated time. In [LKP92], Lakos describes how the algorithms 
summarised in [Tau88] have been extended to handle object oriented nets. Butler
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et al. describe a distributed simulator of high order Petri nets, showing how the 
inherent parallelism can be used to obtain a fast simulator [BEM90], The simulator 
is a component of a suite of tools which allow the construction of specifications of 
embedded systems. An overview of SYSTEMSPECS, an integrated graphic based 
software tool for the design and simulation of complex systems is given in [KGS93]. 
SYSTEMPSPECS allows the graphically animated execution of high order Petri 
nets and provides a parallel distributed simulation algorithm running on Transputer 
based parallel systems which proved to be highly suited to simulate complex nets in 
real time.

The contributions of parallel and distributed discrete event simulation in the 
area of Petri nets and reported in the literature include [TZ91, AD91, NR91, CF93a, 
CF93b, NM95, CT96b]. They all deal with Timed and/or Stochastic nets. Thomas 
and Zahorjan [TZ91] proposed a conservative simulation protocol of performance 
Petri nets. The decomposition of the “initial” net into subnets is node-based, each 
place and each transition are simulated by a LP in order to maximise the potential 
parallelism. The technique used, called “selective receive” is based on a communica­
tion protocol between a transition and each of its input places. To fire a transition, 
four messages are exchanged between LPs. The hardware platform is a Sequent 
Symmetri S81 shared memory with 20 processors. Nicol and Roy [NR91] introduced 
another conservative approach. The “initial” subnet is partitioned so that transi­
tions in conflict are assigned together to the same LP with their input places. The 
simulator handles three kinds of events, exploits lookahead and is implemented on 
an Intel iPSC/2 distributed memory multiprocessor. Ammar and Deng proposed in 
[AD91] an optimistic simulator of stochastic Petri nets based on Time Warp, allow­
ing completely general decompositions with a redundant representation of places. 
Five messages are exchanged for LPs synchronisation and to ensure that the mark­
ing in a place in one subnet is consistent with its image in the other subnets. The 
simulator was tested using an Encore Multimax with 18 processors. No speedup fig­
ures were given. Chiola and Ferscha 2 exploited Petri net structural analysis for the 
efficient implementation of DDES techniques using both approaches: conservative 
and optimistic [CF93b]. Tests were done using a Sequent Balance, an Intel iPSC/860 
and a T805-based multicomputer. The authors state that efficient distributed simu­
lations of timed Petri nets can be done, but real speedups can only be obtained after 
identifying the model’s intrinsic parallelism and causality, and using this information 
to optimise LPs. Communication overhead seems to be the main obstacle to achieve

2The authors have published some articles on the same topic. See for example [FC95].
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good performance, as some methods to reduce the number of interchanged messages 
are proposed. A typical advice in this direction is to make a LP have a load big 
enough to keep the computation/communication ratio properly balanced. Although 
a set of rules for partitioning networks based on Petri net topological properties are 
proposed in [CF93a], no large scale models were considered, and performance results 
were limited to very small number of processors. Nicol and Mao [NM95] describe 
a new heuristic technique for automated mapping, both static and dynamic, of the 
timed Petri net to the parallel architecture. The simulations were conducted on the 
YAWNS (Yet Another Windowing Network Simulator) parallel simulation testbed 
[Nic93] implemented on the Intel family multiprocessors (iPSC/860 and Touchstone 
Delta). Cui and Turner [CT96b] propose a new partitioning technique assuming 
that transitions have been assigned priorities in the model. The partitioning is one 
in which each transition, together with its input places, is assigned to a separate 
LP. A decision place is assigned to the LP containing the transition with the highest 
priority among the output transitions. An example of the approach using the dining 
philosophers example shows that it can give a better speedup than that of some 
other known approaches (eg. the one in [CF93a]). The conservative simulator was 
tested using a Transputer network with 16 processors. We concentrate in [Dje98] on 
the development of distributed simulation mechanisms based on the two classical ap­
proaches (conservative and optimistic) for queueing networks and timed Petri nets. 
The overlap in these simulation models in the domain of distributed simulation is 
addressed.

An alternative to discrete event simulation methods called recurrence equations 
approach is reported in [BC93]. Equations are used to express the evolution of the 
stochastic Petri net when certain events occur. The algorithm described allows the 
generation of a simulation program for a SIMD machine.

To the best of our knowledge, little attention has been given to high-level nets 
distributed discrete event simulation. It is worth mentioning that concerning sim­
ulation techniques for high-level nets with arc inscriptions, the enabling test and 
the firing operations are substantially more complex. The work on THOR (Timed 
Hierarchical Object-Related) Nets by Schof et al. was reported in the literature 
[SSW95]. THOR nets are a kind of high-level Petri nets well suited to real-time 
systems simulation. They allow complex objects for token values and provide dif­
ferent kinds of timing aspects as well as an appropriate structuring mechanism for 
nets. The optimistic distributed simulator developed runs on a workstation cluster 
as well as on Transputer network. A THORN model of the Idle RQ communication
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protocol with implicit retransmission (also known as send-and-wait or stop-and-wait 
protocol) is presented as a case study. No speedup figures were reported.

3.9 Conclusion

In this chapter we have introduced a series of basic ideas about simulation of discrete 
event systems, including two sequential algorithms to realise this kind of simulation: 
a time-driven and an event-driven one. It has been shown that it is not trivial to 
implement a parallel simulation by simply modifying a sequential one, so new ap­
proaches to the problem have been developed, based on the model decomposition 
concept. The simulation of a physical system is distributed among a set of cooperat­
ing logical processes, which execute the events that affect its part of the system. The 
collection of LPs must be synchronised somehow, in order to prevent the violation 
of the cause-effect relationships among events.

Two asynchronous approaches have been presented: conservative and optimistic. 
The former totally avoids the violation of causal restrictions. The latter allows 
errors to happen, but recovers from them by means of a rollback procedure. Both 
kinds of synchronisation have been studied, and some modifications which Can be 
done to improve their performance have been also presented. The synchronous 
strategy consists of making all the LPs progress at the same time at each step of 
the simulation, executing in parallel only those events with the same timestamp.

Many additional surveys about DDES can be found in the literature. Some of 
those concentrate on a particular technique, and many others try to cover a com­
plete range of alternatives. Two main sources of information about conservative 
algorithms are, in addition to the seminal work [Bry77, CM79], a survey by Misra 
[Mis86]. For optimistic methods, the work by Fujimoto [Fuj89] is a complement 
to the work by Jefferson, the author of Time Warp [Jef85]. In the group of gen­
eral surveys, recommended readings are [RW89, Fuj90, Lin90, Aya93, Fer96]. The 
work by Ferscha [Fer96] is an interesting qualitative comparison of conservative and 
optimistic methods.

It is interesting to note that after more than fifteen years of research in DDES, 
with successful applications in many fields, big effort is still devoted to study DDES 
algorithms, analysing its behaviour and proposing improvements. But still much 
work must be done to simplify the development of models, i.e., the work of re­
searchers that use simulation as a tool, not as a research object. In this direction, 
further research lines are identified, including the following ones [Fuj93, Lin93]: ap-
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plication specific library packages, new simulation languages [BL94], support for 
shared memory [ACLS94], and automatic parallelisation of models [NM95].



Chapter 4

Environments for Distributed  
Computing

In this chapter we introduce a series of concepts related to the architecture of parallel 
systems, and to the different programming models which can be used to develop 
applications in those systems.

4.1 Introduction

In chapter 1, we stated our interest in multicomputers from a software point of view: 
we want to make an efficient use of currently available multicomputers, extending 
the spectrum of applications (simulation of high-level algebraic Petri nets) that can 
use these architectures.

In this chapter we will study parallel computers in general, and multicomputers in 
particular, as platforms for the design and execution of parallel applications. Careful 
decisions must be made to select the appropriate parallel programming model before 
starting with the design and implementation of an application. However, in some 
cases, the available computer and programming tools impose a given model, reducing 
the spectrum of design choices.

We make an introduction to parallel programming from a software point of view,
i.e., how a programmer perceives and uses a parallel computer. After discussing 
a series of concept as MIMD versus SIMD (§4.2), message passing versus shared 
memory (§4.3), parallel programming languages and tools (§4.4) and two parallel 
programming environments (PVM and MPI in §4.5), we give a brief introduction 
to some hardware issues involved in parallel computer design, again focusing on 
multicomputers (§4.6). The hardware and software configurations of the network of
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workstations used in this work are presented in §4.7. The chapter finishes with a 
series of conclusions in §4.8.

4.2 M IM D versus SIMD Computers

Although it might be considered more a hardware than a software issue, the organ­
isation of a parallel computer often has a definite impact on the way applications 
are programmed [Dun90, Braunl93]. From a software point of view, a MIMD (Mul­
tiple Instruction Multiple Data) system allows a set of processes to execute separate 
streams of instructions, each one on its own data. The memory space might be 
shared among all processes, or might be separate for each process.

In contrast, a SIMD (Single Instruction Multiple Data) system allows a collection 
of processes to execute the same instruction stream, each process working on a 
different piece of data. This second model of parallelism is appropriate for specialised 
applications characterised by a high degree of regularity, while MIMD might work 
for both regular and irregular applications.

Somewhere in between MIMD and SIMD, applications might follow SPMD (Sin­
gle Program Multiple Data) paradigm, which means that all the processes run ex­
actly the same program, although not necessarily the same instruction at the same 
time, on separate data. SPMD is, in fact, a restricted class of MIMD.

In this research we only consider MIMD (or SPMD) applications. This restric­
tion comes from the higher flexibility of this paradigm, and from the programming 
tools we have available. We consider a parallel application as a set of concurrent 
communication processes. A pair of those processes might run in parallel, if assigned 
to different processors of a physical computer, or might time-share one processing 
element. Each process runs a sequential flow of instructions and is able to commu­
nicate with other processes.

4.3 M essage Passing versus Shared M emory

Communication and synchronisation are two operations needed in any concurrent 
programming environment, parallel or not. Two concurrent processes, even being 
totally unrelated, might need to compete for a shared resource, and they must 
synchronise before accessing that resource in order to guarantee that one waits while 
the other uses the resource without interferences. If the processes are cooperating to 
perform a common task, they might need to interchange information (communicate) 
in addition to synchronise. There are two basic paradigms for communication and
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synchronisation among concurrent processes: shared memory and message passing. 
We consider them separately.

If two or more processes share a common memory space, one easy way to com­
municate is by means of a shared variable: one process writes the variable while 
others can read it. Communication is achieved in a fast and efficient way. How­
ever, problems might arise when more than one process try to update a variable 
without any kinds of synchronisation. The variable used for communication has to 
be considered as a shared resource, and accesses to it must be somehow restricted 
to avoid inconsistent updates. Processes must synchronise to access that resource. 
Many synchronisation mechanisms for shared memory environments might be found 
in the literature; two common ones are test & set locks and semaphores.

An alternate paradigm is message passing. In this case each process might have 
a separate memory space. Explicit communication functions are provided to copy 
one set of data (a message) from a sender process to a receiver process. Both the 
sender and the receiver must collaborate to actually perform the data movement: 
the sender performs a send (also called write) operation and the receiver performs a 
receive (also called a read) operation. Send and receive operations may also provide 
synchronisation capabilities, depending on its actual semantics.

In some cases, it is possible to mix both paradigms in the same application. 
A common approach is to allow shared memory communication between processes 
running in the same processor (or, in general, multicomputer node)’ while messages 
axe required if processes are in different nodes.

MIMD computers with shared memory are known as tightly coupled whereas 
MIMD computers without shared memory are known as loosely coupled.

4.4 Parallel Programming Languages and Tools

In order to implement a parallel application, a programmer needs a language able 
to express parallelism. Focusing on the design of applications where parallelism is 
explicit, we can identify at least three alternatives to do so: (1) parallel program­
ming languages; (2) conventional programming languages enhanced with extensions 
to express parallelism; (3) conventional programming languages with libraries of 
functions to deal with parallel operations.

In the first group, we can find OCCAM [Inm89], developed by Inmos as the 
preferred programming language for the transputer family of processors. A collection 
of processes run in parallel (or concurrently, if several of those are mapped onto the
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same processor) and communicate by interchanging messages through channels using 
a blocking, synchronous communication model. Languages such as Ada provides 
support for concurrency. Ada was the first programming language to incorporate 
structured concurrent programming which is achieved with task notion. An Ada 
program is a static object whereas a process is the dynamic activity of obeing a 
program. In Ada terminology, a process is known as a task. A task unit is an Ada 
program unit which executes concurrently with the rest of the program. Therefore 
a concurrent Ada program consists of one process representing the execution of the 
main program, and one or more tasks representing the execution of task units which 
communicate in a RPC-like fashion 1.

In the second group, we can find tools such as CC+-1- and Fortran M [Fos95]. 
CC++ is an extensions to C + +  for compositional parallel programming. It is a 
powerful tool which allows the programmer to use many paradigms of concurrency 
and communication. Six new keywords have been added to the language to allow to 
express concurrency, communicate via shared memory, synchronise access to shared 
data, copy data from one process to another, ... Fortran M is a parallel extension 
to Fortran with concurrent processes and communication channels.

In the third group, we find libraries of functions which allow conventional lan­
guages like C or Fortran to work in a parallel environment, but without modifying 
the language itself. The alternatives that can be found are either commercial (tai­
lored for specific environment) or in the public domain with implementations for 
many host computers. The advantage of this approach is the use of a familiar pro­
gramming language along with an available compiler. In this group we can find 
the set of libraries which form part of the Inmos ANSI C Toolset for transputer- 
based environments [Inm90], and several publicly available implementations of PVM 
(Parallel Virtual Machine) [GBD+94] and MPI (Message Passing Interface) [Mes95]. 
MPI is able to work in many environments (multicomputers such as IBM SP1 and 
SP2, Paragon, IPSC860, Meiko CS-2, Sun multiprocessors; network of workstations 
from Sun, HP, DEC, IBM; networks of personal computers with Linux).

Several parallel simulation languages have also appeared in the last decade. 
Maisie is a C-based language for distributed simulation [BL94] that was designed to 
cleanly separate the simulation model from the underlying algorithm (sequential or 
parallel) that may be used to execute the model. A program written in Maisie is 
independent of any synchronisation algorithm. Therefore, when it is compiled, the 
analyst can indicate the specific simulation algorithm that is to be used to synchro-

^ P C  stands for Remote Procedure Call.
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nise execution of the model: sequential, parallel conservative, or parallel optimistic. 
Maisie has been implemented on a variety of sequential workstations and laptop 
machines, on networks of workstations, on platforms like the distributed memory 
IBM SP2 and the shared memory Sparc station 1000.

Another approach has been followed by other researchers that decided to imple­
ment the parallel simulation system as a run-time library written in C ++: examples 
include SPEEDES (Synchronous Parallel Environment for Emulation and Discrete- 
Event Simulation) [Ste92].

4.5 Parallel Programming Environments

The research presented in this thesis has been done using a message passing paradigm. 
There are several reasons to justify these choices:

1. Message passing is a paradigm widely used in certain classes of parallel ma­
chines, specially those with distributed memory. Although there exist many 
variations some of those discussed in this chapter, the basic concept df pro­
cesses communicating through messages is well understood. Additionally, a 
message passing system might be efficiently and portably implemented in most 
parallel environments [Mes95].

2. The parallel and distributed simulation algorithms used in this research, based 
on model decomposition, are described by means of message interchange. The 
implementation is more direct this way.

3. In the absence of a parallel computer, our parallel programs have been imple­
mented in a network of workstations. A NOW can be considered as a special 
case of multicomputer, where each node is a complete workstation and the 
interconnection network is typically a LAN (Local Area Network).

4. The NOW that has been available to perform this research provides not only 
message passing for communication among processors, but distributed shared 
memory as well. Of course if it was possible to select between shared memory 
and message passing in a NOW, message passing would be the choice for 
portability reasons: porting an application from a NOW to a (parallel) machine 
is easier if both use the same communication paradigm.

To choose among the parallel programming languages and tools, we have used li­
braries and functions. This decision has been firstly forced by the available tools;
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System Clock Protocol Bandwidth Latency
Cray T3D 151 Mhz SHMEM.PUT 120 MB/s 6 /is
Cray T3D 151 Mhz MPI 50 MB/s 40 fis
IBM SP2 66.6 Mhz MPI/MPL 33 MB/s 143 fis
IBM SP2 66.6 Mhz MPICH 35 MB/s 114 /xs
Hitachi SR2201 150 Mhz MPI 200 MB/s 45 fis
NEC SX-4 MPICH 1.9 GB/s 72 fj,s
NEC SX-4 MPISX 6.1 GB/s 35 fj,s
Cray J90 MPI/MPT 318 MB/s 95 fis
Unix on Ethernet slow large

Table 4.1: Some High-Performance Parallel Computers Parameters.

secondly, using the same programming language (C in this case) eases portability 
among platforms. Table 4.1 summarises the parameters of some high-performance 
parallel computers. The characteristics of the programming environment used in 
this work are summarised in Table 4.2.

4.5.1 Parallel V irtual M achine

PVM (Parallel Virtual Machine) [GBD+94] is a software package that permits a 
heterogeneous collection of Unix computers hooked together by a network to be 
used as a single large parallel computer. Thus large computational problems can 
be solved more cost effectively by using the aggregate power and memory of many 
computers. The software is very portable. The source, which is available free through 
netlib, has been compiled on many computers from laptops to CRAYs. PVM enables 
users to exploit their existing computer hardware to solve much larger problems at 
minimal additional cost. Hundreds of sites around the world are using PVM to solve 
important scientific, industrial, and medical problems in addition to PVM’s use as 
an educational tool to teach parallel programming.

4.5.2 M essage Passing Interface

In the beginning of the nineties, whilst PVM had its adherents, MPI was for many 
a revelation. It contains a huge range of subroutines including the widely used 
blocking and non-blocking point-to-point communications, but also global reduc­
tion operations, groups and communicators within contexts, timing and profiling
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Aspect Distributed
simulator

Programming tool ANSI C with MPI library
Model of parallelism MIMD (SPMD preferred)
Communication paradigm Message passing
Communication models Blocking, nonblocking
Communication models Basic, buffered, synchronous
Partner Explicit (addresses)

Table 4.2: Characteristics of the Programming Environments Used in this Work.

routines. It gives power and the ability for manufacturers to provide fast hard­
ware for the higher level operations and also facilitates writing numerical libraries 
(necessary for applications programming).

In this research we used C plus MPI [Mes95]. Such environment provides the 
opportunity of designing MIMD as well as SPMD programs with message passing 
communication. MPI is efficiently and portably implemented in most parallel en­
vironments. As the distributed simulation algorithms are described by means of 
message interchange, the implementation is more direct this way.

MPI communication primitives may be blocking or nonblocking, and provide the 
following communication modes: basic, buffered and synchronous. The collection of 
processes collaborating in the distributed application can be depicted as a graph, 
where nodes represent processes and arcs represent communication channels. Each 
process in the distributed application is identified from 0 to N-l, where N is the 
number of processes. Explicit communication functions are provided to copy one 
message from a sender process (performing a send) to a receiver process (performing 
a receive).

Geist et al. compare PVM and MPI features, pointing out the situations where 
one may be favored over the other [GKP96]. For example, MPI has a richer set of 
communication functions and has the advantage of expected higher communication 
performance if an application is going to be developed and executed on a single 
Massively Parallel Processor (MPP). PVM has the advantage when the application 
is going to run over a networked collection of heterogeneous hosts. Also, the larger 
the cluster of hosts, the more important PVM’s fault tolerant features become.
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Figure 4.1: Model of a Multiprocessor.

4.6 Parallel Com puter Design

In general terms, a parallel computer consists of a set of processing elements inter­
connected by means of a communication network. Two groups of parallel systems 
might be characterised: multiprocessors and multicomputers.

The term multiprocessor is used to refer to a parallel system with shared mem­
ory, where synchronisation and information exchange occur via m  memory modules 
which can be accessed by p processors in a coordinated manner by means of an 
interconnection network (Figure 4.1). The design of the network is a critical issue, 
because memory access times should be minimised. Buses and multistage intercon­
nection networks are normally used as a common class of network in this design. 
Another important issue is the cache memory: a local cache is needed at each process 
to obtain a reasonable performance, and some cache coherency mechanism must be 
added, because a memory word might be simultaneously in several local caches. This 
issue, among other things, limits the scalability of multiprocessors. The bandwidth 
and latency still make algorithms efficient or doomed to failure.

Multicomputers have local memory in each processor and correspond more closely 
to a group of loosely bound, independent computers interconnected by a network 
which provides the infrastructure for communication (Figure 4.2). <processor, 
memory> is referred as a node. The communication and synchronisation mecha­
nisms are implemented by means of messages interchanges through the network. 
The main issues in multicomputer design are the structure of the node as well as 
the organisation of the interconnection network.

The preferred communication paradigm in multiprocessor environments is shared 
memory, while in multicomputer environments is message passing. It is possible, 
however, to have the memory modules physically distributed along the nodes of a
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Figure 4.2: Model of a Multicomputer.

multicomputer while the programmer sees a shared memory place; a good deal of 
hardware/software support is needed to achieve this. In the same context, it is 
possible to simulate message passing over the shared memory space provided by 
multiprocessors.

4.6.1 M ulticom puter’s N ode

Each node of multicomputer consists of a CPU plus a certain amount of memory. 
Some multicomputer manufacturers use custom designs for the CPU, although those 
used in workstations are in most cases general purpose multiprocessors. In some 
cases, the nodes of a multicomputer are actually small multiprocessors, with several 
CPUs and memory modules constituting a computing cluster; the interconnection 
network communicates clusters, instead of individual CPUs.

In addition to processing tasks, a node must provide some communication man­
agement functions. The kind of networks typically used in multicomputers are direct 
networks like hypercubes and meshes. In those networks, each node must perform 
certain message functions to allow a message to flow from its origin to its destination, 
traversing intermediate nodes if necessary (Figure 4.3).

Multicomputers such as the CM-5, the CRAY T3D and the Intel Paragon sepa­
rate computation and communication tasks, providing hardware support to imple­
ment message passing functions, in such a way that these functions are assigned to 
a collection of hardware routers, while the CPUs can concentrate on computation 
tasks (Figure 4.4).

As mentioned earlier, a NOW can be considered as a special case of multicom­
puter. CPUs have to devote a certain amount of time to perform communication 
functions. Message passing has a series of overheads which might be reduced with
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Links to other nodes

Figure 4.3: Node Where Communication and Computation Functions are Integrated.

M e m o ry

C o m p u ta t io n

Figure 4.4: Node Where Communication is Separated from Computation.

appropriate hardware support, but which are very difficult to eliminate. Sending 
a message from one node to another requires a series of operations, summarised in 
Table 4.3.

In a NOW, message passing functions axe not implemented directly over the 
LAN harware, but pass over several layers of protocols. As an example, the message 
passing system used in this work requires messages to pass through three high level 
protocol layers, in addition to the LAN layer (in this case, an Ethernet): the MPI 
library, TCP and IP. This software overhead can be minimised if messages are long, 
but this is not a common situation when the objective is to achieve massive, fine- 
grain parallelism.
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Sources of overhead

At the sender CPU

- Send system call
- Argument processing
- Allocate buffer
- Prepare message
- Initiation of send

At the network of routers 
(software or hardware)

- Transfer message via network interface 
at origin

- Transfer message over the network
- Transfer message via network interface, 
at destination

At the receiver CPU

- Interrupt service
- Buffer management
- Message dispatch
- Copy data to user space
- Receive system call

Table 4.3: Overheads Involved in a Pair of Send/Receive Operations.

4.6.2 M ulticom puters’s Interconnection Network

Message passing support must be provided by the interconnection network in a 
multicomputer with :

1 . low latency: messages must cross the network connection from sender to re­
ceiver a fast as possible;

2 . high throughput: the network must be able to manage all the messages gener­
ated by the computing elements; it must not be a bottleneck.

Other desirable characteristics are low cost, fault tolerance, expandability (not nec­
essarily in this order). There are many issues to consider in order to design a network 
with the desirable characteristics. Some of those are:

1. Topology or shape of the network. Common topologies are: bus, ring, hyper­
cube, mesh (2D and 3D), and torus (2D and 3D);

2 . Switching technique: circuit switching or packet switching;

3. Message flow control: store-and-forward, wormhole, cut-through;
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NOW
Node Sun Sparcstation

Implementation of message functions -
Network topology Bus (Ethernet)

Switching technique Packet switching
Message flow control -

Routing -
Deadlock management -

Table 4.4: Hardware Characteristics of the NOW.

4. Routing strategy: static, adaptive, with many other alternatives for both cases;

5. Deadlock management: necessary for some combinations of topology and rout­
ing strategy.

Commercially available machines offer many combinations of these parameters. Ta­
ble 4.4 summarises the characteristics of the NOW used in this research.

4.7 Characteristics of the Network of W orkstations U sed  
in this Work

4.7.1 Hardware Configuration

Over an Ethernet local axea network, the (homogeneous) workstations used in this 
work share the medium which provides a raw 10 Mb/s data rate. The type of work­
station used is a Sun Sparc Classic ELC (4/15) with the following characteristics:

• Processor: microSPARC - 50MHz

• 32 bits registers

• 24 Mb (physical) memory

• 96 Mb (virtual) memory.

4.7.2 Software Configuration

The characteristics of the programming environment are:
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• Operating system: SunOS version 5.5.1, Solaris 2.1

• C Compiler: gcc version 2.7

• Debugger: dbx 3.2

• CHIMP MPI from the Edinburgh Parallel Computer Center.

4.8 Conclusion

In this chapter we have reviewed a series of concepts related to the view a pro­
grammer has of a parallel programming system, and to the different architectural 
organisations that can be used to actually build such a system. The presentation 
has been purposefully focused on multicomputer systems, where a set of comput­
ing nodes, comprising a CPU and a certain amount of local memory, are connected 
by means of a message passing network. This decision has been motivated by the 
computing system available for this research.

The description of the hardware/software issues involved in parallel programming 
has served to introduce the main characteristics of the network of workstations with 
MPI and PVM libraries.

Any parallel computer that provides the SPMD or the MIMD models of comput­
ing allows the implementation of a parallel simulator with the described characteris­
tics. If the communication model is message passing, as happens with the machines 
used in this research, the interchange of messages among LPs is implemented in the 
obvious way. If the system provides communication via shared memory, a library 
of functions to emulate message passing can be built. The simulation algorithms 
developed for a message passing environment trivially adapt without performance 
loss to shared memory by emulating message exchange via shared variables.

The communication infrastrucure of the parallel computer must be able to sup­
port the interconnection topology of the LPs in distributed simulation. In general, 
it is assumed that the communication is reliable: no message is lost, modified, du­
plicated, or delivered out of order.



Chapter 5

Conservative Simulation of 
ECATNets

In this chapter we present the first ECATNet distributed simulator based on a 
conservative approach and implemented in a distributed memory environment. Two 
partitioning techniques are proposed in order to spatially decompose the ECATNet 
into subnets, each subnet to be simulated by a LP. The objective of the study is to 
select an appropriate conservative distributed algorithm for the analysis of ECATNet 
models.

5.1 Introduction

ECATNets conservative algorithms do not permit any causality error. The set of 
LPs (represented as objects) in the simulation process an incoming message only 
when the underlying synchronisation algorithm can guarantee that they will not 
subsequently receive a message with a smaller timestamp. These algorithms, by 
definition, block until a LP can ensure that it will not violate causality by processing 
the next event.

The chapter is structured as follows. First, a description of the implemented 
ECATNet simulators (sequential and distributed) is done in §5.2. §5.3 introduces 
the characteristics of a conservative ECATNet LP. We see in §5.4 how to decompose 
an ECATNet model into submodels to be simulated by LPs, assessing the impact 
this decomposition may have on the simulator’s performance. Details about the 
implementation of the LP’s communication interface are given in §5.5. A descrip­
tion of the CMB-DA simulation engine is done in §5.6. The Ethernet transmitting 
station ECATNet model presented in §2.4.5 is chosen to carry out the experiments
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to evaluate the CMB-DA simulator in 5.7. Finally some conclusions are summarised 
in §5.8.

5.2 The Simulators

We present the simulators used in this study. Four different ECATNet simulators 
have been implemented and tested:

• SEQ: sequential event-driven, able to run in any of the parallel systems de­
scribed in Chapter 4;

• CMB-DA: Chandy-Misra-Bryant with Deadlock Avoidance via null messages;

• TW (Time Warp), with Lazy Cancellation (LZ) as a message cancellation 
technique, and

• SYNC: synchronous distributed event-driven.

All the distributed simulators work with the same description of the model. SEQ 
works with a slightly different description of the same model. For our parallel pro­
gramming environment (NOW) and a distributed simulator, the main performance 
figures to be considered are the execution time and the speedup. LPs profiles will 
also be studied.

All the simulators share as much code as possible, to be fair when making com­
parisons and, obviously, to reduce the development effort. In particular, in all the 
cases a set of functions to manipulate event lists has been used. We first imple­
mented the event list using a linked linear list for the sake of simplicity, but later 
had to re-implement it using a splay tree data structure as recommended in [CSR93]. 
Although the difference between both data structures is less noticeable in the dis­
tributed simulators (because events are distributed among all the LPs and, therefore, 
event lists are shorter), it results in performance improvement for the sequential sim­
ulator when the density of events is high.

5.2.1 Input Param eters for the Simulators

In addition to selecting the parameters of the simulated model, a user running the 
simulators has to facilitate a series of additional parameters. These are enumerated 
in table 5.1.
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P a ra m e te r M eaning
Cycles Simulated amount of time while the behaviour 

of the ECATNet model is studied
Seed Seed for the random number generators

Number of PEs Number of processing elements used 
in the simulation

ECATNet subnet Subnet assigned to each LP of the distributed simulator:
- net model (P, T, F)
- data model (IC, DT, CT, TC, C)
- set of rewrite rules

Table 5.1: Parameters of the Simulators.

The first two parameters are needed for all the simulators, sequential and dis­
tributed. The number of Processing Elements (PEs) must be given for any dis­
tributed simulator. A mapping of the simulated ECATNet model onto the actual 
network of PEs in the network of workstations must be done. The distributed sim­
ulator always consists of a collection of collaborating LPs, where each LP is, in fact, 
a Unix process.

5.2.2 Com ponents o f the Simulators

For each ECATNet LP, we identify three components of the distributed simulation 
framework:

• the work partition assigned to it according to the model decomposition;

• its communication interface which is required to preserve its behavioural se­
mantics, and

• its simulation engine which implements the simulation strategy: CMB-DA, 
TW and SYNC.

There are fixed FCFS communication channels between LPs, timestamped messages 
are exchanged via these channels for their synchronisation. The division of the LP 
into three different components allows to decouple the activities of event consump­
tion and message interchange.
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5.2.3 Types of Events

In the following, we assume a three phase transition firing. Although an atomic 
transition firing affects the management of the event list, the proposed solutions can 
easily be modified to accomodate it.

There are two categories of events. An internal event is scheduled and executed 
at the same LP, and an external event is scheduled by one LP and is executed 
by another LP. The events which may occur when constructing a discrete event 
simulator of timed ECATNets are:

• Start-firing : if transition t is enabled to fire at Tsim, for every fs  input place 
remove appropriate tokens. DT tokens are destroyed thanks to the execution 
of event Destroy-tokens. The event End-firing with timestamp Tsim +  
FiringTime(t) is inserted into the event list. The event Create_tokens is 
also inserted into the event list at each fs  output plane p with timestamp Tsim 
+ FiringTime(t) (CT tokens are created), or scheduled as an external event 
and sent as a timestamp message to the LP p is assigned to.

• End-firing : when t ends firing at Tsim, it checks its condition (TC), its 
input places (IC) and its output places (CT, M(p) and C(p)). If the enabled 
conditions are satisfied, t is refired and an event Start-firing is inserted into 
the event list at time Tsim.

• Create.tokens : when tokens arrive at place p at Tsim, its marking is up­
dated. This deposit may enable any of p’s output transitions. If p’s output 
transition is enabled, the event Start-firing at Tsim is inserted into the event 
list.

The events Start-firing and End-firing are always inserted into the LP’s. event 
list. However, when the event Start-firing is processed, if t is the firing transition 
and p its off-LP output place, the event Create.tokens needs to be encapsulated 
into a timestamp message carrying CT(t,p) sent to the LP p is assigned to.

5.2.4 The Sequential Simulator

In the following, we present some essential concepts of the design of an optimised 
sequential simulator for ECATNets.

ECATNet models can be executed using sequential or distributed simulation al­
gorithms. A single processor, event list simulator was developed to allow comparison
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of distributed simulation programs with sequential event list implementations. In 
order to obtain a fair comparison, the simulators share most of the code. Both 
implementations maintain the same overall structure, organisation, programming 
style, and conventions.

Clock
EVL

Figure 5.1: Sequential Simulation Engine.

The ECATNet sequential simulator repeatedly processes the occurrence of events 
S ta rt-firing , End-firing and D eposit-tokens by maintaining: (1) an ordered 
data structure called the global event list (EVL) which stores all events that are 
generated in the system in their timestamp order time of occurrence; (2 ) a global 
clock indicating the current time; (3) state variables S = (si, S2 , ..., sn) defining the 
current state of the system (Figure 5.1).

The simulation engine drives the simulation by continuously taking the first 
event out of EVL, simulating the effect of the event by changing the state variables 
and/or scheduling new events in EVL (possibly removing obsolete events). This is 
performed until some pre-defined endsfsimulation  time is reached.

The concept to improve run time efficiency of the simulator relates to the deter­
mination of enabled transitions. In a straightforward implementation a net simulator 
determines all enabled transitions (by invoking function Enabled 0 )  and selects one 
of them to fire. On the resulting marking it repeats the same procedure. A better 
strategy is to store the knowledge about enabled transitions and to determine only 
the activation of those transitions that may be enabled by the last fired transitions 
after invoking function Rew riting () which checks the right-hand side of the rewrite 
rule associated with the transition to fire and the execution of a C reate_Tokens 
event. With this procedure the simulator does not need to check all transitions of 
the net in every step but only those in the pre- and postset of a firing transition.

The event list has been implemented using a splay tree. However, the linked 
linear list yields performance comparable to the splay tree for simulations with low 
events density.
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5.3 The Conservative Simulator

5.3.1 Logical Processes

The simulation of events is performed in virtual time according to their causality. 
The data structures according to the conservative approach are: (1) a Local Vir­
tual Time (LVT) representing an accumulated value of firing times in a LP; (2) an 
event list (EVL) ordered by time of occurrence, used when there are internal events 
posted within the LP itself; (3) input queues (IQ) (one queue per each input chan­
nel), which collect recently arrived messages ordered by time; and (4) output queues 
(OQ) (one queue per output channel) which keep messages to send, ordered by time.

The attributes and functions of the LPs are classified into four categories:

• the clock mechanism. The UpdateLVTO function updates LVT to advance 
LP’s clock;

• the event list mechanism to process the internal events in the LP with the fol­
lowing functions: Enqueue (): inserts a timestamped event into EVL; Dequeue () 
deletes the event with the minimum timestamp in EVL; Cancel(): deletes the 
event with a specified timestamp in EVL; ExecuteEvent(): executes events 
in EVL and is also part of the synchronisation mechanism;

• the synchronisation mechanism interacts with other LPs to coordinate the 
execution of the simulation with the following functions: ReceiveMessageO: 
receives messages from other LPs. These messages will be inserted into the 
input queues for processing; ExecuteMessageO: executes incoming messages; 
SendMessageO: sends output messages generated by the execution of events 
to their destination LPs;

• the ECATNet simulation mechanism based on the transitions, enabling condi­
tions, their firing times and the application of rewrite rules.

5.4 Partitioning

A natural decomposition of the “initial” ECATNet model into LPs is a spatial parti­
tioning into different subnets. In the following, we present two different partitioning 
techniques for ECATNets distributed simulation. The first one is based on a “sep­
aration of concern” strategy (SCS), the second one is called “efficient” partitioning
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(EP) and is basically an assignment of the transitions sharing input places to the 
same LP. We recall that the partitioning of the “initial” ECATNet model has a 
strong impact on the DDES performance.

5.4.1 Separation o f Concern Partitioning

The “separation of concern” partitioning is not only suitable for representing com­
plex systems ECATNets models but also for the inter-module parallelism achieve­
ment: the Ethernet transmitting station in §2.4.5 is a good example which shows 
how modularity is achieved using this strategy.

Each module obtained from the partitioning corresponds to a subnet to be sim­
ulated by a LP. Because partitioning with SCS leads to a (possible) redundant 
representation of places and the corresponding communication arcs in adjacent LPs, 
we remove this redundancy and represent the places which are relevant for each sub­
net only once. If P, T and F are respectively the set of places, the set of transitions 
and the set of arcs of the ECATNet model, the partition is a set of n subnets such 
that :

E C A T N e t i  =  {Pi, T*, F{, \ )  where U P, = P, U T* =  T, Fi C {P i x Tj) U (T* 
x Pi), i =  l..n.

The inscriptions of arcs Fi by the multisets of terms IC, DT, CT and the associ­
ation of TC to transitions are defined as in the ECATNet model and appear in the 
graphical representation of the subnets. The transitions remain in the same subnets, 
the duplicated places have to be assigned to the relevant ones.

However, the “separation of concern” strategy does not necessarily lead to a good 
parallel simulation partitioning. Its drawback is related to the firing of a transition. 
A transition t fires when all the enabling conditions are satisfied, by checking first 
its input places in the same LP. This transition may have one or more input places 
in different LPs. Since a LP only has information on its local marking, it needs to 
exchange messages with other LPs to obtain information concerning the marking of 
t's input places. Another difficult case is when several transitions share a decision 
place. Therefore, it is necessary to implement a distributed conflict resolution al­
gorithm to decide which transition is going to fire among the enabled transitions. 
In such case, the synchronisation and communication needed to implement the sim­
ulation properly are rather more complex. Obviously, this will lead to substantial 
overhead in the distributed simulation and the amount of messages inherent to this 
protocol can prevent efficiency.
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5.4.2 Efficient Partitioning

An efficient partitioning technique, first used in [NR91] and exploited later in [CF93b], 
is related to the firing of a transition: the transitions sharing places are assigned to 
the same LP with their input places, thereby making the enabling conditions local 
in the LP and avoiding the exchange of messages to decide which transition is going 
to fire among the enabled transitions. Thus, this partitioning technique improves 
the distributed simulation performance by avoiding the overhead of a distributed 
conflict resolution algorithm.

5.5 The Communication Interface

A communication interface is required to preserve the behavioural semantics of an 
ECATNet LP. Such interface has to be implemented by an appropriate protocol 
among the partitions according to the simulation strategy. We can map the set of 
arcs (Tk x Pi) U (Pi x 7*) interconnecting different subnets to the channels of the 
communication interface. We define J* = {CHANNELS,m) of subnetk to be the 
communication interface with CHANNELS =  |J ;j  chij where c/i;j =  (LP;,LPj) is 
a set of directed channels from LP; to LP; corresponding to the axes (tk,pi) E {Tk x 
Pi) and to the arcs {pi,tk) £ {Pi x Tk) carrying messages of type m. In the following, 
we give some basic definitions and explain how the partitioning of the ECATNet af­
fects the LP’s behaviour.

D efinitions A place p; G P; in LP; is said to be a member of the set of LP-output 
places (OP;) of LP; if there exists a transition tj f  LPi which p; is an input place. 
A transition t; G T; in LP; is said to be a member of the set of LP-input transitions 
{ITi) of LP; if there exists a place pj £ LPi for which £; is an output transition. 
We define in exactly the same manner input places and output transitions by inter­
changing places and transitions.

For each LP-input transition t in subnet i, define :
Ptin =  list of places to indicate which output places are related to t and the kind of 
relation that exists. Ptout is defined for each output transition in the same manner 
by interchanging output by input.

For each LP-output place p in subnet i, define :
Tp0ut =  °f transitions to indicate which input transitions axe related to p and the



Chapter 5. Conservative Simulation of ECATNets 92

kind of relation that exists. is defined for each input place in the same manner 
by interchanging input by output.

A communication arc is an arc connecting a place (transition) in LPi to a tran­
sition (place) in LPj. If there is a communication arc from an LP-output transition 
t to an LP-input place p, there exists a unidirectional channel between them. This 
is motivated by LP-output transitions which have to interact with their LP-input 
places for sending tokens when these transitions fire. If there is a communication arc 
from an LP-output place p to an LP-input transition t, there exists also an additional 
communication arc from t to p. These unidirectional channels are motivated by de­
cision places which have to interact with their output transitions before choosing 
the transition to fire.

The syntax of the rewrite rules has to be modified according to the partitioning 
technique. If p, t and q are assigned to L P i ,  L P j  and L P *  respectively, a rule of the 
form:

t: (p,a) -> (q,b)
will have the following syntax:

t LPj- (PLPi 5a) ->• (q i,p fc,b)

Thus, a C reate_tokens external event is sent as a message from L P j  to L P *  when 
t fires.

Exam ple: Consider the example of section 2.4.5, the modular specification of the 
Ethernet transmitting station. Partitioning with SCS leads to a set of four subnets, 
each subnet is simulated by a LP. The set of duplicated places (labelled 1..9) is 
partitioned among the subnets as follows (Figure 5.1):
Subnet 1 : TRANS_REG(1), SUC_TRANS(4)
Subnet 2: INIT_TRANS(3), CHANNEL(6 ), TO_USER(8 )
Subnet 3: INIT_JAM(5)
Subnet 4: RETR_REG(2), RETR_COUNTER(7), RETR_ATTEMPTS (9)

RETRJR.EG is an LP-input place in subnet4 , SUC.TRANS is an LP-output place 
in subnet\. ACK1 is an LP-input transition in subnet2 , ASSEMB-FRAME is an 
LP-output transition in subnet\. (ASSEMB.FRAME, RETR-REG), (SUC.TRANS, 
ACK1) are communication axes, (ACK1, SUC.TRANS) is an additional one. The set 
of LPi, i=1..4 exchange messages via communication channels. A C rea te .to k en s  
external event is sent as message from LP\ to LP4 when transition ASSEMB.FRAME
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fires. In LP2 , transition ACK1 has local informations about its input place INIT.TRANS, 
and has to obtain informations about the marking of places SUC.TRANS and RE- 
TRANS-REG from LP\ and LP4 respectively.

The syntax of the rewrite rule associated with transition ASSEMB.FRAME in 
LPi is now:
ASSEMB_FRAMELPl: (ERROR-SEQLPi, fcs) <g> (FROM_USERLPl, <d, s, data>)
-»• (TRANS_REGlPi , d.s.data.fcs) <g> (RETR_REGlp4, d.s.data.fcs)

When ASSEMBERAME fires, this will lead to: (1) the insertion of events End-firing  
(ASSEMBERAME) and C reate_tokens (d.s.data.fcs in TRANS-REG) in EVL; 
and (2) the sending as an external event of a message C rea te .to k en s  from LPi to 
LP4 carrying tokens d.c.data.fcs for place RETRJREG.

However, when the initial ECATNet model is partitioned using EP, the partition is 
a set of three subnets only. Each subnet has a set of transitions and places in the 
output and input borders respectively. There is one type of communication arcs: 
those connecting transitions to their off-LP output places. Places and transitions 
are partitioned among the LPs as follows (Figure 5.3):
Subneti: 2 places, 2 transitions;
Subnet2 : 11 places, 8 transitions;
Subnets: 2 places, 1 transition.

The syntax of the rewrite rule associated with transition ASSEMBERAME in LPi 
is now:
ASSEMBERAMELPl: (ERROR_SEQLPi, fcs) <g> (FROM_USERLPl, <d, s, data>)
-¥ (TRANS J IE G lP2, d.s.data.fcs) ® (RETR_REGlP2, d.s.data.fcs)

When ASSEMBERAME fires, this will lead to the sending as external events 
of two messages C reate .tokens from LPi to LP2 carrying tokens d.c.data.fcs for 
places TRANS .REG and RETRJIEG.
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Figure 5.3: Efficient ECATNet Partition.

5.6 Simulation Engine

The conservative approach allows only the processing of safe events, firing of transi­
tions up to LVT for which the LP has been guaranteed not to receive messages with 
smaller timestamps. In the following details about the CMB-DA simulation engine 
are given.

5 .6 .1  T y p e s  o f M essages

The (general) format of the messages exchanged between LPs is

Type_m essage (source, destination, timestamp, type.token)

where source and destination are either a place (in L P j )  or a transition (in L P j )  

depending on the communication arc, timestamp represents an accumulated firing 
time of transitions (it may have different meanings in the different types of mes­
sages), and type-token is an algebraic term token moved among subnets. Messages 
are also labelled with a port number that clearly states which channel they must be 
sent through.

The causality of events is preserved over all LPs by sending timestamped token
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messages of type Create_tokens(t,p,TT,CT) in non-decreasing order. This mes­
sage is carrying Created Tokens when t in LPj fires leading to a deposit of tokens 
in place p in LPj. C reate .to k en s (t,p,TT, null) is a null message which is sent for 
synchronisation purpose. A null message is a timestamped signal sent by a LP to 
indicate to other LPs a lower bound of the timestamp of its future C rea te .to k en s  
messages.

Each message of the simulated ECATNet model is represented in the obvious 
way: a record (struct) with elements representing its type, sending process, send­
ing/receiving transition, receiving process, sending/receiving place, token time. An 
additional information GenProc (Generating Process) is used in the simulation of 
cyclic models to avoid an overflow of null messages in the message passing system.

5.6.2 Exploiting Lookahead

Our protocol provides a set of constructs to specify the lookahead of an ECATNet 
model and thus improves its performance with conservative implementations. As the 
causality constraint may introduce deadlocks, they are typically avoided by using 
null messages. Their efficient implementation is also facilitated because each LP 
maintains the set of its source and/or destination LPs.

The structure of the ECATNet simulated model has to be analysed to see where 
some lookahead can be extracted, and to tailor the simulator to exploit it. If this 
can be effectively done, timestamps of null messages will have higher values and 
the overall number of required null messages will be reduced, while a faster clock 
advance of the LPs will be allowed.

To highlight lookahead that exists in Petri nets simulation, if a transition t 
starts firing at Tsirn, a LP can predict exactly when the tokens created by this 
firing are deposited: Tsim +  F iringT im e(t). In order to compute the timestamp 
of the null message that will be sent from LPj to LPj, the information about timed 
transition among the succeeding transitions up to LP’s output border has to be kept 
[CF93b]. To do so, it is necessary to analyse the structure of each ECATNet subnet. 
Lookahead is then the accumulated firing time of these succeeding timed transitions. 
It can be established for a pair of transitions in each subnet by a static analysis of 
the subnet’s structure.

However, as suggested in [DBGM96a], a time window can be used when parti­
tioning with SCS rather than null messages to prevent incorrect computations from 
propagating too far ahead into the simulated time. Lookahead provides a window 
[Tsim, W(Tsim)] such that all events with timestamps in the window can be exe­
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cuted safely and without further communication between LPs. We refer to [NR91] 
to compute it.

Lookahead is computed at the time the transition to fire is known. First, we find 
bmim the minimum firing time among all the LP’s enabled transitions. Second, we 
find Emin, the value of the least timestamp on any event in EVL. As EVL is sorted 
on the time of occurrence of events, Emin is the event’s timestamp in the head of 
the list. If the list is empty, we take Em{n =  oo. Third, we compute E min +  $min 
which provides the desired upper bound.

We suppose that each LP call a routine B ound_N extM sgTim e() which returns 
the value Emin +  6min. We then compute W(Tsim) =  Min[Bound_NextMsgTime()] 
among all LPs. The LPs synchronise globally to make W(Tsim) known to each one.

5.6.3 A lgorithm s

Every ECATNet LP repeats the following steps:

S tep  1 LP waits to select an input message m from its input communication chan­
nels by invoking ReceiveMessageO and inserts m into the relevant IQ*. Each input 
queue IQ* has a clock CCj associated with it that is equal to either the timestamp 
of the message at the head of the queue if the queue contains a message, or the 
timestamp of the last received message if the queue is empty.

S tep  2  LP processes the first event of EVL if there is no token message in one 
of the I Q j S  with smaller timestamp, or to process the token message with the min­
imum token time in IQs. The execution of ExecuteEventO or ExecuteMessageO 
may invoke SendMessageO to send output messages:

/* TokenTime (m) returns the timestamp of message (or event) m */ 
if(TokenTime(First(EVL)) < CCjs 

Execut eEvent (F irs t  (EVL)); 
else ExecuteM essage(First(CCjs));

The execution of the event e by a LP (after invoking Dequeue(e)) is described 
as follows:
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ExecuteEvent(e){
Updat eLVT(TokenTime(e));
/* invoke function according to the type of event e */

C ase StartJiring: invoke S ta r t_ f ir in g () ;
C ase End_firing: invoke End_firing();
C ase Deposit.tokens: D eposit.tokens 0 ;

}

The execution of the message m by a LP is described as follows:

ExecuteMessage(m){
Updat eLVT(m. timestamp);
/* invoke function according to the type of message m */

C ase Null: invoke ComputeLookaheadO;
invoke GenerateNullMessage();

C ase Create.tokens: C reate .tokens();

}

If a new message arrives from an input channel i then the corresponding CC* is 
advanced and, if it is not a null message, it is inserted in the associated IQ*. Null 
messages need not be stored, because their only interest is the advance they produce 
in the channel clocks. This advance may increase the message-acceptance horizon 
and thus may allow any awaiting C reate .tokens message to be consumed.

When the ExecuteMessageO function processes a null message m in an LP, it 
invokes a function ComputeLookaheadO to compute the timestamp of the output 
(null) messages. The ComputeLookaheadO function implements the lookahead ex­
ploiting the following technique. First, we find the minimum firing time among 
all the LP’s transitions. Second, we find Emin, the value of the least timestamp on 
any event in EVL. If the list is empty, we take Emin =  oo. Third, we compute 
Min(TokenTime (m), E min) +  Smin which provides the desired uppon bound.

The null message is then sent to some or all output channels by invoking SeUdMes- 
sage(). As the number of null messages may become quite large during the simu­
lation, a function ReduceNullO to reduce their number is invoked before sending 
them [Vri90]. This saves communication time (in the sender) as well as processing 
time (in the receiver).

A LP does not process any input message until it has received at least one mes­
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sage from each of its input channels. The input message with the smallest timestamp 
is selected for processing. The LP blocks as soon as the minimum timestamp of mes­
sages in IQs is not larger than the occurrence time of the first event in EVL (if IQ* 
becomes empty, the value of CCj is changed to 0).

To obtain the set of transitions that can fire in parallel within a LP, function 
Enabled 0  is invoked. Basically, it takes the left-hand side of the rewrite rules 
associated with the transitions and checks the multisets of pairs (p,[m]®), where p 
is an input place.

The firing of a transition t is  as follows. The right-hand side of the rewrite rule 
associated with t is checked by invoking a function R ew ritingO . If t G OT, in 
LPi, then a message carrying CT tokens is is generated and inserted in the corre­
sponding output queue (OQ). If t has an output place in LPi, it schedules an event 
E nd  .F ir in g  of t. A null message is also deposited for every output border transition 
in the corresponding OQ.

Start _f iring(t){
Destroy.tokensO;
/* invoke function according to the type of transition t in LPj * /

C ase 1: /* t G OTt */
invoke GenerateTokenMessage(t, LVT +  FiringTime(t));

C ase 2 : /* t has an output place p in LPj */
invoke Enqueue(End_firing(t, LVT -1- FiringTime(t))); 
invoke Enqueue (Create.tokens (p, LVT +  FiringTime(t)));

Case 3: /* t $ OT* */
invoke ComputeLookahead (); 
invoke GenerateNullMessageO;

SendMessageO;
}

When transition t is not in LP’s output border (t £ IT*), the function Start_firing 
generates a null message in an LP by invoking function ComputeLookaheadO to com­
pute its timestamp. The ComputeLookaheadO function implements the lookahead 
exploiting the technique described in §5.6.2. Then the null message is sent to some 
or all output channels by invoking a SendMessageO function.
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5.6.4 D istributed Conflict Resolution A lgorithm

A distributed conflict resolution algorithm is needed when partitioning with SCS. 
The LP first checks whether the local firing is possible. If the local enabling condi­
tions of transition t are satisfied because f  s input places are assigned to the same 
LP, no communication with other LPs is necesssary. Otherwise, t has to wait for 
any Tokens_available messages sent from p G Ptin .

As soon as the marking of place p is updated because of the process of an event 
C rea te .to k en s, p has to inform t G TPout so that t can compete for the available 
tokens. To solve the conflict, the LPs synchronise and communicate via the follow­
ing messages using a four steps algorithm:

S tep  1 a Tokens_available(p,t,TO,M(p)) message is sent from place p in LPj at 
time TO to inform transition  ̂£ TPout in L P j  that the marking of place p is M(p)1. 
If p and t are assigned to the same L P ,  t ’s enabling conditions are available locally;

S tep  2  the transition t waits for Tokens_available messages from all the places p 
G Ptin, then processes T1 =  MAX(TO), the latest timestamp among these messages. 
It sends a Tokens_requested(t,p,Tl,IC(p,t)) message as a reply if its enabling con­
ditions are satisfied (TC(t) is true and IC(p,t) is enabled). Otherwise, it sends a 
message to p to inform that it does not need the token;

S tep  3 p waits for a reply for each Tokens_available message previously sent, 
collects Tokens .req u ested  messages and then processes T2 =  MIN(Tl). If the set 
of transitions requesting tokens cannot fire in parallel, p executes a conflict resolution 
algorithm for choosing the transition t to be fired. A Tokens_allowed(p,t,T2,DT(p,- 
t)) message is sent to such transition;

S tep  4 the transition t collects Tokens .allowed message from all its places p G 
Ptin and then sends a Tokens_consumed(t,p,T2,DT(p,t)) message with timestamp 
T2 to such places. It processes T3, the time of the end of its firing (T3 = .T 2  +  
FiringTimeO).

1In case of an inhibitor axe, p sends a Tokens_available(p, t, TO, empty).
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5.6.5 Conflict R esolution Strategy

When multiple transitions sharing input places become enabled at the same time 
and compete for tokens, a decision must be made about which transition (or set of 
transitions) to fire in case they cannot fire in parallel. Two functions exist to solve 
this conflict:

• priorities may be specified for transitions: II : T -> N assigns priorities 7r* to 
T-elements U £ T.

• the decision place p selects randomly according to a probability distribution 
defined by the user one or more transitions that it would like to fire and offers 
them tokens via a Tokens_allowed message if these transitions £ TPout. If 
a transition t is lucky enough to receive Tokens_allowed messages from all 
places p £ Ptin, it then fires. Otherwise, it replies by sending a message that 
it cannot use any of the tokens. Its input places try again later in simulation 
time by sending another Tokens_available message.

Note that the marking’s update of place p may lead to the enabling and the firing 
of several output transitions at the same time.

5.6.6 P laces w ith Lim ited Capacity

As explained in §2.4.2, in addition to TC and IC to be true, the third transition 
enabling condition in ECATNets is related to the capacity of the output place where 
the created tokens CT have to be deposited.

If transition t and its output place p are assigned to the same L P ,  then infor­
mation regarding the capacity of p and its actual marking axe available locally. In 
case they are not assigned to the same L P  (t £ OTj and p £ Ptout), synchronisation 
and communication are necessary via the following messages using a three steps 
algorithm:

Step 1 Deposit_request(t, p, TO, CT). This message is related to the firing of 
transition t in L P j  after checking that its first two enabling conditions are both 
satisfied (TC and IC are true). This message is sent from t in L P j  at time TO to 
request firing from place p £ Ptout in LPj leading to a deposit of CT tokens in p.

Step 2 Deposit_request_ACK(p, t, T l, CT): the place p in L P j  waits for De- 
posit_request messages from all the transitions Then it proceeds to
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the sorting in increasing timestamp order of TO*, i =  l..n, where n is the number 
of transitions requesting firing. Starting with transition with the least timestamp 
TOi, p checks whether the enabling condition M(p) © CT* < Cap(p) is satisfied. 
The firing is allowed at either the time specified by t or by L P j .  If the deposit of 
tokens is not possible at TO* because M(p) =  Cap(p) (the place is full) or M(p) © 
CTi > Cap(p) (overflow), L P j  sends a Deposit_request_ACK (acknowledgement) 
message as a reply to t specifying when exactly t can fire. The value of T1 is local 
to L P j  and is related to the time of p’s output transition(s) is (are) going to fire. 
To exploit such information about T l, L P j  has to check E V L ,  IQs or even wait for 
future messages from its neighbours.

Step 3 t waits for a reply for each Deposit_request message previously sent, 
collects Deposit .request _ACK and processes T2 =  MAX(Tl). It then fires at T2 
(if still enabled) and sends a Create.tokens for each p 6  Pto,r

5.7 R esults o f the Experim ents

There are several parameters to take into account to explore their influence on the 
performance of the distributed simulation algorithms:

• the size of the ECATNet (number of places and transitions);

• the scenario of the simulation (eg. the distribution of the firing times);

• the number of processors used.

Output Data

The description of the ECATNet model is detailed enough to allow to obtain a good 
deal of insight into the behaviour LPs. In addition to the performance measures 
of the simulated ECATNet model such as the maximum and average number of 
algebraic terms in places, the number of transitions fired, ... the simulators can 
measure and give information about:

• the number of generated (positive and null) and consumed messages;

• the number of generated and consumed events;

• time statistics: time spent processing event (Event Proc.), sending positive and 
null messages {Comm. Send), receiving positive and null messages {Comm.
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Recv), awaiting increments in the acceptance horizon (causality) and awaiting 
for messages to be received (communication) (Blocking), awaiting at the end 
barrier to terminate the protocol (Term. Protoc).

When LVT reaches the end.of.simulation value, each LP collects statistics, sum­
marises them and sends the final results to be shown on the screen or saved in a 
file.

P erfo rm ance  R esults

We have run our initial tests for distributed simulation on discrete-event ECATNet 
model of the Ethernet transmitting station. All the code is written in C, the run 
time system is made up on top of MPI and tested on a network of Sun Sparc 
workstations. In the remaining, a processor (or processing element (PE)) refers to a 
Sun Sparc machine with a single processor.

Some parameters of the model can be varied to evaluate their effects in the 
performance of the simulators such as the collision probability and the distribution 
of the delay time. Experimental work was also carried out with the purpose of 
evaluating the performance of the event-driven sequential simulator (§5.2.4).

We have run the conservative simulation (Chandy-Misra’s approach with dead­
lock avoidance, CMB-DA) of the ECATNet efficient partitioning in a parametrisa- 
tion: A d e l a y  is exponentially distributed with mean 1.0 (transition’s delay time), 
probability of occurrence of a collision =  0.5, duration of the simulation =  10,000 
cycles and N = 1, 2, 3 processors respectively. Each LP is assigned to a dedicated 
processor and reside there for the whole real simulation time.

In the simulation a total of about 100,000 transitions were fired. It took the 
CMB-DA simulator 5 minutes 41 seconds to execute on 3 processors whereas SEQ 
needed only 48 seconds (all timings are average time for execution in seconds). The 
speedup of 1.4 using 3 processors observed in Figure 5.4 is reported by comparison 
with the distributed simulation code running on a single processor.

We faced two primary problems with the conservative approach [DBGM96b]. 
The first problem is related to cyclic models (the Ethernet transmitting station is a 
cyclic one). A null message sent out by one LP could possibly circulate through a 
series of other LPs and arrive back at the original sender at the time it was sent (eg. 
a null message generated after transition DELAY in LP2 fires). In some cases, the 
system is modelled using exponential firing times, and because these have a minimum 
delay of zero, they must be modified for use in the distributed simulation to avoid 
a deadlock situation. To cope with this situation, a firing transition identifier was
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Figure 5.4: (a) Execution Time of CMB-DA; (b) Speedup over its One Processor
Execution.

introduced in each null message generated by a timed transition in LPj. If the 
null message arrives back at the original sender LPj, it is simply discarded. This 
approach, similar to the “carrier null message” approach proposed by Cai and Turner 
[CT95] will permit LPj to identify a null message initiated by itself. Deadlock is 
avoided because there are no cycles in which the collective timestamp increment of 
messages traversing those cycles is 0 .

The second problem is related to the large number of null messages exchanged 
between LPs leading to considerable overhead. Since a large number of transitions 
in LP2 are immediate, there is no need to generate new null messages when these 
transitions fire if there is no timed transition among the succeeding transitions up 
to the output border, i.e., the accumulated firing time is 0 , and this does not change 
lookahead. A reduction of the number of Null messages improves the distributed 
simulation performance.

The results show that communication time between LPs is quite important. A 

LP does not block when invoking SendMessageO. However, it might block when 
invoking ReceiveMessageO, but only if no suitable event is ready to be consumed. 
Meanwhile, all the incoming messages can be received and stored in IQs by the LP 
which is a greedy receiver.

LPi and LP3 contain one single transition in the output border, whereas LP2 

contains four (Figure 5.3). LP2 is the process with the largest event processing time 
because of its large number of transitions (8 ) and places (1 1 ) leading to an important 
number of events to schedule. Using this partitioning technique, we note that:



Chapter 5. Conservative Simulation of ECATNets 105

• the load could be unbalanced;

• only large ECATNet models lead to a large number of LPs.

ECATNet models show enough parallelism to make good use of multiple processors. 
In part, even when identifying the set of LPs that can execute independently and 
concurrently on separate processors, we were not surprised to see that the events 
S ta r t  .firing  and End-firing corresponding to the operations “Destroy Tokens” 
and “Create Tokens” that could execute in parallel were actually slowing execution 
in the NOW as the parallel system.

Using this model, an important aspect to be taken into account is that the 
simulation of an activity consumes a negligible amount of CPU time: only some 
increments of counters or movements of small amounts of data are needed. For 
this reason, when a simulator is running an ECATNet model, the execution time is 
mainly due to the simulation algorithm itself (management of events, synchronisa­
tion of LPs, interprocess communication, ...) and not to the simulated model (actual 
simulation of events). Another point to be considered is the high communication 
time needed to pass a message between two workstations (because the latency is 
high). These considerations are specially relevant when evaluating the distributed 
simulators.

From these considerations, and as the time to simulate an event is negligible, we 
tested what happens when the actual cost of processing an event is high. To do so, we 
made some experiments to artificially increase this cost. Chiola and Ferscha [CF93b] 
suggest the insertion of additional transitions in the various LPs to increase the 
amount of local simulation work (thus increasing the computation/communication 
ratio). Another method used in parallel computing suggests the insertion of various 
amounts of time of the order of micro- or milli-seconds. The method we use simply 
inserts a loop in the form “for i= l to  W  do nothing” in the code of the simulator 
at the point where an event is simulated. The parameter W  is a form of synthetic 
workload, which can be varied to evaluate its effect on the execution time of the 
simulator.

The aim of an efficient code is to keep all the processors busy (load-balancing) 
while minimising the amount of communication (usually the bottleneck in parallel 
processing), through often there is a trade off between communication and process­
ing.

In order to investigate the influence of the synthetic workload on the CMB-DA 
simulator’s performance, the value of W  was varied to correspond to the values: 
1 , 1 0 , 1 0 0 , 1 0 0 0  and 1 0 ,0 0 0  (therefore varying the grain size of event processing).
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Figure 5.5: CMB-DA: Impact of the Workload onto the Execution Profile (3 PEs).

In Figure 5.5, we see that experiments with significant synthetic workload exhibit 
a more balanced communication/computation ratio (the amount of CPU time to 
simulate an activity increases with W). Figure 5.6 shows: (a) the execution times 
for various values of W; (b) the speedup obtained by comparison with the sequential 
simulation code running on a single processor. It can be seen that a moderate 
amount of speedup is obtained with a large value of IF on 3 processors.

To summarise the results of these experiments on the Ethernet transm itting 
station ECATNet model, it can be concluded that the conservative approach to 
distributed simulation exhibits a poor performance (Figure 5.7). Nevertheless, other 
models could successfully be simulated using CMB-DA, if they belong to any (or 
even better, several) of these groups (see chapter 8):
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• models that synchronise in a natural way by means of useful messages. In this 
case, the need of null messages is low, which is specially convenient when a 
message passing architecture is used;

• models with high levels of lookahead, which allows progress in the simulation 
when the LPs do not have events to process. If it is not possible to process 
useful messages, at least null messages are generated less often and with larger 
timestamps, and the channel clocks (and then the acceptance horizon, the LVT 
and the simulation) advance faster;

• models where the simulation of an event requires a high communication effort, 
which is distributed among the processors.

5.8 Conclusion

In this chapter we have shown how DDES has been successfully used to study a 
variety of real-world systems, including the study of different aspects of parallel 
computing. The conservative algorithms we proposed in this chapter are expected 
to improve the ability of efficiently simulate the behaviour of systems modelled by 
ECATNets over a period of time.

The decomposition of the “initial” ECATNet model into disjoint partitions rep­
resenting smaller sized models has a strong impact on DDES performance. The
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“separation of concern” strategy does not necessarily lead to a good partitioning for 
two reasons. The first reason is the duplication of places in the different subnets, the 
second one is related to the assignment of the transitions and the places to the LPs, 
and consequently to the case where several transitions share input places. Because 
a transition and its input places are not always assigned to the same LP, it is neces­
sary to exchange messages between LPs before the transition firing. We developed 
a proper communication protocol among LPs in order to implement a distributed 
conflict resolution strategy for transitions sharing input places and thus compet­
ing for tokens. Obviously, such conflict resolution strategy may induce substantial 
overhead in the distributed simulation in a message-passing environment and may 
prevent efficiency.

A more efficient partitioning technique is used to implement the conservative 
simulator based on message passing and is related to the firing rule [NR91, CF93b]: 
a LP is a set of transitions along with their input places such that local information 
is sufficient to decide upon the enabling and firing of any transition. The simulator 
guarantees a certain performance speedup with respect to the sequential simulator, 
even though might be affected by load balancing problems on a wide number of 
ECATNet structures.

Compared with other works on parallel and distributed simulation of Petri nets 
[TZ91, AD91, NR91, CF93b, Tur96], the protocols of distributed simulation of 
ECATNets differ in at least one of the following points:

1. ECATNets are high-level algebraic Petri nets;

CMB-DA
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2. The simulation protocols have to respect rewriting logic;

3. The simulation protocols have to respect time, timed transitions and places 
with limited capacity;

4. The state of the ECATNet model is distributed;

5. The proposed simulation protocols use either a “separation of concern” or an 
efficient partitioning.



Chapter 6

Optimistic Simulation of 
ECATNets

We present in this chapter an ECATNet distributed simulator based on Time Warp. 
As for the conservative one, two partitioning techniques (SCS and EP) are consid­
ered.

6.1 Introduction

In ECATNet optimistic protocols, a LP is allowed to process events in any order. 
However, the underlying synchronisation protocol must detect and correct violations 
of the causality constraint. The simplest mechanism for this is to have each LP 
periodically save (or checkpoint) its state. Subsequently, if it is discovered that the 
LP processed messages in an incorrect order, it can be rolled back to an appropriate 
checkpointed state, following which the events are processed in their correct order. 
The rollback may also require that the LP unsends or cancels the messages that it 
had itself sent to other LPs during the simulation. An algorithm is . also required to 
periodically compute a lower bound on the timestamp of the earliest global event 
(GVT). As the model is guaranteed to not contain any events with a timestamp 
smaller, token time messages timestamped earlier than GVT can be discarded.

This chapter is structured as follows. §6.2 introduces the characteristics of an 
optimistic ECATNet LP, and a description of the simulation engine based on TW- 
LZ is done in §6.3. The Ethernet transmitting station ECATNet model presented 
in §2.4.5 is chosen to carry out the experiments to evaluate the TW-LZ simulator in 
§6.4. Some conclusions are summarised in §6.5.

110
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6.2 The Optim istic Simulator

6.2.1 Logical Processes

In order to simulate an ECATNet partition according to Time Warp, the data 
structures a LP maintains are: (1) a local virtual time (LVT) representing the 
LP’s simulation time; (2) a single input queue (IQ) which collects recently arrived 
messages (positive and negative) ordered by time; (3) an output queue (OQ) which 
contains the positive messages to send; (4) an output queue (OQN) which contains 
the negative copies of the messages recently sent, ordered by time (antimessages for 
unsending the originals); (5) an event list (EVL); and (6 ) an event stack (ES) which 
records all state variables such that a past state can be reconstructed on occasion.

The Time Warp ECATNet protocol provides a set of facilities that can be used 
to control the various parameters that affect the performance of an optimistic im­
plementation. These include setting the frequency of checkpointing and GVT com­
putation among others.

6.3 Simulation Engine

The simulation engine’s main task is not only to synchronise the LPs simulating the 
various subnets by controlling the timestamp of each message and LVT, but also to 
implement the functions of communication arcs, state saving and GVT management.

6.3.1 Types o f M essages

LPs communicate by sending two types of timestamped messages: (1) Create_tokens(t,p,TT,CT, 
is a message carrying CT when t G  OTi fires leading to a deposit of tokens in place p 
in LPj. The timestamp of this message is the accumulated firing time of transition 
t; (2) C reate_tokens(t,p,TT,CT,’-’) is used in the rollback mechanism needed for 
synchonisation to indicate which previously sent message should be cancelled.

6.3.2 Separation of Concern Partitioning

Since a transition t G  I T j  may have one or more input places in different LPs (say 
L P j ) ,  whether this transition is enabled will depend on the marking in all of its 
input places. In such case, LPi will check first £’s local input places. When all the 
local enabling conditions are satisfied, LPi will assume that t is enabled and will 
determine the next transition to be fired among all local enabled transitions. If the
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next transition to be fired is £, two messages are exchanged for LPs synchronisation 
and to ensure that the marking in a place p € OPj is consistent [DBGM95]:

• Tokens_requested(t,p,TT,IC): is used for requesting tokens from pl . This 
message timestamp (received by LPj from LP,) represents the next local clock 
value (LVT) of LPj if and only if LP* can get its required tokens from LPj and 
fire t\

• Tokens_requested_ACK(p,t,TT,DT,flag): is sent by LPj and is used as a 
response to a Tokens_requested message. The response is either positive 
(flag=true) or negative (flag=false), and TT = LVTj.

LPi sends a Tokens_requested message to LPj to ask for tokens. As the protocol 
is optimistic, LP* does not wait for the response from LPj, the local simulation 
in LPi can be continued under the current local marking. When LPj inputs and 
processes the Tokens_requested message, it checks f’s input place(s). When fa 
enabling conditions are satisfied (TC is true and IC is enabled), LPj sends a To- 
kens_Requested_A CK  message with a positive response to LPi, then updates its 
local marking (flag=true, Destroy_tokens() is invoked). In case tokens are re­
quested from a decision place by several transitions, the strategy explained in the 
previous chapter (§5.6.5) is used to solve it. If fs  enabling conditions are not sat­
isfied, LPj sends a Tokens_requested_ACK message with a negative response to 
LPi (flag=false). When LPi receives all response messages from other LP’s, it checks 
the answers of the Tokens_requested_ACK messages. If all these messages are 
positive, t will be fired as assumed, otherwise t is not ready to fire before the time 
indicated by the maximum TT of the Tokens_requested_ACK messages with the 
negative response. In such case, LPi must return all tokens carried by the positive 
Tokens_requested_ACK  messages (by sending back C rea te .to k en s  messages to 
the senders). At that LVT, t may or may not be enabled depending on local marking 
conditions. If t is still enabled, new Tokens_requested_ACK messages axe sent 
and the above process is repeated.

6.3.3 Checkpointing

In [LL91a], Lin and Lazowska indicated that the efficiency of state saving and 
restoration may have a significant effect on the performance of Time Warp. In

1Note the inhibiting conditions in case of an inhibitor arc.
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Figure 6.1: Rollback in TW ECATNet Simulation.

order to achieve the best possible execution time, it is important to reduce the over­
head associated with saving and restoration states. It is important to realise that, 
in general, the rollback overhead is comprised of two components: state saving (i.e., 
checkpointing) and state restoration (i.e., the costs associated with recovering an 
earlier state after a rollback).

In Time Warp ECATNet simulation, we first made a LP save its state each 
time an event of type D estroy-Tokens or C reate_tokens is executed (frequent 
checkpointing). We realised that the set of LPs tend to consume all the allocated 
memory because of the large size of the state to save per executed event. We later 
had to turn to infrequent state saving.

State checkpointing is done each time a transition fires (Figure 6.1) and the form 
of the entries in ES is (t{,LVT,M) where t{ is the transition that has fired at time 
LVT yielding a new marking M. In case a LP receives a straggler message m, LVT is 
set to TokentTime(m) and a rollback is performed to time T 3 , the timestamp of the 
most recent checkpointed event in ES but not exceeding LVT, and resumes execution 
from that point. The coasting-forward phase consists mainly in the re-execution of 
C reate_tokens messages in IQ which execution did not lead to a transition firing.

6 .3 .4  M essag e  C a n c e lla tio n

When a LP rolls back, it first inserts the straggler message into IQ and updates 
LVT. The state at (new) time LVT is restored. All incorrect computation is undone 
by popping out all the records prematurely pushed in ES. If rollback is applied with 
aggressive cancellation, all messages in OQN with token time > LVT are annihilated 
by removing them from OQN and sending them. The simulator can also apply lazy 
cancellation. In the case reevaluation yields exactly the same positive messages 
as already sent before, the new positive message is not resent. This will prevent
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unnecessary message transfers as well as possibly new rollbacks in other LPs.

6 .3 .5  G V T  C o m p u ta tio n

The Global Virtual Time (GVT) is considered as the virtual clock for the system as 
a whole. The knowledge of GVT reduces past state savings in IQ, ES and OQN.

In the GVT computation method we implemented, the computation is performed 
in a fully distributed fashion using a token-passing scheme. LPs are organised into 
a logical, unidirectional ring. A special message, a GVT.PACKET  circulates on a 
complete closed predefined path among the processors. A LP called Coordinator 
(eg. LPo) is responsible for generating GVT_PACKET which it forwards to its 
successor after calculating the minimum of its present LVT and the timestamps 
of all unconfirmed messages (minLVT), and posting this in the GVT.PACKET. 
Thus, in a network of 4 processors, GVT_PACKET will circulate on the path 1- 
2-3-0. A GVT estimate is calculated by taking the minimum of all m inLVTs in 
GVT.PACKET. When GVT_PACKET returns to its owner (the coordinator) after 
traversing the ring, the computed GVT value is known and is then transmitted via 
a GVT-MESSAGE to the next LP in the ring.

We faced the situation where the LP responsible for generating GVTJPACKET 
message was ready to send a new one but did not receive the acknowledgement of 
the previous one, thus was not able to send a GVT-MESSAGE.

To solve this problem, we added a certain degree of “conservatism” into this 
LP. With a purely optimistic scheme, the LPs advance unboundedly (in fact, LPo 
advances too fast). The conservatism is imposed by limiting the ability to go into 
the future: LPo is allowed to advance to a certain degree, calculated as the value of 
the GVT plus a time window size. If it tries to go beyond, it is temporarily blocked. 
The window size is not dynamically changed and is the time interval between two 
GVT times computations.

6 .3 .6  A lg o rith m s

A LP processes messages in IQ by checking the sign (positive or negative) and the 
timestamp of each one (these messages are ordered by their timestamp, the head 
of the queue corresponds to the smallest one). Messages with timestamp > LVT 
are inserted in IQ. In case of a positive message, it is inserted in timestamp order, 
otherwise (the sign is negative) it annihilates the positive message in IQ previously 
sent. If the message is a straggler (timestamp of the message < LVT), the LP must 
roll back and restore a valid state. As for the conservative simulator, the processing
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of the first event in EVL or the first message in IQ generates either new (internal) 
events in EVL or (external) output messages.

while (GVT < =  end_of_simulation) {
ReceiveMessage();
/* test type of message m just received */ 
if TypeMessage(m) = =  GVT.PACKET 

ManageGVT(); 
else InsertInIQ(m);

}

InsertInlQO is invoked each time a message is received, to store it in IQ. The 
received message may be a Create_tokens scheduled for the future, which is sim­
ply inserted in the right position. It may also be a straggler, which causes a rollback 
before its insertion in the queue. Finally, it can be a negative message, which re­
quires a positive message to be annihilated, either without triggering a rollback (if 
its corresponding positive message has not been executed yet), or after a rollback 
(if its corresponding positive message has already been executed yet).

Insert InIQ(m){
if(TokenTime(m) > LVT) {

if(TypeMessage(m) = =  ’+ ’) InsertFuture(m); 
else AnnihilateFuture(m);

}
else if(TokenTime(m) < LVT) {

if(TypeMessage(m) = =  ’+ ’) InsertPast(m); 
else AnnihilatePast(m);

}
else /* TokenTime(m) = =  LVT */ {

if(TypeMessage(m) = =  ’+ ’) InsertFuture(m); 
else {

if(AireadyConsumed(m)) AnnihilatePast (m); 
else AnnihilateFuture(m);

}
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InsertPast 0  and AnnihilatePast () both include the execution of RollbackO. 
InsertPastO is executed whenever a straggler arrives. It performs the following 
steps:

• search in IQ the location where the straggler has to be inserted;

• update LVT to match the straggler’s timestamp. Recover the state of the 
LP at that time. This can be found in the ES, in the position just before 
the straggler, or may require an additional search in the past plus a coast- 
forwarding phase;

• clear ES and OQN, i.e., eliminate all the elements whose timestamp is larger 
than the straggler’s;

• execute the straggler (invoke ExecuteMessageO).

AnnihilatePast () is executed when a negative version of an already executed mes­
sage is received. This function is very similar to the previous one:

• search in IQ the location where the positive message is stored;

• recover the state of the LP saved just before the corresponding positive message 
was consumed. As before, this can be found in ES, in the position just before 
the annihilated message, or may require an additional search in the past plus 
a coast-forwarding phase;

• clear ES and OQN, i.e., eliminate all the elements whose timestamp is larger 
than the straggler’s;

Each time a LP receives a GVT message, it performs the fossil collection procedure, 
retrieving memory from the input (IQ), state (ES) and output queues (OQN).

FossilCollection(GVT) {
/* Discard Old Messages in IQ with TokenTimeQ < GVT */
D i s c a r d l Q ( G V T ) ;
/* Discard Old Messages in OQN with TokenTimeQ < GVT */
D i s c a r d O Q N ( G V T ) ;
/* Discard Old State Entries in ES with TT < GVT */
D i s c a r d E S ( G V T ) ;  }
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The LP processes the first event of EVL if there is no token message in IQ with 
smaller timestamp, or the token message with the minimum token time in IQ. As 
in CMB-DA, the execution of ExecuteEvent () or ExecuteMessage 0  may invoke 
SendMessageO to send output messages:

if(TokenTime(First(EVL)) < F irst(IQ ))
ExecuteEvent (F irs t  (EVL)); 

else ExecuteM essage(First(IQ));

The execution of a S ta r t - f i r in g  event yields to a new state which is saved in 
ES by invoking SaveStateO .

6.3 .7  P laces w ith Lim ited capacity

If transition t and its output place p are not assigned to the same LP (t G OT; and p 
G Pt0ut)i synchronisation and communication are not necessary because of the “op­
timism” of the protocol. However, when a C reate_tokens(t,p ,T l,C T ,’-|-’) message 
is generated by LP, after transition t fires and cannot be accepted by LPj because 
the capacity of the destination place p is limited and its marking is full, the message 
is rejected (it is lost). In this case LP;- sends a C reate_tokens(t,p,T l,T2,CT,’-’) 
message:

• to inform LP; that an incorrect computation has been done; This will force 
LP; to rollback;

• to inform LP; about the time transition t could fire (T2 in this case).

6.4 Results of the Experiments

6.4.1 O utput Data

Like in the CMB-DA simulator, the description of the ECATNet models is detailed 
enough and the simulator can measure and give information about:

• the maximum and average number of algebraic terms in places;

• the number of generated (positive and negative messages) and consumed mes­
sages;

• the number of generated and consumed events;
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• time statistics: time spent processing event (Event Proc.), sending positive and 
negative messages (Comm. Send), receiving positive and negative messages 
(Comm. Recv), rolling back (Rollback), awaiting for messages to be received 
(Blocking), saving states (Checkpoint), managing GVT (GVT)), awaiting at 
the end barrier to terminate the protocol (Term. Protoc).

When GVT reaches the end-ofsimulation value, each LP collects statistics, sum­
marises them and sends the final results to be shown on the screen or saved in a 
file.

6.4.2 Perform ance R esults

In section 5.7 an evaluation of the CMB-DA algorithm and results of the distributed 
simulation of the ECATNet model of the Ethernet transmitting station have been 
presented. One we started experimenting with the TW simulator, we found that it 
was terribly greedy in memory demands: a big deal of memory space is required to 
store antimessages and copies of the state. In the other hand, the density of events 
in LP2 is very high and, for this reason, the probability of a straggler to appear is 
very high too. Whenever a causal error was detected, we faced the. situation where 
a straggler positive message changes the marking in LP2 but does not cause the en­
abling of any new event in the past. In such case, LP2 does not have to rollback. The 
simplified mechanism which has been used to recover was an appropriate insertion 
of firings made on ES, and the top of ES was copied considering a potential change



C h a p ter  6. O p tim istic  S im u la tion  o f  E C A T N ets 119

i  Other
■ Blocking
□ Rollback
□ Comm. Recv
■ Comm. Send 
I  Event Proc.

Figure 6.3: TW-LZ: Impact of the Workload onto the Execution Profile (3 PEs).

in the marking. This prevented sending antimessages, which could have given rise 
to an overflow in the message passing system.

Figure 6.2 shows the execution times of CMB-DA and TW-LZ simulators im­
plementations with the same scenario as in section 5.7. Speedup (by comparison 
with the distributed simulation code running on a single processor) of 1.6 using 3 
processors was observed using the TW-LZ engine. It took the simulation 5 minutes 
15 seconds to execute on 3 processors.

We report that in the case of the Ethernet transm itting station the T W ’s per­
formance is better than CMB-DA’s. Although antimessages are not always needed, 
null messages are, and their number is not negligible in the CMB-DA simulator. 
Although the global time computation mechanism needs a continuous interchange
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of messages among LPs to avoid an exhaustion of the memory space, it did not add 
any burden to the simulator.

As for CMB-DA, we investigated the influence of the synthetic workload on the 
TW-LZ simulator’s performance by varying the value of W  to correspond to 1, 10, 
100, 1000 and 10,000. In Figure 6.3, we see that experiments with significant syn­
thetic workload exhibit a more balanced communication/computation ratio. Figure
6.4 shows: (a) the execution times for various values of W; (b) the speedup obtained 
by comparison with the sequential simulation code running on a single processor. It 
can be seen that a moderate amount of speedup of 1.25 is obtained with the larger 
value of W on 3 processors (Figure 6.5).

6.5 Conclusion

To summarise our experience with the TW simulator, we say that it required much 
more programming effort than the CMB-DA, because the management of the data 
structures of TW (i.e., the memory management) is anything but trivial. Addition­
ally, it was much harder to debug. Due to the experience carried out on the selected 
model, we are not able to state a definite set of characteristics of the simulated 
models that can help in obtaining a good performance from TW over CMB-DA. 
Nevertheless, the TW simulator is more general and offers a higher level interface 
to the user.
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Chapter 7

Synchronous Simulation of 
ECATNets

In this chapter we describe the design of a synchronous event-driven ECATNet 
distributed simulator, assessing its correctness and its performance potential. As for 
CMB-DA and TW-LZ, two partitioning techniques (SCS and EP) are considered.

7.1 Introduction

The experience by Kona and Yew [KY91] with a synchronous parallel event-driven 
(SYNC) simulator encouraged us to implement and test an ECATNet synchronous 
simulation engine on the network of workstations. It was easy to redesign the LPs to 
work synchronously by sharing the same global simulation clock instead of working 
asynchronously as it was the case for CMB and TW. Another motivation of the 
design is the rewriting logic which is able to find within a LP the set of transitions 
to be fired in parallel.

The basic design of an ECATNet LP in the implementation of the SYNC simu­
lator follows the description given for CMB-DA, with some modifications that take 
advantage of the set of communication operations offered by the MPI library. MPI 
offers an excellent support for global operations such as broadcast and reduction 
operations.

122
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7.2 The Synchronous Simulator

7.2.1 Logical Processes

Like conservative algorithms, ECATNet synchronous algorithms do not permit any 
causality errors. The set of LPs in the simulation process incoming messages only 
when the underlying synchronisation algorithm can guarantee that they will not 
subsequently receive a message with a smaller timestamp. The data structures 
according to the synchronous approach are: (1) a Local Virtual Time (LVT) repre­
senting an accumulated value of firing times in a LP and whose value is equal to the 
global clock, (2) an event list (EVL) ordered by time of occurrence; (3) input queues 
(IQ) (one queue per each input channel), which collect recently arrived messages 
ordered by time; (4) output queues (OQ) (one queue per output. channel) which 
keep messages to send, ordered by time.

7.3 Simulation Engine

7.3.1 T ypes of M essages

The causality of events is preserved over all LPs by sending timestamped token 
messages of two types: C rea te .to k en s (t,p,TT ,number) is a synchronisation times­
tamped message sent by LP* to LPj to indicate the number of the actual Cre- 
a te .to k en s  messages it is ready to send; C reate_tokens(t,p,TT,CT) is a message 
carrying CT when t in LPi  fires leading to a deposit of tokens in place p in L P j .

7.3.2 A lgorithm

The synchronous simulator is very much like the conservative one: SYNC has the 
same data structures and behaves as CMB-DA by not violating the causality con­
straint. An ECATNet LP takes into account the following considerations:

• when partitioning with SCS, the distributed conflict resolution algorithm de­
scribed in §5.6.4 is needed. After the LPs synchronise globally and the new 
global clock is known, a transition t G LPj has to wait for any Tokens .available 
messages sent from p G Ptin. As soon as the marking of place p is updated 
because of the process of an event C reate  .tokens, p has to inform t ^ Tpout 
so that t can compete for the available tokens. The LPs synchronise and 
communicate via the four messages: Tokens_available, Tokens .requested , 
Tokens_allowed and Tokens.consum ed;
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• for both partitioning techniques (SCS and EP), the algorithm described in 
§5.6.6 regarding the places with limited capacity is needed when the next 
transition to fire t G LPj has its enabling conditions IC and TC true and has 
to request a deposit of tokens to p G Ptorit via messages Deposit .request and 
Deposit .request _ACK.

Each ECATNet LPj executes a loop of four basic operations :

1 . LP* computes the minimum timestamp Tj among the events stored in the 
event list (Start.Fire, EndJFire, Create.tokens) and the messages stored 
in IQ (Create.tokens). Collectively, the LPs compute the minimum among 
all those values, Tmjn =  min(Tj) using a reduction operation. This global 
operation also performs a barrier synchronisation,

2. Event consumption. All the events in the with timestamp < Tmjn can be 
executed safely, because there are no relationships among them. During this 
step, internal events (Start_Fire, End J'ire, Create.tokens) are stored in 
the event list, while external events are stored as messages in OQ. LP* advances 
its clock to reach Tmjn.

3. Message distribution. LPj sends the messages generated in the previous step. 
In order to avoid deadlock situations, this is done in two phases:
• every neighbour is informed about how many messages will be sent to it via 
Create_tokens(t,p,TT,number) messages, and
• messages are actually sent (Create_tokens(t,p,TT,CT)).

4. Message Reception. LPj receives all the external events sent to it by other 
LPs. This is also done in two phases:
• gathering from the neighbours the number of messages to receive, and
• messages are actually received.

Messages distribution and gathering phases are designed in such a way that all 
the messages generated in one iteration are safely received and stored in the same 
iteration, without interfering with the next one. The resulting algorithm for a LP 
in the SYNC simulator is as follows:
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clock =  0; LVT = 0;
while (clock < end_of_simulation) {

T =  MinimumTimestampO; /* Minimum among Events/Messages in EVL/IQ */ 
clock =  GlobalMinimum(T); /* Minimum among all the LPs */
LVT =  clock;
while (NextEventTimeQ = =  LVT){

if(TokenTime(First(EVL)) < TokenTime(First(IQ)))
Exe cut eEvent (First (EVL)); 

else ExecuteMessage(First(IQ));
}
SendMessage();
ReceiveMessage();

}

7.4 R esults of the Experiments

7.4.1 O utput D ata

The output of SYNC also consists of a set of statistics about the simulated model 
such as the maximum and average number of algebraic terms in places, the number of 
transitions fired,... plus a set of measurements about the behaviour of the simulator 
itself. Some interesting measurements are also obtained, for example:

• number of positive and synchronisation messages;

• the number of barrier invocations in the simulator.

• time statistics: time spent processing event (Event Proc.), sending positive and 
synchronisation messages (Comm. Send), receiving positive and synchronisa­
tion messages (Comm. Recv), awaiting for messages to be received (Blocking), 
barrier synchronising (Sync.), awaiting at the end barrier to terminate the 
protocol (Term. Protoc).

7.4.2 Perform ance M easures

The experiment on the distributed simulation of the ECATNet model of the Ethernet 
transmitting station presented in section 5.7 was performed with SYNC. It took the 
simulation 15 minutes 47 seconds to execute on 3 processors.
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Figure 7.1: (a) Execution Time of SYNC, TW-LZ and CMB-DA; (b) Speedup over 
their One Processor Execution.

We found that synchronisation overhead considerably outweighs the time spent 
doing simulation work and that the simulator was terribly greedy at synchronisa­
tion barriers where a global reduction operation is performed first to compute the 
new value of the global clock (by invoking GlobalMinimum), followed by a broad­
cast operation to make this value known to each LP. Software support for global 
synchronisation in MPI makes each global barrier relatively easy to use. We were 
not surprised to find that synchronisation overhead can account for up to 65% of 
total simulation runtime. Figure 7.1 shows the execution times of SYNC, CMB-DA 
and TW-LZ simulators implementations with the same scenario as in section 5.7. 
Speedup (by comparison with the distributed simulation code running on a single 
processor) of 1.8 using 3 processors was observed using the SYNC engine.

We investigated the influence of the synthetic workload on the SYNC simulator’s 
performance by varying the value of W  to correspond to 1, 10, 100, 1000 and 10,000. 
The experiments with significant synthetic workload in Figure 7.2 exhibit a more 
balanced communication/computation ratio. Figure 7.3 shows: (a) the execution 
times for various values of W; (b) the speedup obtained by comparison with the 
sequential simulation code running on a single processor. It can be seen that a poor 
amount of speedup of 0.7 is obtained with the larger value of W  on 3 processors 
(Figure 7.4).

In SYNC, the parallelism is exploited efficiently when multiple events occur at 
exactly the same time. However, the amount of attainable parallelism and the 
granularity could be too small to be useful. Also, we realise that the simulator per-
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formance suffers if the barrier synchronisations must be performed very frequently. 
This situation occurs when few events occur at exactly the same time, or if load im­
balance causes long waiting times at synchronisation points. From the experiment, 
we see that synchronisation overhead depends on four factors:

1. the frequency of sysnchronisations is controlled by the synchronisation time 
which depends on Min(LVT*) of each ECATNet partition;

2. the duration of a synchronisation depends on the time it takes to execute the 
synchronisation operation and on the time spent waiting at the synchronisation 
point (which is enormous on a NOW). In MPI, all collective operations are 
blocking. Therefore, this could severely limits speedup;
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3. the level of detail: the lengthier and/or more frequent the synchronisations, the 
larger the synchronisation overhead. Exploiting the parallelism where multiple 
events occur at exactly the same time to attain a large and useful parallelism 
depends merely on transition firing times: if there is a set of transitions in 
the system that have the same (deterministic or stochastic) time value, these 
transitions might S ta rt-firing  /  End-firing in parallel. On the other hand, 
if very few events occur at the same time, the performance of the synchronous 
simulator is expected to be poor because of frequent synchronisations leading 
to a very small number of events to be executed;

4. the number of simulated ECATNet LPs: it takes m LPs less time to execute 
the synchronisation operation than n LPs, when m < n.

7.5 Conclusion

In SYNC, events are consumed in timestamp order preventing causality errors, to oc­
cur. Only those events with the same timestamp are executed concurrently and they 
are causally independent. Although it was easy to design (it actually re-uses most of 
the code of CMB-DA), the cost at barrier synchronisation in a NOW environment 
could be enormous. However, it is possible for some models that simulation work can 
outweigh synchronisation overhead (even if the synchronisations are frequent): more
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(useful) work can be done between synchronisations, and synchronisation overhead 
is amortised over many target processors.

In terms of difficulty of implementation, we can say that the synchronous sim­
ulator has been the simplest to program and debug. The conservative one needed 
considerably more development time, but it was done in first place, so it served to 
acquire most of the experience used with the others. The optimistic has been the 
most difficult to program, and the hardest to debug.



Chapter 8

Case Studies and Performance 
Results

In the previous chapters we have presented three distributed simulators able to simu­
late ECATNet models. This chapter presents experiments that have been executed 
with those simulators, with the aim of characterising how the parameters of the 
ECATNet model, the synchronisation strategy and the ways of organising the sim­
ulator influence the achieved performance. An analysis of the results allows us to 
suggest suitable combinations of algorithms to efficiently carry out simulations of 
ECATNet models.

8.1 Introduction

In this chapter we present the results obtained after performing a set of experiments 
with the distributed simulators and the sequential one, whose purpose was to get an 
insight into their behaviour under different conditions: parameters of the ECATNet 
models and ways of organising the LPs. We are more interested in the behaviour of 
the simulators than in getting useful informations about the model. What we want 
is to show how some approaches to DDES are effectively useful for the evaluation of 
systems modelled by ECATNets.

The presentation of the experiments is organised according to the synchronisation 
mechanism: first CMB-DA, then TW-LZ and finally SYNC. An analysis of the 
performance of each simulator is done after showing the obtained results and a 
series of overall conclusions is given.

This chapter is structured as follows: the models under study and the rules we 
follow during the experiments are presented in §8.2. The results of the experiments

130
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with the different models are discussed respectively in §8.3 (producer consumer 
model), §8.4 (manufacturing system model) and §8.5 (pipeline model). Conclusions 
are finally summarised in §8 .6 .

8.2 M odels under study

We carry out a set of experiments using the following ECATNet models:

1. Producer Consumer Model (4 LPs model);

2. Manufacturing System Model (8  LPs model);

3. Pipeline Model (16 LPs model).

The following rules are applied to simulate these models:

1. the partitioning has to be related to the firing rule: a LP should be a set of 
transitions along with their input places such that local information is sufficient 
to decide upon the enabling and firing of any transition. This is in order to re­
duce the number of messages exchanged between LPs and minimises overhead 
(Efficient Partitioning);

2 . when a transition is enabled, it fires in a three phase firing;

3. the execution time of the sequential event-driven simulator running with the 
same set of model parameters will serve as the reference point for the compu­
tation of speedup values;

4. synthetic workload: the efforts for real event processing work in the distributed 
simulators must exceed the communication effort in order to achieve speedup. 
To do so, the load is (hypothetically) increased on the processors ( W = 1, 10, 
. .., 10000);

5. the obtained performance results are represented in the form of collections of 
execution time and speedup curves. LPs profiles according to the simulation 
engine are also presented. The execution times represented in Tables and 
the LPs profiles (distribution of total execution time among simulation and 
synchronisation) are with no synthetic workload whereas the speedup figures 
are represented with a large value of W (10,000) if not stated otherwise;

6 . mapping: each LP is assigned to a processor and resides there until the end of 
simulation;
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7. the simulation is run for long duration cycles to prevent the performance results 
to be dependent on initial conditions and to make them representative of the 
real system.

After showing the experimental results, we proceed to analyse the effect that each 
parameter of the model or of the simulator has in the execution time. When con­
venient, several parameters are grouped and studied together. It is clear that the 
following parameters of the ECATNet model have a significant impact on the ex­
ecution time of the simulation: (1 ) the size of the model; (2 ) the structure of the 
model; and (3) the scenario of the simulation.

8.3 Producer Consumer M odel

Many distributed systems are constructed as producer consumer systems, where 
producer processes generate some data and consumer processes use the generated 
data for further computation. As the producer and consumer processes may proceed 
at different rates, applications use either an unlimited-size or fixed-size buffer for 
temporary storage of the data. Instead of sending data directly to the consumer, 
the producer deposits it in the buffer; similarly the consumer process requests data 
from the buffer rather than directly from the producer process. The buffer must 
ensure that the data is sent to the consumer in the same order that it is received 
from the producer. Also, a producer process is blocked if the buffer is full; a consumer 
is blocked if the buffer is empty.

Figure 8.1 describes an ECATNet model of a producer consumer system. The 
model parameters include produce-rate, consume-rate, and buffer-size, where the 
first two parameters represent the mean rates at which the producer and consumer 
processes generate data and the third parameter is the size of the buffer. Produce- 
rate and consume-rate axe represented by timed transitions P ro d u ce  in LPi and 
C onsum e in LP4 respectively. We suppose the remaining transitions Send in LP2 

and R eceive in LP3 are immediate. The buffer is modelled by place B uffer in 
LP3 (with possible limited capacity). In the following we study two applications for 
temporary storage of data: in the first one the buffer’s size is unlimited whereas in 
the second one we make it fixed.

8.3.1 U nbounding the Buffer’s Capacity

The ECATNet model described in Figure 8.1 is a set of four subnets. The buffer, 
which is unbounded, is represented with place buffer in LP3 with an unlimited
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Figure 8.1: ECATNet Producer Consumer Model.

PEs SEQ CMB-DA TW-LZ SYNC

1 8  secs 5 mins 47 secs 4 mins 27 secs 40 mins 21 secs
2 - 3 mins 08 secs 2 mins 16 secs 22 mins 07 secs
4 - 2 mins 33 secs 1 min 48 secs 16 mins 03 secs

Table 8.1: Producer Consumer Model (Unbounded Buffer’s Capacity). Execution 
Times of the Different Simulators.

capacity. The rewrite rule associated with the transitions are (in the model, IC =
DT):
P ro d u c e ^ : (R eady .P roduce^,Ready_P) -> (Ready_Send£p2,<data>)
Send£p2: (Ready _Send£p2,<data>) (Ready-Produce^,Ready _P) ® (B u ffe r^ ,-
<data>)
R eceive/^: (Buffer£,p3,<data>) ® (Ready-Receive^,Ready_R) —» (Ready-Consume/^ 
<data>)
ConsumeJ[/p4: (Ready -Consume ̂  p4, < dat a >) -* (Ready _Receive^p3, Ready _R)

The scenario of the simulation is as follows: duration =  16,000 cycles; the tran­
sition firing times are exponentially distributed with mean 2 .0  (produce-rate) and 
1.0 (consume-rate). The ECATNet model is initially marked M(Ready-Produce) =  
Ready_P in LPi, and M(Ready-Receive) =  Ready_R in LP3 .

In the simulation, a total of 32352 transitions have been fired. The execution 
times of the different simulators are shown in Table 8.1 and Figure 8.2. It is worth 
mentioning that: (1) each of LPi, LP2 and LP4 has a single IQ; (2) No LP generates 
End_firing internal events in EVL.
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From the structure of the model, we see that LPi sends a C reate_tokens(<data>) 
message to LP2 after transition P ro d u ce  fires (say with timestamp TT). In turn LP2 
sends a Create_tokens(Ready_P) message to LPi and a C reate .tokens(< data> ) 
message to LP3 after transition Send fires with the same timestamp (TT) because 
this transition is immediate.

According to the algorithm described in §5 .6 .3 , a transition t ^ OT, generates 
a null message after computing lookahead. As null messages cannot be generated 
because no transitions of this type exist in the model, we faced a deadlock situation 
mainly because of LP3 which has to check the channel clocks CC2 and CC4. We 
modified the algorithm so that LP3 sends a null message to LP4 (say with timestamp 
CC2), which when received by LP4 will advance its timestamp by A Consume- This 
advance increases the message-acceptance horizon and thus may allow any awaiting 
C rea te .to k en s  message in LP3 to be consumed. In this case null messages are 
exchanged between LP3 and LP4 only.

From the LPs profiles in Figure 8.3 we can see that LPi and LP2 terminate the 
simulation earlier than LP3 and LP4: both LPs wait 34% of the total execution time 
at the synchronisation barrier before terminating the simulation (using 4 PEs). This 
is perfectly understandable because as long as the size of the buffer is not fixed, LPi 
and LP2 do not “block” (especially LP2 before depositing the data in the buffer), 
thus work “faster” than LP3 (and consequently than LP4 as well) which has to
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manage the reception of messages in two input queues (IQ2 and IQ4).
The behaviour of CMB-DA depends mainly on the way LPs synchronise in the 

simulator. The number of “useful” messages (i.e., positive messages) managed by 
the simulator is affected by the size of the model, its structure and the scenario 
of the simulation. An increment in the number of these messages means that the 
LPs have more opportunities to synchronise, while doing useful computation. Null 
messages are needed less often, as LPs do not block frequently. We can say that 
there is a high degree of “natural” synchronisation. However, when there are only 
a few useful messages to process, LPs block often, and null messages axe needed to 
maintain the LPs’ clocks updated. Then LPs spend most of their (real) time blocked 
or processing null messages, i.e., synchronising, instead of making progress.

R esu lts  o f TW -LZ

LPi and LP2 never rollback: the timestamp of each Create_tokens(Ready_P) sent 
from LP2 to LPi is equal to the timestamp of the C reate_tokens(<data>) previ­
ously sent from LPi to LP2 as transition Send is immediate. LP3 is the only LP to 
receive staggler messages from LP2 and LP4, which could lead to a rollback in LP4 
as well (Figure 8 .3 ).

Regarding the effect of the synthetic workload on the performance of TW, a 
large value of W  may have an important effect on the speedup. In the CMB-DA 
simulator, the busy-wait loop which emulates a high workload is done just whenever
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it is needed, and never has to be undone. On the other hand, with TW many jobs 
are processed in a speculative way, and their effect might be undone in the future. 
This means that, when the workload is high, the effect of erroneous computations 
is also a serious drawback: it could be better to wait and consume a message just 
when it has to be consumed, than to consume it and later undo its effects.

R esu lts  o f SYNC

SYNC showed very poor performance for the following reasons. Firstly, each LP can 
expect executing a S tart-firing  internal event or a C rea te .to k en s  message mak­
ing the density of events low. Secondly, if several transitions fire at the same time, 
this does not necessarily mean that this occurs at the same synchronisation step. To 
highlight this, suppose that LP2 receives a C reate_tokens(<data>) message with 
timestamp TT from LPi after transition P roduce  fires. If global clock is now equal 
to TT at synchronisation step* and M(Ready.Receive) =  Ready J t ,  transition Send 
in LP2 fires first at TT. At step^+i, transitions P roduce  in LPi and Receive in 
LP3 fire at TT in parallel. Then at step^+2 , transition C onsum e fires at TT as well. 
Thirdly, in addition to the excessive amount of time the LPs spend synchronising to 
calculate and broadcast the new value of the global clock, additional overhead is in­
troduced by C reate_tokens(t,p,TT ,number) messages. In order to avoid deadlock 
situations, at each step of the simulation each LP informs its neighbours about how 
many positive messages will be sent to them via C reate_tokens(t,p ,TT ,number) 
messages, and actually sends them via C reate .tokens (t,p,TT,CT). As the pro­
tocol is synchronous, at least one Create_tokens(t,p,TT ,number) message is sent 
by a LP to its neighbours after each synchronisation step even when there are no 
“positive” messages to follow at all.

TW-LZ performed better than CMB-DA: a speedup of 2.2 and 1.5 using 4 PEs 
was observed respectively for these simulators (Figure 8.4). SYNC showed very 
poor performance.

8 .3 .2  B o u n d in g  th e  B u ffe r’s C a p a c ity

In case the buffer is bounded, it is represented with place buffer in LP3 with a 
limited capacity. The conditional rewrite rule associated with transition Send in 
LP2 is now:
SendLP2: (Ready_Sendi,p2 ,<data>) -> (Ready.Produce/^,Ready_P) <g> (B u ffe r^ ,- 
<data>) if M(Bufferl p z ) © <data>  < C(Buffer£,p3)
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P a rtitio n in g  Perform ance Im pact

In addition to the experiments carried out with the partitioning into four subnets 
(P4) described in the previous section (§8.3), we wanted to test the impact that a 
different alternative of partitioning (and therefore of grain size) has on the perfor­
mance of the simulators, simply by assigning all conflicting transitions to the same 
subnet, not only with their input places, but with their limited capacity ouput places 
as well. The partitioning in Figure 8.5 is now a set of three subnets (P3) where LP2 

generates an End_firing internal event in EVL after firing transition Send.
A transition t* in subnet* may have one or more output places with limited ca­

pacity in different LPs. Whether this transition is enabled will depend not only on 
the marking in all its input places but in all its output places (with limited capac­
ity) as well. Assigning a transition and its output places with limited capacity to 
the same subnet prevents LPs from exchanging synchronisation additional messages 
because the enabling conditions can be tested locally: local information is sufficient 
to decide upon the enabling and firing of any transition.

Four experiments were performed with different simulation engines and the pa­
rameters used in the experiments are summarised in table 8.2. The simulation has 
been run with two different scenarios. In scenario 1 (SI), we make the produce-rate 
< consume-rate; produce-rate =  1.0, consume-rate =  3.0. In scenario 2 (S2), we 
make the produce-rate > consume-rate; produce-rate =  3.0, consume-rate =  1.0. 
For both scenarios, the duration of the simulation =  16,000 cycles, and the capacity 
of buffer is <data © data © data>. SI makes the producer a fast sender which 
cannot continuously tansmit data faster than the consumer can absorb it, whereas 
S2 makes the producer a slow sender which continuously tansmits data slower than 
the consumer can absorb it.
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Scenario SI - P3 SI - P4 S2 - P3 S2 - P4

Number of subnets 3 4 3 4
Number of PES 1..3 1..4 1..3 1..4
Results Fig. 8 .6 Fig. 8 .6 Fig. 8.9 Fig. 8.9

Fig. 8 .8 Fig. 8 .8 Fig. 8.11 Fig. 8.11

Table 8.2: Producer Consumer Model (Bounded Buffer’s Capacity). Experiments 
Performed with Scenarios SI and S2.

Results of Experiment SI

A total of 21343 transitions have been fired, and the producer had 6 6 .6 % idle time 
whereas the consumer 0%. The execution times of the simulators running scenario 
SI are shown in Table 8.3: the three distributed simulators perform better with 
partition P3 than with partition P4.

Partition P3 P 4
PEs SEQ CMB-DA TW-LZ SYNC CMB-DA TW-LZ SYNC

1 5 secs 2 mins 20 secs 2 mins 51 secs 16 mins 01 secs 3 mins 51 secs 7 mins 30 secs 44 mins 48 secs
2 - 2 mins 08 secs 2 mins 14 secs 12 mins 29 secs 3 mins 21 secs 5 mins 40 secs 22 mins 42 secs
3 - 1 min 57 secs 1 min 38 secs 8 mins 04 secs - - -
4 - - - - 2 mins 54 secs 3 mins 18 secs 19 mins 54 secs

Table 8.3: Producer Consumer Model (Bounded Buffer’s Capacity). Execution 
Times for Partitions P3 and P4 - Experiment SI.

CMB-DA and SYNC: with P4, each time transition Send in LP2 has its input 
conditions enabled (presence of a token <data> in place Ready_Send), it sends a 
message to LP3 to request a deposit of tokens <data>  in place Buffer via a De- 
posit_request message (say with timestamp TT). After checking the marking of 
place Buffer, LP3 replies by sending a Deposit_request_ACK message specifying 
in its timestamp the time the deposit is possible. This time depends mainly on the 
enabling conditions of transition Receive which, when it fires, destroys <data>  
tokens in place Buffer, and consequently makes a new deposit of <data>  possible 
in this place. It is worth to mention that the communication time of LP2 and LP3 , 
and the blocking time of LPi and LP4 are quite important (Figure 8.7) especially for 
CMB-DA. With P3, the simulators do not need to use Deposit_request and De-
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Figure 8 .6 : Producer Consumer Model (Bounded Buffer’s Capacity). Execution 
Times for Partitions P3 and P4 - Experiment SI.

posit .request _ACK messages because the information concerning place Buffer’s 
marking is available locally in LP2 . Thus the overhead is substantially reduced. 
This also results in an important event processing time in this LP.

TW-LZ: with P4, as the protocol is optimistic, transition Send fires as soon as 
its input conditions are enabled: LP2 does not really care about the actual marking 
of place Buffer in LP3 and sends a Create_tokens message leading to a deposit of 
<data>  token in this place. When receiving this message, LP3 checks the marking 
of place Buffer. If the deposit does not result in a capacity overflow, the message 
is accepted and the deposit is performed. But in case a deposit of <data>  exceeds 
what Buffer can handle, LP3 will send a negative message asking LP2 to rollback 
because an incorrect computation has been done. In this message, LP3 will specify 
the time firing of place Send can take place (say TT)1. A rollback in LP2 may result 
in a rollback in LPi as well (Figure 8.7). LP2 resumes its execution by sending a 
new Create_tokens message (at TT). With P3, LP2 is prevented from receiving a 
Create_tokens message which could result in an overflow of place Buffer’s capac­
ity leading to a rollback in LP2 because the information concerning place Buffer’s 
marking is available locally. This again results in a reduction of overhead.

Although the frequent sending of Deposit_request and Deposit_request_ACK

1 This situation is similar to a flow control needed to force a sender to stop frequently to give the 
receiver a chance “to breathe”.



C h ap ter  8. C ase S tu d ies and P erform ance R esu lts 141

□ Blocking
□ Comm. Recv 
■ Comm. Send 
i  Event Proc.

1  Other
■ Blocking
□  Rollback
□  Comm. Recv
■ Comm. Send 
1  Event Proc.

■  Sync.
□  Blocking
□  Comm. Recv
■ Comm. Send 
I  Event Proc.
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Profiles for Partitions P3 and P4 - Experiment SI.
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Figure 8 .8 : Producer Consumer Model (Bounded Buffer’s Capacity). Speedup (a)
Partition P3; (b) Partition P4 - Experiment SI (W =10,000).

messages using partition P4, CMB-DA performed better than TW-LZ which had to 
manage the cascaded rollbacks in LP2 and LPi. A speedup of 1.6 and 1.5 using 4 
PEs was observed respectively for these simulators (Figure 8 .8 (a)). However, TW- 
LZ performed better using partition P3 (Figure 8 .8 (b)) where a speedup of 1.6 and
1.2 using 3 PEs was observed respectively for CMB-DA and TW-LZ. SYNC showed 
poor performance.

Results of Experiment S2

A total of 21333 transitions have been fired, and the consumer had 6 6 .6 % idle time 
whereas the producer 0%. The execution times of the simulators running scenario 
S2 are shown in Table 8.4 and Figure 8.9: the simulators still perform better with 
partition P3 than with partition P4, except for TW-LZ.

Partition P3 P 4
PEs SEQ CMB-DA TW-LZ SYNC CMB-DA TW-LZ SYNC

1 5 secs 2 mins 19 secs 2 mins 50 secs 13 mins 55 secs 3 mins 55 secs 3 mins 16 secs 49 mins 40 secs
2 - 1 min 57 secs 2 mins 14 secs 11 mins 09 secs 3 mins 01 secs 1 min 30 secs 28 mins 21 secs
3 - 1 min 25 secs 1 min 41 secs 7 mins 43 secs - - -
4 - - - - 2 mins 20 secs 1 min 24 secs 26 mins 17 secs

Table 8.4: Producer Consumer Model (Bounded Buffer’s Capacity). Execution 
Times for Partitions P3 and P4 - Experiment S2.
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Figure 8.9: Producer Consumer Model (Bounded Buffer’s Capacity). Execution 
Times for Partitions P3 and P4 - Experiment S2.

CM B-DA and SYNC: with P4 and as for SI, the same observations are made. 
E a c h  t im e  transition Send in LP2 has its input conditions enabled (presence of a 
token <data> in place Ready .Send), it sends a Deposit-request message to LP3  

(say with timestamp TT). However, with scenario S2 LP3  always replies via a De- 
posit_request_ACK message specifying that the deposit is possible at TT because 
n o to k e n s  axe available in place Buffer. It is worth to mention that the communica­
tion time of LP2 and LP3 , and the blocking time of LPi and LP4  axe quite important 
(Figure 8.10) especially for CMB-DA.

TW-LZ: with P4 we did not expect any rollbacks in LP3 with scenario S2, but 
were not surprised to see that they do occur. The reason is that LP3  keeps accept­
ing Create_tokens(<data>) messages from LP2 which cause an overflow in place 
Buffer because of a “late” reception of Create_tokens(Ready_R) messages from 
LP4  (deposit in place Ready .Receive). The arrival of these straggler messages not 
only prevents transition Receive to fire “on time”, but causes rollbacks. LP3 sends 
a negative message asking LP2 to rollback as well because of incorrect computation 
and specifies the time firing of transition Send can take place (say TT). A rollback 
in LP2 may result in a rollback in LPi as well (Figure 8.10). LP2  resumes its exe­
cution by sending a new Create_tokens(<data>) message (at TT).

With partition P4, TW-LZ performed better than CMB-DA which had to man-
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Figure 8.11: Producer Consumer Model (Bounded Buffer’s Capacity). Speedup (a) 
Partition P3; (b) Partition P4 - Experiment S2 (W =10,000).

age the frequent sending of D eposit_request messages by LP2 and the reply to 
these messages of LP3 via D eposit_request_A CK  messages, even when the re­
sponses were always positive, i.e., the firing of transition Send always took place at 
the time specified by LP2 in the request. A speedup of 2 and 2.1 using 4 PEs was 
observed respectively for TW-LZ and CMB-DA respectively (Figure 8.11(a)). How­
ever, CMB-DA performed better than TW-LZ using partition P3 (Figure 8.11(b)) 
where a speedup of 1.5 and 1.4 using 3 PEs was observed. SYNC showed poor 
performance.

8.4 M anufacturing System  Model

There has been a dramatic increase in the use of simulation to design and optimise 
manufacturing systems. One of the reasons is that the increased competition in many 
industries has resulted in a greater emphasis on automation to improve productivity 
and quality and also to reduce costs. Since automated systems are more complex, 
they can typically be analysed only by simulation.

The ability of ECATNet models for prototyping and analysing concurrent sys­
tems to exploit supervisor evaluation of discrete event systems is shown in [BCD98]. 
The recent work by Turner et al. shows how to bridge the gap between the users 
of industrial simulation packages and the parallel simulation community [TLL+98]. 
This work consists in developing a methodology for automating the parallelisation
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of manufacturing simulations by constructing a mapping from the sequential simu­
lation model to an efficient parallel implementation.

We assume a physical system of four machines participating in a manufacturing 
process. In a processing step, machinei produces subpart Ai of a product A. Sub­
part A2  is produced by machines 2 and 3 (both of which can produce concurrently). 
Once one subpart Ai and one subpart A2 are assembled, machine4  produces subpart 
A3 . One piece of A is an assembly of A1-A2 -A3 , and all subparts Ai, A2  and A3  

require a single amount of assembly steps.

The system is modelled in terms of ECATNets (Figure 8.12):

LPi: source process, generates the production orders;
LP2 : machinei produces subpart Ai 
LP3 : fork process
LP4 : machine2 produces subpart A2  

LP5 : machines produces subpart A2  

LPe: join process
LP7 : machine4 produces subpart A3  

LPs: sink process.

Transition SendMi in LPi models the generation of the orders for processing. Tran­
sition ProdAi in LP2 , ProdA2 in LP4 , ProdA2 in LP5  and ProdAs in LP 7 model the 
processing steps of parts Ai, A2 , A2 and A3 by machines 1 , 2 , 3 and 4 respectively. 
Machines in the processing phase are represented by algebraic terms mi, m2 , m3  

and 1114 in place P2 in LP2 , LP4 , LP5 and LP7 respectively, finished parts Ai by CT 
to be deposited in place ReadyF in LP3 , finished parts A1 A2 by CT to be deposited 
in place ReadyJ in LP6 , and the final product A1 A2 A3 by CT to be deposited in 
place Collect in LPg (assuming this latter has an infinite capacity).
The rewrite rules associated with the model are:

S e n d M l^ : (ReadySz^, s) -> (R ead y S ^ , s) <g> (Q1lp2, s)
ProdAlpp2: (Q1lp2, s )  <g> (M lL p 2 , ml) - > •  (MlLp2, ml) ® (ReadyF^pj, AI) 
SendM2lp 3: (ReadyFLP3, AI) ->■ (Q2^,p4, AI)
SendM3^p3: (ReadyFLp3, AI) ->• (Q3pp5, AI)
ProdA2 lp 4: (Q2lp4, AI) ® (M2 Lp4, m2 ) -> (M2lp4, m2 ) ® (ReadyJz,p6, A1A2) 
ProdA2 //p5: (Q3pp5, AI) ® (M3lp5, m3) —> (M3lp5, m3) ® (ReadyJpp6, A1A2 )
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Figure 8.12: ECATNet Manufacturing System Model.

SendM4£,p6: (ReadyJz,p6, A1A2) —> (Q4lp?, A1A2)
ProdA3iP7: (Q4x,p7, AI) <8 > (M4lp?, m4) —> (M4lPt> m4) ® (Collecting, A1A2A3)

The time behaviour of the system is modelled by associating timing information 
to transitions:

X S e n d M l  =  1-0 (in LPi); X p r o d A l  = 1-0 (in LP2 ); X p rodA2  = 3.0 (in LP4 ); \ p r odA2 

= 0.5 (in LP5 ); \prodA3 =  0.5 (in LP7 ). The remaining transitions are immediate. 
In LP3 , if transitions SendM2 and SendM3 cannot fire in parallel, the decision place 
ReadyF in LP3 selects randomly a transition to fire with equal probability 0*5.

The initial state of the system is represented by the marking of the ECATNet where 
there is a “signal” (order) term in ReadyS (in LPi), and machines M l, M2, M3 and 
M4 are in state “idle” (terms ml, m2, m3 and m4 in places Ml, M2, M3 and M4 in 
LP2 , LP4 , LP5 and LP7 respectively).

8.4.1 R esults of the Experim ents

A total of 95894 transitions have been fired, and 15963 pieces of product A have 
been produced. The execution times of the simulators are shown in Table 8.5 and 
Figure 8.13.

R esu lts  o f CM B-DA

LP3 , LP4 , LP5 , LP6 are the only LPs to use null messages. From the structure of the 
model, we see that each LP has a single IQ, except LP6 which has to manage its two
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PEs SEQ CMB-DA TW-LZ SYNC

1 27 secs 13 mins 27 secs 13 mins 19 secs 2 hrs 14 mins 04 secs
2 - 8  mins 0 1  secs 7 mins 34 secs 1 hr 16 mins 18 secs
4 - 4 mins 51 secs 4 mins 17 secs 1 hr 4 mins 17 secs
8 - 3 mins 30 secs 2 mins 19 secs 32 mins 54 secs

Table 8.5: Manufacturing System Model. Execution Times of the Different Simula­
tors.
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Figure 8.13: Manufacturing System Model. Execution Times of the Different Sim­
ulators.

channel clocks CC4  and CC5 . As for the producer consumer model, in the absence 
of a transition in LP4 and LP5  to generate a null message and increase lookahead, 
LP6  often blocks, resulting in the blocking of LP7 and LPs as well. To remedy this, 
LP3  has to send a null message to LP5 every time transition SendM2 fires, and a null 
message to LP4  every time transition SendM3 fires with timestamp equal to LVT3  

(transitions SendM2 and SendM3 are actually immediate). These null messages, 
when received by LP4 and LP5 , will be forwarded to LP6 after increasing lookahead 
by A(PrA2) respectively in LP4  and LP5 . When received by LPg, they break the 
deadlock and allow any awaiting Create_tokens messages (either in IQ4 or IQ5 ) 
to be consumed. It is worth to mention that from the structure of the model, LPi 
does not receive any incoming messages. Consequently it is the fastest LP and waits 
25% of the total execution time at the synchronisation barrier before terminating
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Figure 8.14: Manufacturing System Model. Execution Profiles (8 PEs).
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Figure 8.15: Manufacturing System Model. Speedup of CMB-DA, TW-LZ and 
SYNC (W=10,000).

the simulation (Figure 8.14).

R esu lts  of TW -LZ

LP4 rolls back frequently after reception of C reate_tokens(A l) positive straggler 
messages from LP3 whose effect is a deposit of tokens in place Q2. After rolling back 
and restoring a correct state, no antimessages axe transmitted because the previously 
sent messages to LP6 are re-generated. However, this is not the case for LP6 which 
receives C reate_tokens positive straggler messages from LP4  and LP5 . This may 
result in sending antimessages to LP7 , and consequently in cascaded rollbacks in 
LP7 and LPs (Figure 8.14).

Also, LPi works faster than the other LPs (2..8 ). It is also responsible for 
GVT calculation (coordinator). We faced the situation where LPi was ready to 
send a new GVT_PACKET message but did not receive the acknowledgement of the 
previous one, thus was not able to send a GVT message (§6.3.5). The addition of a 
certain degree of “conservatism” into LPi which advanced unboundedly imposed a 
limitation to its ability to go into the future. LPi was allowed to advance to a certain 
degree, calculated as the value of GVT plus a time window size (the time interval 
between two GVT times computations). LPi would temporarily block if it tried 
to go beyond. LPi resumed execution after receiving a GVT.PACKET message 
acknowledgement.
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R esu lts  o f SYNC

SYNC exhibited poor performance mainly due to the time LPs spend synchronising 
(Figure 8.14). We observed a maximum of five events processed in parallel by the 
LPs.

TW-LZ performed better than CMB-DA and SYNC as shown in Figure 8.15 where 
a speedup of 3.7 using 8 PEs was observed.

8.5 P ipeline M odel

In the ECATNet model of Figure 8.16, each LP* models a processing element in 
a pipeline system. The element waits for one input from its previous neighbour 
LPj_i, performs a computation, then sends the result to its next neighbour LP*+i. 
The model comprises 16 LPs, and each LP has 2 places and 2 transitions. The 
rewrite rules associated with the model are:

1l LPi: (piLPj 5 x) (p2 LPi, y)
t2LPj: (piLPi, 0 )  ® (p2LPi, y )  -»• (plLPi+1, x) /* (piLPi5 0 )  is equivalent to the 
inhibitor arc concept */

We ran the simulation with the following scenario: simulation duration =  16,000 
cycles; A(tl) =  0.0, and A(t2) =  1.0, and M(pi) =  x. A total of 512032 transitions 
have been fired.

8.5.1 Experim ent W ith  Different Grain Sizes

Mapping the ECATNet model onto the NOW requires two steps: mapping subnets 
onto LPs, and mapping LPs onto PEs. There are two trivial possibilities:

1. map each subnet onto a single LP, and then map each LP onto a single PE 
as we did for the previous models. We say that the grain size of the LP 
is minimum. A good deal of interprocess communication is needed, because 
C reate_tokens external events need to be sent as messages;

2. map several subnets onto one LP, and then each LP onto a different PE. In 
this case, many of the C rea te .to k en s events are internal and the interprocess 
communication is significantly reduced.
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LP2

LPI

LP16

Figure 8.16: ECATNet Pipeline Model (16 Subregions).

We redesigned the LPs to allow the simulation of square of subnets while the ver­
sion previously used (Figure 8.16) was only designed for minimum grain size. It is 
worth mentioning that in the case of a maximum grain size, any of the distributed 
simulators (CMB-DA, TW and SYNC) running onto one PE behaves exactly like 
the sequential simulator, except that the LP (simulating a single partition PI) sends 
C rea te .to k en s  messages (from LP16 to LPi in Figure 8.16) to itself rather than 
inserting them in EVL.

Additionally, we wanted to test the impact of the different alternatives of grain 
size have on the performance of the simulator. Various alternatives of grain size 
are possible. Figure 8.17a represents the mapping for minimum grain size (partition 
P16). Figures 8.17b, c and d represent a mapping for intermediate grain size leading 
to 8 , 4 and 2 LPs respectively (partitions P8 , P4 and P2). Note that in partition 
P2 a subnet simulated by a LP is 8 times larger than that used in partition P I 6 . 
The execution times of the simulators for various partitionings are shown in Table 
8 .6  and Figure 8.18.

Experiments with partitions P16 and P 8 are cases with workload W =  10,000 
whereas P4 and P2 are cases without synthetic workload. We do use synthetic 
workload when experimenting with partitions P16 and P 8 , but not with P4 and P2: 
the way of giving more work to a LP is mapping onto it a larger number of subnets. In
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Figure 8.17: Mapping the Pipeline Model onto LPs. (a) Minimum Grain Size (16 
LPs). (b) (c) (d) Intermediate Grain Size, respectively 8, 4, 2 LPs.

models with larger grain size (P4 and P2), the computation/communication ratio is 
more balanced this way, and the local simulation work in terms of physical processor 
cycles exceeds the computation/communication threshold.

8.5.2 D iscu ssio n  

R esults of CM B-DA

The possible imposition of extra overhead by the use of null messages in distributed 
simulation has caused much criticism on the useful of such approaches. When 
analysing LP* in partition P16, we see that (1) it has a single input queue where 
messages received from LP*_i are stored; (2) when the immediate transition ti fires, 
a null message with timestamp Tsim + A(ti) + A(t2 ) is generated. As transition ti  is 
immediate, this timestamp is equal to the timestamp of the positive C reate_tokens 
message generated when transition t 2 fires. Thus there is no need to generate null
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Partition SEQ CMB-DA TW-LZ SYNC

P16 (Min, 16 PEs) 
P 8  (Int, 8  PEs)
P4 (Int, 4 PEs)
P2 (Int, 2 PEs)
P I (Max, 1LP) 6 mins 0 2  secs

2 mins 32 secs 
2 mins 21 secs
2 mins 32 secs
3 mins 39 secs 
7 mns 40 secs

3 mins 02 secs
2 mins 54 secs
3 mins 53 secs
4 mins 58 secs 
10  mns 28 secs

2 0  mins 16 secs 
19 mins 42 secs 
11 mins 30 secs 
8  mins 23 secs 
8 mns 41 secs

Table 8 .6 : Pipeline Model. Execution Times for Various Partitionings.

messages and consequently the execution time for the CMB-DA simulator by reduc­
ing them improved by 40%.

From the experiments performed with different partitionings, the performance 
of CMB-DA increases with the grain size of the LPs. This way, the computation/ 
communication ratio is more balanced. If, looking at the results of the experiments, 
we compare maximum vs. minimum grain size, we can see that corse grain simu­
lation is more effective that fine grain simulation because a small number of LPs 
synchronising results in lower overhead. If now we compare with the intermediate 
grain size alternatives, it is clear that these have the best perfomance (P8 and P4). 
From these experiments, we learned that it is good to have models with large grain 
size, to balance the computation/communication ratio of the PEs.

R esu lts  o f TW -LZ

Preliminary tests done with TW-LZ showed good performance figures when parti­
tioning with P16 and P 8 , and no rollbacks were observed. This is understandable 
because as long as the accumulated firing times of transitions within each LP is 
(A(tl) 4- A(t2) =  1.0) and ((A(tl) -1- A(t2))*2 =  2.0) respectively, there is no possi­
bility of receiving a straggler message. But the reason CMB-DA performed better 
was because of state saving, antimessages management and GVT computation in 
TW-LZ.

However, rollbacks were observed when partitioning with P4 and P2. We verified 
that the big size of the state to save after firing a transition was also partially 
responsible for the poor results of TW-LZ: the state of a LP is the combination of 
all the state variables which represent the ECATNet subnet assigned to that LP, 
plus a number of variables for statistics gathering. Also, with P4 and P2, the density 
of events is, in general, very high and, for this reason, the probability of a straggler 
to appear is very high too. This leads to continuous rollbacks in the LPs. It has
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Figure 8.18: Pipeline Model. Experiments with Various Partitions. Execution 
Times.

been monitored that almost all the events executed in a speculative way have to be 
undone. The result is that the simulator looses most of its time doing the following 
“management” activities:

• storing state copies and antimessages;

• traversing the input queue to locate events to annihilate, or to find the right 
place to insert a straggler;

• coast-forwarding to construct appropriate state versions;

• sending and managing antimessages, and
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Figure 8.19: Pipeline Model: Execution Profile of LPi for Various Partitionings.
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Figure 8.20: Pipeline Model. Experiment with Vaxious Partitions. Speedup 
(W=10,000 for P16 and P 8 , No Synthetic Workload for P4 and P2).

• computing GVT.

For ECATNet applications, the cost of executing an event is very low, while the 
state size could be huge. Even when incremental state saving is used the amount of 
data moved for state saving is several times larger than the data moved to execute 
an event.

Results of SYNC

According to the ECATNet structure and to the scenario of the simulation, the 
set of LPs do the same work at each step of the simulation. Also, SYNC simply
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avoids sending/receiving C rea te .to k en s (t,p,TT,number) messages when no exter­
nal events axe generated. This minimises the number of messages exchanged between 
LPs which is a critical factor for the simulation of complex systems and exploits the 
net structure to obtain efficiency.

As mentioned previously, decreasing the number of LPs imposes a higher work­
load to the LPs. With partition P2, the ECATNet submodels have the largest size. 
This results in a workload large enough to keep all the LPs busy, performing useful 
computation most of the time and minimising the relative effort devoted to synchro­
nisation. If compared with performances of P16, P 8  and P4, the performance of the 
simulation with P2 is improved by reducing communication time and waiting time 
at synchronisation points.

The number of barriers executed by the LPs was observed to be 16,000, i.e., 
as many barriers as simulation cycles. The reason is simple: the density of events 
S ta r t J ir in g , End-firing and C reate .to k en s is big enough to always have at 
least one event per cycle. Thus, with this scenario SYNC behaves as a time-driven 
algorithm.

SYNC behaves very much like CMB-DA, with only a significant difference: it still 
takes the LPs a huge amount of time to perform reduction and broadcast operations 
in a NOW, sooner degrading its performance. About the effective simulation time 
of SYNC compared with CMB-DA, we can say that the difference is only due to the 
way both programs axe instrumented. The synchronous nature of SYNC allows for 
a more precise measure of the time spent in the different activities a LP performs at 
each iteration. In CMB-DA the measurements are taken in an event-by-event basis, 
which means a significantly higher number of calls to the function that gives the real 
time clock value, and this affects the achieved accuracy.

In all the experiments with various partitionings (P16, P 8 , P4 and P2), CMB-DA 
performed better than TW-LZ and SYNC as shown in Figure 8.20 where a speedup 
of 1.5, 2.3, 5.8 and 9.1 using 2, 4, 8 and 16 PEs respectively was observed. For 
SYNC, it is worth to mention the speedup observed with paxtitions P16 and P 8 (3.9 
and 3 using 16 and 8 PEs respectively).

8.6 Conclusion

In this chapter we have presented our experiences using three distributed discrete 
event simulation strategies to study three systems modelled by ECATNet models:
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a producer consumer system, a manufacturing system and a pipeline system. The 
knowledge obtained from previous experiments with the Ethernet transmitting sta­
tion model has been applied, when possible, to the simulation of these models.

In general, we have confirmed our preliminary ideas about which characteristics of 
the simulated ECATNet model help to improve the performance of the distributed 
simulators: partitioning, structure of the net and scenario of the simulation.

1 Partitioning has the strongest influence on the performance of the simulators. 
The initial ECATNet model has to be partitioned efficiently into subnets for two 
reasons:

• to avoid the overhead due to the distributed conflict resolution algorithm in 
CMB-DA, TW-LZ and SYNC by assigning the set of conflicting transitions 
together with their input places to the same subnet;

• for models with places with limited capacity, to avoid (a) the overhead due the 
synchronisation via D eposit_request and D eposit_request_A CK  messages 
in CMB-DA and SYNC; and (b) possible rollbacks in TW-LZ.

2  In order to take advantage of using CMB-DA, we need ECATNet models with a 
high degree of internal communication, which allows the processes to remain syn­
chronised without sending null messages.

3 The knowledge of the behaviour of the ECATNet model may allow CMB-DA to 
exploit some lookahead information, which helps maintaining a good performance 
when the simulator has not useful work to do. The experiments performed with the 
three case studies show that the structure of the ECATNet model must be exploited 
so that a LP sends null messages only when they are needed.

4 It is important to use intermediate and corse grain processes, that is, to assign 
a significant amount of work to each process. This way, less processes are used to 
run the model, and the synchronisation effort is reduced. We have seen how using 
intermediate grain sizes in the pipeline model always led to a good,performance.

5 We can say that the experience with CMB-DA and TW-LZ has been positive, 
but that the experience with SYNC has been quite discouraging. In all the ex­
periments, CMB-DA and TW-LZ performed better than SYNC. The performance
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of the tested SYNC implementation is very poor, even after introducing a series 
of optimisations. The conclusion for SYNC is that, although it exploits efficiently 
the parallelism inherent in ECATNet models, it is not the right tool for the kind 
of parallel environment used in this study. However, SYNC has the advantage of 
a simple implementation, and can be used in environments where CMB-DA is not 
applicable because of the presence of loops with zero timestamp increment. Another 
good characteristic of SYNC is that it is based on a very simple algorithm, without 
the complicated memory management strategies of TW.

6  It has been noticed that the communication demands of CMB-DA, TW-LZ and 
SYNC are very strong in a network of workstations environment, where comunica- 
tion costs are very high compared to computation costs: a collection of workstations 
in an Ethernet network does not perform so well.

7 Concerning the parallel programming environment, the outstanding point is that 
some results are really poor, mainly due to the characteristics of the computing 
system used in the experiments (NOW), and the way interprocess communication 
is achieved. In fact, for all the experiments except the one with the pipeline model, 
the sequential simulator was much faster than the distributed simulators without 
synthetic workload. A message passing mechanism is used for synchronisation and 
communication, and a general purpose Ethernet network with the T C P/IP  proto­
cols over it provides the necessary connectivity. This means that communication in 
this environment is relatively slow, because of:

• the peak data rate of Ethernet: 10 Mb/s;

• the shared nature of Ethernet: the available data rate must be shared among 
all the devices connected to the network, being or not part of the simulation 
environment, and

• the software overhead imposed by the use of several layers of protocols (Eth­
ernet, IP, TCP, MPI). The communication protocols used inside a parallel 
computer are much simpler; in particular, there are not as many layers. As 
layering means encapsulation, i.e., addition of control informations, its effects 
are worse for short messages than for long messages 2 3.

2 We axe speaking in this context about real messages interchanged between processing elements, 
not about simulated messages.

3The actual messages managed by the distributed simulators are short: about 48 bytes.



Chapter 9

Conclusion and Further 
Research

9.1 Summary

Throughout this thesis we have made a study of techniques for distributed simulation 
of discrete event systems, with special attention to a particular kind of high-level 
algebraic Petri nets models: Extended Concurrent Algebraic Term Nets. We started 
reasoning the interest of this study:

1. the need to introduce the concept of time in ECATNets to specify practical 
applications;

2 . the need to exploit efficiently the parallelism inherent in the models;

3. the need to turn to simulation because the formal specification of real systems 
modelled by ECATNets is based on implementation concepts rather than the­
oretical ones;

4. to accelerate simulations, and

5. the consideration of simulators as interesting applications for their implemen­
tations in network of workstations and parallel computers.

The identification of causal dependencies among events allowed the relaxation of 
some constraints the sequential simulators impose on the order events are simu­
lated, in such a way that several events can be processed in parallel, after splitting

161
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the simulator into a collection of collaborating logical processes. However, a syn­
chronisation mechanism must be added to guarantee that the collection of logical 
processes progresses, as a whole, in a consistent way.

We have presented three different synchronisation alternatives: conservative, op­
timistic and synchronous. CMB-DA, TW-LZ and SYNC are particular realisations 
of those alternatives, which have been implemented and tested, first to study a model 
from the domain of communication networks and to analyse the general characteris­
tics of each simulator, and then using three models to test how well these simulators 
work with real world applications.

Implementations of the three simulators have been performed in a network of 
workstations environment. A study of the characteristics of this environment has 
been done, allowing us to understand how the execution times of simulations depend 
on different characteristics of the synchronisation algorithm, the model under study 
and the target multicomputer.

9.2 Contributions

We have shown how DDES has been successfully used to study a variety of real- 
world systems, including the study of different aspects of parallel computing. Our 
contribution in this field is the use of DDES to analyse the behaviour of Extended 
Concurrent Algebraic Term Nets when used to model any existing or hypothetical 
system. The contributions of this work can be summarised in the following points:

1 . The introduction of time to ECATNets. These nets enriched with temporal 
specification are suitable to discrete simulation, thus making an important step in 
their quantitative performance evaluation. Timed transition ECATNet formalism 
provides a substantial contribution to the implementation of efficient, general pur­
pose discrete event simulation techniques.

2 . A description of a collection of alternatives for distributed simulation of dis­
crete event systems, with an evaluation of them using ECATNet models designed as 
a test. Similar evaluations can be found in the literature, most of them using shared 
memory multiprocessors, which allowed the implementation of a variety of optimisa­
tions. However, our work has been developed in a distributed memory environment 
where message passing is the only means of communication and synchronisation.
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3. A description of an environment for parallel programming, identifying the char­
acteristics that have an impact on the implementation of parallel algorithms. In 
this context, distributed simulation algorithms can be considered as a case study on 
parallel programming.

4. A detailed description of ECATNet models, along with the way they can be 
simulated using an event-driven approach. A description of these models using a 
C-like language has been done, able to be used by any of the simulation engines as 
part of this work.

5. The implementation and analysis of three distributed simulators, using three 
different synchronisation mechanisms:

• CMB-DA, a conservative simulator;

• TW-LZ, an optimistic simulator, and

• SYNC, a synchronous simulator.

Additionally, a sequential simulator (SEQ) has been implemented and tested, to use 
the obtained results as a reference point to compute speedups.

6 . The design of an optimisation on CMB-DA that allows a reduction on the num­
ber of null messages used for synchronisation. Null messages are sent only when 
they have a positive impact on the receiving LP. Additionally, null messages are not 
stored in the receiving LP: the only effect of the reception of a null message is an 
increment in the receiving channel’s clock. With this optimisation, the synchronisa­
tion effort of the simulator is notably reduced.

7. The introduction of the concept of grain size of ECATNet LPs in the distributed 
simulators. For example, the synchronisation mechanism for CMB-DA requires LPs 
to block frequently, while they await until it is sure that advance is possible without 
causal risks. If only one LP is assigned to each processor, CPU power is wasted 
while the LP is blocked. Assigning several LPs of smaller size to each processor 
(which means that each LP simulates a smaller part of the system under study), the 
CPU can be assigned to a non blocked LP. However, LP’s grain size should not be 
too small, because in that case the overall number of LPs would be increased, and 
more null messages would be needed to keep the simulator synchronised. After a



Chapter 9. Conclusion and Further Research 164

set of evaluations, it was shown that it is more advantageous to use intermediate or 
maximum grain size LPs instead of minimum grain size LPs.

8. The characterisation of the event density of the simulated systems as an im­
portant parameter to achieve good performance in CMB-DA simulator. ECATNet 
models with high event density achieve good performance, because the message in­
terchange for event scheduling provides the LPs with the necessary sychronisation, 
and a few number of messages are required.

9. The characterisation that TW-LZ is a viable approach to the distributed sim­
ulation of ECATNet models. We confirm that, in different scenarios, TW can be 
very effective, although the nature of the ECATNet models and the large size of the 
data structures that represent the state of a LP. However, receiving stragglers due 
to a violation of the causality constraint and/or an overflow in a place with limited 
capacity make it the worst possible scenario for TW.

10. The conclusion that in the same conditions as in (8 ), SYNC performs well, 
because all the LPs have a similar work to do between barrier synchronisations, ex­
ploiting parallelism efficiently. If the message density reduces, the performance also 
reduces. However, it was shown after a set of evaluations that SYNC is definitely 
not appropriate for ECATNet distributed simulation in a network of workstations.

11. The conclusion that a collection of workstations in an Ethernet network does 
not perform so well. The cost of synchronisation is very high due to the slow com­
munication infrastructure based on TCP/IP over Ethernet. The sources of overhead 
at a sender CPU, the network of routers and the receiver CPU lead to poor perfor­
mance of the distributed simulators compared with the sequential one.

12. Through the experiments that have been executed with the distributed sim­
ulators, we got an insight into their behaviour under different conditions. We char­
acterised how the structure and parameters of the ECATNet model, the synchronisa­
tion strategy, the ways of organising the simulator and the scenario of the simulation 
influence the achieved performance. We conclude that CMB-DA and TW-LZ can be 
considered as suitable approaches for the distributed simulation of ECATNets. The 
main requirement remains a fast message passing mechanism for better performance.
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9.3 Further Work

There are many ways to further extend the work presented here. The most appeal­
ing ones are given in the following points:

1. To build a complete analysis tool for ECATNets, based on conservative, Time 
Warp and synchronous distributed simulation engines. The tool should be able to 
allow a researcher to describe the system under study, given its ECATNet model and 
a collection of parameters such as timings. Our system for modelling and simulation 
with ECATNets currently consists of a sequential and three distributed simulators. 
It is planned to extend the simulation system with another component: a net editor 
which will allow the entering of a graphical representation of ECATNet models. A 
graphical editor of an earlier style of algebraic Petri nets has been developed [BB92] 
and will be modified to accomodate ECATNets and to offer a way of providing the 
information to describe in a user friendly way.

2 . Implementation on Massively Parallel Processing architectures:

• Distributed memory environment: the communication in the distributed simu­
lators is modelled via message passing between different processors. This yields 
a very portable implementation. Since the MPI library has been adopted, the 
three distributed simulators (CMB-DA, TW-LZ and SYNC) can be success­
fully ported on Massively Parallel Processing architectures, such as the the 
Cray T3E, the Thinking Machine CM-5 or the Intel Paragon.

• Shared memory environment: The simulation algorithms developed for a mes­
sage passing environment trivially adapt without performance loss to shared 
memory by emulating message exchange via shared variables. The protocols we 
proposed run in a distributed memory environment. Since distributed mem­
ory is not the optimal architecture for parallel simulation algorithms because 
of the tight global synchronisation these algorithms impose, it will be inter­
esting to investigate the performance of these algorithms on shared memory 
architectures. In this case, messages are exchanged through a global memory.

• In relation to the SYNC simulator, the current implementations follows a 
SPMD programming model. It would be very interesting to implement a ver­
sion for SIMD machines in order to test its behaviour using several thousands 
of processing elements.
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3. Implementation of an ECATNet concurrent simulator. The distribution at the 
event level with a centralised event list is particularly appropriate for shared memory 
multiprocessors [JCRB89]. The model parallelism exploitation aims at a distribution 
of single events among processors for their concurrent execution. If the event list is a 
centralised data structure maintained by a master processor, concurrent events are 
distributed to a pool of slave processors dedicated to execute them. In ECATNets, 
the master processor in this case takes care that consistency in the event structure is 
preserved, i.e., prohibits the execution of events potentially yielding causality errors 
due to overlapping effects of events being concurrently processed. In addition to 
this, the application of rewrite rules will find the set of transitions to be fired in 
parallel, and the events processed in parallel are typically the ones located at the 
same time.

4. Implementation in distributed shared memory environment. Most of the parallel 
simulations applications found in the literature were run on shared memory archi­
tectures, very few on a network of workstations, a widely used hardware platform 
which cannot be ignored by parallel simulation researchers. However, the implemen­
tation of an ECATNet concurrent simulator prototype using Phosphorus [CDMB95] 
has been quite disappointing. Phosphorus is a distributed shared memory system 
developed on top of the PVM, which makes the performance of the various simu­
lators (distributed and concurrent) built on top of two messages passing libraries 
(MPI and PVM) difficult to compare.

A future ECATNet concurrent simulator in DSM can be implemented in MPI2, 
which permits the use of one-sided communications. This is important to the appli­
cation programmer, because even loose synchronisation of the send-receive pair in 
the algorithms imposes constraints and is no longer necessary. It is difficult to gain 
acceptable speedup for parallel simulation in a network of workstations due to long 
communication delays. One possible solution is to connect the workstations using a 
high speed network, such as a fast Ethernet or an ATM network.

5. This study has, fundamentally, an empirical basis. An analytical study of the 
way the different characteristics of ECATNet models, simulators and parallel pro­
gramming environment affect the execution time of simulators should be of great 
interest. The difficult part is that the spectrum of parameters to consider is too 
large. Several studies have been done in this direction, but most of them make a 
series of simplifying assumptions which limit its applicability.
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6 . The use of parallel simulation of ECATNets in rewriting logic. Rewriting has 
been recognised as an efficient concurrent computational paradigm. The notion of 
rewriting has been generalised so that functional computations, as well as other 
parallel computations that are highly non-functional in nature, can be expressed 
using a declarative and machine independent parallel programming [LMOM94]. A 
new type of rewriting, Object-Oriented Rewriting, corresponds to actor-like objects 
[Agh90, Agh96] that interact with each other by asynchronous message-passing. 
Many discrete event simulation applications can be naturally expressed and paral­
lelised in this way.

Rewriting logic has been used as a semantic framework suitable for object- 
oriented specification [LLW95] and implementation of the style of discrete event 
simulation within rewriting logic [Lan96]. Further work will include the implemen­
tation of an ECATNet parallel simulator in Maude programming language [CDE+98] 
which is an extension of OBJ [GKK+8 8 ], thus extending the domain of parallel simu­
lation and rewriting logic. Maude is a designed language of rewriting logic proposed 
as a machine-independent parallel programming language that can be efficiently im­
plemented in parallel on many different machines, ranging from sequential, SIMD, 
MIMD, and MIMD/SIMD machines [LMOMR94]. The description of the use of 
object-oriented rewriting logic in the field of distributed simulation of ECATNets 
has been given in [DB98]. This modest approach is driven from practical con­
siderations from the work on developing the distributed simulation framework for 
ECATNets, and must be considered as a first step towards a solution of the prob­
lem. The interesting thing about rewriting logic and parallel simulation is to see 
that concurrency occurs explicitly in the simulation model and implicitly in the logic.

7. The work presented in the thesis should be considered as a step in the direc­
tion of efficiently implemented distributed simulation techniques for high-level nets 
such as CPNets. An approach is proposed in [BP97] to relate CPNets to ECAT­
Nets. Results concerning analysis techniques of CPNets can be used for ECATNets 
analysis.

8 . The simulators developed should be used in the development of real applications: 
distributed real time systems, distributed measurements systems and multimedia 
applications.
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9. It will be interesting to implement the synchronisation mechanisms in Java so as 
to improve portability and move towards distributed simulation at the Web level.



Appendix A

Parallel Programming 
Environment

A .l  Introduction

In this appendix we present the parallel programming environment used for our 
research in distributed simulation. All our experiments with the simulators: CMB- 
DA, TW, and SYNC were made using an implementation of MPI (Message Passing 
Interface) over a network of Sun Sparc workstations as a platform for parallel pro­
gramming.

A .2 M essage Passing Interface

The goal of MPI, simply stated, is to develop a widely used standard for message 
passing programs. The interface should establish a practical, portable, efficient 
and standard for message passing [Mes95]. Over the last ten years, substantial 
progress has been made in casting significant applications in this paradigm. Each 
parallel computer vendor has implemented its own variant. More recently, several 
systems have demonstrated that a message passing system which is both efficient 
and portable can be implemented. The purpose of MPI is to define both the syntax 
and semantics of a core of library routines that will be useful to a wide range of 
users and efficiently implementable on a wide range of computers.

MPI has emerged as the future standard for message passing in both distributed 
and parallel computing environments. This standard is the result of contributions 
from more than 40 organisations (hardware/software vendors, federal laboratories, 
and universities). In designing MPI, the MPI forum sought to make use of the most
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attractive features of a number of existing message passing systems, rather than 
selecting one of them and adopting it as a standard. Thus, MPI has been strongly 
influenced by many works at the IBM T. J. Watson research Center, Intel’s NX/2, 
Express, nCUBE’s Vertex, p4, and PARMACS. Other important contributions have 
come from Zipcode, Chimp, PVM, Chameleon, and PICL [Mes95]. MPI offers, for 
the first time, an accepted standard for message passing. It is based on point- 
to-point communication between pairs of processes and collective communications 
within groups of processes. Additionally, it includes the specification of a much 
richer set of features than previous message-passing models such as p4 and PVM. 
These allow the programmer to manipulate entire process groups, define topological 
structure for process groups, and explicit facilities to aid in the development and 
use of parallel libraries.

Several implementations of MPI axe freely available. One of those is MPICH 
developed by Argonne National Laboratory and Mississipi State University. It is 
supported on a variety of parallel computers and networks of workstations. Parallel 
computers that are supported include: IBM SP1, SP2 (using various communica­
tion options), Thinking Machine CM-5, Intel Paragon, IPSC860, Touchstone Delta, 
Ncube2, Meiko CS-2, Kendall Square KSR-1 and KSR-2, SGI and Sun microproces­
sors. Supported workstations include: Sun4 family running SunOS or Solaris, HP, 
DEC 3000 and Alpha, IBM RS/6000 family, SGI, Intel based PC clones running 
Linux. Other available MPI implementations are:

• Edinburgh Parallel Computer Centre CHIMP implementation

• Mississipi State University UNIFY implementation

• Ohio Supercomputer Center LAM implementation

• University of Nebraska at Omaha WinMPI implementation.

MPI-2, recently developed [Mes97], provides extensions to the first release of MPI. 
The areas of expansion are:

• Input/Output

• Active messages

• Process startup

• Dynamic process control
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• Remote store/access

• Language bindings for Fortran 90 and C++

• Graphics

• Real-time support.

A .2.1 M P I Program s

The current MPI specification [Mes95] includes bindings for C and Fortran 77 pro­
gramming languages. MPI-2 [Mes97] include bindings for C + +  and Fortran 90. In 
the remaining, we will only discuss the C binding.

Any MPI program must include the header file “mpi.h”, where the definitions, 
macros and function prototypes necessary for compiling the programs can be found. 
Before using any other MPI function, a program must invoke M PI_Init(), to do all 
the necessary set-up operations. After finishing (but before exiting) the function 
M PIJFinalizeO must be called for cleaning up.

int MPI_Init(int argc, char **argv);

int MPI_Finalize();

After the initialisation, functions are available for point to point communication, 
collective communication, and several environment management functions. In the 
following sections we give a description of the functions which are relevant for our 
work.

A .2.2 Com m unicators

MPI provides the function MPI_Comm_rank() which returns the rank of a process in 
its second argument. Its syntax is:

int MPI_Comm_rank (MPI.Comm comm, int rank);

The first argument is a communicator. Essentialy a communicator is a collection 
of processes that can send messages to each other. For basic programs, the only 
communicator needed is MPI_C0MM_W0RLD. It is predefined in MPI and consists of all 
the processes running when the program execution begins.
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MPI provides the function MPI_Comm_size for determining the number of processes 
executing the program. Its first argument is a communicator. It returns the number 
of processes in a communicator in its second argument. Its syntax is:

in t  MPI_Comm_size (MPI.Comm comm, in t  s ize);

A .2.3 Point to  Point C om m unication

MPI offers two communication models, blocking and nonblocking, and four commu­
nication modes: basic, synchronous, buffered and ready.

Basic: MPI_Send completes when the message data and envelope have been safely 
stored away so that the sender is free to access and overwrite the send buffer. The 
message might be copied directly into the matching receive buffer, or it might be 
copied into a temporary system buffer.
Buffered: MPI_Bsend completes immediately after storing the message in a local 
buffer, managed by the user. Its completion never depends on the occurrence of a 
matching receive.
Synchronous: MPI_Ssend only completes when a matching receive has been posted 
and the message interchange has been completed.
R eady: MPI_Rsend can be started only if a matching receive has been already 
posted. Otherwise the operation is erroneous and its outcome is indefined.

All four blocking send operations take the same arguments. The prototype of 
MPLSend is as follows:

in t  MPI_Send (void *buf, in t  count, MPI_Datatype d a ta ty p e , in t  d e s t ,  in t  
ta g , MPI.Connn comm);

The blocking receive operation can match any of the send modes, and returns only 
after the receive buffer contains the newly received message.

in t  MPI_Recv (void *buf, in t  count, MPI_Datatype d a ta ty p e , in t  s rc ,  in t  
ta g , MPI.Comm comm);

For the nonblocking model of communication, the functions: M PI.IsendO, MPI_Ib- 
sendO , M PI.IssendO, M PI.IrsendO , MPI.IrecvQ are available to start an op-
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eration. Several forms of MPI_Wait() allow a process to block until a previously 
started operation (or set of operations) has been completed. Alternatively, a non- 
blocking test of completion can be done using MPI.Test (). A non-committed posted 
operation can be canceled with MPI_Cancel().

It is also possible to check if messages are pending to be received. MPI .Probe () 
is blocking, i.e., blocks the caller if no message is ready, until one is received. 
MPI.IprobeO is just a nonblocking test. In either case, the message is not actually 
received until a receive operation is done.

A .2.4 C ollective C om m unication

A collective communication is a communication that involves a group of processes. 
All collective operations are global and blocking, that is, in order to perform an oper­
ation all the members of a group must call it, and control returns when it has been 
completed. In many cases a root process is mentioned. Any process in a group can 
be the root of an operation, but it is necessary that all members agree in defining 
which process is the root. The collective communication functions provided by MPI 
are:

M PI_Barrier(): barrier synchronisation across all group members.
MPI_Bcast(): broadcast from one member to all members of a group. 
MPI_Gather(): gather data from all group members to one member.
M PI.scatter (): scatter data from one member to all members of a group.
MPI -A llgather (): a variation of MPI.Gather where all members of the group re­
ceive the result of the gather operation.
MPI_Reduce(): global reduction operation such as sum, max, min, or user-defined 
functions, where the result is returned to only one member.
MPI_Allreduce(): a variation of MPI_Reduce() where the result is returned to all 
group members.
M PIJteduce_scatter(): a combined reduction and scatter operation. First a reduc­
tion is done, and then the result (a vector) is scattered along the processes in the 
group.
MPI_Scan(): scan across all members of a group.

A .2.5 D ata  Types

One of the parameters of send and receive operations is the type of the data units 
being transmitted (other being the number of units transmitted). Both sender and
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MPI data type C data type
MPLCHAR signed char
MPLSHORT signed short int
M PIJNT signed int
MPLLONG signed long int
MPLUNSIGNED.CHAR unsigned char
MPLUNSIGNED .SHORT unsigned short int
MPLUNSIGNED unsigned int
MPLUNSIGNED-LONG unsigned long int
MPI-FLOAT float
MPIJDOUBLE double
MPLLONG-DOUBLE long double
MPI-BYTE
MPIJPACKED

Table A.l: MPI data types (C binding)

receiver must agree in the specified data type. A series of constants are defined to 
choose the appropriate data type. Table A.l lists the data types available for’the C 
binding.

The last two types do not correspond to any C data type. A value of type 
MPIJBYTE consists of an octet, which is uninterpreted and different from a char­
acter. MPIJPACKED is used to interchange blocks of non-contiguous data items 
which have been packed into a contiguous buffer. As MPI supports parallel compu­
tations across heterogeneous environments, the MPIJ3YTE data type can be used 
to transfer data without any conversion of the different data representation formats 
of the communicating machines.

A .3 Running an M PI Application on a NO W

The implementation of MPI includes a configuration program which sets up CHIMP 
MPI (Edinburgh Parallel Computer Centre) for running in a network of Sun work­
stations running Solaris. The actual CHIMP version is 2.0 which is a distributed 
Unix version SPARC running Solaris 2.1 (or later). Once the environment has been 
configured, a Makefile is provided to build:
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• a library with all MPI functions;

• scripts for compilation of MPI application code (mpicc for the C programming 
language);

• mpirun, a tool for starting parallel programs in a way independent of the target 
machine;

• a collection of manuals and other documentation.

Once the set of executables which make up the MPI application has been generated, 
we must write a configuration file for the application. Items enclosed in brackets () 
and separated by commas represent MPI processes. Processes are specified by the 
command that would execute that process; usually this will be the executable name 
followed by any command arguments. These processes are normally placed arbitrar­
ily on the available processors: the only relationship automatically preserved from 
configuration file to process placements is the co-locality of processes on processors, 
i.e., if two processes appear in the same set of brackets in the configuration file, it is 
guaranteed that they will be run on the same processor. The loader tool interprets 
a configuration file and places processes on computing resources as specified. All 
the machines of the configuration file have the same view of the file system, which 
usually means that NFS (Network File System) is in use.
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Glossary

B .l  Petri N ets

In h ib ito r arc: axe that allows zero testing. An inhibitor arc from a place p» to 
a tansition tj has a small circle rather than an arrowhead at the transition. The 
firing rule is changed as follows: a transition is enabled when tokens axe all of its 
(normal) inputs and zero tokens axe in all of its inhibitor inputs. The transition fires 
by removing tokens from all of its (normal) inputs.

Random switch: probability distribution associated with the choice of the tran­
sition to be fired among a set of more immediate transitions in conflict at a certain 
reachable marking. The distribution is in general maxking-dependent.

Let N =  (P,T,F) be a net and x G  X. Then:

P re-se t: noted » x  = {y | (y,x) G  F} (Pre-set of x G  X).

P ost-set: noted x» = {y | (x,y) G  F} (Post-set of x G  X).

Siphon: let Po C  P a set of places. Po is called a trap iff Po» C  «Po.

D eadlock: Pq is called a deadlock iff »Pq C P0«.
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B.2 Parallel Processing

B andw id th : amount of data that can be sent through a given communication cir­
cuit per second (an important communication channel’s parameter).

B arrier: a point in a program at which barrier synchronisation occurs.

B arrie r synchronisation: an event in which two or more processes belonging 
to some implicit or explicit group block until all members of the group have blocked.

B roadcast: to send a message to all possible recipients.

Deadlock: a situation in which each possible activity is blocked, waiting on some 
other activity that is also blocked.

G ranu larity : the size of the operations done by a processor between communi­
cation events. A process may be fine-grained or coarse-grained.

Host: a computer connected to a network.

Latency: time it takes for a packet to cross a network connection, from sender 
to receiver (an important communication channel’s parameter).

Load balancing: techniques which aim to spread tasks among the processors in a 
parallel processor to avoid some processors being idle when other have tasks queue­
ing for execution.

M apping: an allocation of processes to processors.

M essage passing: a style of interprocess communication in which processes send 
discrete messages to one another.

O verhead: information, such as control, routing, and error checking characters, 
that is transmitted along with the user data. It also includes information such as 
network status or operational instructions, network routing informations and re­
transmissions of user data received in error.
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P ara lle l speedup: ratio of the serial execution time of the best known serial algo­
rithm (TS) to the parallel execution time of the chosen algorithm (TP).

R ed u c tio n  operation: an operation applying an associative or commutative bi­
nary operator © to a list of values {uo v\ ... vn_i} to produce (uo © Vi © ... © vn_i).

S hared  m em ory: memory that appears to the user to be contained in a single 
address space and that can be accessed by any process.

T h roughpu t: (1) the rate at which a processor can work expressed in instruc­
tions per second or jobs per hour or some other unit of performance; (2 ) the amount 
of data a communication’s channel can carry, usually in bytes per second.
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