
DISTRIBUTED SIMULATION OF
HIGH-LEVEL ALGEBRAIC PETRI NETS

K arim Djemame

Thesis Submitted in Accordance with the Requirements

for the Degree of Doctor of Philosophy

U N IV E R SIT Y
of

G LASG O W

The University of Glasgow

Computing Science Department

July 1999

ProQuest Number: 13833979

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13833979

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

GLASGOW
UNIVERSITY
LIBRARY

\\[o% (c<3f \

Abstract
In the field of Petri nets, simulation is an essential tool to validate and evaluate
models. Conventional simulation techniques, designed for their use in sequential
computers, are too slow if the system to simulate is large or complex. The aim of
this work is to search for techniques to accelerate simulations exploiting the paral­
lelism available in current, commercial multicomputers, and to use these techniques
to study a class of Petri nets called high-level algebraic nets. These nets exploit the
rich theory of algebraic specifications for high-level Petri nets: Petri nets gain a great
deal of modelling power by representing dynamically changing items as structured
tokens whereas algebraic specifications turned out to be an adequate and flexible
instrument for handling structured items. In this work we focus on ECATNets (Ex­
tended Concurrent Algebraic Term Nets) whose most distinctive feature is their
semantics which is defined in terms of rewriting logic. Nevertheless, ECATNets
have two drawbacks: the occultation of the aspect of time and a bad exploitation of
the parallelism inherent in the models.

Three distributed simulation techniques have been considered: asynchronous con­
servative, asynchronous optimistic and synchronous. These algorithms have been
implemented in a multicomputer environment: a network of workstations. The
influence that factors such as the characteristics of the simulated models, the organ­
isation of the simulators and the characteristics of the target multicomputer have in
the performance of the simulations have been measured and characterised.

It is concluded that synchronous distributed simulation techniques are not suitable
for the considered kind of models, although they may provide good performance in
other environments. Conservative and optimistic distributed simulation techniques
perform well, specially if the model to simulate is complex or large - precisely the
worst case for traditional, sequential simulators. This way, studies previously con­
sidered as unrealisable, due to their exceedingly high computational cost, can be
performed in reasonable times. Additionally, the spectrum of possibilities of using
multicomputers can be broadened to execute more than numeric applications.

To Chafla and Djamel

Acknowledgements
First and foremost I would like to thank my supervisors, Prof. Dennis Gilles and
Prof. Mohamed Bettaz, for guiding my research over the course of my Ph.D. They
have been a constant source of advice, encouragement and guidance diming my re­
search, and have always provided constructive criticism of my work. Prof. Bettaz’s
enthusiasm for the subject has helped to make this a very enjoyable period of study
for me.

I would also like to thank Dr Lewis Mackenzie for his time, his advice and for
helping me in avoiding the pitfalls on the way to obtaining a Ph.D. degree.

Also, I would like to express my gratitude to the Computing Science Department at
the University of Glasgow for providing such a stimulating and friendly environment
to work in.

My research was supported by the Algerian Ministry of Higher Education and Sci­
entific Research, and the British Council in the form of a Split-Ph.D. Research Stu­
dentship during the period when I was visiting the University of Glasgow (September
1993 - September 1997). I am grateful to them.

Declaration
This thesis is submitted in accordance with the regulations for the degree of Doctor
of Philosophy in the University of Glasgow. No part of it has been previously sub­
mitted by the author for a degree at any other university and all results contained
within axe claimed as original.

Section 5.4.2 contains ideas suggested by Nicol and Mao [NR91]. Section 5.6.4 con­
tains an algorithm inspired from ideas suggested by Thomas and Zahorjan [TZ91].
Sections 5.6 and 6.3 are revised versions of material published in [DBGM96a] and
[DBGM95], respectively. Sections 5.7 and 6.4 cover material published in [DBGM96b]
and [DBGM98].

Acronyms
Some frequently used abbreviations appearing in this thesis are listed here, together
with a brief explanation of their meaning.

ATNet Algebraic Term Net
C Capacity
CATNet Concurrent Algebraic Term Net
CMB Chandy-Misra Bryant
CMB-DA Chandy-Misra Bryant with Deadlock Avoidance
CM-DDR Chandy-Misra Bryant with Deadlock Detection and Recovery
CPNets Coloured Petri Nets
CT Created Tokens
DDES Distributed Discrete Event Simulation
DT Destroyed Tokens
ECATNet Extended Concurrent Algebraic Term Net
EP Efficient Partitioning
ES Event Stack
EVL Event List
GSPN General Stochastic Petri Net
GVT Global Virtual Time
IQ Input Queue
IC Input Condition
LP Logical Process
LVT Local Virtual Time
MPI Message Passing Interface
NOW Network of Workstations
OQ Output Queue
PDES Parallel Discrete Event Simulation
PE Processing Element
PN Petri Net
PP Physical Process
PVM Parallel Virtual Machine
QN Queueing Network
scs Separation of Concern Strategy
SPN Stochastic Petri Net
TC Transition Condition
TW Time Warp
TW-AC Time Warp with Aggressive Cancellation
TW-LZ Time Warp with Lazy Cancellation

Contents

1 Introduction 5
1.1 Motivation of the W o r k ... 5

1.1.1 Modelling and Analysis of Real System s................................... 5
1.1.2 Parallel Implementation of High-Level Nets Simulation Appli­

cations ... 6
1.2 Tools.. 8
1.3 Objectives... 9
1.4 Major C ontributions.. 11
1.5 Overview of the T hesis.. 12

2 High-Level Algebraic Nets 14
2.1 Introduction.. 14
2.2 Petri Net D efinition... 14

2.2.1 Behavioural Properties.. 16
2.2.2 Analysis Methods ... 17
2.2.3 Sem antics.. 17

2.3 Types of Petri N e t s .. 18
2.3.1 Background... 18
2.3.2 Time Association with Petri N ets.. 19
2.3.3 Timed Petri N e ts .. 20
2.3.4 High-Level Petri N e t s .. 22
2.3.5 High-Level Algebraic N e ts .. 24

2.4 Extended Concurrent Algebraic Term N e ts ... 25
2.4.1 Introduction .. 25
2.4.2 From ATNets to ECATnets .. 25
2.4.3 Rewriting L o g ic .. 29
2.4.4 EC ATNets S em an tic s ... 30
2.4.5 Example of an EC A TN et.. 32

2.5 Introducing Time in EC A T N e ts .. 34
2.5.1 Aspect of Time in ECATNets.. 35
2.5.2 Firing Sem antics.. 36

2.6 Conclusion... 38

i

Contents ii

3 D is trib u ted D iscrete Event S im ulation 40
3.1 Introduction.. 40
3.2 Modelling and Simulation... 41
3.3 Discrete Event Simulation .. 42

3.3.1 Time Driven Approach.. 43
3.3.2 Event Driven A p p ro ach ... 44
3.3.3 Exploiting Parallelism .. 44

3.4 Distributed Discrete Event Simulation... 45
3.4.1 Event D ependencies... 46
3.4.2 Model D ecom position.. 48
3.4.3 M apping... 50
3.4.4 Real World DDES Applications... 50
3.4.5 Performance M easures.. 51
3.4.6 The Time-Division A pproach .. 51

3.5 The Conservative M echanism s... 52
3.5.1 The Deadlock Problem .. 53
3.5.2 Lookahead ... 55

3.6 The Optimistic Mechanisms .. 55
3.6.1 Logical Processes in Time Warp .. 56
3.6.2 Messages Cancellation P h a s e .. 58
3.6.3 Global C o n tro l.. 59
3.6.4 Variations of the Basic Time W a rp .. 60

3.7 The Synchronous M echanism s... 63
3.8 Related w ork .. 65

3.8.1 Queueing Networks.. 65
3.8.2 Finite State M ach ines.. 66
3.8.3 Petri N e ts ... 66

3.9 C onclusion... 69

4 E nvironm ents for D is trib u ted C om puting 71
4.1 Introduction.. 71
4.2 MIMD versus SIMD C o m p u te rs .. 72
4.3 Message Passing versus Shared M em ory... 72
4.4 Parallel Programming Languages and Tools....................................... ,. 73
4.5 Parallel Programming Environments.. 75

4.5.1 Parallel Virtual M achine... 76
4.5.2 Message Passing In terface.. 76

4.6 Parallel Computer Design.. 78
4.6.1 Multicomputer’s N o d e .. 79
4.6.2 Multicomputers’s Interconnection Network 81

4.7 Characteristics of the Network of Workstations Used in this Work . 82
4.7.1 Hardware Configuration... 82
4.7.2 Software Configuration.. 82

4.8 Conclusion.. 83

C ontents iii

5 C onservative S im ulation of EC A TN ets 84
5.1 Introduction.. 84
5.2 The Simulators.. 85

5.2.1 Input Parameters for the S im ulators.. 85
5.2.2 Components of the S im u la to rs ... 86
5.2.3 Types of Events .. 87
5.2.4 The Sequential S im u la to r.. 87

5.3 The Conservative Simulator ... 89
5.3.1 Logical Processes.. 89

5.4 Partitioning ... 89
5.4.1 Separation of Concern Partitioning... 90
5.4.2 Efficient P a rtitio n in g ... 91

5.5 The Communication In te rfa c e .. 91
5.6 Simulation E ng ine 95

5.6.1 Types of M essages.. 95
5.6.2 Exploiting Lookahead... 96
5.6.3 A lgorithm s.. 97
5.6.4 Distributed Conflict Resolution A lg o rith m 100
5.6.5 Conflict Resolution S tra te g y ... 101
5.6.6 Places with Limited C a p a c ity ... 101

5.7 Results of the Experim ents.. 102
5.8 C onclusion.. 107

6 O p tim istic Sim ulation of EC A TN ets 110
6.1 Introduction... 110
6.2 The Optimistic Sim ulator... I l l

6.2.1 Logical Processes... I l l
6.3 Simulation E ng ine ... I l l

6.3.1 Types of M essages.. I l l
6.3.2 Separation of Concern Partitioning... I l l
6.3.3 Checkpointing .. 112
6.3.4 Message Cancellation .. 113
6.3.5 GVT C o m p u ta tio n .. 114
6.3.6 A lgorithm s.. 114
6.3.7 Places with Limited c a p a c ity .. 117

6.4 Results of the Experim ents.. 117
6.4.1 Output D a t a 117
6.4.2 Performance R esu lts ... 118

6.5 C onclusion ... 120

7 Synchronous Sim ulation of E C A T N ets 122
7.1 Introduction... 122
7.2 The Synchronous S im ulato r... 123

7.2.1 Logical Processes... 123

Contents iv

7.3 Simulation E n g in e .. 123
7.3.1 Types of M essages... 123
7.3.2 A lgorithm .. 123

7.4 Results of the E x p erim en ts .. 125
7.4.1 Output D a t a .. 125
7.4.2 Performance M easures... 125

7.5 Conclusion .. 128

8 Case Studies and Performance Results 130
8.1 Introduction.. 130
8.2 Models under s tu d y .. 131
8.3 Producer Consumer M o d e l... 132

8.3.1 Unbounding the Buffer’s C a p a c ity ... 132
8.3.2 Bounding the Buffer’s C apacity .. 137

8.4 Manufacturing System M odel.. 145
8.4.1 Results of the E xperim en ts.. 147

8.5 Pipeline M odel.. 151
8.5.1 Experiment With Different Grain Sizes 151
8.5.2 Discussion.. 153

8.6 C onclusion... 158

9 Conclusion and Further Research 161
9.1 S u m m ary .. 161
9.2 C ontributions.. 162
9.3 Further W o rk .. 165

A Parallel Programming Environment 169
A.l Introduction... 169
A.2 Message Passing In te rface ... 169

A.2.1 MPI P ro g ram s... 171
A. 2.2 Communicators... 171
A.2.3 Point to Point C om m unication... 172
A.2.4 Collective Communication... 173
A.2.5 Data T y p e s ... 173

A.3 Running an MPI Application on a N O W .. 174

B Glossary 176
Bvl Petri N e tsr ' ... : 176
B.2 Parallel Processing.. ' 177

List of Figures

2.1 A Usual Petri Net (1) Before Transition t Fires; (2) After Transition
t Fires... 15

2.2 A Simplified CATNet... 26
2.3 A CATNet... 26
2.4 Firing in Parallel in ECATNets.. 31
2.9 Firing Behaviour in ECATNets (Atomic Firing)... 37
2.10 Firing Behaviour in EC ATNets (Three Phase Firing). 38

3.1 (a) List of Scheduled Events in Timestamp Order, (b) Sequence Or­
dered by Causal Dependencies.. 48

3.2 A LP in a CMB Simulator.. 52
3.3 Deadlock Situation. Each process is waiting on the incoming link

containing the smallest link clock value because the corresponding
queue is em p ty .. 54

3.4 A LP in a TW Simulator.. 57
3.5 Message Execution in TW.. 58
3.6 Rollback with Infrequent Checkpointing... 59
3.7 A LP in a SYNC Simulator... ' 64

4.1 Model of a Multiprocessor.. 78
4.2 Model of a Multicomputer... 79
4.3 Node Where Communication and Computation Functions are Inte­

grated... 80
4.4 Node Where Communication is Separated from Computation 80

5.1 Sequential Simulation Engine... 88
5.3 Efficient ECATNet Partition... •. 95
5.4 (a) Execution Time of CMB-DA; (b) Speedup over its One. Processor

Execution... 104
5.5 CMB-DA: Impact of the Workload onto the Execution Profile (3 PEs).106
5.6 Influence of the Synthetic Workload in the Simulation, (a) Execution

Times for SEQ and CMB-DA (3 PEs); (b) Achieved Speedup over
SEQ.. 107

5.7 Speedup of CMB-DA over SEQ (W =10,000)... 108

1

List of Figures 2

6.1 Rollback in TW ECATNet Simulation.. 113
6.2 (a) Execution Time of TW-LZ and CMB-DA; (b) Speedup over their

One Processor Execution... 118
6.3 TW-LZ: Impact of the Workload onto the Execution Profile (3 PEs). 119
6.4 Influence of the Synthetic Workload in the Simulation, (a) Execution

Times for SEQ, TW-LZ and CMB-DA (3 PEs); (b) Achieved Speedup
over SEQ.. 120

6.5 Speedup of TW-LZ and CMB-DA over SEQ (W=10,000)................... 121

7.1 (a) Execution Time of SYNC, TW-LZ and CMB-DA; (b) Speedup
over their One Processor Execution... 126

7.2 SYNC: Impact of the Workload onto the Execution Profile (3 PEs). 127
7.3 Influence of the Synthetic Workload in the Simulation, (a) Execution

Times for SEQ, SYNC, TW-LZ and CMB-DA (3 PEs); (b) Achieved
Speedup over SEQ.. 128

7.4 Speedup of SYNC, TW-LZ and CMB-DA over SEQ (W=10,000). . . 129

8.1 ECATNet Producer Consumer Model... 133
8.2 Producer Consumer Model (Unbounded Buffer’s Capacity). Execu­

tion Times of the Different Simulators.. 134
8.3 Producer Consumer Model (Unbounded Buffer’s Capacity). Execu­

tion Profiles (4 PEs)... 135
8.4 Producer Consumer Model (Unbounded Buffer’s Capacity). Speedup

of the Different Simulators over SEQ.. 136
8.5 ECATNet Producer Consumer Model (P3 Partitoning)........................... 138
8.6 Producer Consumer Model (Bounded Buffer’s Capacity). Execution

Times for Partitions P3 and P4 - Experiment SI.................................. 140
8.7 Producer Consumer Model (Bounded Buffer’s Capacity). Execution

Profiles for Partitions P3 and P4 - Experiment SI.................................... 141
8.8 Producer Consumer Model (Bounded Buffer’s Capacity). Speedup

(a) Partition P3; (b) Partition P4 - Experiment SI (W=10,000). . . 142
8.9 Producer Consumer Model (Bounded Buffer’s Capacity). Execution

Times for Partitions P3 and P4 - Experiment S2.................................. 143
8.10 Producer Consumer Model (Bounded Buffer’s Capacity). Execution

Profiles for Partitions P3 and P4 - Experiment S2.................................... 144
8.11 Producer Consumer Model (Bounded Buffer’s Capacity). Speedup

(a) Partition P3; (b) Partition P4 - Experiment S2 (W=10,000). . . 145
8.12 ECATNet Manufacturing System Model... 147
8.13 Manufacturing System Model. Execution Times of the Different Sim­

ulators.. 148
8.14 Manufacturing System Model. Execution Profiles (8 PEs).................. 149
8.15 Manufacturing System Model. Speedup of CMB-DA, TW-LZ and

SYNC (W=10,000)... 150
8.16 ECATNet Pipeline Model (16 Subregions)..152

List o f Figures 3

8.17 Mapping the Pipeline Model onto LPs. (a) Minimum Grain Size (16
LPs). (b) (c) (d) Intermediate Grain Size, respectively 8, 4, 2 LPs. . 153

8.18 Pipeline Model. Experiments with Various Partitions. Execution
Times.. 155

8.19 Pipeline Model: Execution Profile of LPi for Various Partitionings. . 156
8.20 Pipeline Model. Experiment with Various Partitions. Speedup (W= 10,000

for P16 and P8, No Synthetic Workload for P4 and P2).....................157

List of Tables

4.1 Some High-Performance Parallel Computers Parameters..................... 76
4.2 Characteristics of the Programming Environments Used in this Work. 77
4.3 Overheads Involved in a Pair of Send/Receive Operations................... 81
4.4 Hardware Characteristics of the NOW.................................... 82

5.1 Parameters of the Simulators.................. 86

8.1 Producer Consumer Model (Unbounded Buffer’s Capacity). Execu­
tion Times of the Different Simulators.. 133

8.2 Producer Consumer Model (Bounded Buffer’s Capacity). Experi­
ments Performed with Scenarios S I and S2... 139

8.3 Producer Consumer Model (Bounded Buffer’s Capacity). Execution
Times for Partitions P3 and P4 - Experiment SI.................................. 139

8.4 Producer Consumer Model (Bounded Buffer’s Capacity). Execution
Times for Partitions P3 and P4 - Experiment S2.......................................142

8.5 Manufacturing System Model. Execution Times of the Different Sim­
ulators... 148

8.6 Pipeline Model. Execution Times for Various Partitionings....................154

A.l MPI data types (C b inding)... 174

4

Chapter 1

Introduction

1.1 M otivation of the Work

The objective of the work presented in this thesis is to propose efficient, parallel
ways to simulate high-level algebraic Petri nets. The interest of the work is twofold:

1. Our research group’s effort focuses on the study of distributed systems and
their performance modelling. As a significant amount of simulation work is
performed, we would like to find a way of accelerating these simulations be­
cause they are time consuming.

2. We are also interested in the use of currently available multicomputers. Sim­
ulation is an interesting application to parallelise in this context.

Next we elaborate these two ideas.

1.1.1 M odelling and A nalysis o f Real System s

During the last few years, our research group has been working on the analysis and
use of high-level algebraic Petri nets. The effectiveness of our proposals has to be
validated somehow, and there are tools considered for this purpose: analytical mod­
els and computer simulation. This situation is common to many fields of science and
engineering. In this thesis, we will focus and speak, in general, about the evaluation
of any kind of real (or proposed) system specified using high-level algebraic nets.

Analytical tools can be described as cheap and fast to use. Of course the devel­
opment of an analytical model of a system can be very complex, but once a set of
equations has been developed, it is easy to extract information from it. Unfortu­
nately, this approach commonly requires the assumption of simplifications in some

5

Chapter 1. Introduction 6

(or many) of the characteristics of the system, for the researcher to be able to solve
the analytical problem. These simplifications can lead to a model whose behaviour
may be far from the behaviour of the real system: the results might not be accurate
if some of the simplifying assumptions are not realistic.

Computer simulation offers an interesting alternative: the system can be de­
scribed somehow (eg. using a simulation language) and then simulated using a
computer. The description could include simplifying assumptions, like the analyti­
cal model, and then the simulation time would be short. In contrast, the description
could be very detailed, containing as many elements as the real system, and then
a highly accurate insight into the behaviour of the system would be obtained. But
the accuracy comes at a price: simulation’s drawback is its long execution time.
Computer simulation is very flexible and can be used in many contexts:

• to validate an analytical model;

• to see how an existing system works, when it cannot be easily instrumented;

• to study a non existing system, without building it. There are many reasons
not to build a system: it might be very expensive, or it might be simply
impossible;

• to analyse the effect of different design parameters, in an existing or a non­
existing system.

Those using simulators know that analysing large and/or detailed systems can be
desperately slow. In this context, any possibility of increasing the execution speed of
the simulation is welcome. The speed increments due to the advances in VLSI (Very
Large Scale Integration) have been significant, but there always exists a demand
for more. The introduction in the market of reasonably priced parallel systems has
allowed researchers to accelerate many computations, and it seems logical to think
that simulation may also benefit from this technology.

1.1.2 Parallel Im plem entation of High-Level N ets S im ulation A p­
plications

As researchers in the broad field of parallel computing, we are interested in making
a good use of currently available parallel computers. During this research, we have
had access to a parallel computing system: a Network of Workstations (NOW) with
MPI (Message Passing Interface) and PVM (Parallel Virtual Machine) libraries at

Chapter 1. Introduction 7

Glasgow. It was our interest to see how well traditional high-level Petri nets sequen­
tial simulation applications could be adapted to run on these machines. A good
deal of work can be found in the literature reporting parallel algorithms to solve
many problems, mainly in scientific and engineering fields, but most of those prob­
lems have some characteristics that make them easy to parallelise: big, partitionable
data structures, simple communication patterns, reduced data dependencies, ...

While simulation is a tool commonly used by scientists and engineers, the algo­
rithms exhibit a behaviour that makes them difficult to parallelise: data structures
are not always regular, communication among the parts of the model may follow
arbitrary patterns, there are very strong data dependencies, and so on. But difficult
does not mean impossible. As it will be explained in Chapter 3, simulation can be
parallelised, provided that new algorithms axe developed, instead of simply trying
to make in parallel some of the operations of the sequential programs.

Being successful in the search of parallel and distributed simulators is very impor­
tant, because it extends the domain of applications that can be run in an available
parallel computer, increasing the usefulness of the investment, which is in general
expensive.

Obviously, we are not the first research group working on the field of parallel
and distributed simulation, as many work has been done in the last 10-15 years and
many work is still being done. Most of the work discussed in the literature about
Parallel Discrete Event Simulation (PDES) has been done using shared memory
multiprocessors for two reasons: (1) many multiprocessors are available; (2) they
allow a more optimised implementation of many algorithms compared to distributed
memory systems. However, it is assumed that future massively parallel systems will
be distributed memory systems. Many currently available machines are built this
way using message passing for synchronisation and communication.

The use of a network of workstations as a fully distributed parallel system is also
becoming very popular, because it is a very cost/effective alternative to a parallel
computer [Tur96]. The most popular model of communication for these systems is
also message passing, an approach followed in this work. While typically more loosely
coupled than the ’single’ box parallel architectures described as parallel computers,
network of workstations can provide an invaluable route for producing parallel code.
Further to this, they offer the opportunity for users without the resources to buy
massively parallel machines to gain some of the benefits of parallelism on machines
available locally, and perhaps not used constantly.

Chapter 1. Introduction 8

1.2 Tools

In the last years, a considerable effort has been devoted to the parallel and dis­
tributed implementation of discrete event simulators. The objectives were: (1) to
exploit the parallelism available in current multicomputers and multiprocessors and,
mainly, (2) to accelerate simulation runs.

For some simulations studies, it is necessary to run several simulations to study
the influence of a certain set of parameters on the system under study. In these
cases, the most convenient way of accelerating the job is simply running as many
simulations as processors are available, each one with different input parameters.
This technique is called replication. The achieved efficiency is very good, because
the simulations are completely independent, and therefore there is no need of com­
munication or synchronisation among the involved processors.

However, it is not always possible to replicate the simulator. In some studies it
is necessary to have the results of one simulation before starting with the next one;
this is the case when the aim is to tune a set of parameters. It is also possible that
the memory available at each processor is not large enough to keep a complete copy
of the simulator. These limitations of the replication approach justify the need of
solutions to parallelise a single simulation run.

The most promising techniques to perform parallel simulation uses the spatial
model decomposition: the system to simulate is decomposed into several subsystems,
and each subsystem is going to be assigned to a Logical Process (LP). As explained
in chapter 3, a synchronisation mechanism is needed to maintain causal relation­
ships among the events in the simulation. In this work, we analyse three different
synchronisation mechanisms: conservative, optimistic and synchronous. In all cases,
each LP has its own local view of time, and the collection of LPs run concurrently.
The difference between these mechanisms is how they deal with causality errors. In
conservative and optimistic mechanisms, the parallel simulation is asynchronous. A
conservative simulator never allows causality errors to occur. To do so, LPs block
before executing an event, until it is totally safe to proceed. An optimistic simulator
allows erroneous situations to arise (a new event might arrive from other LP, with
a timestamp smaller than that of the last executed event), but those are detected
and a rollback is done to jump to an error-free point in the (simulated) past. In
a synchronous parallel simulation, all the LPs which form the simulator share the
same vision of time, as if they had a global clock. Events are simulated in the same
order a sequential simulator would choose, simulating in parallel only those events
scheduled for the same time.

Chapter 1. Introduction 9

On the other hand, concurrent simulation uses the concept of temporal model
decomposition principles which could be an alternative approach to the application
of multiple processors to discrete event simulation models on shared-memory. In this
case, simulation processes are servers, each of which repeatedly waits for a pending
event to become available for simulation and then simulates it. The concurrent
pending-event set is central to this approach, and pending events are organised in
chronological order. In addition, it must prevent events from being removed for
simulation until there is an assurance that no events will be scheduled at earlier
times. Mutual exclusion for access to the state variables of the simulation model is
required due to the fact that multiple processes may simulate events in parallel.

1.3 Objectives

Previous research in parallel simulation shows that (1) the dynamic nature of par­
allel simulation problems is the principal reason that a “general” solution has been
elusive; (2) that its efficiency is highly dependent on the characteristics of the system
under study. For this reason it is not feasible to characterise the performance of the
different parallel simulation algorithms in a general context. It is possible, however,
to select a set of related models and extract conclusions about how a given algo­
rithm performs with that set of models. Our research will focus on the analysis of
high-level algebraic Petri nets. We will consider ECATNets (Extended Concurrent
Algebraic Term Nets) as models of our study. A detailed description of these models
are found in Chapter 2.

Algebraic theories have proved to be of great use for the formal specification of
abstract data types [EM85]. High-level algebraic nets have been introduced in order
to exploit the rich theory of algebraic specifications for high-level Petri nets. To
define classes of high-level Petri nets having structured individual tokens is a very
fundamental goal for making nets actually usable in real concurrent system mod­
elling. A promising approach is that of combining nets with algebraic specification
techniques. This results in a formal specification language which supports both as­
pects of system modelling, namely data structure and control structure modelling,
with suitable abstraction notions.

The practical significance of the high-level algebraic Petri net concept has been
shown in previous works [Bet91, BC92, BM93a, BMSB94, BM95] through the spec­
ification of problems mainly from the fields of communication networks, communi­
cation software, hardware diagnosis, and software testing. These are good examples

Chapter 1. Introduction 10

where high-level algebraic nets play fundamental roles.
These studies concluded that ECATNets are good candidates for qualitative/quan­

titative performance evaluation. Fine-grain and/or coarse-grain parallelism inherent
to these models has to be detected, then simulated on a computer. The work pre­
sented in this thesis has been focused on the simulation of Petri nets with these
characteristics using a collection of processors which might be able to collaborate to
solve problems.

Throughout the resarch we will focus on a better exploitation of the parallelism
inherent in high-level algebraic Petri net models and programming in multicomputer
environments.

A parallel computer may provide one or more of these programming paradigms:
SIMD (Single Instruction, Multiple Data), means that all the processes rim the
same program, instruction by instruction, at the same time, and MIMD (Multiple
Instruction, Multiple Data), meaning that each process might run a completely
different program. In particular, more restrictive case of MIMD is SPMD (Single
Program, Multiple Data), where all the parallel processes run the same program.

Shared memory computers have multiple processors and provide a global shared
memory. For efficiency reasons, each processor has also a local cache, which in
turn creates the problem of maintaining cache coherence. Synchronisation might
be provided by mechanisms such as semaphores. Message passing computers are
connected by a message passing network. Each processor has its own memory space.
Both communication and synchronisation are provided by means of messages sent
between processors.

Our work has been developed in message passing environments. There axe several
reasons for making this decision. Firstly, the use of a network of workstations because
no parallel computer is available at Glasgow. The fact that our simulation protocols
are built on top of the MPI message passing library makes them portable on a parallel
computer. Secondly, message passing is a paradigm widely used not only on NOWs
but also on certain classes of parallel computers, especially those with distributed
memory. Thirdly, parallel simulation algorithms based on spatial decomposition axe
described by means of a set of processes which interchange messages. Finally, the
concept of Distributed Shared Memory (DSM, generally built on top of message
passing) can be used to implement further concurrent simulation applications.

We are concerned by the hardware mechanism used for message passing because
it greatly influences the performance of the communication functions, and thus, of
the applications. In a network of workstations, the MPI message, passing library

Chapter 1. Introduction 11

uses TC P/IP over an Ethernet local area network. This medium provides a raw 10
Mb/s data rate, which must be shared among all the stations attached to it. The
communication effort is performed by the workstations CPUs, with the aid of the
Ethernet cards for accessing the medium.

Communication is different compared with a parallel computer. For example,
in the Intel Paragon there is a good deal of hardware support for message passing:
communication is separated from computation, by means of a collection of hardware
message routers organised in a mesh topology. The communication links which join
routers can move up to 1600Mb/s. Additionally, each node has a second processor
specialised in communication, leaving the main processor free to spend its time
performing computation.

In Chapter 4 we will give a deeper insight into the programming models provided
by parallel systems, as well as particular descriptions of the environments used in
this research.

1.4 Major Contributions

The major contributions of this work include:

• the introduction of the aspect of time in EGATNets. Since the introduction of
ECATNets [Bet91], the behaviour of a modelled system was explained by for­
mal reasoning. The aspect of time is implicitly specified and by transforming
the rewriting logic into a rewriting system, rapid prototyping and automatic
proving of the system is possible. ECATNets enriched with temporal specifi­
cation are suitable for discrete event simulation;

• the implementation of a model of ECATNets which can be simulated using a
discrete event simulator, along with four simulation engines able to work with
that model: one is sequential, and the other three are parallel, testing three
different synchronisation mechanisms in a multicomputing environment.

In this research we have characterised:

• which synchronisation mechanisms provide an adequate tool for our studies,
and which others are not so good. The conservative and optimistic approaches
perform well, while the synchronous approach does not seem to be the right
one for our purposes;

Chapter 1. Introduction 12

• the effect of the parameters of the ECATNet model on the performance of the
simulators. Models of large size whose components interact frequently con­
stitute a challenge for sequential simulators, but simplify the synchronisation
tasks of conservative and optimistic distributed simulators, offering good level
of performance;

• the effect that the organisation of a simulator has in its performance. The
partition of a ECATNet model into a set of submodels might be done in several
ways such as a separation of concern partitioning leading to fine, medium or
large grain LPs. Large grain LPs provide better performance than fine grain
LPs but it is sometimes advantageous to assign several medium grain LPs to
each processor;

• the influence of the target multicomputer on the efficiency of the simulation.
Our simulators (sometimes) exploit a fine-grain parallelism which requires a
fast message passing infrastructure. A network of workstations is not (always)
efficient because communication is too costly compared to computation;

1.5 Overview of the Thesis

The previous sections have given an introduction to the work presented in this thesis.
We summarise how it is organised.

Chapter 2 presents high-level algebraic Petri nets and focuses on ECATNets,
a kind of high-level algebraic nets used in this thesis. We start with a general
introduction to Petri nets then we describe how the aspect of time is handled in
these nets. It is shown how the concept of time is used in high-level nets in general
and how it is introduced in ECATNets.

In chapter 3 we provide a survey of parallel and distributed simulation tech­
niques. We start with a description of the general process of studying a system by
means of simulation. After introducing the main discrete event simulation concepts,
two common sequential simulation techniques are presented: time-driven and event-
driven. Then, a description of the ways of exploiting the parallelism available in
current multiprocessors is given, focusing on those techniques based on model de­
composition. After that, the conservative, optimistic and synchronous mechanisms
are presented, along with a series of improvements and optimisations to the basic
algorithms.

Chapter 4 gives an introduction to the programming environments available to
parallel systems, with special attention to the network of workstations with the

Chapter 1. Introduction 13

MPI library. This parallel system is a distributed memory system which provides a
message passing mechanism for synchronisation and communication.

Chapters 5, 6 and 7 describe a conservative, an optimistic (based on Time Warp)
and a synchronous simulator respectively. Each chapter includes a detailed descrip­
tion of the partitioning of the ECATNet model into submodels (each submodel to
be simulated by a LP), the LPs’ communication interface and the simulation en­
gine’s algorithms. Performance results of preliminary experiments are presented.
An ECATNet model from the area of communication networks is used to test how
the three distributed simulators behave under the parameters of the model using
different number of processors. It is observed that the partitioning of the ECATNet
model into submodels has a great impact on the achieved performance for the case
of the distributed simulators. Additionally, the performance of the optimistic sim­
ulator exceeds that of the conservative. The synchronous simulator exhibits poor
performance. The conclusions of this preliminary experiment were tested by three
later studies.

Chapter 8 describes the experiments performed on three case studies with the
sequential and the distributed simulators. Each one is studied separately, present­
ing in first place the experiments, followed by the results and a series of partial
conclusions. The availability of three different distributed simulation engines allows
a characterisation of the obtained performance as a function of the synchronisation
technique.

Finally, Chapter 9 summarises the contributions of this work, suggesting lines
for further research.

Chapter 2

High-Level Algebraic N ets

This chapter presents high-level Petri nets and focuses on ECATNets, a kind of
high-level algebraic nets used in this thesis. After a general introduction to Petri
nets, it is shown how the concept of time is used in high-level nets in general and in
ECATNets in particular.

2.1 Introduction

Petri nets is the oldest and perhaps the best established model of concurrent systems.
In their various formats, they have been studied extensively since first proposed by
Carl Adam Petri in the early 1960’s [Pet62] and several algorithms exist to determine
the functional properties of nets. The chief attraction of Petri nets is the way
in which the basic aspects of concurrent systems are identified both conceptually
and mathematically. Another paradigm which is aimed at testing for functional
correctness is that of process algebras or calculi for communicating systems.

This chapter is structured as follows. Section 2.2 gives a definition of Petri nets
and a summary of their properties, methods of analysis and semantics. A review
of the types of Petri nets is done in §2.3 and focuses on timed amd high-level nets.
Section 2.4 is devoted to a presentation of Extended Concurrent Algebraic Term
Nets as models of our study. The introduction of the aspect of time in these nets is
explained in §2.5. Finally, some conclusions are summarised in section 2.6.

2.2 Petri Net Definition

Petri nets [Pet81, Rei85, Mur89] are a graphical and mathematical tool applicable
to many systems. They are a promising tool for describing and studying informa-

14

Chapter 2. High-Level Algebraic N ets 15

Place p Place p

© ©
2 2

Transition t Transition t

O 0
Place q Place q

(1) (2)

Figure 2.1: A Usual Petri Net (1) Before Transition t Fires; (2) After Transition t
Fires.

tion processing systems that are characterised as being concurrent, asynchronous,
distributed, parallel, nondeterministic and/or stochastic. A Petri net is a five-tuple
PN = (P, T, F, W, Mo) (sometimes noted (N, Mo)) where :
P = {Pi> P2 ? •••, Pn} is a finite set of places called P-elements,
T = {£i, 2̂) •••? tm] is a finite set of transitions called T-elements,
F C (P x T) U (T x P) is a set of arcs (flow relation),
W : F —>-{1, 2, . . . } i s a weight function denoting the multiplicity of unary arcs
between the connected nodes,
P fl T = 0 and P U T / 0
Mo is the initial marking of P-elements (initial state of PN).

Place/Transition nets (P /T) [Rei86] which were just called Petri Nets, are cer­
tainly the most common and the most extensively studied class of nets. Tokens are
used in, the net to simulate the dynamic and concurrent activities of systems. Con­
ditions are modelled by places, and events are modelled by transitions. The places
and transitions are represented by circles and bars, respectively. The conditions
for the occurrence of an event are represented by the input places of a transition t.
The output places designate the conditions after the occurrence of an event. The
occurrence of an event is signaled by the firing of a transition and a transition fires
only when it is enabled. In order to study the dynamic behaviour of a system, the
enabling conditions of the transitions are expressed by the presence of tokens. The
tokens, which reside in places, axe represented by black dots. A transition is enabled
if each input place p of t is marked with at least w(p,t) tokens, where w(p,t) is the

Chapter 2. High-Level Algebraic N ets 16

weight of the arc from p to t. A firing of the transition removes w(p,t) tokens from
each input place p of t, and adds w(t,q) tokens to each output place q of t, where
w(t,q) is the weight of the arc from t to q (Figure 2.1). The number of tokens M(p)
at each place represents a marking of the graph (state). A token can be thought
of as representing some condition or holding some data items associated with that
place. When an interpretation is given to the entities of a PN to represent a system,
the tokens’ movements will reflect the dynamic behaviour of the system.

Several examples can be given to introduce some concepts of Petri nets as useful
modelling tools : finite-state machines, concurrency, dataflow computation, com­
munication protocol, synchronisation control, multiprocessors systems, ... Areas of
applications reported in the literature include cache coherence protocols, computer
aided software engineering, telecommunication system, database system, fault toler­
ant system, production system, real-time control system, communication protocols,
computer architecture, formal methods ... This list is by no means exhaustive, there
are often multiple references in an area, and there are many areas other than those
listed above. Further examples of applications are found in [Pet81, Rei85, Mur89].

2.2.1 Behavioural Properties

A major strength of Petri nets is their support for analysis of many properties
and problems associated with concurrent systems. Two types of properties can be
studied with a Petri net model: those which depend on the initial marking, and
those which are independent of the initial marking. The former type of properties is
referred to as marking-dependent or behavioural properties, whereas the latter type
of properties is called structural properties. Behavioural properties include :

• Reachability: is the fundamental basis for studying the dynamic properties of
any system. The firing of an enabled transition will change the token dis­
tribution in the net according to the transition rule. A marking Mn is said
to be reachable from a marking Mq if there exists a sequence of firings that
transforms M q to Mn. The set of all possible markings reachable from M q is
denoted by R(Mo).

• Boundedness: a place is k-safe or k-bounded if the number of tokens in that
place cannot exceed an integer k. Safeness is a special case of boundedness, a
place is safe if the number of tokens in that place never exceeds one.

• Liveness: a Petri net is said to be live if it is possible to ultimately fire any
transition of the net by processing through some further firing sequence. This

Chapter 2. High-Level Algebraic N ets 17

means that a live net guarantees deadlock-free operation.

• Coverability: a marking M is said to be coverable if there exists a marking M’
in R(Mo) such that M’(p) > M(p) for each p in the net.

• Persistence: a Petri net is said to be persistent if for any two enabled transi­
tions, the firing of one transition will not disable the other.

A conflict resolution strategy is needed if the net is not persistent. A decision place
is a place which is a source for more than one arc. Whenever it contains a token,
its output transitions are in conflict because the firing of one disables the other.

2.2.2 Analysis M ethods

Methods of analysis of Petri nets may be classified into the following three groups:

1. Coverability tree: given a Petri net (N, Mo), from the initial marking Mo we
can obtain as many new markings as the number of enabled transitions. Prom
each new marking, we can again reach more markings. This process results in
a tree representation of the markings.

2. Incidence matrix and state equations: is based on a matrix view of Petri nets.
Two matrices D~ and D + are defined to represent the input (to the transitions)
and output (from the transitions) respectively. Each matrix equation is m rows
(one for each transition) and n columns (one for each place). The solvability of
these equations is somewhat limited, partly because of the non deterministic
nature inherent in Petri net models and because of the constraint that solutions
must be found as non-negative integers.

3. Reduction method: it reduces nets to simpler nets while preserving properties
such as boundedness or liveness by applying transformations which preserve
these properties. The resulting nets might then be simple enough to be anal­
ysed by one of the standard techniques.

2.2.3 Sem antics

Petri nets are a formalism that possess most of the desirable features :

• modelling and analysing concurrent systems;

• simplicity of the model;

Chapter 2. High-Level Algebraic N ets 18

• formality of the model;

• immediate graphical representation;

• easy representation of asynchronous aspects;

• possibility of reasoning about important properties (reachability, liveness, bound­
edness).

Many different Petri nets semantics have been proposed in the literature. At the
most basic operational level we have of course the “token game”. To account for
computations involving many different transitions and for the causal connections
between transition events, various notions of process have been proposed, but process
models do not provide a satisfactory semantics denotation for a net as a whole. In
fact, they specify only the meaning of single, deterministic computations, while the
accurate description of the interplay between concurrency and nondeterminism is
one of the most valuable features of nets 1.

Some semantics investigations, particularly those capitalising on the algebraic
structure of Place/Transition nets, and the unification of the process-oriented and
algebraic views are discussed in [Mes92b].

2.3 Types of Petri N ets

2.3.1 Background

Any developer of discrete event systems knows that the most important quality of the
final system is that it must be functionally correct by exhibiting certain functional,
or qualitative properties decided upon as being important. Once assured that the
system behaves correctly, it is also important that it is efficient in that its running
cost is minimal or that it executes in optimum time or whatever performance measure
is chosen. While functional correctness is taken for granted, the latter quantitative
properties will often decide the success (or otherwise) of the system.

Ideally the developer must be able to specify, design and implement his system
and test it for both functional correctness and performance using only one formal­
ism. Petri nets, although graphical in format are somewhat tedious for specifying
large complex systems but, on the other hand were developed exactly to test dis­
crete, distributed systems for functional correctness. With a Petri net specification
one can test, eg., for deadlock, liveness and boundedness of the specified system.

^ S P (Communicating Sequential Processes) [Hoa85] does allow nondeterminism.

Chapter 2. High-Level Algebraic N ets 19

The major drawback of Petri nets, as originally proposed and process algebras
(amongst others) is that quantitative analyses are not catered for. As a conse­
quence, the developer who needs to know about these properties in his system has
to devise a different model of the system which, apart from the overhead concerned
provides no guarantee of consistency across the different models. Because of the
latter, computer scientists added time, in various forms, to ordinary Petri nets to
create Stochastic Petri Nets (SPNs) [Ajm89] for performance modelling and a great
deal of theory has developed around SPNs as these are generically known.

2.3.2 T im e A ssociation w ith Petri N ets

Another aspect which also contributed significantly to the development of Stochas­
tic Petri nets is the fact that their performance analysis is based upon Markov
theory. Since the description of a Markov process is a “tedious task” , abstract mod­
els have been devised for their specification. Of these, Queueing Networks (QNs)
were originally the most popular, especially since the analysis of a large class of QNs
(product-form QNs) can be done very efficiently. QNs cannot, however, describe
system behaviours like blocking and forking and with the growing importance of
distributed systems this inability to describe synchronisation naturally turned the
focus to Petri nets as well.

Stochastic Petri nets are therefore a natural development from the original Petri
nets because of (1) the advantage of their graphical format for system design and
specification; (2) the possibility and existing rich theory for functional analysis with
Petri nets; (3) the facility to describe synchronisation, and (4) the natural way
in which time can be added to determine quantitative properties of the specified
system.

The disappointing thing about Stochastic Petri nets is that the integration of
time changes the behaviour of the Petri net significantly. So properties proven for
the Petri net might not hold for the corresponding time-augmented Petri net. e.g.,
a live Petri net might become deadlocked or a non-live Petri net might become live.
Thus, analysis techniques developed for Petri nets are not always applicable to SPNs.
Also, using Stochastic Petri nets to specify the sharing of resources controlled by
specific scheduling strategies is difficult. So certain concepts from queueing theory
have been introduced to Queueing Petri Nets (QPNs) which offer the benefits of
both worlds, Petri nets and queueing networks.

Chapter 2. High-Level Algebraic N ets 20

A dding T im e to P e tr i N ets

Time has been added as an extra feature to Petri nets in three different ways which
are sketched here:

1. Each transition is associated with a time interval [MF76]. The lower (re­
spectively upper) bound of such interval gives the minimum (respectively the
maximum) delay, computed with respect to the time instant at which the
transition becomes enabled, from which (respectively to which) the transition
fires, if not disabled by another transition firing in the meanwhile. When the
maximum delay is reached and the transition has been continuously enabled
from the minimum delay, the transition must fire.

2. Each transition is associated with a duration [Ram74, RH80]. When the tran­
sition is enabled, it immediately fires and removes the enabling tokens from
the places of its preset. The tokens disappear and new tokens are created in
the postset of the transition when the duration associated with the transition
is elapsed.

3. Each place is associated with a duration [CR83]. A token created by a tran­
sition firing in a place becomes ready, i.e., it can participate in enabling a
transition only after the delay associated with the place is elapsed. A transi­
tion fires instantaneously as soon as it becomes enabled.

2.3.3 Tim ed Petri N ets

Petri nets we described in §2.2 have a limited modelling power. To remedy this, a
number of extensions have been proposed. A lot of properties of systems involving
time, particularly issues of performance evaluation and simulation, can be covered
by decorating Petri nets with requirements of timing: occurrence of transitions
or residence of tokens in places are assumed to take a distinguished amount of
time. These extensions have been widely adopted, either for necessity (eg. time is
sometimes essential for performance evaluation) or for convenience purpose. Petri
illustrates several semantics difficulties engendered by the introduction of time to
nets [Pet8 6]. We show in this section how to consider the concept ,of time in Petri
nets and present some kinds of timed Petri nets reported in the literature.

The introduction of time changes the semantics of firing. As an example, instead
of tokens being deposited in transition’s output places at the instant of firing, the
tokens are deposited after a delay chosen from the firing time distribution of the

Chapter 2. High-Level Algebraic N ets 21

transition. There are various types of timed Petri nets reported in the literature.
Timed Petri Nets (TPNs) are nets having deterministic delays [Mol85]. Stochastic
Petri Nets (SPNs) are obtained by associating a nondeterministic delay (which rep­
resents the enabling time) with each transition. When a transition is enabled by a
marking, a value is randomly chosen from the associated variable. This value reflects
the duration of the transition enabling period after which the transition is fired. As
a matter of fact, in a SPN, the transition fires after an exponentially distributed
amount of time [Ajm89], Since the first definition of the SPN several extensions
have been made. Generalized Stochastic Petri Nets [ACB84, ABC+91, ABC+95]
are stochastic Petri nets which allow transitions with zero firing time (called im­
mediate transitions) and exponentially distributed firing time, inhibitor arcs and
random switches. Timed transitions are assumed to have the lowest priority level,
whereas transitions at other priority levels are said to be n-immediate, where n is the
priority level. Subsequently, Extended Stochastic Petri Nets (ESPNs) are proposed
in which the most additional feature is represented by the presence of probabilistic
arcs that upon firing of a transition may deposit tokens on subsets of its output set
depending on a probability distribution [DTGN84]. Deterministic Stochastic Petri
Nets (DSPNs) [AC87] allow transitions with zero firing time or exponentially firing
time or deterministic firing time.

Stochastic Petri nets represent a formalism that is particularly interesting for its
peculiar feature of being a useful modelling language for studying the performance
of parallel systems [Bal92, WH94]. For example, they represent a formalism that is
capable of representing both the characteristics of the architecture (hardware) and
the pecularities of the program (software) of a parallel computer in such a way that
both validation and performance evaluation can be performed using basically the
same model [BDF92]. They are also useful for studying the correctness of parallel
programs, and for performance oriented parallel program design [BBCC92, Fer92].

It has been shown that Stochastic Petri nets are isomorphic to continuous time
Markov chains due to the memoryless property of the exponential distribution of
firing times. A stationary embedded Markov chain can be recognised [Ajm89]. The
system is represented by a Stochastic Petri net, and the reachability graph is con­
structed. Some analytical performance results are obtained if the firing time distribu­
tion functions associated with the transitions are exponential. If they are completely
arbitrary, it is necessary to resort to simulation. From the steady-state distribution,
performances such as the sojourn time in a state, steady state probabilities of mark­
ing, flow of tokens through a transition, the expected value of the number of tokens,

Chapter 2. High-Level Algebraic N ets 22

the mean number of firings in unit time can be computed [Mol85, Pag8 6].
Modelling with Petri nets in general has to be supported by computer tools

[Fel93]. Analytical evaluation and discrete-event simulation of Petri net models al­
low researchers to perform qualitative as well as quantitative analysis of the systems
they model. A number of simulators are available for different classes of Petri nets.
GreatSPN (GRaphical Editor and Analyzer for Timed and Stochastic Petri Nets)
[CFGR95] is a software package for the modelling, validation, and performance eval­
uation of distributed systems using GSPNs. TimeNET [Kel95] is a software package
for the modelling and evaluation of SPNs in which the firing times of the transitions
may be exponentially distributed, deterministic, or more generally distributed.

According to [CF93b] a Timed Transition Petri Net is a tuple TTPN = (PN, II,
A) where :
PN is a Petri Net,
n : T N assigns priorities to T-elements,
A : T t-¥ R assigns firing delays to T-elements.

A complete list of references on the association of time with nodes of the mod­
els described with the Petri net formalism is found in [BBB+94]. The aspect of time
in Petri nets is still an active area of research. Recently, processes have been defined
and successfully utilised for some net classes with time [VdFC95, AL97].

2.3.4 High-Level P etri N ets

Ordinary Petri nets fail to represent complex functional aspects. Due to that, high-
level Petri nets [JE91] have been proposed as a different class of extensions of Petri
nets, and allow the representation of functional aspects in full details. They address
the problem of dealing with data, their flow and transformations. Several high-level
nets can be found in the literature. We briefly review the best known and applied
net models.

Predicate-Transition Nets [Gen8 6] are defined as formal objects that can be in­
terpreted and manipulated in a mathematical way that is comparable to working
with logical formulae and algebraic expressions. In a Coloured Petri Net [Jen92],
an information is attached to each token. The information can be inspected and
modified when transitions fire. Coloured nets and Predicate-nets are very closely
related to each other.

Chapter 2. High-Level Algebraic N ets 23

Stochastic High-Level Petri Nets axe based upon high-level nets augmented with
exponentially distributed transition rates. They allow tokens with multiple at­
tributes, and the predicates associated with transitions may be expressed in terms
of the attributes of the tokens present in the input places of the transitions [LM8 8].
Generalized Stochastic High-Level Petri Nets are obtained from stochastic high-level
Petri nets by the introduction of immediate transitions with priorities, inhibitor axes
and cases [Car89].

A Regular Net (RN) is a Coloured Petri Net in which the colour domains of places
and transitions are made of any cartesian product of basic object classes, each class
appearing no more than once in the product [DH90]. A Regular Stochastic Petri
Net (RSPN) is a timed extension of a Regular Net, in which transitions axe either
immediate or have exponentially distributed firing delays. Well Formed (Coloured)
Nets (WN) axe formally defined as an extension of Regular Nets and have the same
modelling power as general Coloured Petri Nets, i.e., any CPN can be translated into
an equivalent WN model with the same underlying structure; only the expression of
the colour functions and of the composition of colour classes is rewritten in a more
explicit (and parametric) form, in terms of the basic constructs provided by the
WN formalism. Stochastic Well-Formed Nets (SWN) [CDFH93] axe an extension of
Regular Stochastic Petri Nets and Well-Formed (Coloured) Nets.

Environment/Relationship (ER) Nets axe high-level nets where tokens axe envi­
ronments, i.e., functions associating values to variables and an action is associated
with each transition, describing which input tokens can participate in a firing and
which possible tokens are produced by the firing [GMMP91]. An Interval Timed
Coloured Petri Nets (ITCPN) is a coloured Petri net extended with time which
models large and complex real-time systems [Van93]. Time is in tokens and tran­
sitions determine a delay (specified by an upper and lower bound, i.e., an interval)
for each produced token.

Object Petri Nets [Lak95] support a complete integration of object-oriented con­
cepts into Petri Nets, including inheritance and the associated polymorphism and
dynamic binding. In particular, Object Petri nets have a single class hierarchy which
includes both token types and subnet types. Interaction between subnets can be ei­
ther synchronous or asynchronous depending on whether the subnet is defined as a
super place or a super transition. The single class hierarchy readily supports mul­
tiple levels of activity in the net and the generation and removal of token has been
defined so that all subcomponents are simultaneously generated or removed, thus
simplifying memory management.

Chapter 2. High-Level Algebraic N ets 24

A new class of timed Petri nets for the specification of temporal constraints and
description of logical behaviour in distributed hypermedia systems is proposed in
[SdSSW95].

2.3.5 High-Level Algebraic N ets

High-level algebraic nets have been introduced in order to exploit the rich theory
of algebraic specifications for high-level Petri nets: Petri nets gain a great deal of
modelling power by representing dynamically changing items as structured tokens
whereas algebraic specifications turned out to be an adequate and flexible instru­
ment for handling structured items. Multisets over any domain can be specified by
sorts, operations and equations. The concept of algebra semantics, relating terms
to interpretations, appear to be directly applicable to high-level Petri nets.

Vautherin [Vau87] redefines the domains of coloured nets in algebraic terms
and gives a number of interesting results for deriving properties of the modelled
system through the application of standard analysis techniques to the underlying
Place/Transition net. Reisig [Rei91] uses the algebraic formalism to construct Petri
nets with structured tokens which turn out to be representable by established con­
cepts of algebraic specifications. A class of high-level nets (called OBJSA) which
use algebraic techniques instead of (multi) set theory for specifying the individual
tokens flowing into the net is proposed by Battiston et al. [BCM8 8]. OBJSA Net
Systems axe a class of modular high-level algebraic Petri nets in which : (1) the
net can be decomposed in state-machine components; (2) the domains to which in­
dividual tokens belong are defined as abstract data types using the language OBJ
[GKK+8 8]. Briefly, an OBJSA Net System is a couple C = (N, A) where N is an
extended SA (Superposed Automata) net and A is an OBJ algebraic specification.
The application of OBJSA nets to a realistic case study for what concerns dimen­
sions and complexity is found in [BBCC95]. The algebraic framework and Petri nets
appear suitable to the study of properties of systems (eg. safety properties) which
can be expressed by equations over the set of reachable states. Other properties like
liveness for instance are more difficult to treat in general because they do not only
depend on the set of reachable states, but also on the executions of these systems.
Recently Schmidt proposed a symbolic approach for the verification of siphons and
traps for algebraic Petri nets based on structural induction on the terms [Sch97].

Chapter 2. High-Level Algebraic N ets 25

2.4 Extended Concurrent Algebraic Term N ets

2.4.1 Introduction

ECATNets (Extended Concurrent Algebraic Term Nets) are a kind of high-level al­
gebraic nets which combine high-level Petri nets with algebraic data types. They are
used to model and simulate various aspects of distributed and parallel systems, com­
munication networks [BMSB93b], concurrent programming [CD97], manufacturing
systems [MBBP97, BCD98] ...

ECATNets are given semantics in terms of a rewriting logic that differentiates
them from other algebraic nets and makes them suitable to handle true concur­
rency. They are built around a combination of three formalisms. The first two
formalisms constitute a net/data model, and are used for defining the syntax of the
system, in other terms to capture its structure. The net model, which is an ordinary
Petri net [Mur89], is used to describe the process architecture of the system; the
data model, which is an algebraic formalism [EM85], is used for specifying the data
structures of the system. The third formalism, which is a rewriting logic [Mes92a],
is used for defining the semantics of the system, or in other words to describe its
behaviour. According to this logic, the system behaviour may be explained by for­
mal reasoning. Transforming this logic into a rewriting system [BM93b] may be
used for rapid prototyping and automatic proving of a system under design. More
details about ECATNets, their motivation and relation to other works are found in
[Bet91, BMSB92, BC92, BM93a].

2.4.2 From A TN ets to ECATnets

Motivating.ECATNets leads to motivating Petri nets, abstract data types, as well as
their association into a unified framework. Petri nets are used for their foundation
in concurrency and dynamics, while abstract data types are used for their data
abstraction power and solid theoretical foundation. Their association into a unified
framework is motivated by the need to explicitly specify process behaviour and
complex data structures in real systems.

ECATNets are an extension of CATNets (Concurrent Algebraic Term Nets),
which themselves evolved from ATNets (Algebraic Term Nets), introduced for the
first time by Bettaz in [Bet91]. The main difference between ATNets and CATNets
is a lack of semantics for the first ones disabling them to handle truly concurrent
systems. The formal definition of CATNets (syntax and semantics) is given in
[BM93a].

Chapter 2. High-Level Algebraic N ets 26

\ c a d 1

Figure 2.2: A Simplified CATNet

DT(P>*) “ |CT(p’,t)
IC(p,t)

TC(t)

Figure 2.3: A CATNet.

Definitions

In ordinary Petri nets [Mur89], places and arcs are annotated by multisets of black
dots, called tokens. From a syntactical point of view, the only difference between
usual Petri nets and simplified CATNets is that places and arcs in simplified CAT­
Nets axe annotated by multisets of algebraic terms (Figure 2.2), the syntax and
semantics of which are given by abstract formal specifications called algebraic spec­
ifications [EM85]. Building of highly compact model often necessitates the use of
powerful syntactic notations. For CATNets notations inspired from [WH87] axe used
and consist mainly in (Figure 2.3):

• Distinguishing the multiset of enabling tokens (Input Conditions: IC(p,t))
from the multiset of tokens which have to be removed when a transition t is
actually fired. The removed tokens are called Destroyed Tokens and denoted
by DT(p,t). The deposited tokens are called Created Tokens and denoted by
CT(p\t).

• Annotating not only places and arcs but also transitions. However the tran­
sitions axe annotated not by multisets of algebraic terms, but by boolean ex­
pressions, called Transition Conditions (TC(t)).

In some situations we are interested in firing a transition when its input place is
empty. Bettaz et al. suggested in this situation to use the notation empty at the

Chapter 2. High-Level Algebraic N ets 27

place of the multiset IC(p,t) [BMSB93a, BMSB93b]). In some other situations we
would like to fire a transition if its input place does not contain a given multiset M
of precised tokens. For this situation to use the notation ~M instead of the multiset
IC(p,t) is also suggested in [BMSB93b].

Let CATNas(X) be a CATNet syntactic structure. The ECATNet syntactic struc­
ture denoted by CATNas(X)+ is defined inductively as follows:
CATNas(X) C CATNas(X)+
empty G CATNas(X)+
if [m]+ G CATNas(X) th e n ~[m]+ G CATNas(X)+
CATNas(X) will be called the ECATNet syntactic substructure.

An ECATNet is a structure (P, T, s, IC, DT, CT, C, TC) [BMSB92] where:
P is a set of places and T is a set of transitions;
s: P —> S is a function that associates a sort with each place;
IC (Input Condition): (P x T) 4 CATNas(X)+ ;
DT (Destroy Tokens) : (P x T) —> CATNas(X);
CT (Created Tokens): (P x T) -> CATNas(X);
C (Capacity): P -* CATNas(0) is a partial function such that for every p G do-
main(C), C(p) G CATNas(0);
TC (Transition Condition): T —> CATNas(X)&00/ is a function such that for every
t G T, TC(t) G CATNas(X(t))b00/ where X(t) is the set of variables occurring in
IC(p,t) (when defined), DT(p,t) and CT(p,t) for every p G P. X(t) will be called the
transition context.

A marked ECATNet is an ECATNet with a function M: P —> CATNas(0) such
that for every p G P, M(p) G CATNas(0) and M(p) C C(p) if p G domain(C).

In a generic ECATNet, IC, DT and CT are multisets of (equivalence classes of)
terms, with ©, D, C, \ being respectively the multiset union, intersection, inclusion
and difference, and (f>M the identity element. We let [x]© denote the equivalence class
of x, w.r.t. the ACI (Associative, Commutative and with Identity element) axioms
for 0 . The terms are defined by an algebraic specification of an abstract data type
given by the user [EM85]. We let [x]E (or just [x]) denote the equivalence class
of x, w.r.t. the axioms (equations) given by the user in his (her) specification. TC
(Transition Condition) is a boolean expression which may contain variables occuring

Chapter 2. High-Level Algebraic N ets 28

in IC (Input Condition), DT (Destroyed Tokens) and CT (Created Tokens). Each
place is associated with a capacity C(p) defined as a multiset of closed (equivalence
classes of) terms. The marking M(p) of a place p of the net, which is itself a multiset
of closed terms, is defined w.r.t. the capacity (which may be infinite). The extensions
are related only to IC, and may be considered as an equivalent of the inhibitor arc
concept as defined in [Bil89],

Transition firing and its conditions are expressed by rewrite rules which axe
strongly depending on the form of the syntactic notation used for representing IC.
Those rewrite rules together with a set of deduction rules define a rewriting logic
[Mes92a] which gives the semantics of the net. The left-hand and right-hand sides
of the rewrite rules are multisets of pairs of the form (p,[m]®), where p is a place
of the net and [m]© a multiset of algebraic terms. The multiset union on the pairs
(p,[m]©) is noted 0 , and <f)B is the identity element for this case. Let us recall in the
following part of this section the forms of the rewrite rules (metarules) to associate
with the transitions of a given ECATNet [BM93a, BMSB92]. These metarules act
as a parallelising compiler which tries to find sequences of “code” which may be
executed in parallel. Examples on concrete instantiations and practical use of these
metarules are found in [BMSB93a, BMSB93b, Bet93, BMSB94].

1 IC (p ,t) is of th e form [m]©

Case l[IC(p,t)]® = [DT(p,t)]@
The form of the rule is given by:
t: (p,[IC(p,t)]©) -> (p\[CT(p’,t)]©)
where t is the involved transition, p its input place, and p’ its output place.

Case 2[IC(p,t)](& n [DT(p,t)J® = </>M
t: (p,[IC(p,t)]©) 0 (p,[DT(p,t)]©) fl [M(p)]© ->
(p,[IC(p,t)]©) 0 (p\[CT(p’,t)]©)

Case 3fIC(p,t)J® n /DT(p,t)]© ^ <f)M

This case may be solved in an elegant way by remarking that it could be brought
to the two already treated cases [BM93a].

2 IC (p ,t) is of th e form ~[m]©

t: (p,[DT(p,t)]©) n [M(p)©]
(p\[CT(p\t)]©) if «IC(p,t)]© \ «IC(p,t)]© fl [M(p)]©) = (f)M) ->• [false]

Chapter 2. High-Level Algebraic N ets 29

3 IC (p ,t) = em pty

t: (p,[DT(p,t)]0) fl [M(p)0]) ->
(p\[CT(p\t)]©) if ([M(p)]©) -> (f>M)

When the place capacity C(p) is finite, the conditional part of the rewrite rule
includes the following component:

([CT(p,t)] 0 © [M(p)]©) n [C(p)]©) -> [CT(p,t)]©© [M(p)]© (C ap)

In the case where there is a transition condition TC(t) the conditional part of our
rewrite rule must contain the following component:[TC(t)] —> [true].

Note that if one or more output place(s) has (have) a finite capacity, the condi­
tional part of the rewrite rule must contain a component of the form denoted by
(C ap) for each one of these places.

2 .4 .3 R e w ritin g Logic

A logic is understood as a method of correct reasoning about some class of entities.
Rewriting logic is a logic of becoming or change, not a logic of equality, where a
sequent: [t]—>[t’] should be read as “[t] becomes [t’]”. The rules of rewriting logic
are rules to reason about change in a concurrent system. They allow us to draw
valid conclusions about the evolution of the system from certain basic types of
change. For rewriting logic, the entities in question are concurrent systems having
states and evolving by means of transitions. The rewrite rules in the theory describe
which elementary local transitions are possible in the distributed state by concurrent
local transformations. The distributed state of a concurrent system is represented
as a term whose subterms represent the different components of the concurrent
state. What the rules of rewriting logic allow us to reason correctly about is which
general concurrent transitions are possible in a system satisfying such a description.
Research has been carried out extensively on rewriting logic since it was introduced
in the beginning of the nineties. A deeper presentation of this logic and its use as a
semantic framework for concurrency is given in [Mes96].

Chapter 2. High-Level Algebraic N ets 30

2.4.4 EC A TN ets Semantics

It is worth to mention that it is not easy to explain the behaviour of ECATNets
merely by giving the equivalent of a firing-like rule. This is because of their level
of abstraction as well as their concurrent behaviour. We may however informally
comment on this behaviour in the following way (see Figure 2.3). A transition t is
fireable when various conditions are simultaneously true. The first condition is that
every IC(p,t) for each input place p is enabled. The second condition is that TC(t)
is true. Finally the addition of CT(p’,t) to each output place p’ must not result
in p’ exceeding its capacity when this capacity is finite. When t is fired DT(p,t) is
removed from the input place p and simultaneously CT(p’,t) is added to the output
place p \

ECATNets semantics enables the handling of truly concurrent systems. The
rewrite rules describe Petri net transitions effects as elementary types of change.
Such rules act in reality as the axioms of the higher mentioned rewriting logic.
The axioms are in reality conditional rewriting rules describing transitions effects as
elementary types of changes. The deduction rules allow us to draw valid conclusions
about the evolution of the ECATNet from these changes. A rewrite rule is a structure
of the form ”t: u —» v if boolexp”; where u and v are respectively the left and the
right-hand sides of the rule, t is the transition associated with this rule, and boolexp
is a Boolean term. More precisely u and v are multisets of pairs of the form (p,
[m]®), where p is a place of the net, [m]® a multiset of algebraic terms, and the
multiset union on these terms, when the terms are considered as singletons. The
multiset union on the pairs (p, [m]®) will be denoted <g>. We let [x]® denote the
equivalence class of x, w.r.t. the ACI axioms for <g>. An ECATNet state is itself
represented by a multiset of such pairs where each place p is found at least once.
Given a set R of rewriting rules (defining all the elementary types of changes), we
say that R entails a sequent s -» s’ (defining a global change from a state s to a state
s’) iff s -¥ s’ can be obtained by finite and concurrent applications of the following
rules of deduction: Reflexivity, Congruence, Replacement, Splitting, Recombination
and Identity [BM93a].

The reflexivity rule says that everything may be transformed into itself. The
congruence rule says that elementary changes have to be correctly propagated. The
replacement rule is used when variable instantiations are necessary. The splitting
and recombination rules allow us, by ’’judiciously” splitting and recombining dif­
ferent multisets of equivalence classes of terms, to detect ECATNet computations
exhibiting a maximum of parallelism. The identity rule allows to relate 0-e., the

Chapter 2. High-Level Algebraic N ets 31

ti

d / \ a + b

e f f c d -f c

a

0 0 0 0
r q r q

Figure 2.4: Firing in Parallel in ECATNets.

identity element of ©) with (i.e., the identity element of ®). Once reviewed the
basic notions about rewriting logic and its use for describing the semantics of ECAT-
Nets, let us. now recall the forms of the rewrite rules (i.e., the metarules) to associate
with the transitions of a given ECATNet. Examples on concrete instantiations and
practical use of these rules are found in [BMSB93a, BMSB93b].

An ECATNet can be viewed as a model of concurrent system: if a certain num­
ber of transitions are enabled simultaneously and if they are not in conflict, they
can be fired in parallel (Figure 2.4).
The rewrite rules associated with transitions ti and t2 are:

ti: (p,d) -> (r,e ® f),
t2: (p,a © b) (q,c)

and the initial state is given by: (p,a © b © c) <8> (q,0) <8 > (r,0)

The deduction of the final state from the initial state may be performed using the
rewriting logic associated with the net. The decomposition rules are:
(p,a © b © c) <g> (q,0) ® (r,0) ->•
(p,a © b) <g> (p,d) ® (q,0) ® (r,0) -»
(q,c) <g> (r,e © f) <8 > (q,0) ® (r,0) (* application of the rewrite rules in parallel *)
(q,c) ® (q,0) <8 > (r,e © f) ® (r,0) —> (* application of the structural axiom of com­
mutativity *)
(q,c) ® (r,e © f) ® (p,0) (* application in parallel of the structural axiom of identity

*)

Chapter 2. High-Level Algebraic N ets 32

2.4.5 Exam ple of an EC ATNet

The objective of this example, borrowed from [BM93a], is not only to illustrate
the use of ECATNets, but also to present their deficiences, in order to show the
motivation of the proposed solution (§2.5).

The specification, from the area of computer networks [Tan96], deals with the
behaviour of the Ethernet transmitting station. It comprises four modules (Figures
2.5 .. 2.8), each module is specified by an ECATNet model. The first module deals
with the functions of formatting and transmitting starting. The second module is
relative to the functions of transmission with success and acknowledgment. The third
module treats essentially the functions of collision handling and acknowledgement.
The fourth module is relative to the retransmission function.

The transmitter station transmits one frame at a time. The user is not allowed
to request the transmission of a new frame before receiving the ackowledgement of
the previous frame. The formatting function starts when a token of type “d,s,data”
is deposited in place FROMJJSER. This token is considered as a primitive trans­
ferred from the user layer to the MAC layer for requesting the transmission of data
“data”, from a source “s” to a destination “d”. The place FROM.USER is an inter­
face between the two layers. The frame “d.s.data.fcs” is then deposited as soon as it
is composed in a transmission register (TRANS-REG). The formatting function is
consisting of the concatenation of sequences of bits corresponding to the addresses
“d” and “s”, to the data “data”, and to the error control sequence “fcs” previously
computed. On the other hand, the MAC layer is listening to the medium (CAR-
RIER-SENSE) in order to avoid any collision occurring with a current transmission.
The place CARRIER-SENSE is an interface between the MAC layer and the physical
layer. When the medium becomes free (a token “false” is present in place CAR­
RIER-SENSE), it waits a certain amount of time corresponding to the inter-frame
spacing delay. Then, considering that the transmission may terminate with success
(deposit of a token “false” in place BUSY-CHANNEL and a token “true” in place
SUC-TRANS), it takes possession of the medium (CHANNEL-ACCESS) and the
transmission starts (deposit of a token “true” in INIT-TRANS).

Chapter 2. High-Level Algebraic N ets 33

ROM -USERUSER LAYER

(d ,s,da ta)r
C O M PU T E -FCS,,

fcs rASSEMB_FRAME

tcs
ER R O R-SEQ

d.s.data.fcs

TR A N S.RE G

d.s.data.fcs

CHANNEL-ACCESS
MAC LAYER

true
IN IT .TRA N S

false
BUSY.CHANNEL

not(x)

x=false DELAY

SU C.TRAN S
false

CARRIER-SENSEPH Y SICA L LAYER

T O -U S E R

USER LAYER

ACK1

]~ K 2)
R E T R -R E GSU C .TR A N S

false

ZaXSEEL
i n i t . t r a n :

tru e
rem ove(f)

TR A N S-FRA M E
TR A N SJREG ^em pty

MAC LAYER S & \

head(f)IN IT -JA M

PHYSICAL LAYER 81 CHANNEL

Figure 2.5: Starting of Transmission Figure 2.6: Transmission with Success

TO -U SER

U SER LAYER

collision-error
ACK2 RET R-CO U N T

rc > n
false

R ETR-REG

RETR-ATM1
TRANS-JAM | a m o v e d) .

JA M .REG

head(j)true

INIT-JAM
'true

COLLISION
MAC LAYER x = true

not(x)

l-TRANS

PHYSICAL LAYER

C O LLISIO N -D ETECT CHANNEL

R E T R -R E G R E T R -A T M P T S

R E T R -C O U N TIN IT-JA M R ET R A N S
0 < rc < nfalse

a d d n (rc ,l)

TR A N S-R E G

Figure 2.7: Collision Handling FiSure 2 -8 : Retransmission

Chapter 2. High-Level Algebraic N ets 34

When we started this research we found out that there was no explicit specification
of time in ECATNets. For instance, time is specified implicitely in module “Starting
of transmission” (inter-frame spacing delay (action DELAY)). In module “Retrans­
mission” , the random waiting time before retransmission is also implicitely specified.
If a collision occurs during the frame transmission (several nodes start transmission
more or less simultaneously), the transmission is aborted and has to be repeated
from the beginning (this state is called backoff). The backoff time must be random
to avoid repetitive collisions and prevent a deadlock. It is computed anew on every
collision. A variety of methods are used to determine this time:

1 . make the backoff proportional to the nodes’address (ID): it is an efficient
method but gives a certain type of priority to nodes with lower addresses.
The address is defined so that every Ethernet station will have a unique ad­
dress which is built into the hardware;

2 . make the backoff time random: it does not have the implied priority property,
but consecutive collisions may still happen. It is a uniformly random number
of slot times chosen in the interval [0 ..2 **min(rc,1 0)], where rc is the number
of failed attempts.

2.5 Introducing Time in EC ATNets

Previous works [BMSB93a, BM93b, BMSB93b, Bet93, BMSB94] showed how ECAT-
Nets are used for specifying and validating applications from the area of distributed
and parallel systems. The achieved models have two drawbacks: the occupation of
the problem of time and a bad exploitation of the parallelism inherent in the studied
models. The objective of introducing time in ECATNets is twofold. The first objec­
tive is the need to specify practical applications where the explicit specification of
time is “missing”. The second objective is the need to turn to simulation because
the formal specification of ECATNets is based on implementation concepts rather
on theoretical ones.

EC ATNets simulation is attractive because it can not only perform the validation
of these models, but can evaluate their performances as well. Intuition suggests
that simulation of these models may be amenable to parallel execution in order to
exploit the inherent parallelism. It is worth mentioning that we are dealing with
the parallelism at two levels: the inter-module level where parallelism is achieved
by partitioning the “initial” models w.r.t. a “separation of concern” strategy, and
the intra-module level where the detection of parallelism is permitted by the use of

Chapter 2. High-Level Algebraic N ets 35

rewriting logic, since this logic may act as a “parallelising compiler” which tries to
find sequences of “code” that can be executed in parallel.

2.5.1 A spect of T im e in EC A TN ets

The literature shows that Petri nets have been extended in different ways in order
to incorporate the concept of time: associating time values with transitions or as­
sociating time values with places. We propose extensions for ECATNets which will
permit to take into consideration the management of the aspect of time [DB94]:

1 . the introduction of the notion of time in the token itself [MPT91]. A timestamp
is attached to each individual token in order to represent the time it was
created. Tokens, which are algebraic terms, can carry as much information as
needed, including time information. This will lead to the firing of a transition
depending on the replication of the token in input places. Created tokens
are then defined by a multiset of the form CT(q, t, ts) where ts is a variable
representing the timestamp (firing time of t);

2 . in ECATNets, transitions are not labelled using multisets of algebraic terms,
but using boolean expressions (transitions conditions (TC)). We may introduce
in each transition a (marking) related rate. This will lead to take into account
a firing time to perform the operations “remove/deposit tokens”.

Research has been done to put time in high-level Petri nets. The relationships
between high-level Petri nets and timed Petri nets are investigated by Morasca et al.
[MPT91], where the generality of time representation in Environment/Relationship
nets is assessed. It is shown how the mechanism for time representation introduced
in ER nets is extended to both Coloured Petri nets and Predicate/Transition nets.
The authors use the definition of high-level nets simulation, which can be local,
state-behaviour or local state-behaviour. A unifying Petri net based model for time
representation using ER nets is proposed by Ghezzi et al. to generalise most time
Petri net based formalisms which appeared in the literature [GMMP91]. We have
chosen to inscribe ECATNet transitions for the following reasons:

1 . transitions are used to model the active parts of a system that can be assigned
to a timed behaviour in a natural manner;

2. this choice allows to preserve the incremental approach used for defining ECAT-
Nets;

Chapter 2. High-Level Algebraic N ets 36

3. this choice preserves the semantic framework defined in terms of rewriting
logic. Representing the concept of time at the level of places lea,ds to replicating
the corresponding token in several places;

4. this choice does not obscure the state of the system modelled by the ECATNet
during the time that a process is in execution.

In our approach the form of the rewrite rule associated with a transition must guar­
antee the following constraint: the timestamp of the created token (CT) should be
equal to the time the transition starts firing augmented with its firing time (right
hand side of the rule). In some situations it is necessary to specify an activity dura­
tion or an action which must be performed before its deadline. At the rewrite rules
level the concurrent execution of the rewrite rules associated with the transitions
must be controlled and monitored. The rewrite rule associated with a transition is
marked when the firing starts, and unmarked when firing ends.

Inscribing transitions to integrate timing aspects in ECATNets is achieved by
introducing a new syntactic notation. Each transition ti is specified with a firing
rate A*. Let A : T —> 1Z assigns firing delays Ai to T-elements ti 6 T, three major
types of transitions are specified:

1 . zero delays are associated with transitions that are called immediate;

2 . deterministic timed transitions are annotated with a firing rate A* where A» E
71 is a deterministic value;

3. stochastic timed transitions where A* is an instance of a random variable.

Markings that enable timed transitions only are said to be tangible, whereas mark­
ings that enable immediate transitions are said to be vanishing. If T contains
stochastic timed transitions, the firing-delay random variable is exponentially dis­
tributed.

2.5.2 Firing Semantics

ECATNets integrate two different kinds of timing aspects and both relate to tran­
sitions. EC ATNets offer delay times as defined for Stochastic Petri Nets [Ajm89].
They also provide firing times as defined for Timed Petri Nets [RH80], which are
usually preferred for modelling an activity duration while delay times are more suit­
able to represent a waiting period or a preparation time. Two firing policies can be
defined for ECATNets, leading different semantics and intents for different modelling
domains:

Chapter 2. High-Level Algebraic N ets 37

1. A transition firing is atomic, in that removing tokens from input places (DT)
and depositing tokens in output places (CT) are a single indivisible operation
(Figure 2.9). A delay elapses between the enabling and the firing of the tran­
sition ti , during which the enabling tokens reside in the input places (ti must
be continuously enabled during the time A*, and must fire after that time; U
can also become disabled by the firing of another transition). Considering the
example of Figure 2.5, when transition DELAY is enabled to fire at time Tsim
and a firing delay d is associated with this transition, then :

• at time Tsim the transition is enabled to fire;

• a firing delay is elapsing from Tsim to Tsim+d;

• at time Tsim +d the transition fires; appropriate tokens are removed from
its input places (CARRIER_SENSE and SUC.TRANS) and deposited in
its output places (SUC.TRANS and BUSY.CHANNEL).

0

0 0 6
(1) (2) (3)

Figure 2.9: Firing Behaviour in EC ATNets (Atomic Firing).

2. When the transition is enabled, it fires in three phases. It immediately removes
the enabling tokens (DT) from the places of its preset. The tokens disappear
and new tokens (CT) are created in the postset of the transition when the
duration associated with the transition is elapsed (Figure 2.10). Examples of
such firing semantics are found in chapter 8 .

These two different firing semantics affect the construction of the EC ATNets simu­
lation engine (sequential or parallel) because of the event-list management.

Chapter 2. High-Level Algebraic N ets 38

0 0 0

0 0 0
(1) (2) (3)

Figure 2.10: Firing Behaviour in EC ATNets (Three Phase Firing).

2.6 Conclusion

In this chapter we have reviewed a series of concepts related to Petri nets in general
and to high-level algebraic nets in particular. The presentation has been purposefully
biased towards Extended Concurrent Algebraic Term Nets which are built around a
combination of three formalisms: the net structure (a P /T net), the data model (an
algebraic formalism) and the rewriting logic (to describe the system’s behaviour).
This decision has been motivated by the use of ECATNets as a powerful modelling
tool for research.

This chapter has also served to introduce the reasons of our interest in adding
time to ECATNets. There was no explicit specification of time in ECATNets when
we started this research. These nets enriched with temporal specification are suitable
to discrete simulation. This is an important step in their quantitative performance
evaluation. In this sense, the use of transition timed Petri net formalism provides a
substantial contribution to the implementation of efficient, general purpose discrete
event simulation techniques. The reachability set of a timed ECATNet is identical
to the one of the underlying P /T net model with inhibitor arcs. Therefore some
of the structural properties valid for the basic underlying Petri net are retained
by the ECATNet model. At present, firing times of the transitions are immediate,
deterministic or exponentially distributed. Obviously there is a great scope for
further work in tailoring Petri net analysis techniques to ECATNets.

Modelling with ECATNets in general has to be supported by a computer tool.
A main goal of our research project is to develop a user-friendly and efficient tool for
modelling with ECATNets. Due to the concepts of token types which are algebraic
terms and timing concepts of ECATNets, a formal analysis of ECATNet models is
not an easy task: an ECATNet model must be simulated in order to get information

Chapter 2. High-Level Algebraic N ets 39

on its features. Simulation can not only perform the validation of ECATNet models,
but evaluate their performances as well. A problem with the simulation of any kind
of model is that it takes enormous amount of time to execute, if large or complex
systems have to be treated in a detailed manner. In this case simulation of these
models could be amenable to parallel execution in order to exploit the inherent
parallelism.

Chapter 3

Distributed Discrete Event
Simulation

This chapter surveys the literature about parallel and distributed discrete event sim­
ulation, with the purpose of introducing the terminology and algorithms used, in the
remainder of the thesis. After a general introduction to discrete event simulation, it
is shown how the concept of causal order is the key element which allows the paralleli-
sation of simulations, when used instead of temporal order. Three distributed sim­
ulation algorithms used in this research are then introduced: conservative (CMB),
optimistic (TW) and synchronous (SYNC).

3.1 Introduction

Most of the fields of science and technology require the modelling and analysis of the
behaviour of systems. Common to realistic models of time dynamic systems is their
complexity, very often prohibiting numerical or analytical evaluation. Prototyping
is a complementary tool to use, but in many cases it is very expensive and in others
it is absolutely infeasible. For those cases, simulation remains the only tractable
methodology. Also, simulation is an easily controlled and guided methodology.

As computer simulation is a wide field, our domain of study will focus on dis­
crete event systems simulation. We describe the sequential approaches of this class
of simulation problems, then a survey of the currently available techniques to realise
parallel and distributed discrete event simulation is made. The methods and ter­
minology described in this chapter will be repeatedly used in the remainder of the
thesis.

In this chapter we start considering the general topic of analysing systems by

40

Chapter 3. D istributed Discrete Event Simulation 41

means of computer simulation (§3.2), and then the sequential simulation algorithms
for discrete event systems are introduced (§3.3). As these algorithms become very
expensive in memory demands and execution time when the problem being simulated
is large, the need of parallel processing to perform the simulations become evident.
Several approaches to the parallelisation of discrete event simulators are presented,
with special attention to event-driven simulations based on model decomposition
(§3.4). Sections 3.5, 3.6 and 3.7 are devoted to the description of three important
families of parallel simulators: asynchronous conservative, asynchronous optimistic
and synchronous. The basic algorithms are introduced, with their most important
variations or optimisations. In §3.8 a review of the literature on the application of
DDES techniques to modelling tools is done, summarising the main results of studies
similar to ours. Finally, some conclusions and some directions for an interest in a
deeper insight into this field axe given in §3.9 .

3.2 M odelling and Simulation

The simulation of real systems using computers needs, at least, four steps:

1 . study of the real system in order to understand its characteristics;

2 . modelling the system;

3. simulation of the model;

4. analysis of the simulator’s output.

The systems to study can be separated into two categories: discrete or continuous.
A system is discrete when its state changes only at discrete times, whereas a system
is continuous when its state vaxies continuously in time.

A model being simulated can be classified as static or dynamic, deterministic or
stochastic, and discrete or continuous. A model is static when it tries to capture
snapshot of a system, at a particular instant of time, and it is dynamic if it tries to
represent the evolution of the system along a certain interval of time. A model is
deterministic when it generates, for a given set of input values, a single set of output
values; it is stochastic when random variables are part of the input and, therefore,
the output can only be considered as an estimate of the actual behaviour of the
system.

Chapter 3. D istributed Discrete Event Simulation 42

3.3 Discrete Event Simulation

A system to be simulated is defined to be a collection of entities that interact and
operate to accomplish some logical end. These entities are discrete objects, each
being separate from all the others. Entities possess certain properties called at­
tributes that affect the behaviour of the entities within the model. The system’s
state is the collection of attributes or state variables that represent the entities of
the system. An activity represents a time period of a specified length. Entities may
be in one of two states: either they are busy, engaged in some activity, or they are
idle, doing nothing but waiting for the arrival of an event. An event is defined as an
instantaneous occurrence that may after the state of the system.

In discrete event simulation, changes in state of the model being simulated occur
at discrete points in time. Fundamental to every simulation study is the mechanism
to model the passage of time. Thus, every model contains a state variable called
the simulation clock. Major world views, the lens through which the underlying
modelling paradigm views the model, include Event Scheduling, Activity Scanning,
and Process Interaction [LK91]. The differences between the world views lie in the
way in which manner the model processes the events. The differentiation among
world views is best captured using the concept of locality:

• Event scheduling provides locality in time: each event routine in a model
specification describes related actions that may all occur in a single instant.

• Activity scanning provides locality of state: each activity routine in a model
specification describes all actions that must occur due to the model assuming
a particular state.

• Process interaction provides locality of object: each process routine in a model
specification describes the entire action sequence of a particular model object.

The object-oriented approach provides powerful modelling concepts to support
computer-based tools for complex system design. Discrete-event simulation
has a long history of association with the object-oriented paradigm and pro­
vides the ability to study the dynamic behaviour of models that are defined
with object-oriented means [Zei91].

We consider that a real system, or physical system is modelled as a physical process
(PP) which evolves in time. It is assumed that a global clock exists which can be
used as a reference of the advance of time in the system. A process is a sequence of

Chapter 3. D istributed Discrete Event Simulation 43

events that may contain several activities. The model also maintains a list of events
that have been scheduled but that have not occurred yet, called the future event list,
ordered by increasing occurrence time.

Events contain two fields of information: the event they represent, and the time
where that event should happen (its time-of-occurrence). We assume that PP has
a certain ability to predict the events that will occur in a next future. When PP
knows that at time t (t > clock), it will schedule an event of type e, this scheduling
action is modelled as an insertion of an event <e,t> in the future event list (also
called event calendar or event queue). The restriction of t belonging to the future is
self-explanatory: the past cannot be affected by a present event. The event <e,t>
will be consumed in PP when the clock reaches the value t. As a result, P P ’s state
will change accordingly to the class of interaction modelled by e. This state change
can trigger the scheduling of new events for the future and, therefore, their insertion
in the future event list.

Sometimes an event previously scheduled for the future needs to be cancelled
before it actually happens (i.e., before the clock reaches the event’s time of occur­
rence). The time of occurrence of an event says when the event should happen.
An already scheduled event for time t can be cancelled by means of another event
timestamped less than t.

Once we have a system modelled the way just described, and expressed in an
executable using either a simulation language or a general-purpose programming
language, the model can be simulated in a computer. Simulation clock is advanced
using one of the two approaches: fixed-increment time advance {time-driven), or
next-event time advance {event-driven) [Gar90j.

3.3.1 T im e Driven Approach

In this approach, in each step of the algorithm the clock advances one time unit.
After doing so, all the state variables are examined, to check which events must
occur at that particular time: those whose time of occurrence equals the value of
the clock. Then, those events are consumed. Consuming an event produces the
following effects:

• a change in the state of the system, i.e., in its state variables;

• new events might be scheduled for the future;

• some previously scheduled events might be cancelled.

Chapter 3. Distributed Discrete Event Simulation 44

These two steps (clock advance, event consumption) are repeated until the simula­
tion finishes. Usually this happens when the clock reaches a given end-of-simulation
value, or when the system reaches a particular state. As it can be seen from the
description, the advance of the clock determines the advance in the simulation, and
in each step exactly one time unit is simulated. However, in many systems events
occur with a large time difference between each other, in such a way that, in most
of the iterations of the algorithm, there are none (or just a few) events to consume.
In these cases we have a low event density where the event density is defined as the
(average) number of events consumed per unit of simulated time.

3.3.2 Event Driven Approach

Low event density scenarios led to an event-driven approach, where the clock can
advance faster than it does in a time-driven simulator. The main elements of an
event-driven simulator are, as in the previous case, a clock, a set of state variables,
and an event list.

The first message in the event list is the one with the minimum time-of-occurrence.
In each step of the algorithm this message is removed and the clock advanced to
reach that simulation time_of_occurrence. The event is consumed with the effects al­
ready described: change of the P P ’s state, scheduling new events, cancellation of old
messages. The way of advancing the simulation clock determines the difference be­
tween time-driven and event-driven simulation: in the last case, after consuming an
event, the clock advances to reach the value of the next event’s time_of_occurrence,
with time jumps which might be larger than one unit of time.

3.3.3 Exploiting Parallelism

The sequential discrete event simulation algorithms become very expensive in mem­
ory demands and execution time when the problem being simulated is large. The
need of parallel computers to perform the simulation becomes evident.

Since case studies may be given in a modular way using discrete systems, it
seems reasonable that the inherent parallelism in these systems can be exploited
by simulation. In discrete simulation, the inherently sequential nature of the global
event list manipulation limits the potential parallelism of simulation models. By
eliminating the global event list, additional parallelism can be obtained. Using
multiple processors for this simulation appears to be a promising approach for a
better modelling. The use of multiple processors can also improve the simulation
execution time, because simulation of complex (discrete event) systems is usually

Chapter 3. D istributed Discrete Event Simulation 45

exceedingly slow. There are five ways of decomposing a simulation for processing
on multiple processors [RW89]:

• use of parallelising compilers: such compilers try to find sequences of the code
that can be done in parallel and schedule them on separate processors. Such
compilers ignore the structure of the problem and may exploit a small portion
of the available parallelism;

• do separate runs on separate processors: the simulation is replicated on N
processors and an average of the results is done in the end. There is no coor­
dination between the processors, but a long run simulation might be preferred
to N short runs. Heidelberg considers the statistical properties of estimators
obtained by running parallel independent replications of a discrete event sim­
ulation on a multiple processor computing system [Hei8 8];

• put different subroutines on separate processors: a set of processors is ded­
icated to some functions like random variable generation, statistics and file
manipulation. This approach does not exploit any of the parallelism in the
system being modelled;

• maintain a global event list and process the next event in the list by a processor
as soon as it becomes available. A protocol for consistency is required for this
approach since the next event in the list may be affected by events currently
being processed;

• simulate different system components by different processors. This approach
shows the greatest potential in terms of exploiting the inherent parallelism of
the system.

In the next section, we introduce parallel discrete event simulation and show that it
falls into two categories: conservative and optimistic. The main difference between
these two mechanisms is how they deal with causality errors.

3.4 Distributed D iscrete Event Simulation

A simulation model may be used to predict the behaviour of a physical system
under a variety of operating conditions. In the process-interaction approach to
simulation, a physical system is assumed to consist of a set of Physical Processes
(PP) that interact with each other at discrete points in time. In its simulation

Chapter 3. D istributed Discrete Event Simulation 46

model, a Logical Process (LP) is used to model one or more Physical Processes.
The events in the physical system are modelled by message exchanges among the
corresponding Logical Processes in the model.

Parallel Discrete Event Simulation (PDES) refers to the execution of a single dis­
crete event simulation program on a parallel computer. The system being modelled
is viewed as being composed of some number of PPs that interact at various points
in simulated time. The simulator is constructed as a set of LPs, one per physical
process. An event is represented by a timestamped message, LPs exchange times-
tamped event messages to interact. However, relationship between events may exist,
so concurrent execution of these events must be synchronised, otherwise causality
errors can occur. So a certain sequencing constraints must be maintained in or­
der for the computation to be correct. Parallel Discrete Event Simulation falls into
two categories [Fuj90]: conservative and optimistic. The conservative mechanisms
strictly avoid the possibility of any causality error ever occurring [Mis8 6]. The opti­
mistic mechanisms use a detection and recovery approach, this means that causality
errors are detected and a rollback mechanism is invoked to recover. The most well-
known optimistic protocol is the Time-Warp mechanism based on the virtual time
paradigm [JefSS]1. Notions such as causality, virtual time, clock synchronisation,
organisation and exploitation of timestamps, and a lot of related concepts are re­
ported in [CM79, CM81, Mis8 6 , Jef85, Fuj90]. The idea in [Lam78] is meanwhile
a standard concept in many models of concurrent computation. Parallel Discrete
Event Simulation (PDES) refers to an implementation for a shared memory ma­
chine (tightly coupled multiprocessor) whereas Distributed Discrete Event Simula­
tion (DDES) refers to an implementation for a machine with communication based
on message passing (loosely coupled multiprocessor). A survey of the literature on
parallel simulation has been reported by Kaudel [Kau87], Fujimoto [Fuj90], Ayani
[Aya93] and Ferscha [Fer96].

3.4.1 Event D ependencies

As mentioned in the previous section, the main challenge of DDES techniques is to
guarantee that the causal dependencies among events are respected. The simulation
of an event cannot be allowed to affect previously simulated events, otherwise the
simulation would be incorrect. In a sequential event-driven simulation, events are
processed in the right order, because in each iteration the event with the minimum

P rotocols such as the pro b a b ilis tic one [CF95], a performance efficient compromise between the
two classical approaches are found in the literature.

Chapter 3. Distributed Discrete Event Simulation 47

timestamp is selected, and this choice guarantees that the event dependencies are
observed. A formal proof of the correctness of the sequential simulation is found
in [Mis8 6]. In this section we will formally define the classes of event dependencies
that must be observed in any event-driven simulation, sequential or parallel.

D efin ition 1: we say that event e* affects the execution of ej if at least one of
these situations arise:

• the execution of e* creates or cancels ê ;

• the execution of ej reads or updates state information that was created or
altered by the execution of ej.

In any case, it is assumed that the timestamp of ej is strictly less than the timestamp
of ej, because in a real system an event cannot influence past events.

D efinition 2: we say that event a causally affects event b (or that b causally
depends on a) if there is some chain of events a = eo, ei, e2 , ..., en = b such that,
for each pair ei and e^+i, the execution of e* affects the execution of ej+i.

D efin ition 3: given two events o and 6, if neither a causally affects b nor b causally
affects a, then we say that a and b are causally independent. In particular, note
that any two events with exactly the same timestamp are causally independent by
assumption. The “causally affects” relation defines a partial order on the events in
a simulation.

In a sequential simulation events are executed in non-decreasing timestamp order.
As several events might have the same timestamp, they can be consumed in any or­
der, even concurrently. This gives us the idea that some actions can be parallelised
in the simulator. However, if it is not common to have equally timestamped events,
this does not mean that no parallelism is available.

The objective is, then, to concurrently execute events with different timestamps.
To do so, we need to relax the requirements of executing events in temporal order,
using instead the defined causal order. Given a traditional sequential event-driven
simulator, and considering the previous definitions, a parallel simulator that executes
all the pairs of causally dependent events in causal order satisfies these properties:

• exactly the same events are executed in the parallel simulator and in the
sequential one;

Chapter 3. Distributed Discrete Event Simulation 48

(b)

Figure 3.1: (a) List of Scheduled Events in Timestamp Order, (b) Sequence Ordered
by Causal Dependencies.

• when a given event is executed, the portion of the state of the system that
affects the simulation of that event is exactly the same in the parallel simulator
and in the sequantial one.

In other words, a simulation that executes events in any order consistent with the
causal order is indistinguishable from a simulation that executes events in temporal
order. Obviously, the temporal order imposed by a sequential simulator is consistent
with the causal order, but the opposite is not always true. For this reason, imposing
a temporal order is unnecessarily restrictive. The most important asynchronous
DDES methods precisely try to take advantage of the more relaxed causal ordering
to simultaneously execute events with (potentially) different timestamps. Figure 3.1
depicts an example of restrictions imposed by causal dependencies, and shows how
the sequence of events (e2 , e4 , ee) can be executed in parallel with the sequence (e3 ,
es). However, if any event were simulated in parallel with e\, the causal dependencies
would be violated.

3.4.2 M odel D ecom position

We describe in this section a set of common characteristics of the most important
families of model decomposition-based DDES techniques. We consider, as defined
in the beginning of the chapter, that the physical system to be simulated is com­
posed of a set of physical processes which only interact at discrete times by means

Chapter 3. Distributed Discrete Event Simulation 49

of messages. The message has two fields: the event to occur and the timestamp
or time when the event should occur. The LPs do not share any kind of informa­
tion among them, synchronisation and information interchange is done by message
passing. Events are encapsulated into messages sent to other LPs. Each LP has
its own Local Virtual Time (LVT) which indicates up to what point in simulated
time the evolution of the corresponding PP has been simulated. The timestamp of a
message scheduled by a LP must be greater (or equal) than the LVT of the LP: this
is essential to maintain the causal relationship in the system. Each LP has one or
several input queues, where incoming messages with events awaiting to be executed
are stored in timestamped order. The LP selects, as the candidate to be executed,
the message with minimum timestamp among those waiting in the input queues.
As it happens in the sequential simulator, the effect of executing an event includes
the advance of the LVT to reach the timestamp of the message. Additionally, the
state of the PP (and thus, of the LP) might be changed and new messages can be
sent to other LPs. It is important to remark that there is no global information
shared by the set of LPs. In particular, there is not a global clock but a collection
of local clocks, which might not have the same value at a given instant of real time;
similarly, there is not a central event list, but a collection of input queues (and a
local event list) which play the same role. In order to have a correct simulation, it
is sufficient (although not necessary) to obey what it is known as the local causality
constraint [Mis86]:

If each LP consumes messages in non-decreasing timestamp order, then the exe­
cution of the simlation is correct.

Here correct means that there are no causal errors in the simulation of events.
Conservative simulators guarantee that the constraint is always obeyed, stopping
a LP when it does not have enough information from the other LPs to continue
safely. Optimistic simulators allow an aggressive execution of events, with the effect
that situations may arise where the constraint is violated in some LPs, but these
situations are detected and then the affected LPs rollback to the past, undo the
erroneous computation, to reach a point where all the events were consumed in a
correct causal order.

Chapter 3. Distributed Discrete Event Simulation 50

3.4.3 M apping

For parallel execution, once we have the set of LPs which form the simulator, those
processes must be mapped onto a set of processors. N LPs in the model have to
be distributed among the available processors P. Each process has its own event list
which stores the events for the entities that are mapped onto its processor.

A parallel program can be represented by a task graph, whose nodes represent
program modules and edges indicate modules needing to communicate. The weights
assigned to the nodes and edges denote the computation and communication times,
respectively. Mapping a task graph to a parallel architecture requires partitioning
the task graph into a number of partitions equal to the (available) number of proces­
sors, and assigning each partition to a processor. Algorithms for optimally mapping
chain structured computations onto different models of parallel architectures that
have a linear array interconnection network are found in [CN93J.

In DDES, we can have a task graph to which we can apply a heuristic algorithm
to allocate LPs to processors. This task graph sometimes has precedence informa­
tion about the order of execution of tasks [WM93]. Nandy and Loucks developed an
implementation of a parallel partitioning algorithm which is suitable for use in a con­
servative simulation and showed through an example that both the inter-processor
communication traffic and the computation load balance have an impact on the sim­
ulation performance [NL93]. Boukerche and Tropper [BT94] addressed the problem
of partitioning a conservative simulation on a parallel computer making use of a sim­
ulated annealing algorithm with an adaptive search schedule to find good partitions.
A criterion for assignment of LPs to processors during an optimistic simulation is
proposed by Som and Sargent [SS93]. The criterion aims at reducing the number of
rollbacks by assigning to the same processor LPs which may have rollbacks caused
by a common LP.

3.4.4 R eal World DD ES A pplications

DDES has been used with different degrees of success in many real world applica­
tions. Some of the domains are very specific such as VLSI circuit simulation [CH94],
parallel computing [ACLS94, FW94], communication networks [CGU+94, CT96a],
... Other domains such as computing systems, combat scenarios, health care system,
and road traffic are reported in [Fuj90]. Some other refer to the simulation of mod­
els described using a kind of “specification language”, such as queueing networks or
Petri nets, while the model itself can be anything from a supermarket to a factory.

Chapter 3. Distributed Discrete Event Simulation 51

3.4.5 Perform ance M easures

DDES performance measures include:

• Execution time of the simulation;

• Speedup: is defined to be the time it takes a single processor to perform a
simulation divided by the time it takes the multiprocessor system to perform
the same simulation [Ert94]. The speedup can be thought of as the effective
number of processors used for the simulation. Obviously, the ideal speedup
with N processors is N;

• Efficiency: is defined to be the speedup divided by the number of processors
used, and measures the effective utilisation of the processors.

Other measures may be the number of rollbacks, their distance, the number of
messages (positive and negative), the static and dynamic lookahead, and the memory
requirements. In all mechanisms (conservative, optimistic and synchronous), the
number of processors, their speed, the cost of operating system overhead can be
manipulated to achieve the best speedup.

3.4.6 The T im e-D ivision Approach

In DDES, most of the algorithms presented are based on the space-division approach,
which means that the system to be simulated is viewed as a set of LPs communicating
by sending messages. Parallelism can also be exploited using the time division
approach where the simulation model is partitioned in the time domain [LL91b].
This means that :

1. the simulation time is partitioned into N subintervals, a processor is assigned
to each subinterval. Knowledge concerning the initial state for each interval is
needed;

2. at the end of the simulation, a comparison between the final state of the n th
subinterval and the initial state of the (n 4- l) tfl subinterval is made to see if
they match.

A survey of three time-division algorithms by Chandy & Sherman, Greenberg, Mi-
trani & Lubachevsky, and Heidelberger & Stone is found in [LL91b]. The time-
division approach is out of the scope of this thesis and will not be considered.

Chapter 3. Distributed Discrete Event Simulation 52

Messages to
other LPs

Figure 3.2: A LP in a CMB Simulator.

3.5 The Conservative Mechanisms

In works by Bryant [Bry77] and, independently by Chandy and Misra [CM79], a
method called conservative is proposed to realise DDES. The name conservative
comes from the way the local causality constraint is enforced: an LP must wait,
before consuming an event, until it is absolutely sure that no new message will
arrive with smaller timestamp. To behave this way, some restrictions are imposed
to the LPs:

• each LP maintains one input queue for each possible source of messages. The
interconnection topology of the LPs must be static, and known since the be­
ginning of the simulation;

• each LP must send messages through each of its output channels in a non­
decreasing timestamp order.

In the conservative mechanisms, each LP is an execution model which contains a
section of code, a portion of the system modelled state, a local clock (which denotes
how far the process has progressed) and input/output links (Figure 3.2). Input
links are characterised by queues of timestamped messages received from other LPs,
sorted on time of occurrence. The LP will not process an event before it is sure it
will not receive an event with a smaller timestamp. Each input queue has a clock
denoting the timestamp of the first message in the queue if it is not empty, or de­
noting the timestamp of the last message extracted if it is empty. The LP always

Chapter 3. D istributed Discrete Event Simulation 53

selects the input queue with the smallest clock value. If the queue is not empty, the
Logical Process extracts the first message from the queue, processes it and advances
the local clock time. If the queue is empty, the process blocks itself and conversely,
waits for other interactions to resume its execution . The simulation engine deals
with the messages (events) scheduled for/by the LP. The other part includes the
description of the PP simulated by the LP. An analytical study of the performance
of a conservative parallel discrete event simulation protocol is found in [Nic93].

A C-like language is used to express the algorithm which is as follows:

Cj = 0 ;

for (each i) ccij = 0;
while (not end_of_simulation) {

while (input queues are empty) await message arrival;
rrij = message with minimum timestamp;
Hj = mirii{ccij}
while (mj.timestamp > H j) {

await message arrival;
rrij = message with minimum timestamp;
Hj = mirii{ccij}\

}
remove (mj)

C j — rrij .timestamp;
execute(mj .event);

}

3.5.1 The Deadlock Problem

A LP cannot advance its simulation clock before it has received a message in each
input queue. Since a process must block when its input queue with the smallest clock
value is empty, a deadlock situation may occur. In Figure 3.3, all three processes
are blocked even though there are event messages in other queues that axe waiting
to be processed.

It is worth mentioning that deadlock in a Petri net is a transition (or set of
transitions) which cannot fire whereas in DDES it is the simulation program that
deadlocks. In a Petri net a transition is live if it is not deadlocked. This does not
mean that the transition is enabled but rather that it can be enabled.

Chapter 3. Distributed Discrete Event Simulation 54

empty

not empty

Figure 3.3: Deadlock Situation. Each process is waiting on the incoming link con­
taining the smallest link clock value because the corresponding queue is empty.

Two deadlock resolutions have been proposed in DDES: deadlock avoidance
[CM79] and deadlock detection and recovery [CM81, Mis86]. It has been shown that
the cost of deadlock detection and recovery is much higher than deadlock avoidance
[Fuj90].

Deadlock Detection and Recovery

One solution to the deadlock problem is to allow the simulation to deadlock, detect it
and recover. Thus, the simulation consists of a sequence of phases performing useful
computation in parallel separated by phase interfaces, where computation takes
place to break the deadlock and allows various LPs to proceed. Two drawbacks of
this approach are apparent: the simulation is making no progress during the phase
interfaces, and nothing is done to reduce the amount of blocking.

Deadlock Avoidance

An alternative to deadlock detection and recovery is deadlock avoidance which uses
null messages. A null message does not represent any event in the simulated system.
Instead, a null message (t,nult) sent from process p\ to process P2 is a control message
which tells p2 that there will be no more messages from process p\ with timestamps
less that t. The message (t,null) is determined by adding the minimum clock value
of all input queues and the minimum time increment of any message passing through

Chapter 3. D istributed Discrete Event Simulation 55

this process. Whenever a process finishes processing an event, it sends a null message
on each of its output ports indicating its bound. Null messages are used only for
synchronisation purposes, and do not correspond to any activity in the physical
system. Another technique that yields substantial improvements in conservative
parallel simulation include the use of appointments [Nic88]. An appointment is a
promise not to send a message before a certain time; thus, it is equivalent to a null
message. The difference is that the scheduling of appointments is demand-driven:
when a LP is unable to receive a message because the timestamp of the message
exceeds the appointment time of one or more of the LPs, the LP requests new
appointments from those sources.

3.5.2 Lookahead

Lookahead is the process’ ability to predict what will happen, or more importantly,
what will not happen in the simulated time as regards to its behaviour and when
next it may affect other processes. If a process at simulated time Clock can predict
with complete certainty all events it will generate up to simulated time Clock + L ,
the process is said to have lookahead L [LL90]. The lookahead information is carried
by null messages which axe used to break deadlock as well to improve the progress
of a conservative simulation.

Experimental studies have indicated that the larger the lookahead values, the
better the performance of the conservative simulation. Several techniques for looka­
head exploration are proposed in [Nic88, WL89, LL90]. The effectiveness of null
messages depends greatly on the amount of lookahead available and is in general ap­
plication dependent. The number of null messages may become quite large during
a simulation. Feedforward and feedback networks investigation for reducing their
number is found in [Vri90].

3.6 The Optimistic Mechanisms

Optimistic mechanisms detect and recover from causality errors, they do not strictly
avoid them. Each process has a single input queue, all arriving messages are stored
in the input queue in order of increasing (virtual) receive time. When a LP de­
termines that an error has occured, a procedure to recover is invoked (a rollback)
[Jef85]. A causality error is detected whenever an event message is received that
contains a timestamp smaller than that of the LP’s local time clock. This event is
called a straggler. Recovery is accomplished by undoing the effect of all events that

Chapter 3. Distributed Discrete Event Simulation 56

have been processed prematurely by the process receiving the straggler. Each pro­
cess must maintain a state queue containing copies of its previous state. Whenever
a (positive) message is sent to another LP, its (virtual) send time is copied from the
sender’s virtual clock. Whenever a process rolls back to time t, antimessages are
immediately sent for any previously sent positive messages with a timestamp larger
than t to undo their effect. This is called aggressive cancellation. In lazy cancel­
lation, when a process resumes executing from its new logical virtual time (LVT),
only messages that axe different from previously sent messages axe transmitted. A
kernel of Time Warp, known as JPLTW (Jet Propulsion Laboratory Time Warp)
has been developed by Jefferson’s team [JBW+87]. The performance of rollback is
investigated by Lin and Lazowska [LL91a], and Lubachevsky et al. [LWS91]. Re­
cently, Das and Fujimoto proposed an adaptive protocol which reduces unnecessary
optimism by economising memory usage and without undergoing any significant
protocol related overheads [DF97].

3.6.1 Logical Processes in Tim e Warp

In Time Warp, an event is represented by a message, and contains the name of the
sender process; the virtual send time; the name of the receiver process; the virtual
receive time; a sign of the message (positive or negative). A process is defined by its
name; its LVT; a state queue containing copies of the process’s recent states, ordered
by LVT; an input queue containing all recently arrived messages ordered by receive
time; an output queue containing ail the negative copies of the messages recently
sent, ordered by send time (antimessages for unsending positive ones) (Figure 3.4).
The Global Virtual Time (GVT) is the smallest timestamp among all unprocessed
event messages (both positive and negative). The sequence of actions that each LP
executes is as follows:

• If no unprocessed message is awaiting in the input queue, wait for new arrivals
and then go to the next step;

• make a copy of the current state and save it in the state queue;

• consume the message pointed by next.event, i.e., advance LVT, change the
status according to the class of event, and send new messages to other LPs;

• add an antimessage to the output queue per each message sent in the previous
step;

• advance the nexLevent pointer. Go to step 1.

Chapter 3. D istributed Discrete Event Simulation 57

Messages
from
other LPs >.
 * |
 ^

Simulation engine Event list |
Input queue

LVT

Events to execute

Events for the future

Copies of the state
■4-------------------------- ►

Messages to
other LPs

Figure 3.4: A LP in a TW Simulator.

This algorithm can be interrupted each time a message arrives. The received mes­
sage can be positive or negative, and can belong to the past (if its timestamp is
smaller than the local virtual time) or to the future (if its timestamp is larger than
LVT). Depending upon the circumstances, one of these four actions must be taken
(Figure 3.5):

P ositive m essage for th e fu ture. This is the common case in any event-driven
simulator. The message simply carries an event scheduled for the LP’s future. It is
stored in the input queue, in the right position according to its timestamp.
A ntim essage for th e fu tu re. This is a kind of cancellation. The positive mes­
sage must be in the input queue (if the communication system delivers messages in
order). After locating the positive message, both messages (positive and negative)
are annihilated.
P ositive m essage for th e past. This is a straggler. A rollback is needed because
the local causality constraint has not been obeyed. All the effects of simulating mes­
sages with timestamp greater than the straggler must be undone, to be re-executed
after consuming the straggler. The straggler is inserted in the input queue. The
state is restored to the copy saved just before consuming the message that now
follows the straggler in the input queue. All the copies of the state following the
restored one are destroyed. All the antimessages generated during the erroneous
computation are sent. The next.event pointer is set to point the straggler. After all
these steps, the simulation can resume.

7357

Chapter 3. D istributed Discrete Event Simulation 58

(* LPi'. arrival of a message with timestamp TT from L P j) *)

if TT > LVTi
then if TypeMessage == ’+ ’

then Insert (Message) into Buffer-In
else (* TypeMessage == AntiMessage *)

Cancel Message in InputQueue
else (* arrival of a straggler message, rollback *)

(* Restoration phase *)
insert (Message) into Buffer-In
Fetch in StateQueue for Statek / LVTk < TT
Restore Statek with LVTk
Discard states (L) in StateQueue / LVTl > TT
(* Cancellation phase *)
Fetch in Buffer-Out for SendingTime STm / STm > T
Send AntiMessages
(* Coast forward phase *)

Figure 3.5: Message Execution in TW.

A ntim essage for th e past. The corresponding positive message is searched for
and located in the input queue, and both messages are annihilated. A rollback
must be done, recovering the state associated to the destroyed positive message,
destroying other copies of the state and sending the necessary antimessages. The
next-event pointer is set to point the message just after the annihilated one. Normal
computation can resume.

3.6.2 M essages Cancellation Phase

When a process receives an antimessage that corresponds to a positive message
that it has already processed, then that process must also be rolled back to undo
the effect of processing the soon-to-be annihilated positive message. Whenever a
message is sent, its virtual send time is copied from the sender’s virtual clock. Each
process has a single input queue which all arriving messages are stored in order
of increasing virtual time. Some attempts have been made to reduce rollbacks in
optimistic distributed simulation. Prakash and Subramanian presents an algorithm
that limits the propagation of erroneous computations by keeping track of knowledge
like the assumptions made in the generation of a message and the straggler events
that have occurred in the simulation [PS91]. The algorithm presented by Som and

Chapter 3. D istributed Discrete Event Simulation 59

Next event
Last checkpointed Straggler , before rollback
event

T3 i T2 i
1 ! Rollback

Tl

Coast forward Normal forward execution

Figure 3.6: Rollback with Infrequent Checkpointing.

Sargent in [SS93] uses the assignment of processes to processors and shows a gain
in performance and a reduction of overall completion time. However, it can only be
used when the connectivity among the LPs in the simulation model is known.

3.6.3 G lobal Control

Although most of the operations of the TW algorithm are done in a distributed
fashion, with the LPs evolving autonomously, the system cannot work unless a series
of global operations are done, satisfying these requirements:

Guarantee that simulation advances, even taking rollbacks into account. The
LVT at a LP is not an accurate estimation at the actual situation of the
simulation: an unexpected straggler might arrive, making the LP jump back
to the past. A mechanism is needed to establish a fixed point in time, in such
a way that no jumps before that time will ever happen.

• Detect the end of the simulation. When a LP reaches the end-ofsimulation
time, it does not mean that it can finish: again, the possibility of a rollback
exists, and some work might need to be re-done.

• An important problem to solve is memory management, a complex part in
TW. From the descriptions of the data structures managed by the LPs, it can
be deduced that those structures grow unboundedly while simulation advances:
messages are stored in an input queue, copies of the state must be saved and
an antimessage is stored for each sent message. All this information is stored
because it might be needed to realise a rollback. However, the amount of
memory available to the LP is finite (sometimes it is quite small), and this
limits the growth of the data structures. Figure 3.6 shows an example of a
rollback where not every event is checkpointed.

Chapter 3. D istributed Discrete Event Simulation 60

To help solving these problems, a TW simulator needs a global control mechanism
whose purpose is to keep an up-to-date measurement of the Global Virtual Time
(GVT). This global time indicates up to what point of simulated time the simulation
has been done, with a global rather than a local point of view. It is computed as
the minimum of all non-executed messages in the simulator. A review of the most
well known algorithms for GVT computation are found in [Fer96].

Taking as a restriction that the consumption of a message can never affect the
past, it can be guaranteed that it is not possible to do a rollback to a time before
the GVT. Therefore, all the memory space associated with events timestamped less
than the GVT can be safely retrieved, because it will not be needed. This includes
past messages in the input buffer, copies of the state stored before the execution of
those messages and the antimessages stored as an effect of the execution of those
messages. This process of retrieving memory space is known as fossil collection. The
problem of signaling the end of simulation can also be solved when the GVT reaches
the end-of.simulation value.

The complexity of the memory management in the LPs, and the need of a global
control, makes implementations of TW quite tricky. In comparison, CMB and SYNC
algorithms are much simpler. Additionally, TW needs much more memory space to
work properly. Although some researchers demonstrated that a TW simulator can
work with a very reduced memory space, this does not mean that it will work
efficiently. On the other hand, TW does not require the LPs to have a knowledge of
the model being simulated to work properly as it was the case with CMB.

3.6.4 Variations of the Basic Tim e Warp

In [Fuj89], Fujimoto characterises four sources of overhead which appear when TW
is used to do parallel simulations, in comparison with an equivalent sequential sim­
ulation. Those are:

• Keeping a log of the history of the LPs. That is, keeping the input queue, the
state queue and the output queue;

• Message passing. This is common to all DDES techniques based on a distribu­
tion of the model among a collection of LPs. The overhead is not only the effort
of passing messages, which can be very costly depending on the computer and
the message passing software being used, but also the time to prepare them
and extract information from them;

Chapter 3. Distributed D iscrete Event Simulation 61

• Cancellation, rollbacks. One rollback does not impose a big overhead, but in
general rollbacks do not appear alone: one straggler might cause an avalanche
of rollbacks, and this in turn means the movement of an important number of
antimessages;

• Erroneous computations. All the (real) time that an LP devotes to execute
events whose effects are undone afterwards is lost time.

Once the problems have been characterised, solutions might be searched. In the
literature, several proposals can be found which try to improve TW by reducing its
sources of overhead [LP91, GT93]. Next we discuss four variations of TW.

Lazy Cancellation

In the TW algorithm previously described, during a rollback a set of antimessages is
immediately sent, one per positive message generated during the erroneous compu­
tation. This policy of sending antimessages is known as aggressive cancellation. An
alternative to aggressive cancellation has been proposed, known as lazy cancellation
[Fuj90]. This approach tries to minimise the overhead imposed by the treatment
of antimessages and, at the same time, to reduce the chain reaction effect of the
rollbacks. The optimisation is based on temporarily holding the antimessages to be
sent as a consequence of the rollback. Instead of sending them immediately, the
LP monitors the positive messages it sends during the normal advance phase which
follows the rollback. If it sees that a newly generated message is identical to another
generated during the erroneous phase, then the first message can be considered as
correct, the antimessage need not be sent and the new positive message can be de­
stroyed. If the described situation is common, i.e. many of the messages generated
by a LP are correct even when the LP is violating the local causality constraint,
the advantages of lazy cancellation axe obvious: less antimessages are sent, and less
rollbacks are triggered. However, in some cases lazy cancellation can be worse than
aggressive cancellation. It requires additional overhead, and may allow erroneous
computations to spread further than they would under aggressive cancellation.

Lazy re-evaluation

Basic TW also performs aggressive re-evaluation, which means that past copies of
the LP state are immediately removed during the rollback procedure. A lazy re-
evaluation approach also exists; in this case, copies of the state are not destroyed so
promptly. After the straggler has been executed, the LP compares the copies of the

Chapter 3. D istributed Discrete Event Simulation 62

state before and after that execution. If they are identical, then no further action is
needed (no antimessages need to be sent, no copies of the state need to be removed),
because the re-evaluation will produce exactly the same result as the original evalua­
tion. Thus, simulation may resume at the point where it was before the reception of
the straggler, without any re-evaluation of events. This is true unless new stragglers
are received. The advantages of this technique are evident, provided that stragglers
that do not modify the state axe a majority. If this is not the case, the overhead
imposed by state comparisons does not compensate the possible advantages. Both
lazy cancellation and lazy re-evaluation have an additional negative effect: antimes­
sages or state copies are retained longer than in basic TW. On average, the data
structures kept for logging purposes are longer than they would under the aggressive
alternatives, so a larger amount of memory is needed to store them.

Conservative Time Windows

In many TW simulations, it has been observed that, when a LP runs its part of
the simulation faster than the others (because it runs in a faster processing element
or because is less loaded), it produces the apparition of cascades of rollbacks: some
straggler can roll back the fast processor, which has generated many messages which
are now cancelled. While the slower LPs axe busy annihilating message/antimessage
pairs, some of them rolling back and generating additional antimessages, the fast LP
may progress forward again. To avoid this scenaxio, the optimism of the LPs must
be somehow controlled. A usual way of doing so is the imposition of time windows.
For example, if the GVT is t, a LP is allowed to advance optimistically until time
t + St. If all the messages in this windows axe consumed, and the remaining ones
axe timestamped more than t 4- £t, the LP must block and wait until the window is
advanced. The size of the window may be fixed, but then is a parameter difficult to
tune: if the window is too wide, it is not effective; if it is too narrow, no optimism is
allowed, and a synchronous simulation is performed. Instead of using a fixed window
size, it is possible to tune it dynamically, i.e., to use an initial value and then make
it vary according to the behaviour of the LP. The common approach is to increase
the current window size if the LP is mainly doing useful work (i.e., if there is a
significant advance without many rollbacks) and to narrow the window if the LP is
rolling back too often. This approach is known as adaptive time windows.

Chapter 3. D istributed Discrete Event Simulation 63

Periodic and Incremental State Saving

Basic TW saves a copy of the state just before the execution of each message. This
usually means that a huge amount of memory is consumed, specially if the size of
the state to save is large. Using an optimisation called periodic state saving, copies
of the state axe saved every N message executions, instead of after every message
execution. This way memory demands are reduced considerably. However, if this
optimisation is included, the rollback procedure is more complex: the LP must
recover a copy of the state saved before the one actually needed, and the right state
must be reconstructed by means of a re-execution of already executed messages (this
is called the coast-forward phase of the rollback). During this phase no messages are
sent to other LPs. The practical effect is that less memory is needed, but more CPU
time is consumed, compared to basic TW. However, a state saving is also a time
consuming operation, its reduction can compensate the cost of the coast-forward
phases. Experience seems to demonstrate that this optimisation actually improves
the performance of the simulator, reducing execution time and memory demands
[LPLL93].

An alternative, but similax approach to periodic state saving is incremental state
saving. With this optimisation the complete state of the LP is again saved every N
message executions. In the rest of the cases only incremental changes in state axe
saved. The coast-forward phase is then simpler: it is enough to find a full, old copy
of the state and then update it by applying a sequence of increments to re-construct
the required state value. It seems that, in general, this approach is more efficient
than the previous one, specially when the cost of executing events is high and the
amount of memory needed for an incremental state saving is low.

In either technique, we find again the problem of tuning the value of a parameter,
in this case the interval between two full state copies. If this interval is too wide, the
time spent saving copies of the state is reduced, but the coast-forward phase is very
costly; if it is too narrow, no advantage is obtained over basic TW. As happened
with the conservative time window optimisation, this interval can be dynamically
tuned to optimise its width, and the same tuning procedure can be used: reduce the
interval if the LP is suffering from too many rollbacks, extend it otherwise.

3.7 The Synchronous Mechanisms

In this section we describe a design for a synchronous, distributed event-driven
simulator (SYNC), assessing its correctness and its performance potential. The

Chapter 3. D istributed Discrete Event Simulation 64

Messages to
other LPs

Figure 3.7: A LP in a SYNC Simulator.

description is aligned with the definitions given in the previous section, although
different algorithms could be given using different assumptions. We assume that the
model to simulate is distributed among a collection of LPs.

A synchronous simulator processes events with the same timestamp in parallel.
This protocol is often used in VLSI circuit simulation. Several studies investigated
the potential speedup of this approach and showed limited potential. Each LP of the
SYNC simulator keeps the same data structures of a single, sequential event-driven
simulator (Figure 3.7): clock, state variables, statistics, input queue and event list.
A global clock is shared among all LPs and always keep the same value. The rest
of the data structures are private. A single input queue of incoming messages is
needed, where all received messages are stored in timestamp order.
Each LP performs the following algorithm:

clock = 0;
while (clock < end_of_simulation) {

t = minimum_timestamp();
clock = global_minimum(t);
simulate.e vents (clock);
synchronise ();

}

The algorithm works as follows: in the first step each LP obtains the minimum

Chapter 3. D istributed Discrete Event Simulation 65

of the timestamp of (first message of its input queue, first message of its event list).
Then a global operation is performed to compute the minimum among those times­
tamps. This value is assigned to the (shared) clock of all LPs. In the third step each
LP consumes all the events whose timestamp equals the new value of the clock. The
last step is needed to make the LPs start the next iteration at the same time. This
synchronisation must be done after all the messages generated in the previous step
have been delivered and safely stored in the corresponding input queues.

From this description, it is clear that the simulation performed by a SYNC
simulator is correct: events are consumed in timestamp order preventing causality
errors to occur. Only those events with the same timestamp are executed concur­
rently and they are causally independent. The design of the LPs and the barrier
synchronisation ensures that the local causality constraint is always obeyed.

Regarding the performance of the SYNC simulator, it is guaranteed that at least
one LP will consume one event in each iteration: the one that was used to compute
the new clock. In other LPs this step might be void if the event density is very low
or the events are not evenly distributed among LPs. In the worst case, the SYNC
simulator behaves like the sequential one. But in case of a well balanced scenario,
it efficiently exploits the avalaible parallelism with a moderate synchronisation cost.
Two positive aspects can be found in this method: the simplicity of the design (which
makes the simulator easy to build and to maintain) and the possibility of an efficient
implementation on SIMD computers, while other approaches to model-distribution
simulation are best suited for MIMD or SPMD systems.

3.8 Related work

In this section we will review the literature to introduce significant domains of appli­
cation of DDES techniques to modelling tools. These domains refer to the simulation
of models described using a kind of “specification language”, such as queueing net­
works, finite state machines and Petri nets, while the model itself can be anything
from a computer system to a factory. It should be clear that there are many other
studies of parallel simulation algorithms. The ones presented here have been selected
because of their similarity to our work.

3.8.1 Queueing Networks

A significant effort has been devoted to efficiently simulate queueing networks, as
many real world applications can be modelled using this approach. Reed et al.

Chapter 3. Distributed Discrete Event Simulation 66

analysed the performance of CMB algorithms when simulating several queueing
networks in a Sequent Balance 21000 with 20 processors, a shared memory mul­
tiprocessor [RMM88]. The tests included both CMB-DA and CM-DDR variants
of the conservative algorithm. No effort was made to exploit the lookahead of the
studied models, mainly networks of FCFS (First Come, First Served) queues. Poor
performances were reported. Many other researchers concentrated on methods to
exploit the lookahead of this and other networks disciplines. Maybe the most in­
teresting works are those by Fujimoto [Fuj88], Wagner and Lazowska [WL89] and
those by Nicol [Nic88, Nic92, NH93]. These works offer methods to efficiently exploit
the lookahead of queueing systems to achieve good speedups when the CMB-DA is
used. The techniques to exploit the lookahead are different for each queue discipline.
Considered disciplines are FCFS, PS (Processor Sharing) and RR (Round Robin),
with or without priorities, and with or without preemption. Other interesting works
in the field include [RM91, MR94], where a workbench for queueing systems sim­
ulation over a network of transputers using the CMB-DA algorithm is presented.
Characteristics about an object oriented conservative parallel simulator for simulat­
ing queueing networks designed for running under Windows NT in multiprocessor
environment is found in [PSHH97].

3.8.2 F in ite State M achines

Attention has been given to communicating finite state machines by parallel simula­
tion researchers. Tropper and Boukerche [TB93] described a synchronisation/dead­
lock resolution mechanism for a network of communicating finite state machines
implemented on an iPSC/2 hypercube. Good performance was reported.

3.8.3 P etri N ets

The simulation protocols we are proposing for ECATNets parallel simulation differ
significantly from the protocols developed in [Tau88, BEM90, LKP92, KGS93]. The
work by Taubner in [Tau88] was performed in the context of “Petri net driven execu­
tion” of distributed programs, where the firing of a transition causes the invocation
of a procedure, with the net itself (a Place/Transition net) used to determine the
flow of control. Each transition firing results in a procedure execution, which yields
an amount of overhead less important for execution of distributed programs than in
the simulation context. In addition to that, the nets assumed are untimed, so there
is no notion of simulated time. In [LKP92], Lakos describes how the algorithms
summarised in [Tau88] have been extended to handle object oriented nets. Butler

Chapter 3. D istributed Discrete Event Simulation 67

et al. describe a distributed simulator of high order Petri nets, showing how the
inherent parallelism can be used to obtain a fast simulator [BEM90], The simulator
is a component of a suite of tools which allow the construction of specifications of
embedded systems. An overview of SYSTEMSPECS, an integrated graphic based
software tool for the design and simulation of complex systems is given in [KGS93].
SYSTEMPSPECS allows the graphically animated execution of high order Petri
nets and provides a parallel distributed simulation algorithm running on Transputer
based parallel systems which proved to be highly suited to simulate complex nets in
real time.

The contributions of parallel and distributed discrete event simulation in the
area of Petri nets and reported in the literature include [TZ91, AD91, NR91, CF93a,
CF93b, NM95, CT96b]. They all deal with Timed and/or Stochastic nets. Thomas
and Zahorjan [TZ91] proposed a conservative simulation protocol of performance
Petri nets. The decomposition of the “initial” net into subnets is node-based, each
place and each transition are simulated by a LP in order to maximise the potential
parallelism. The technique used, called “selective receive” is based on a communica­
tion protocol between a transition and each of its input places. To fire a transition,
four messages are exchanged between LPs. The hardware platform is a Sequent
Symmetri S81 shared memory with 20 processors. Nicol and Roy [NR91] introduced
another conservative approach. The “initial” subnet is partitioned so that transi­
tions in conflict are assigned together to the same LP with their input places. The
simulator handles three kinds of events, exploits lookahead and is implemented on
an Intel iPSC/2 distributed memory multiprocessor. Ammar and Deng proposed in
[AD91] an optimistic simulator of stochastic Petri nets based on Time Warp, allow­
ing completely general decompositions with a redundant representation of places.
Five messages are exchanged for LPs synchronisation and to ensure that the mark­
ing in a place in one subnet is consistent with its image in the other subnets. The
simulator was tested using an Encore Multimax with 18 processors. No speedup fig­
ures were given. Chiola and Ferscha 2 exploited Petri net structural analysis for the
efficient implementation of DDES techniques using both approaches: conservative
and optimistic [CF93b]. Tests were done using a Sequent Balance, an Intel iPSC/860
and a T805-based multicomputer. The authors state that efficient distributed simu­
lations of timed Petri nets can be done, but real speedups can only be obtained after
identifying the model’s intrinsic parallelism and causality, and using this information
to optimise LPs. Communication overhead seems to be the main obstacle to achieve

2The authors have published some articles on the same topic. See for example [FC95].

Chapter 3. D istributed Discrete Event Simulation 68

good performance, as some methods to reduce the number of interchanged messages
are proposed. A typical advice in this direction is to make a LP have a load big
enough to keep the computation/communication ratio properly balanced. Although
a set of rules for partitioning networks based on Petri net topological properties are
proposed in [CF93a], no large scale models were considered, and performance results
were limited to very small number of processors. Nicol and Mao [NM95] describe
a new heuristic technique for automated mapping, both static and dynamic, of the
timed Petri net to the parallel architecture. The simulations were conducted on the
YAWNS (Yet Another Windowing Network Simulator) parallel simulation testbed
[Nic93] implemented on the Intel family multiprocessors (iPSC/860 and Touchstone
Delta). Cui and Turner [CT96b] propose a new partitioning technique assuming
that transitions have been assigned priorities in the model. The partitioning is one
in which each transition, together with its input places, is assigned to a separate
LP. A decision place is assigned to the LP containing the transition with the highest
priority among the output transitions. An example of the approach using the dining
philosophers example shows that it can give a better speedup than that of some
other known approaches (eg. the one in [CF93a]). The conservative simulator was
tested using a Transputer network with 16 processors. We concentrate in [Dje98] on
the development of distributed simulation mechanisms based on the two classical ap­
proaches (conservative and optimistic) for queueing networks and timed Petri nets.
The overlap in these simulation models in the domain of distributed simulation is
addressed.

An alternative to discrete event simulation methods called recurrence equations
approach is reported in [BC93]. Equations are used to express the evolution of the
stochastic Petri net when certain events occur. The algorithm described allows the
generation of a simulation program for a SIMD machine.

To the best of our knowledge, little attention has been given to high-level nets
distributed discrete event simulation. It is worth mentioning that concerning sim­
ulation techniques for high-level nets with arc inscriptions, the enabling test and
the firing operations are substantially more complex. The work on THOR (Timed
Hierarchical Object-Related) Nets by Schof et al. was reported in the literature
[SSW95]. THOR nets are a kind of high-level Petri nets well suited to real-time
systems simulation. They allow complex objects for token values and provide dif­
ferent kinds of timing aspects as well as an appropriate structuring mechanism for
nets. The optimistic distributed simulator developed runs on a workstation cluster
as well as on Transputer network. A THORN model of the Idle RQ communication

Chapter 3. D istributed Discrete Event Simulation 69

protocol with implicit retransmission (also known as send-and-wait or stop-and-wait
protocol) is presented as a case study. No speedup figures were reported.

3.9 Conclusion

In this chapter we have introduced a series of basic ideas about simulation of discrete
event systems, including two sequential algorithms to realise this kind of simulation:
a time-driven and an event-driven one. It has been shown that it is not trivial to
implement a parallel simulation by simply modifying a sequential one, so new ap­
proaches to the problem have been developed, based on the model decomposition
concept. The simulation of a physical system is distributed among a set of cooperat­
ing logical processes, which execute the events that affect its part of the system. The
collection of LPs must be synchronised somehow, in order to prevent the violation
of the cause-effect relationships among events.

Two asynchronous approaches have been presented: conservative and optimistic.
The former totally avoids the violation of causal restrictions. The latter allows
errors to happen, but recovers from them by means of a rollback procedure. Both
kinds of synchronisation have been studied, and some modifications which Can be
done to improve their performance have been also presented. The synchronous
strategy consists of making all the LPs progress at the same time at each step of
the simulation, executing in parallel only those events with the same timestamp.

Many additional surveys about DDES can be found in the literature. Some of
those concentrate on a particular technique, and many others try to cover a com­
plete range of alternatives. Two main sources of information about conservative
algorithms are, in addition to the seminal work [Bry77, CM79], a survey by Misra
[Mis86]. For optimistic methods, the work by Fujimoto [Fuj89] is a complement
to the work by Jefferson, the author of Time Warp [Jef85]. In the group of gen­
eral surveys, recommended readings are [RW89, Fuj90, Lin90, Aya93, Fer96]. The
work by Ferscha [Fer96] is an interesting qualitative comparison of conservative and
optimistic methods.

It is interesting to note that after more than fifteen years of research in DDES,
with successful applications in many fields, big effort is still devoted to study DDES
algorithms, analysing its behaviour and proposing improvements. But still much
work must be done to simplify the development of models, i.e., the work of re­
searchers that use simulation as a tool, not as a research object. In this direction,
further research lines are identified, including the following ones [Fuj93, Lin93]: ap-

Chapter 3. D istributed Discrete Event Simulation 70

plication specific library packages, new simulation languages [BL94], support for
shared memory [ACLS94], and automatic parallelisation of models [NM95].

Chapter 4

Environments for Distributed
Computing

In this chapter we introduce a series of concepts related to the architecture of parallel
systems, and to the different programming models which can be used to develop
applications in those systems.

4.1 Introduction

In chapter 1, we stated our interest in multicomputers from a software point of view:
we want to make an efficient use of currently available multicomputers, extending
the spectrum of applications (simulation of high-level algebraic Petri nets) that can
use these architectures.

In this chapter we will study parallel computers in general, and multicomputers in
particular, as platforms for the design and execution of parallel applications. Careful
decisions must be made to select the appropriate parallel programming model before
starting with the design and implementation of an application. However, in some
cases, the available computer and programming tools impose a given model, reducing
the spectrum of design choices.

We make an introduction to parallel programming from a software point of view,
i.e., how a programmer perceives and uses a parallel computer. After discussing
a series of concept as MIMD versus SIMD (§4.2), message passing versus shared
memory (§4.3), parallel programming languages and tools (§4.4) and two parallel
programming environments (PVM and MPI in §4.5), we give a brief introduction
to some hardware issues involved in parallel computer design, again focusing on
multicomputers (§4.6). The hardware and software configurations of the network of

71

Chapter 4. Environments for Distributed Computing 72

workstations used in this work are presented in §4.7. The chapter finishes with a
series of conclusions in §4.8.

4.2 M IM D versus SIMD Computers

Although it might be considered more a hardware than a software issue, the organ­
isation of a parallel computer often has a definite impact on the way applications
are programmed [Dun90, Braunl93]. From a software point of view, a MIMD (Mul­
tiple Instruction Multiple Data) system allows a set of processes to execute separate
streams of instructions, each one on its own data. The memory space might be
shared among all processes, or might be separate for each process.

In contrast, a SIMD (Single Instruction Multiple Data) system allows a collection
of processes to execute the same instruction stream, each process working on a
different piece of data. This second model of parallelism is appropriate for specialised
applications characterised by a high degree of regularity, while MIMD might work
for both regular and irregular applications.

Somewhere in between MIMD and SIMD, applications might follow SPMD (Sin­
gle Program Multiple Data) paradigm, which means that all the processes run ex­
actly the same program, although not necessarily the same instruction at the same
time, on separate data. SPMD is, in fact, a restricted class of MIMD.

In this research we only consider MIMD (or SPMD) applications. This restric­
tion comes from the higher flexibility of this paradigm, and from the programming
tools we have available. We consider a parallel application as a set of concurrent
communication processes. A pair of those processes might run in parallel, if assigned
to different processors of a physical computer, or might time-share one processing
element. Each process runs a sequential flow of instructions and is able to commu­
nicate with other processes.

4.3 M essage Passing versus Shared M emory

Communication and synchronisation are two operations needed in any concurrent
programming environment, parallel or not. Two concurrent processes, even being
totally unrelated, might need to compete for a shared resource, and they must
synchronise before accessing that resource in order to guarantee that one waits while
the other uses the resource without interferences. If the processes are cooperating to
perform a common task, they might need to interchange information (communicate)
in addition to synchronise. There are two basic paradigms for communication and

Chapter 4. Environments for D istributed Computing 73

synchronisation among concurrent processes: shared memory and message passing.
We consider them separately.

If two or more processes share a common memory space, one easy way to com­
municate is by means of a shared variable: one process writes the variable while
others can read it. Communication is achieved in a fast and efficient way. How­
ever, problems might arise when more than one process try to update a variable
without any kinds of synchronisation. The variable used for communication has to
be considered as a shared resource, and accesses to it must be somehow restricted
to avoid inconsistent updates. Processes must synchronise to access that resource.
Many synchronisation mechanisms for shared memory environments might be found
in the literature; two common ones are test & set locks and semaphores.

An alternate paradigm is message passing. In this case each process might have
a separate memory space. Explicit communication functions are provided to copy
one set of data (a message) from a sender process to a receiver process. Both the
sender and the receiver must collaborate to actually perform the data movement:
the sender performs a send (also called write) operation and the receiver performs a
receive (also called a read) operation. Send and receive operations may also provide
synchronisation capabilities, depending on its actual semantics.

In some cases, it is possible to mix both paradigms in the same application.
A common approach is to allow shared memory communication between processes
running in the same processor (or, in general, multicomputer node)’ while messages
axe required if processes are in different nodes.

MIMD computers with shared memory are known as tightly coupled whereas
MIMD computers without shared memory are known as loosely coupled.

4.4 Parallel Programming Languages and Tools

In order to implement a parallel application, a programmer needs a language able
to express parallelism. Focusing on the design of applications where parallelism is
explicit, we can identify at least three alternatives to do so: (1) parallel program­
ming languages; (2) conventional programming languages enhanced with extensions
to express parallelism; (3) conventional programming languages with libraries of
functions to deal with parallel operations.

In the first group, we can find OCCAM [Inm89], developed by Inmos as the
preferred programming language for the transputer family of processors. A collection
of processes run in parallel (or concurrently, if several of those are mapped onto the

Chapter 4. Environments for Distributed Computing 74

same processor) and communicate by interchanging messages through channels using
a blocking, synchronous communication model. Languages such as Ada provides
support for concurrency. Ada was the first programming language to incorporate
structured concurrent programming which is achieved with task notion. An Ada
program is a static object whereas a process is the dynamic activity of obeing a
program. In Ada terminology, a process is known as a task. A task unit is an Ada
program unit which executes concurrently with the rest of the program. Therefore
a concurrent Ada program consists of one process representing the execution of the
main program, and one or more tasks representing the execution of task units which
communicate in a RPC-like fashion 1.

In the second group, we can find tools such as CC+-1- and Fortran M [Fos95].
CC++ is an extensions to C + + for compositional parallel programming. It is a
powerful tool which allows the programmer to use many paradigms of concurrency
and communication. Six new keywords have been added to the language to allow to
express concurrency, communicate via shared memory, synchronise access to shared
data, copy data from one process to another, ... Fortran M is a parallel extension
to Fortran with concurrent processes and communication channels.

In the third group, we find libraries of functions which allow conventional lan­
guages like C or Fortran to work in a parallel environment, but without modifying
the language itself. The alternatives that can be found are either commercial (tai­
lored for specific environment) or in the public domain with implementations for
many host computers. The advantage of this approach is the use of a familiar pro­
gramming language along with an available compiler. In this group we can find
the set of libraries which form part of the Inmos ANSI C Toolset for transputer-
based environments [Inm90], and several publicly available implementations of PVM
(Parallel Virtual Machine) [GBD+94] and MPI (Message Passing Interface) [Mes95].
MPI is able to work in many environments (multicomputers such as IBM SP1 and
SP2, Paragon, IPSC860, Meiko CS-2, Sun multiprocessors; network of workstations
from Sun, HP, DEC, IBM; networks of personal computers with Linux).

Several parallel simulation languages have also appeared in the last decade.
Maisie is a C-based language for distributed simulation [BL94] that was designed to
cleanly separate the simulation model from the underlying algorithm (sequential or
parallel) that may be used to execute the model. A program written in Maisie is
independent of any synchronisation algorithm. Therefore, when it is compiled, the
analyst can indicate the specific simulation algorithm that is to be used to synchro-

^ P C stands for Remote Procedure Call.

Chapter 4. Environments for Distributed Computing 75

nise execution of the model: sequential, parallel conservative, or parallel optimistic.
Maisie has been implemented on a variety of sequential workstations and laptop
machines, on networks of workstations, on platforms like the distributed memory
IBM SP2 and the shared memory Sparc station 1000.

Another approach has been followed by other researchers that decided to imple­
ment the parallel simulation system as a run-time library written in C ++: examples
include SPEEDES (Synchronous Parallel Environment for Emulation and Discrete-
Event Simulation) [Ste92].

4.5 Parallel Programming Environments

The research presented in this thesis has been done using a message passing paradigm.
There are several reasons to justify these choices:

1. Message passing is a paradigm widely used in certain classes of parallel ma­
chines, specially those with distributed memory. Although there exist many
variations some of those discussed in this chapter, the basic concept df pro­
cesses communicating through messages is well understood. Additionally, a
message passing system might be efficiently and portably implemented in most
parallel environments [Mes95].

2. The parallel and distributed simulation algorithms used in this research, based
on model decomposition, are described by means of message interchange. The
implementation is more direct this way.

3. In the absence of a parallel computer, our parallel programs have been imple­
mented in a network of workstations. A NOW can be considered as a special
case of multicomputer, where each node is a complete workstation and the
interconnection network is typically a LAN (Local Area Network).

4. The NOW that has been available to perform this research provides not only
message passing for communication among processors, but distributed shared
memory as well. Of course if it was possible to select between shared memory
and message passing in a NOW, message passing would be the choice for
portability reasons: porting an application from a NOW to a (parallel) machine
is easier if both use the same communication paradigm.

To choose among the parallel programming languages and tools, we have used li­
braries and functions. This decision has been firstly forced by the available tools;

Chapter 4. Environments for Distributed Computing 76

System Clock Protocol Bandwidth Latency
Cray T3D 151 Mhz SHMEM.PUT 120 MB/s 6 /is
Cray T3D 151 Mhz MPI 50 MB/s 40 fis
IBM SP2 66.6 Mhz MPI/MPL 33 MB/s 143 fis
IBM SP2 66.6 Mhz MPICH 35 MB/s 114 /xs
Hitachi SR2201 150 Mhz MPI 200 MB/s 45 fis
NEC SX-4 MPICH 1.9 GB/s 72 fj,s
NEC SX-4 MPISX 6.1 GB/s 35 fj,s
Cray J90 MPI/MPT 318 MB/s 95 fis
Unix on Ethernet slow large

Table 4.1: Some High-Performance Parallel Computers Parameters.

secondly, using the same programming language (C in this case) eases portability
among platforms. Table 4.1 summarises the parameters of some high-performance
parallel computers. The characteristics of the programming environment used in
this work are summarised in Table 4.2.

4.5.1 Parallel V irtual M achine

PVM (Parallel Virtual Machine) [GBD+94] is a software package that permits a
heterogeneous collection of Unix computers hooked together by a network to be
used as a single large parallel computer. Thus large computational problems can
be solved more cost effectively by using the aggregate power and memory of many
computers. The software is very portable. The source, which is available free through
netlib, has been compiled on many computers from laptops to CRAYs. PVM enables
users to exploit their existing computer hardware to solve much larger problems at
minimal additional cost. Hundreds of sites around the world are using PVM to solve
important scientific, industrial, and medical problems in addition to PVM’s use as
an educational tool to teach parallel programming.

4.5.2 M essage Passing Interface

In the beginning of the nineties, whilst PVM had its adherents, MPI was for many
a revelation. It contains a huge range of subroutines including the widely used
blocking and non-blocking point-to-point communications, but also global reduc­
tion operations, groups and communicators within contexts, timing and profiling

Chapter 4. Environments for Distributed Computing 77

Aspect Distributed
simulator

Programming tool ANSI C with MPI library
Model of parallelism MIMD (SPMD preferred)
Communication paradigm Message passing
Communication models Blocking, nonblocking
Communication models Basic, buffered, synchronous
Partner Explicit (addresses)

Table 4.2: Characteristics of the Programming Environments Used in this Work.

routines. It gives power and the ability for manufacturers to provide fast hard­
ware for the higher level operations and also facilitates writing numerical libraries
(necessary for applications programming).

In this research we used C plus MPI [Mes95]. Such environment provides the
opportunity of designing MIMD as well as SPMD programs with message passing
communication. MPI is efficiently and portably implemented in most parallel en­
vironments. As the distributed simulation algorithms are described by means of
message interchange, the implementation is more direct this way.

MPI communication primitives may be blocking or nonblocking, and provide the
following communication modes: basic, buffered and synchronous. The collection of
processes collaborating in the distributed application can be depicted as a graph,
where nodes represent processes and arcs represent communication channels. Each
process in the distributed application is identified from 0 to N-l, where N is the
number of processes. Explicit communication functions are provided to copy one
message from a sender process (performing a send) to a receiver process (performing
a receive).

Geist et al. compare PVM and MPI features, pointing out the situations where
one may be favored over the other [GKP96]. For example, MPI has a richer set of
communication functions and has the advantage of expected higher communication
performance if an application is going to be developed and executed on a single
Massively Parallel Processor (MPP). PVM has the advantage when the application
is going to run over a networked collection of heterogeneous hosts. Also, the larger
the cluster of hosts, the more important PVM’s fault tolerant features become.

Chapter 4. Environments for Distributed Computing 78

Figure 4.1: Model of a Multiprocessor.

4.6 Parallel Com puter Design

In general terms, a parallel computer consists of a set of processing elements inter­
connected by means of a communication network. Two groups of parallel systems
might be characterised: multiprocessors and multicomputers.

The term multiprocessor is used to refer to a parallel system with shared mem­
ory, where synchronisation and information exchange occur via m memory modules
which can be accessed by p processors in a coordinated manner by means of an
interconnection network (Figure 4.1). The design of the network is a critical issue,
because memory access times should be minimised. Buses and multistage intercon­
nection networks are normally used as a common class of network in this design.
Another important issue is the cache memory: a local cache is needed at each process
to obtain a reasonable performance, and some cache coherency mechanism must be
added, because a memory word might be simultaneously in several local caches. This
issue, among other things, limits the scalability of multiprocessors. The bandwidth
and latency still make algorithms efficient or doomed to failure.

Multicomputers have local memory in each processor and correspond more closely
to a group of loosely bound, independent computers interconnected by a network
which provides the infrastructure for communication (Figure 4.2). <processor,
memory> is referred as a node. The communication and synchronisation mecha­
nisms are implemented by means of messages interchanges through the network.
The main issues in multicomputer design are the structure of the node as well as
the organisation of the interconnection network.

The preferred communication paradigm in multiprocessor environments is shared
memory, while in multicomputer environments is message passing. It is possible,
however, to have the memory modules physically distributed along the nodes of a

Chapter 4. Environments for Distributed Computing 79

*

p

M
V.)

f

P

v J

M

< ,

(*

P

-̂--------

| M

Interconnection netw ork

Figure 4.2: Model of a Multicomputer.

multicomputer while the programmer sees a shared memory place; a good deal of
hardware/software support is needed to achieve this. In the same context, it is
possible to simulate message passing over the shared memory space provided by
multiprocessors.

4.6.1 M ulticom puter’s N ode

Each node of multicomputer consists of a CPU plus a certain amount of memory.
Some multicomputer manufacturers use custom designs for the CPU, although those
used in workstations are in most cases general purpose multiprocessors. In some
cases, the nodes of a multicomputer are actually small multiprocessors, with several
CPUs and memory modules constituting a computing cluster; the interconnection
network communicates clusters, instead of individual CPUs.

In addition to processing tasks, a node must provide some communication man­
agement functions. The kind of networks typically used in multicomputers are direct
networks like hypercubes and meshes. In those networks, each node must perform
certain message functions to allow a message to flow from its origin to its destination,
traversing intermediate nodes if necessary (Figure 4.3).

Multicomputers such as the CM-5, the CRAY T3D and the Intel Paragon sepa­
rate computation and communication tasks, providing hardware support to imple­
ment message passing functions, in such a way that these functions are assigned to
a collection of hardware routers, while the CPUs can concentrate on computation
tasks (Figure 4.4).

As mentioned earlier, a NOW can be considered as a special case of multicom­
puter. CPUs have to devote a certain amount of time to perform communication
functions. Message passing has a series of overheads which might be reduced with

Chapter 4. Environments for Distributed Computing 80

Links to other nodes

Figure 4.3: Node Where Communication and Computation Functions are Integrated.

M e m o ry

C o m p u ta t io n

Figure 4.4: Node Where Communication is Separated from Computation.

appropriate hardware support, but which are very difficult to eliminate. Sending
a message from one node to another requires a series of operations, summarised in
Table 4.3.

In a NOW, message passing functions axe not implemented directly over the
LAN harware, but pass over several layers of protocols. As an example, the message
passing system used in this work requires messages to pass through three high level
protocol layers, in addition to the LAN layer (in this case, an Ethernet): the MPI
library, TCP and IP. This software overhead can be minimised if messages are long,
but this is not a common situation when the objective is to achieve massive, fine-
grain parallelism.

Chapter 4. Environments for Distributed Computing 81

Sources of overhead

At the sender CPU

- Send system call
- Argument processing
- Allocate buffer
- Prepare message
- Initiation of send

At the network of routers
(software or hardware)

- Transfer message via network interface
at origin

- Transfer message over the network
- Transfer message via network interface,
at destination

At the receiver CPU

- Interrupt service
- Buffer management
- Message dispatch
- Copy data to user space
- Receive system call

Table 4.3: Overheads Involved in a Pair of Send/Receive Operations.

4.6.2 M ulticom puters’s Interconnection Network

Message passing support must be provided by the interconnection network in a
multicomputer with :

1 . low latency: messages must cross the network connection from sender to re­
ceiver a fast as possible;

2 . high throughput: the network must be able to manage all the messages gener­
ated by the computing elements; it must not be a bottleneck.

Other desirable characteristics are low cost, fault tolerance, expandability (not nec­
essarily in this order). There are many issues to consider in order to design a network
with the desirable characteristics. Some of those are:

1. Topology or shape of the network. Common topologies are: bus, ring, hyper­
cube, mesh (2D and 3D), and torus (2D and 3D);

2 . Switching technique: circuit switching or packet switching;

3. Message flow control: store-and-forward, wormhole, cut-through;

Chapter 4. Environments for Distributed Computing 82

NOW
Node Sun Sparcstation

Implementation of message functions -
Network topology Bus (Ethernet)

Switching technique Packet switching
Message flow control -

Routing -
Deadlock management -

Table 4.4: Hardware Characteristics of the NOW.

4. Routing strategy: static, adaptive, with many other alternatives for both cases;

5. Deadlock management: necessary for some combinations of topology and rout­
ing strategy.

Commercially available machines offer many combinations of these parameters. Ta­
ble 4.4 summarises the characteristics of the NOW used in this research.

4.7 Characteristics of the Network of W orkstations U sed
in this Work

4.7.1 Hardware Configuration

Over an Ethernet local axea network, the (homogeneous) workstations used in this
work share the medium which provides a raw 10 Mb/s data rate. The type of work­
station used is a Sun Sparc Classic ELC (4/15) with the following characteristics:

• Processor: microSPARC - 50MHz

• 32 bits registers

• 24 Mb (physical) memory

• 96 Mb (virtual) memory.

4.7.2 Software Configuration

The characteristics of the programming environment are:

Chapter 4. Environments for D istributed Computing 83

• Operating system: SunOS version 5.5.1, Solaris 2.1

• C Compiler: gcc version 2.7

• Debugger: dbx 3.2

• CHIMP MPI from the Edinburgh Parallel Computer Center.

4.8 Conclusion

In this chapter we have reviewed a series of concepts related to the view a pro­
grammer has of a parallel programming system, and to the different architectural
organisations that can be used to actually build such a system. The presentation
has been purposefully focused on multicomputer systems, where a set of comput­
ing nodes, comprising a CPU and a certain amount of local memory, are connected
by means of a message passing network. This decision has been motivated by the
computing system available for this research.

The description of the hardware/software issues involved in parallel programming
has served to introduce the main characteristics of the network of workstations with
MPI and PVM libraries.

Any parallel computer that provides the SPMD or the MIMD models of comput­
ing allows the implementation of a parallel simulator with the described characteris­
tics. If the communication model is message passing, as happens with the machines
used in this research, the interchange of messages among LPs is implemented in the
obvious way. If the system provides communication via shared memory, a library
of functions to emulate message passing can be built. The simulation algorithms
developed for a message passing environment trivially adapt without performance
loss to shared memory by emulating message exchange via shared variables.

The communication infrastrucure of the parallel computer must be able to sup­
port the interconnection topology of the LPs in distributed simulation. In general,
it is assumed that the communication is reliable: no message is lost, modified, du­
plicated, or delivered out of order.

Chapter 5

Conservative Simulation of
ECATNets

In this chapter we present the first ECATNet distributed simulator based on a
conservative approach and implemented in a distributed memory environment. Two
partitioning techniques are proposed in order to spatially decompose the ECATNet
into subnets, each subnet to be simulated by a LP. The objective of the study is to
select an appropriate conservative distributed algorithm for the analysis of ECATNet
models.

5.1 Introduction

ECATNets conservative algorithms do not permit any causality error. The set of
LPs (represented as objects) in the simulation process an incoming message only
when the underlying synchronisation algorithm can guarantee that they will not
subsequently receive a message with a smaller timestamp. These algorithms, by
definition, block until a LP can ensure that it will not violate causality by processing
the next event.

The chapter is structured as follows. First, a description of the implemented
ECATNet simulators (sequential and distributed) is done in §5.2. §5.3 introduces
the characteristics of a conservative ECATNet LP. We see in §5.4 how to decompose
an ECATNet model into submodels to be simulated by LPs, assessing the impact
this decomposition may have on the simulator’s performance. Details about the
implementation of the LP’s communication interface are given in §5.5. A descrip­
tion of the CMB-DA simulation engine is done in §5.6. The Ethernet transmitting
station ECATNet model presented in §2.4.5 is chosen to carry out the experiments

84

Chapter 5. Conservative Simulation of ECATNets 85

to evaluate the CMB-DA simulator in 5.7. Finally some conclusions are summarised
in §5.8.

5.2 The Simulators

We present the simulators used in this study. Four different ECATNet simulators
have been implemented and tested:

• SEQ: sequential event-driven, able to run in any of the parallel systems de­
scribed in Chapter 4;

• CMB-DA: Chandy-Misra-Bryant with Deadlock Avoidance via null messages;

• TW (Time Warp), with Lazy Cancellation (LZ) as a message cancellation
technique, and

• SYNC: synchronous distributed event-driven.

All the distributed simulators work with the same description of the model. SEQ
works with a slightly different description of the same model. For our parallel pro­
gramming environment (NOW) and a distributed simulator, the main performance
figures to be considered are the execution time and the speedup. LPs profiles will
also be studied.

All the simulators share as much code as possible, to be fair when making com­
parisons and, obviously, to reduce the development effort. In particular, in all the
cases a set of functions to manipulate event lists has been used. We first imple­
mented the event list using a linked linear list for the sake of simplicity, but later
had to re-implement it using a splay tree data structure as recommended in [CSR93].
Although the difference between both data structures is less noticeable in the dis­
tributed simulators (because events are distributed among all the LPs and, therefore,
event lists are shorter), it results in performance improvement for the sequential sim­
ulator when the density of events is high.

5.2.1 Input Param eters for the Simulators

In addition to selecting the parameters of the simulated model, a user running the
simulators has to facilitate a series of additional parameters. These are enumerated
in table 5.1.

Chapter 5. Conservative Simulation of ECATNets 86

P a ra m e te r M eaning
Cycles Simulated amount of time while the behaviour

of the ECATNet model is studied
Seed Seed for the random number generators

Number of PEs Number of processing elements used
in the simulation

ECATNet subnet Subnet assigned to each LP of the distributed simulator:
- net model (P, T, F)
- data model (IC, DT, CT, TC, C)
- set of rewrite rules

Table 5.1: Parameters of the Simulators.

The first two parameters are needed for all the simulators, sequential and dis­
tributed. The number of Processing Elements (PEs) must be given for any dis­
tributed simulator. A mapping of the simulated ECATNet model onto the actual
network of PEs in the network of workstations must be done. The distributed sim­
ulator always consists of a collection of collaborating LPs, where each LP is, in fact,
a Unix process.

5.2.2 Com ponents o f the Simulators

For each ECATNet LP, we identify three components of the distributed simulation
framework:

• the work partition assigned to it according to the model decomposition;

• its communication interface which is required to preserve its behavioural se­
mantics, and

• its simulation engine which implements the simulation strategy: CMB-DA,
TW and SYNC.

There are fixed FCFS communication channels between LPs, timestamped messages
are exchanged via these channels for their synchronisation. The division of the LP
into three different components allows to decouple the activities of event consump­
tion and message interchange.

Chapter 5. Conservative Simulation of ECATNets 87

5.2.3 Types of Events

In the following, we assume a three phase transition firing. Although an atomic
transition firing affects the management of the event list, the proposed solutions can
easily be modified to accomodate it.

There are two categories of events. An internal event is scheduled and executed
at the same LP, and an external event is scheduled by one LP and is executed
by another LP. The events which may occur when constructing a discrete event
simulator of timed ECATNets are:

• Start-firing : if transition t is enabled to fire at Tsim, for every fs input place
remove appropriate tokens. DT tokens are destroyed thanks to the execution
of event Destroy-tokens. The event End-firing with timestamp Tsim +
FiringTime(t) is inserted into the event list. The event Create_tokens is
also inserted into the event list at each fs output plane p with timestamp Tsim
+ FiringTime(t) (CT tokens are created), or scheduled as an external event
and sent as a timestamp message to the LP p is assigned to.

• End-firing : when t ends firing at Tsim, it checks its condition (TC), its
input places (IC) and its output places (CT, M(p) and C(p)). If the enabled
conditions are satisfied, t is refired and an event Start-firing is inserted into
the event list at time Tsim.

• Create.tokens : when tokens arrive at place p at Tsim, its marking is up­
dated. This deposit may enable any of p’s output transitions. If p’s output
transition is enabled, the event Start-firing at Tsim is inserted into the event
list.

The events Start-firing and End-firing are always inserted into the LP’s. event
list. However, when the event Start-firing is processed, if t is the firing transition
and p its off-LP output place, the event Create.tokens needs to be encapsulated
into a timestamp message carrying CT(t,p) sent to the LP p is assigned to.

5.2.4 The Sequential Simulator

In the following, we present some essential concepts of the design of an optimised
sequential simulator for ECATNets.

ECATNet models can be executed using sequential or distributed simulation al­
gorithms. A single processor, event list simulator was developed to allow comparison

Chapter 5. Conservative Simulation of ECATNets 88

of distributed simulation programs with sequential event list implementations. In
order to obtain a fair comparison, the simulators share most of the code. Both
implementations maintain the same overall structure, organisation, programming
style, and conventions.

Clock
EVL

Figure 5.1: Sequential Simulation Engine.

The ECATNet sequential simulator repeatedly processes the occurrence of events
S ta rt-firing , End-firing and D eposit-tokens by maintaining: (1) an ordered
data structure called the global event list (EVL) which stores all events that are
generated in the system in their timestamp order time of occurrence; (2) a global
clock indicating the current time; (3) state variables S = (si, S2 , ..., sn) defining the
current state of the system (Figure 5.1).

The simulation engine drives the simulation by continuously taking the first
event out of EVL, simulating the effect of the event by changing the state variables
and/or scheduling new events in EVL (possibly removing obsolete events). This is
performed until some pre-defined endsfsimulation time is reached.

The concept to improve run time efficiency of the simulator relates to the deter­
mination of enabled transitions. In a straightforward implementation a net simulator
determines all enabled transitions (by invoking function Enabled 0) and selects one
of them to fire. On the resulting marking it repeats the same procedure. A better
strategy is to store the knowledge about enabled transitions and to determine only
the activation of those transitions that may be enabled by the last fired transitions
after invoking function Rew riting () which checks the right-hand side of the rewrite
rule associated with the transition to fire and the execution of a C reate_Tokens
event. With this procedure the simulator does not need to check all transitions of
the net in every step but only those in the pre- and postset of a firing transition.

The event list has been implemented using a splay tree. However, the linked
linear list yields performance comparable to the splay tree for simulations with low
events density.

Chapter 5. Conservative Simulation of ECATNets 89

5.3 The Conservative Simulator

5.3.1 Logical Processes

The simulation of events is performed in virtual time according to their causality.
The data structures according to the conservative approach are: (1) a Local Vir­
tual Time (LVT) representing an accumulated value of firing times in a LP; (2) an
event list (EVL) ordered by time of occurrence, used when there are internal events
posted within the LP itself; (3) input queues (IQ) (one queue per each input chan­
nel), which collect recently arrived messages ordered by time; and (4) output queues
(OQ) (one queue per output channel) which keep messages to send, ordered by time.

The attributes and functions of the LPs are classified into four categories:

• the clock mechanism. The UpdateLVTO function updates LVT to advance
LP’s clock;

• the event list mechanism to process the internal events in the LP with the fol­
lowing functions: Enqueue (): inserts a timestamped event into EVL; Dequeue ()
deletes the event with the minimum timestamp in EVL; Cancel(): deletes the
event with a specified timestamp in EVL; ExecuteEvent(): executes events
in EVL and is also part of the synchronisation mechanism;

• the synchronisation mechanism interacts with other LPs to coordinate the
execution of the simulation with the following functions: ReceiveMessageO:
receives messages from other LPs. These messages will be inserted into the
input queues for processing; ExecuteMessageO: executes incoming messages;
SendMessageO: sends output messages generated by the execution of events
to their destination LPs;

• the ECATNet simulation mechanism based on the transitions, enabling condi­
tions, their firing times and the application of rewrite rules.

5.4 Partitioning

A natural decomposition of the “initial” ECATNet model into LPs is a spatial parti­
tioning into different subnets. In the following, we present two different partitioning
techniques for ECATNets distributed simulation. The first one is based on a “sep­
aration of concern” strategy (SCS), the second one is called “efficient” partitioning

Chapter 5. Conservative Simulation of ECATNets 90

(EP) and is basically an assignment of the transitions sharing input places to the
same LP. We recall that the partitioning of the “initial” ECATNet model has a
strong impact on the DDES performance.

5.4.1 Separation o f Concern Partitioning

The “separation of concern” partitioning is not only suitable for representing com­
plex systems ECATNets models but also for the inter-module parallelism achieve­
ment: the Ethernet transmitting station in §2.4.5 is a good example which shows
how modularity is achieved using this strategy.

Each module obtained from the partitioning corresponds to a subnet to be sim­
ulated by a LP. Because partitioning with SCS leads to a (possible) redundant
representation of places and the corresponding communication arcs in adjacent LPs,
we remove this redundancy and represent the places which are relevant for each sub­
net only once. If P, T and F are respectively the set of places, the set of transitions
and the set of arcs of the ECATNet model, the partition is a set of n subnets such
that :

E C A T N e t i = {Pi, T*, F{, \) where U P, = P, U T* = T, Fi C {P i x Tj) U (T*
x Pi), i = l..n.

The inscriptions of arcs Fi by the multisets of terms IC, DT, CT and the associ­
ation of TC to transitions are defined as in the ECATNet model and appear in the
graphical representation of the subnets. The transitions remain in the same subnets,
the duplicated places have to be assigned to the relevant ones.

However, the “separation of concern” strategy does not necessarily lead to a good
parallel simulation partitioning. Its drawback is related to the firing of a transition.
A transition t fires when all the enabling conditions are satisfied, by checking first
its input places in the same LP. This transition may have one or more input places
in different LPs. Since a LP only has information on its local marking, it needs to
exchange messages with other LPs to obtain information concerning the marking of
t's input places. Another difficult case is when several transitions share a decision
place. Therefore, it is necessary to implement a distributed conflict resolution al­
gorithm to decide which transition is going to fire among the enabled transitions.
In such case, the synchronisation and communication needed to implement the sim­
ulation properly are rather more complex. Obviously, this will lead to substantial
overhead in the distributed simulation and the amount of messages inherent to this
protocol can prevent efficiency.

Chapter 5. Conservative Simulation of ECATNets 91

5.4.2 Efficient Partitioning

An efficient partitioning technique, first used in [NR91] and exploited later in [CF93b],
is related to the firing of a transition: the transitions sharing places are assigned to
the same LP with their input places, thereby making the enabling conditions local
in the LP and avoiding the exchange of messages to decide which transition is going
to fire among the enabled transitions. Thus, this partitioning technique improves
the distributed simulation performance by avoiding the overhead of a distributed
conflict resolution algorithm.

5.5 The Communication Interface

A communication interface is required to preserve the behavioural semantics of an
ECATNet LP. Such interface has to be implemented by an appropriate protocol
among the partitions according to the simulation strategy. We can map the set of
arcs (Tk x Pi) U (Pi x 7*) interconnecting different subnets to the channels of the
communication interface. We define J* = {CHANNELS,m) of subnetk to be the
communication interface with CHANNELS = |J ;j chij where c/i;j = (LP;,LPj) is
a set of directed channels from LP; to LP; corresponding to the axes (tk,pi) E {Tk x
Pi) and to the arcs {pi,tk) £ {Pi x Tk) carrying messages of type m. In the following,
we give some basic definitions and explain how the partitioning of the ECATNet af­
fects the LP’s behaviour.

D efinitions A place p; G P; in LP; is said to be a member of the set of LP-output
places (OP;) of LP; if there exists a transition tj f LPi which p; is an input place.
A transition t; G T; in LP; is said to be a member of the set of LP-input transitions
{ITi) of LP; if there exists a place pj £ LPi for which £; is an output transition.
We define in exactly the same manner input places and output transitions by inter­
changing places and transitions.

For each LP-input transition t in subnet i, define :
Ptin = list of places to indicate which output places are related to t and the kind of
relation that exists. Ptout is defined for each output transition in the same manner
by interchanging output by input.

For each LP-output place p in subnet i, define :
Tp0ut = °f transitions to indicate which input transitions axe related to p and the

Chapter 5. Conservative Simulation of ECATNets 92

kind of relation that exists. is defined for each input place in the same manner
by interchanging input by output.

A communication arc is an arc connecting a place (transition) in LPi to a tran­
sition (place) in LPj. If there is a communication arc from an LP-output transition
t to an LP-input place p, there exists a unidirectional channel between them. This
is motivated by LP-output transitions which have to interact with their LP-input
places for sending tokens when these transitions fire. If there is a communication arc
from an LP-output place p to an LP-input transition t, there exists also an additional
communication arc from t to p. These unidirectional channels are motivated by de­
cision places which have to interact with their output transitions before choosing
the transition to fire.

The syntax of the rewrite rules has to be modified according to the partitioning
technique. If p, t and q are assigned to L P i , L P j and L P * respectively, a rule of the
form:

t: (p,a) -> (q,b)
will have the following syntax:

t LPj- (PLPi 5a) ->• (q i,p fc,b)

Thus, a C reate_tokens external event is sent as a message from L P j to L P * when
t fires.

Exam ple: Consider the example of section 2.4.5, the modular specification of the
Ethernet transmitting station. Partitioning with SCS leads to a set of four subnets,
each subnet is simulated by a LP. The set of duplicated places (labelled 1..9) is
partitioned among the subnets as follows (Figure 5.1):
Subnet 1 : TRANS_REG(1), SUC_TRANS(4)
Subnet 2: INIT_TRANS(3), CHANNEL(6), TO_USER(8)
Subnet 3: INIT_JAM(5)
Subnet 4: RETR_REG(2), RETR_COUNTER(7), RETR_ATTEMPTS (9)

RETRJR.EG is an LP-input place in subnet4 , SUC.TRANS is an LP-output place
in subnet\. ACK1 is an LP-input transition in subnet2 , ASSEMB-FRAME is an
LP-output transition in subnet\. (ASSEMB.FRAME, RETR-REG), (SUC.TRANS,
ACK1) are communication axes, (ACK1, SUC.TRANS) is an additional one. The set
of LPi, i=1..4 exchange messages via communication channels. A C rea te .to k en s
external event is sent as message from LP\ to LP4 when transition ASSEMB.FRAME

Chapter 5. Conservative Simulation of ECATNets 93

fires. In LP2 , transition ACK1 has local informations about its input place INIT.TRANS,
and has to obtain informations about the marking of places SUC.TRANS and RE-
TRANS-REG from LP\ and LP4 respectively.

The syntax of the rewrite rule associated with transition ASSEMB.FRAME in
LPi is now:
ASSEMB_FRAMELPl: (ERROR-SEQLPi, fcs) <g> (FROM_USERLPl, <d, s, data>)
-»• (TRANS_REGlPi , d.s.data.fcs) <g> (RETR_REGlp4, d.s.data.fcs)

When ASSEMBERAME fires, this will lead to: (1) the insertion of events End-firing
(ASSEMBERAME) and C reate_tokens (d.s.data.fcs in TRANS-REG) in EVL;
and (2) the sending as an external event of a message C rea te .to k en s from LPi to
LP4 carrying tokens d.c.data.fcs for place RETRJREG.

However, when the initial ECATNet model is partitioned using EP, the partition is
a set of three subnets only. Each subnet has a set of transitions and places in the
output and input borders respectively. There is one type of communication arcs:
those connecting transitions to their off-LP output places. Places and transitions
are partitioned among the LPs as follows (Figure 5.3):
Subneti: 2 places, 2 transitions;
Subnet2 : 11 places, 8 transitions;
Subnets: 2 places, 1 transition.

The syntax of the rewrite rule associated with transition ASSEMBERAME in LPi
is now:
ASSEMBERAMELPl: (ERROR_SEQLPi, fcs) <g> (FROM_USERLPl, <d, s, data>)
-¥ (TRANS J IE G lP2, d.s.data.fcs) ® (RETR_REGlP2, d.s.data.fcs)

When ASSEMBERAME fires, this will lead to the sending as external events
of two messages C reate .tokens from LPi to LP2 carrying tokens d.c.data.fcs for
places TRANS .REG and RETRJIEG.

Chapter 5. Conservative Simulation of ECATNets 94

'RO M .U SER

(d ,s ,d a ta) r
C O M PU TE-FCS,,

fcs
.ASSEM B-FRAM E

tcs

d .s.data .fcs

TRA N S-R EG

d.s.data.fcs

CHANNEL.ACCESS

false
BUSY.CHANNEL

not(x)

x=false DELAY

SU C .TRAN S
false

CA RR IER .SEN SE
Subnet 1

T O .U S E R

trans-ok
ACK1

false
<sl/^ N re m c

IN IT.TRA N !

tru e

TR A N S-FR A M E

head(f)

6 jC H A N N E L

ACK2

false
rc > n

T R A N S-JA M , remove(J)

JA M -R

rem ove(j)^

TlREG

head(j)

COLLISION

IN IT .JA M
‘true

Subnet S o
COLLISION JDETECT

R E T R -R E G
"2s

R E T R -A T M PT S
15s

IN IT-JAM

0 -false

R ETRA N S
0 < rc < n

R E T R .C O U N T

ad d n (rc ,l)

Subnet 4

Fig. 5.2 Separation of Concern ECATNet Partition

Chapter 5. Conservative Simulation of ECATNets 95

COMPUTELFCS FROM_USER

ASSEMB_FRAME

ERROR^SEQ

TRANS_RE

Subnet 2

R ET R JIE G

ACK1 ACK2 TRANS_FRAME T R A N S JA M

TO_USER

Subnet 3

Figure 5.3: Efficient ECATNet Partition.

5.6 Simulation Engine

The conservative approach allows only the processing of safe events, firing of transi­
tions up to LVT for which the LP has been guaranteed not to receive messages with
smaller timestamps. In the following details about the CMB-DA simulation engine
are given.

5 .6 .1 T y p e s o f M essages

The (general) format of the messages exchanged between LPs is

Type_m essage (source, destination, timestamp, type.token)

where source and destination are either a place (in L P j) or a transition (in L P j)

depending on the communication arc, timestamp represents an accumulated firing
time of transitions (it may have different meanings in the different types of mes­
sages), and type-token is an algebraic term token moved among subnets. Messages
are also labelled with a port number that clearly states which channel they must be
sent through.

The causality of events is preserved over all LPs by sending timestamped token

Chapter 5. Conservative Simulation of ECATNets 96

messages of type Create_tokens(t,p,TT,CT) in non-decreasing order. This mes­
sage is carrying Created Tokens when t in LPj fires leading to a deposit of tokens
in place p in LPj. C reate .to k en s (t,p,TT, null) is a null message which is sent for
synchronisation purpose. A null message is a timestamped signal sent by a LP to
indicate to other LPs a lower bound of the timestamp of its future C rea te .to k en s
messages.

Each message of the simulated ECATNet model is represented in the obvious
way: a record (struct) with elements representing its type, sending process, send­
ing/receiving transition, receiving process, sending/receiving place, token time. An
additional information GenProc (Generating Process) is used in the simulation of
cyclic models to avoid an overflow of null messages in the message passing system.

5.6.2 Exploiting Lookahead

Our protocol provides a set of constructs to specify the lookahead of an ECATNet
model and thus improves its performance with conservative implementations. As the
causality constraint may introduce deadlocks, they are typically avoided by using
null messages. Their efficient implementation is also facilitated because each LP
maintains the set of its source and/or destination LPs.

The structure of the ECATNet simulated model has to be analysed to see where
some lookahead can be extracted, and to tailor the simulator to exploit it. If this
can be effectively done, timestamps of null messages will have higher values and
the overall number of required null messages will be reduced, while a faster clock
advance of the LPs will be allowed.

To highlight lookahead that exists in Petri nets simulation, if a transition t
starts firing at Tsirn, a LP can predict exactly when the tokens created by this
firing are deposited: Tsim + F iringT im e(t). In order to compute the timestamp
of the null message that will be sent from LPj to LPj, the information about timed
transition among the succeeding transitions up to LP’s output border has to be kept
[CF93b]. To do so, it is necessary to analyse the structure of each ECATNet subnet.
Lookahead is then the accumulated firing time of these succeeding timed transitions.
It can be established for a pair of transitions in each subnet by a static analysis of
the subnet’s structure.

However, as suggested in [DBGM96a], a time window can be used when parti­
tioning with SCS rather than null messages to prevent incorrect computations from
propagating too far ahead into the simulated time. Lookahead provides a window
[Tsim, W(Tsim)] such that all events with timestamps in the window can be exe­

Chapter 5. Conservative Simulation of ECATNets 97

cuted safely and without further communication between LPs. We refer to [NR91]
to compute it.

Lookahead is computed at the time the transition to fire is known. First, we find
bmim the minimum firing time among all the LP’s enabled transitions. Second, we
find Emin, the value of the least timestamp on any event in EVL. As EVL is sorted
on the time of occurrence of events, Emin is the event’s timestamp in the head of
the list. If the list is empty, we take Em{n = oo. Third, we compute E min + $min
which provides the desired upper bound.

We suppose that each LP call a routine B ound_N extM sgTim e() which returns
the value Emin + 6min. We then compute W(Tsim) = Min[Bound_NextMsgTime()]
among all LPs. The LPs synchronise globally to make W(Tsim) known to each one.

5.6.3 A lgorithm s

Every ECATNet LP repeats the following steps:

S tep 1 LP waits to select an input message m from its input communication chan­
nels by invoking ReceiveMessageO and inserts m into the relevant IQ*. Each input
queue IQ* has a clock CCj associated with it that is equal to either the timestamp
of the message at the head of the queue if the queue contains a message, or the
timestamp of the last received message if the queue is empty.

S tep 2 LP processes the first event of EVL if there is no token message in one
of the I Q j S with smaller timestamp, or to process the token message with the min­
imum token time in IQs. The execution of ExecuteEventO or ExecuteMessageO
may invoke SendMessageO to send output messages:

/* TokenTime (m) returns the timestamp of message (or event) m */
if(TokenTime(First(EVL)) < CCjs

Execut eEvent (F irs t (EVL));
else ExecuteM essage(First(CCjs));

The execution of the event e by a LP (after invoking Dequeue(e)) is described
as follows:

Chapter 5. Conservative Simulation of ECATNets 98

ExecuteEvent(e){
Updat eLVT(TokenTime(e));
/* invoke function according to the type of event e */

C ase StartJiring: invoke S ta r t_ f ir in g () ;
C ase End_firing: invoke End_firing();
C ase Deposit.tokens: D eposit.tokens 0 ;

}

The execution of the message m by a LP is described as follows:

ExecuteMessage(m){
Updat eLVT(m. timestamp);
/* invoke function according to the type of message m */

C ase Null: invoke ComputeLookaheadO;
invoke GenerateNullMessage();

C ase Create.tokens: C reate .tokens();

}

If a new message arrives from an input channel i then the corresponding CC* is
advanced and, if it is not a null message, it is inserted in the associated IQ*. Null
messages need not be stored, because their only interest is the advance they produce
in the channel clocks. This advance may increase the message-acceptance horizon
and thus may allow any awaiting C reate .tokens message to be consumed.

When the ExecuteMessageO function processes a null message m in an LP, it
invokes a function ComputeLookaheadO to compute the timestamp of the output
(null) messages. The ComputeLookaheadO function implements the lookahead ex­
ploiting the following technique. First, we find the minimum firing time among
all the LP’s transitions. Second, we find Emin, the value of the least timestamp on
any event in EVL. If the list is empty, we take Emin = oo. Third, we compute
Min(TokenTime (m), E min) + Smin which provides the desired uppon bound.

The null message is then sent to some or all output channels by invoking SeUdMes-
sage(). As the number of null messages may become quite large during the simu­
lation, a function ReduceNullO to reduce their number is invoked before sending
them [Vri90]. This saves communication time (in the sender) as well as processing
time (in the receiver).

A LP does not process any input message until it has received at least one mes­

Chapter 5. Conservative Simulation of ECATNets 99

sage from each of its input channels. The input message with the smallest timestamp
is selected for processing. The LP blocks as soon as the minimum timestamp of mes­
sages in IQs is not larger than the occurrence time of the first event in EVL (if IQ*
becomes empty, the value of CCj is changed to 0).

To obtain the set of transitions that can fire in parallel within a LP, function
Enabled 0 is invoked. Basically, it takes the left-hand side of the rewrite rules
associated with the transitions and checks the multisets of pairs (p,[m]®), where p
is an input place.

The firing of a transition t is as follows. The right-hand side of the rewrite rule
associated with t is checked by invoking a function R ew ritingO . If t G OT, in
LPi, then a message carrying CT tokens is is generated and inserted in the corre­
sponding output queue (OQ). If t has an output place in LPi, it schedules an event
E nd .F ir in g of t. A null message is also deposited for every output border transition
in the corresponding OQ.

Start _f iring(t){
Destroy.tokensO;
/* invoke function according to the type of transition t in LPj * /

C ase 1: /* t G OTt */
invoke GenerateTokenMessage(t, LVT + FiringTime(t));

C ase 2 : /* t has an output place p in LPj */
invoke Enqueue(End_firing(t, LVT -1- FiringTime(t)));
invoke Enqueue (Create.tokens (p, LVT + FiringTime(t)));

Case 3: /* t $ OT* */
invoke ComputeLookahead ();
invoke GenerateNullMessageO;

SendMessageO;
}

When transition t is not in LP’s output border (t £ IT*), the function Start_firing
generates a null message in an LP by invoking function ComputeLookaheadO to com­
pute its timestamp. The ComputeLookaheadO function implements the lookahead
exploiting the technique described in §5.6.2. Then the null message is sent to some
or all output channels by invoking a SendMessageO function.

Chapter 5. Conservative Simulation of ECATNets 100

5.6.4 D istributed Conflict Resolution A lgorithm

A distributed conflict resolution algorithm is needed when partitioning with SCS.
The LP first checks whether the local firing is possible. If the local enabling condi­
tions of transition t are satisfied because f s input places are assigned to the same
LP, no communication with other LPs is necesssary. Otherwise, t has to wait for
any Tokens_available messages sent from p G Ptin .

As soon as the marking of place p is updated because of the process of an event
C rea te .to k en s, p has to inform t G TPout so that t can compete for the available
tokens. To solve the conflict, the LPs synchronise and communicate via the follow­
ing messages using a four steps algorithm:

S tep 1 a Tokens_available(p,t,TO,M(p)) message is sent from place p in LPj at
time TO to inform transition ̂£ TPout in L P j that the marking of place p is M(p)1.
If p and t are assigned to the same L P , t ’s enabling conditions are available locally;

S tep 2 the transition t waits for Tokens_available messages from all the places p
G Ptin, then processes T1 = MAX(TO), the latest timestamp among these messages.
It sends a Tokens_requested(t,p,Tl,IC(p,t)) message as a reply if its enabling con­
ditions are satisfied (TC(t) is true and IC(p,t) is enabled). Otherwise, it sends a
message to p to inform that it does not need the token;

S tep 3 p waits for a reply for each Tokens_available message previously sent,
collects Tokens .req u ested messages and then processes T2 = MIN(Tl). If the set
of transitions requesting tokens cannot fire in parallel, p executes a conflict resolution
algorithm for choosing the transition t to be fired. A Tokens_allowed(p,t,T2,DT(p,-
t)) message is sent to such transition;

S tep 4 the transition t collects Tokens .allowed message from all its places p G
Ptin and then sends a Tokens_consumed(t,p,T2,DT(p,t)) message with timestamp
T2 to such places. It processes T3, the time of the end of its firing (T3 = .T 2 +
FiringTimeO).

1In case of an inhibitor axe, p sends a Tokens_available(p, t, TO, empty).

Chapter 5. Conservative Simulation of ECATNets 101

5.6.5 Conflict R esolution Strategy

When multiple transitions sharing input places become enabled at the same time
and compete for tokens, a decision must be made about which transition (or set of
transitions) to fire in case they cannot fire in parallel. Two functions exist to solve
this conflict:

• priorities may be specified for transitions: II : T -> N assigns priorities 7r* to
T-elements U £ T.

• the decision place p selects randomly according to a probability distribution
defined by the user one or more transitions that it would like to fire and offers
them tokens via a Tokens_allowed message if these transitions £ TPout. If
a transition t is lucky enough to receive Tokens_allowed messages from all
places p £ Ptin, it then fires. Otherwise, it replies by sending a message that
it cannot use any of the tokens. Its input places try again later in simulation
time by sending another Tokens_available message.

Note that the marking’s update of place p may lead to the enabling and the firing
of several output transitions at the same time.

5.6.6 P laces w ith Lim ited Capacity

As explained in §2.4.2, in addition to TC and IC to be true, the third transition
enabling condition in ECATNets is related to the capacity of the output place where
the created tokens CT have to be deposited.

If transition t and its output place p are assigned to the same L P , then infor­
mation regarding the capacity of p and its actual marking axe available locally. In
case they are not assigned to the same L P (t £ OTj and p £ Ptout), synchronisation
and communication are necessary via the following messages using a three steps
algorithm:

Step 1 Deposit_request(t, p, TO, CT). This message is related to the firing of
transition t in L P j after checking that its first two enabling conditions are both
satisfied (TC and IC are true). This message is sent from t in L P j at time TO to
request firing from place p £ Ptout in LPj leading to a deposit of CT tokens in p.

Step 2 Deposit_request_ACK(p, t, T l, CT): the place p in L P j waits for De-
posit_request messages from all the transitions Then it proceeds to

Chapter 5. Conservative Simulation of ECATNets 102

the sorting in increasing timestamp order of TO*, i = l..n, where n is the number
of transitions requesting firing. Starting with transition with the least timestamp
TOi, p checks whether the enabling condition M(p) © CT* < Cap(p) is satisfied.
The firing is allowed at either the time specified by t or by L P j . If the deposit of
tokens is not possible at TO* because M(p) = Cap(p) (the place is full) or M(p) ©
CTi > Cap(p) (overflow), L P j sends a Deposit_request_ACK (acknowledgement)
message as a reply to t specifying when exactly t can fire. The value of T1 is local
to L P j and is related to the time of p’s output transition(s) is (are) going to fire.
To exploit such information about T l, L P j has to check E V L , IQs or even wait for
future messages from its neighbours.

Step 3 t waits for a reply for each Deposit_request message previously sent,
collects Deposit .request _ACK and processes T2 = MAX(Tl). It then fires at T2
(if still enabled) and sends a Create.tokens for each p 6 Pto,r

5.7 R esults o f the Experim ents

There are several parameters to take into account to explore their influence on the
performance of the distributed simulation algorithms:

• the size of the ECATNet (number of places and transitions);

• the scenario of the simulation (eg. the distribution of the firing times);

• the number of processors used.

Output Data

The description of the ECATNet model is detailed enough to allow to obtain a good
deal of insight into the behaviour LPs. In addition to the performance measures
of the simulated ECATNet model such as the maximum and average number of
algebraic terms in places, the number of transitions fired, ... the simulators can
measure and give information about:

• the number of generated (positive and null) and consumed messages;

• the number of generated and consumed events;

• time statistics: time spent processing event (Event Proc.), sending positive and
null messages {Comm. Send), receiving positive and null messages {Comm.

Chapter 5. Conservative Simulation of ECATNets 103

Recv), awaiting increments in the acceptance horizon (causality) and awaiting
for messages to be received (communication) (Blocking), awaiting at the end
barrier to terminate the protocol (Term. Protoc).

When LVT reaches the end.of.simulation value, each LP collects statistics, sum­
marises them and sends the final results to be shown on the screen or saved in a
file.

P erfo rm ance R esults

We have run our initial tests for distributed simulation on discrete-event ECATNet
model of the Ethernet transmitting station. All the code is written in C, the run
time system is made up on top of MPI and tested on a network of Sun Sparc
workstations. In the remaining, a processor (or processing element (PE)) refers to a
Sun Sparc machine with a single processor.

Some parameters of the model can be varied to evaluate their effects in the
performance of the simulators such as the collision probability and the distribution
of the delay time. Experimental work was also carried out with the purpose of
evaluating the performance of the event-driven sequential simulator (§5.2.4).

We have run the conservative simulation (Chandy-Misra’s approach with dead­
lock avoidance, CMB-DA) of the ECATNet efficient partitioning in a parametrisa-
tion: A d e l a y is exponentially distributed with mean 1.0 (transition’s delay time),
probability of occurrence of a collision = 0.5, duration of the simulation = 10,000
cycles and N = 1, 2, 3 processors respectively. Each LP is assigned to a dedicated
processor and reside there for the whole real simulation time.

In the simulation a total of about 100,000 transitions were fired. It took the
CMB-DA simulator 5 minutes 41 seconds to execute on 3 processors whereas SEQ
needed only 48 seconds (all timings are average time for execution in seconds). The
speedup of 1.4 using 3 processors observed in Figure 5.4 is reported by comparison
with the distributed simulation code running on a single processor.

We faced two primary problems with the conservative approach [DBGM96b].
The first problem is related to cyclic models (the Ethernet transmitting station is a
cyclic one). A null message sent out by one LP could possibly circulate through a
series of other LPs and arrive back at the original sender at the time it was sent (eg.
a null message generated after transition DELAY in LP2 fires). In some cases, the
system is modelled using exponential firing times, and because these have a minimum
delay of zero, they must be modified for use in the distributed simulation to avoid
a deadlock situation. To cope with this situation, a firing transition identifier was

Chapter 5. Conservative Simulation of ECATNets 104

600
CMB-DA

SEQ500

400

300

200

100

0
2 30

3

2.5

2

1.5

Ideal
CMB-DA

0.5

0
2 3

Number of Processors Number of Processors
(a) (b)

Figure 5.4: (a) Execution Time of CMB-DA; (b) Speedup over its One Processor
Execution.

introduced in each null message generated by a timed transition in LPj. If the
null message arrives back at the original sender LPj, it is simply discarded. This
approach, similar to the “carrier null message” approach proposed by Cai and Turner
[CT95] will permit LPj to identify a null message initiated by itself. Deadlock is
avoided because there are no cycles in which the collective timestamp increment of
messages traversing those cycles is 0 .

The second problem is related to the large number of null messages exchanged
between LPs leading to considerable overhead. Since a large number of transitions
in LP2 are immediate, there is no need to generate new null messages when these
transitions fire if there is no timed transition among the succeeding transitions up
to the output border, i.e., the accumulated firing time is 0 , and this does not change
lookahead. A reduction of the number of Null messages improves the distributed
simulation performance.

The results show that communication time between LPs is quite important. A

LP does not block when invoking SendMessageO. However, it might block when
invoking ReceiveMessageO, but only if no suitable event is ready to be consumed.
Meanwhile, all the incoming messages can be received and stored in IQs by the LP
which is a greedy receiver.

LPi and LP3 contain one single transition in the output border, whereas LP2

contains four (Figure 5.3). LP2 is the process with the largest event processing time
because of its large number of transitions (8) and places (1 1) leading to an important
number of events to schedule. Using this partitioning technique, we note that:

Chapter 5. Conservative Simulation of ECATNets 105

• the load could be unbalanced;

• only large ECATNet models lead to a large number of LPs.

ECATNet models show enough parallelism to make good use of multiple processors.
In part, even when identifying the set of LPs that can execute independently and
concurrently on separate processors, we were not surprised to see that the events
S ta r t .firing and End-firing corresponding to the operations “Destroy Tokens”
and “Create Tokens” that could execute in parallel were actually slowing execution
in the NOW as the parallel system.

Using this model, an important aspect to be taken into account is that the
simulation of an activity consumes a negligible amount of CPU time: only some
increments of counters or movements of small amounts of data are needed. For
this reason, when a simulator is running an ECATNet model, the execution time is
mainly due to the simulation algorithm itself (management of events, synchronisa­
tion of LPs, interprocess communication, ...) and not to the simulated model (actual
simulation of events). Another point to be considered is the high communication
time needed to pass a message between two workstations (because the latency is
high). These considerations are specially relevant when evaluating the distributed
simulators.

From these considerations, and as the time to simulate an event is negligible, we
tested what happens when the actual cost of processing an event is high. To do so, we
made some experiments to artificially increase this cost. Chiola and Ferscha [CF93b]
suggest the insertion of additional transitions in the various LPs to increase the
amount of local simulation work (thus increasing the computation/communication
ratio). Another method used in parallel computing suggests the insertion of various
amounts of time of the order of micro- or milli-seconds. The method we use simply
inserts a loop in the form “for i= l to W do nothing” in the code of the simulator
at the point where an event is simulated. The parameter W is a form of synthetic
workload, which can be varied to evaluate its effect on the execution time of the
simulator.

The aim of an efficient code is to keep all the processors busy (load-balancing)
while minimising the amount of communication (usually the bottleneck in parallel
processing), through often there is a trade off between communication and process­
ing.

In order to investigate the influence of the synthetic workload on the CMB-DA
simulator’s performance, the value of W was varied to correspond to the values:
1 , 1 0 , 1 0 0 , 1 0 0 0 and 1 0 ,0 0 0 (therefore varying the grain size of event processing).

C h a p ter 5. C on servative S im u lation o f E C A T N ets 106

□ B locking
□ Comm. Recv
■ Comm. Send
i Event Proc.

Figure 5.5: CMB-DA: Impact of the Workload onto the Execution Profile (3 PEs).

In Figure 5.5, we see that experiments with significant synthetic workload exhibit
a more balanced communication/computation ratio (the amount of CPU time to
simulate an activity increases with W). Figure 5.6 shows: (a) the execution times
for various values of W; (b) the speedup obtained by comparison with the sequential
simulation code running on a single processor. It can be seen that a moderate
amount of speedup is obtained with a large value of IF on 3 processors.

To summarise the results of these experiments on the Ethernet transm itting
station ECATNet model, it can be concluded that the conservative approach to
distributed simulation exhibits a poor performance (Figure 5.7). Nevertheless, other
models could successfully be simulated using CMB-DA, if they belong to any (or
even better, several) of these groups (see chapter 8):

Chapter 5. Conservative Simulation of ECATNets 107

1200
SEQ -

CMB-DA <1000
</)V
C0o
4)0)
4)

ih
c0
3o
4)
XW

10 100 1000 10000
Synthetic Workload

(a)

CMB-DA

10 100 1000
Synthetic Workload

(b)

10000

Figure 5.6: Influence of the Synthetic Workload in the Simulation, (a) Execution
Times for SEQ and CMB-DA (3 PEs); (b) Achieved Speedup over SEQ.

• models that synchronise in a natural way by means of useful messages. In this
case, the need of null messages is low, which is specially convenient when a
message passing architecture is used;

• models with high levels of lookahead, which allows progress in the simulation
when the LPs do not have events to process. If it is not possible to process
useful messages, at least null messages are generated less often and with larger
timestamps, and the channel clocks (and then the acceptance horizon, the LVT
and the simulation) advance faster;

• models where the simulation of an event requires a high communication effort,
which is distributed among the processors.

5.8 Conclusion

In this chapter we have shown how DDES has been successfully used to study a
variety of real-world systems, including the study of different aspects of parallel
computing. The conservative algorithms we proposed in this chapter are expected
to improve the ability of efficiently simulate the behaviour of systems modelled by
ECATNets over a period of time.

The decomposition of the “initial” ECATNet model into disjoint partitions rep­
resenting smaller sized models has a strong impact on DDES performance. The

Chapter 5. Conservative Simulation of ECATNets 108

1.4

1.2

1
&

| °-8u
“ 0.6

0.4

0.2

0
1 2 3

Number of Processors

Figure 5.7: Speedup of CMB-DA over SEQ (W=10,000).

“separation of concern” strategy does not necessarily lead to a good partitioning for
two reasons. The first reason is the duplication of places in the different subnets, the
second one is related to the assignment of the transitions and the places to the LPs,
and consequently to the case where several transitions share input places. Because
a transition and its input places are not always assigned to the same LP, it is neces­
sary to exchange messages between LPs before the transition firing. We developed
a proper communication protocol among LPs in order to implement a distributed
conflict resolution strategy for transitions sharing input places and thus compet­
ing for tokens. Obviously, such conflict resolution strategy may induce substantial
overhead in the distributed simulation in a message-passing environment and may
prevent efficiency.

A more efficient partitioning technique is used to implement the conservative
simulator based on message passing and is related to the firing rule [NR91, CF93b]:
a LP is a set of transitions along with their input places such that local information
is sufficient to decide upon the enabling and firing of any transition. The simulator
guarantees a certain performance speedup with respect to the sequential simulator,
even though might be affected by load balancing problems on a wide number of
ECATNet structures.

Compared with other works on parallel and distributed simulation of Petri nets
[TZ91, AD91, NR91, CF93b, Tur96], the protocols of distributed simulation of
ECATNets differ in at least one of the following points:

1. ECATNets are high-level algebraic Petri nets;

CMB-DA

Chapter 5. Conservative Simulation of ECATNets 109

2. The simulation protocols have to respect rewriting logic;

3. The simulation protocols have to respect time, timed transitions and places
with limited capacity;

4. The state of the ECATNet model is distributed;

5. The proposed simulation protocols use either a “separation of concern” or an
efficient partitioning.

Chapter 6

Optimistic Simulation of
ECATNets

We present in this chapter an ECATNet distributed simulator based on Time Warp.
As for the conservative one, two partitioning techniques (SCS and EP) are consid­
ered.

6.1 Introduction

In ECATNet optimistic protocols, a LP is allowed to process events in any order.
However, the underlying synchronisation protocol must detect and correct violations
of the causality constraint. The simplest mechanism for this is to have each LP
periodically save (or checkpoint) its state. Subsequently, if it is discovered that the
LP processed messages in an incorrect order, it can be rolled back to an appropriate
checkpointed state, following which the events are processed in their correct order.
The rollback may also require that the LP unsends or cancels the messages that it
had itself sent to other LPs during the simulation. An algorithm is . also required to
periodically compute a lower bound on the timestamp of the earliest global event
(GVT). As the model is guaranteed to not contain any events with a timestamp
smaller, token time messages timestamped earlier than GVT can be discarded.

This chapter is structured as follows. §6.2 introduces the characteristics of an
optimistic ECATNet LP, and a description of the simulation engine based on TW-
LZ is done in §6.3. The Ethernet transmitting station ECATNet model presented
in §2.4.5 is chosen to carry out the experiments to evaluate the TW-LZ simulator in
§6.4. Some conclusions are summarised in §6.5.

110

Chapter 6. Optimistic Simulation of ECATNets 111

6.2 The Optim istic Simulator

6.2.1 Logical Processes

In order to simulate an ECATNet partition according to Time Warp, the data
structures a LP maintains are: (1) a local virtual time (LVT) representing the
LP’s simulation time; (2) a single input queue (IQ) which collects recently arrived
messages (positive and negative) ordered by time; (3) an output queue (OQ) which
contains the positive messages to send; (4) an output queue (OQN) which contains
the negative copies of the messages recently sent, ordered by time (antimessages for
unsending the originals); (5) an event list (EVL); and (6) an event stack (ES) which
records all state variables such that a past state can be reconstructed on occasion.

The Time Warp ECATNet protocol provides a set of facilities that can be used
to control the various parameters that affect the performance of an optimistic im­
plementation. These include setting the frequency of checkpointing and GVT com­
putation among others.

6.3 Simulation Engine

The simulation engine’s main task is not only to synchronise the LPs simulating the
various subnets by controlling the timestamp of each message and LVT, but also to
implement the functions of communication arcs, state saving and GVT management.

6.3.1 Types o f M essages

LPs communicate by sending two types of timestamped messages: (1) Create_tokens(t,p,TT,CT,
is a message carrying CT when t G OTi fires leading to a deposit of tokens in place p
in LPj. The timestamp of this message is the accumulated firing time of transition
t; (2) C reate_tokens(t,p,TT,CT,’-’) is used in the rollback mechanism needed for
synchonisation to indicate which previously sent message should be cancelled.

6.3.2 Separation of Concern Partitioning

Since a transition t G I T j may have one or more input places in different LPs (say
L P j) , whether this transition is enabled will depend on the marking in all of its
input places. In such case, LPi will check first £’s local input places. When all the
local enabling conditions are satisfied, LPi will assume that t is enabled and will
determine the next transition to be fired among all local enabled transitions. If the

Chapter 6. Optimistic Simulation of ECATNets 112

next transition to be fired is £, two messages are exchanged for LPs synchronisation
and to ensure that the marking in a place p € OPj is consistent [DBGM95]:

• Tokens_requested(t,p,TT,IC): is used for requesting tokens from pl . This
message timestamp (received by LPj from LP,) represents the next local clock
value (LVT) of LPj if and only if LP* can get its required tokens from LPj and
fire t\

• Tokens_requested_ACK(p,t,TT,DT,flag): is sent by LPj and is used as a
response to a Tokens_requested message. The response is either positive
(flag=true) or negative (flag=false), and TT = LVTj.

LPi sends a Tokens_requested message to LPj to ask for tokens. As the protocol
is optimistic, LP* does not wait for the response from LPj, the local simulation
in LPi can be continued under the current local marking. When LPj inputs and
processes the Tokens_requested message, it checks f’s input place(s). When fa
enabling conditions are satisfied (TC is true and IC is enabled), LPj sends a To-
kens_Requested_A CK message with a positive response to LPi, then updates its
local marking (flag=true, Destroy_tokens() is invoked). In case tokens are re­
quested from a decision place by several transitions, the strategy explained in the
previous chapter (§5.6.5) is used to solve it. If fs enabling conditions are not sat­
isfied, LPj sends a Tokens_requested_ACK message with a negative response to
LPi (flag=false). When LPi receives all response messages from other LP’s, it checks
the answers of the Tokens_requested_ACK messages. If all these messages are
positive, t will be fired as assumed, otherwise t is not ready to fire before the time
indicated by the maximum TT of the Tokens_requested_ACK messages with the
negative response. In such case, LPi must return all tokens carried by the positive
Tokens_requested_ACK messages (by sending back C rea te .to k en s messages to
the senders). At that LVT, t may or may not be enabled depending on local marking
conditions. If t is still enabled, new Tokens_requested_ACK messages axe sent
and the above process is repeated.

6.3.3 Checkpointing

In [LL91a], Lin and Lazowska indicated that the efficiency of state saving and
restoration may have a significant effect on the performance of Time Warp. In

1Note the inhibiting conditions in case of an inhibitor arc.

Chapter 6. Optimistic Simulation of ECATNets 113

Next event
Last checkpointed Straggler before rollback
StartJinng event

T 3 ! T 2 ! !T1
i ! Rollback !i r* —------- 1
1 Create tokens events 1 1i---------= --------------------»j----------------------------

Coast forward Normal forward execution

Figure 6.1: Rollback in TW ECATNet Simulation.

order to achieve the best possible execution time, it is important to reduce the over­
head associated with saving and restoration states. It is important to realise that,
in general, the rollback overhead is comprised of two components: state saving (i.e.,
checkpointing) and state restoration (i.e., the costs associated with recovering an
earlier state after a rollback).

In Time Warp ECATNet simulation, we first made a LP save its state each
time an event of type D estroy-Tokens or C reate_tokens is executed (frequent
checkpointing). We realised that the set of LPs tend to consume all the allocated
memory because of the large size of the state to save per executed event. We later
had to turn to infrequent state saving.

State checkpointing is done each time a transition fires (Figure 6.1) and the form
of the entries in ES is (t{,LVT,M) where t{ is the transition that has fired at time
LVT yielding a new marking M. In case a LP receives a straggler message m, LVT is
set to TokentTime(m) and a rollback is performed to time T 3 , the timestamp of the
most recent checkpointed event in ES but not exceeding LVT, and resumes execution
from that point. The coasting-forward phase consists mainly in the re-execution of
C reate_tokens messages in IQ which execution did not lead to a transition firing.

6 .3 .4 M essag e C a n c e lla tio n

When a LP rolls back, it first inserts the straggler message into IQ and updates
LVT. The state at (new) time LVT is restored. All incorrect computation is undone
by popping out all the records prematurely pushed in ES. If rollback is applied with
aggressive cancellation, all messages in OQN with token time > LVT are annihilated
by removing them from OQN and sending them. The simulator can also apply lazy
cancellation. In the case reevaluation yields exactly the same positive messages
as already sent before, the new positive message is not resent. This will prevent

C hapter 6. Optimistic Simulation of ECATNets 114

unnecessary message transfers as well as possibly new rollbacks in other LPs.

6 .3 .5 G V T C o m p u ta tio n

The Global Virtual Time (GVT) is considered as the virtual clock for the system as
a whole. The knowledge of GVT reduces past state savings in IQ, ES and OQN.

In the GVT computation method we implemented, the computation is performed
in a fully distributed fashion using a token-passing scheme. LPs are organised into
a logical, unidirectional ring. A special message, a GVT.PACKET circulates on a
complete closed predefined path among the processors. A LP called Coordinator
(eg. LPo) is responsible for generating GVT_PACKET which it forwards to its
successor after calculating the minimum of its present LVT and the timestamps
of all unconfirmed messages (minLVT), and posting this in the GVT.PACKET.
Thus, in a network of 4 processors, GVT_PACKET will circulate on the path 1-
2-3-0. A GVT estimate is calculated by taking the minimum of all m inLVTs in
GVT.PACKET. When GVT_PACKET returns to its owner (the coordinator) after
traversing the ring, the computed GVT value is known and is then transmitted via
a GVT-MESSAGE to the next LP in the ring.

We faced the situation where the LP responsible for generating GVTJPACKET
message was ready to send a new one but did not receive the acknowledgement of
the previous one, thus was not able to send a GVT-MESSAGE.

To solve this problem, we added a certain degree of “conservatism” into this
LP. With a purely optimistic scheme, the LPs advance unboundedly (in fact, LPo
advances too fast). The conservatism is imposed by limiting the ability to go into
the future: LPo is allowed to advance to a certain degree, calculated as the value of
the GVT plus a time window size. If it tries to go beyond, it is temporarily blocked.
The window size is not dynamically changed and is the time interval between two
GVT times computations.

6 .3 .6 A lg o rith m s

A LP processes messages in IQ by checking the sign (positive or negative) and the
timestamp of each one (these messages are ordered by their timestamp, the head
of the queue corresponds to the smallest one). Messages with timestamp > LVT
are inserted in IQ. In case of a positive message, it is inserted in timestamp order,
otherwise (the sign is negative) it annihilates the positive message in IQ previously
sent. If the message is a straggler (timestamp of the message < LVT), the LP must
roll back and restore a valid state. As for the conservative simulator, the processing

Chapter 6. Optimistic Simulation of ECATNets 115

of the first event in EVL or the first message in IQ generates either new (internal)
events in EVL or (external) output messages.

while (GVT < = end_of_simulation) {
ReceiveMessage();
/* test type of message m just received */
if TypeMessage(m) = = GVT.PACKET

ManageGVT();
else InsertInIQ(m);

}

InsertInlQO is invoked each time a message is received, to store it in IQ. The
received message may be a Create_tokens scheduled for the future, which is sim­
ply inserted in the right position. It may also be a straggler, which causes a rollback
before its insertion in the queue. Finally, it can be a negative message, which re­
quires a positive message to be annihilated, either without triggering a rollback (if
its corresponding positive message has not been executed yet), or after a rollback
(if its corresponding positive message has already been executed yet).

Insert InIQ(m){
if(TokenTime(m) > LVT) {

if(TypeMessage(m) = = ’+ ’) InsertFuture(m);
else AnnihilateFuture(m);

}
else if(TokenTime(m) < LVT) {

if(TypeMessage(m) = = ’+ ’) InsertPast(m);
else AnnihilatePast(m);

}
else /* TokenTime(m) = = LVT */ {

if(TypeMessage(m) = = ’+ ’) InsertFuture(m);
else {

if(AireadyConsumed(m)) AnnihilatePast (m);
else AnnihilateFuture(m);

}

Chapter 6. Optimistic Simulation of ECATNets 116

InsertPast 0 and AnnihilatePast () both include the execution of RollbackO.
InsertPastO is executed whenever a straggler arrives. It performs the following
steps:

• search in IQ the location where the straggler has to be inserted;

• update LVT to match the straggler’s timestamp. Recover the state of the
LP at that time. This can be found in the ES, in the position just before
the straggler, or may require an additional search in the past plus a coast-
forwarding phase;

• clear ES and OQN, i.e., eliminate all the elements whose timestamp is larger
than the straggler’s;

• execute the straggler (invoke ExecuteMessageO).

AnnihilatePast () is executed when a negative version of an already executed mes­
sage is received. This function is very similar to the previous one:

• search in IQ the location where the positive message is stored;

• recover the state of the LP saved just before the corresponding positive message
was consumed. As before, this can be found in ES, in the position just before
the annihilated message, or may require an additional search in the past plus
a coast-forwarding phase;

• clear ES and OQN, i.e., eliminate all the elements whose timestamp is larger
than the straggler’s;

Each time a LP receives a GVT message, it performs the fossil collection procedure,
retrieving memory from the input (IQ), state (ES) and output queues (OQN).

FossilCollection(GVT) {
/* Discard Old Messages in IQ with TokenTimeQ < GVT */
D i s c a r d l Q (G V T) ;
/* Discard Old Messages in OQN with TokenTimeQ < GVT */
D i s c a r d O Q N (G V T) ;
/* Discard Old State Entries in ES with TT < GVT */
D i s c a r d E S (G V T) ; }

Chapter 6. Optimistic Simulation of ECATNets 117

The LP processes the first event of EVL if there is no token message in IQ with
smaller timestamp, or the token message with the minimum token time in IQ. As
in CMB-DA, the execution of ExecuteEvent () or ExecuteMessage 0 may invoke
SendMessageO to send output messages:

if(TokenTime(First(EVL)) < F irst(IQ))
ExecuteEvent (F irs t (EVL));

else ExecuteM essage(First(IQ));

The execution of a S ta r t - f i r in g event yields to a new state which is saved in
ES by invoking SaveStateO .

6.3 .7 P laces w ith Lim ited capacity

If transition t and its output place p are not assigned to the same LP (t G OT; and p
G Pt0ut)i synchronisation and communication are not necessary because of the “op­
timism” of the protocol. However, when a C reate_tokens(t,p ,T l,C T ,’-|-’) message
is generated by LP, after transition t fires and cannot be accepted by LPj because
the capacity of the destination place p is limited and its marking is full, the message
is rejected (it is lost). In this case LP;- sends a C reate_tokens(t,p,T l,T2,CT,’-’)
message:

• to inform LP; that an incorrect computation has been done; This will force
LP; to rollback;

• to inform LP; about the time transition t could fire (T2 in this case).

6.4 Results of the Experiments

6.4.1 O utput Data

Like in the CMB-DA simulator, the description of the ECATNet models is detailed
enough and the simulator can measure and give information about:

• the maximum and average number of algebraic terms in places;

• the number of generated (positive and negative messages) and consumed mes­
sages;

• the number of generated and consumed events;

Chapter 6. Optimistic Simulation of ECATNets 118

600

CMB-DA
TW-LZ

SEQ -*~500

400

300

200

100

0
0 2 3

Number of Processors
(a)

Figure 6.2: (a) Execution Time of TW-
One Processor Execution.

3

Ideal —
CMB-DA - -

TW-LZ * -2.5

2

1.5

OJ

0
2 3

Number of Processors

(b)
and CMB-DA; (b) Speedup over their

• time statistics: time spent processing event (Event Proc.), sending positive and
negative messages (Comm. Send), receiving positive and negative messages
(Comm. Recv), rolling back (Rollback), awaiting for messages to be received
(Blocking), saving states (Checkpoint), managing GVT (GVT)), awaiting at
the end barrier to terminate the protocol (Term. Protoc).

When GVT reaches the end-ofsimulation value, each LP collects statistics, sum­
marises them and sends the final results to be shown on the screen or saved in a
file.

6.4.2 Perform ance R esults

In section 5.7 an evaluation of the CMB-DA algorithm and results of the distributed
simulation of the ECATNet model of the Ethernet transmitting station have been
presented. One we started experimenting with the TW simulator, we found that it
was terribly greedy in memory demands: a big deal of memory space is required to
store antimessages and copies of the state. In the other hand, the density of events
in LP2 is very high and, for this reason, the probability of a straggler to appear is
very high too. Whenever a causal error was detected, we faced the. situation where
a straggler positive message changes the marking in LP2 but does not cause the en­
abling of any new event in the past. In such case, LP2 does not have to rollback. The
simplified mechanism which has been used to recover was an appropriate insertion
of firings made on ES, and the top of ES was copied considering a potential change

C h a p ter 6. O p tim istic S im u la tion o f E C A T N ets 119

i Other
■ Blocking
□ Rollback
□ Comm. Recv
■ Comm. Send
I Event Proc.

Figure 6.3: TW-LZ: Impact of the Workload onto the Execution Profile (3 PEs).

in the marking. This prevented sending antimessages, which could have given rise
to an overflow in the message passing system.

Figure 6.2 shows the execution times of CMB-DA and TW-LZ simulators im­
plementations with the same scenario as in section 5.7. Speedup (by comparison
with the distributed simulation code running on a single processor) of 1.6 using 3
processors was observed using the TW-LZ engine. It took the simulation 5 minutes
15 seconds to execute on 3 processors.

We report that in the case of the Ethernet transm itting station the T W ’s per­
formance is better than CMB-DA’s. Although antimessages are not always needed,
null messages are, and their number is not negligible in the CMB-DA simulator.
Although the global time computation mechanism needs a continuous interchange

Chapter 6. Optimistic Simulation of ECATNets 120

1200
SEQ —

CMB-DA
TW-LZ1000

B
heo
3UV
XU

400

100 1000 1000010

1.4
CMB-DA

TW-LZ12

0.8

0.6

0.4

0
1000 1000010 100

Synthetic Workload Synthetic Workload
(a) (b)

Figure 6.4: Influence of the Synthetic Workload in the Simulation, (a) Execution
Times for SEQ, TW-LZ and CMB-DA (3 PEs); (b) Achieved Speedup over SEQ.

of messages among LPs to avoid an exhaustion of the memory space, it did not add
any burden to the simulator.

As for CMB-DA, we investigated the influence of the synthetic workload on the
TW-LZ simulator’s performance by varying the value of W to correspond to 1, 10,
100, 1000 and 10,000. In Figure 6.3, we see that experiments with significant syn­
thetic workload exhibit a more balanced communication/computation ratio. Figure
6.4 shows: (a) the execution times for various values of W; (b) the speedup obtained
by comparison with the sequential simulation code running on a single processor. It
can be seen that a moderate amount of speedup of 1.25 is obtained with the larger
value of W on 3 processors (Figure 6.5).

6.5 Conclusion

To summarise our experience with the TW simulator, we say that it required much
more programming effort than the CMB-DA, because the management of the data
structures of TW (i.e., the memory management) is anything but trivial. Addition­
ally, it was much harder to debug. Due to the experience carried out on the selected
model, we are not able to state a definite set of characteristics of the simulated
models that can help in obtaining a good performance from TW over CMB-DA.
Nevertheless, the TW simulator is more general and offers a higher level interface
to the user.

Chapter 6. Optimistic Simulation o f ECATNets 121

1.4

12

1

| 0.8 i>a
75 0.6

0.4

02

0
1 2 3

Number of Processors

Figure 6.5: Speedup of TW-LZ and CMB-DA over SEQ (W=10,000).

CMB-DA
TW-LZ -*

Chapter 7

Synchronous Simulation of
ECATNets

In this chapter we describe the design of a synchronous event-driven ECATNet
distributed simulator, assessing its correctness and its performance potential. As for
CMB-DA and TW-LZ, two partitioning techniques (SCS and EP) are considered.

7.1 Introduction

The experience by Kona and Yew [KY91] with a synchronous parallel event-driven
(SYNC) simulator encouraged us to implement and test an ECATNet synchronous
simulation engine on the network of workstations. It was easy to redesign the LPs to
work synchronously by sharing the same global simulation clock instead of working
asynchronously as it was the case for CMB and TW. Another motivation of the
design is the rewriting logic which is able to find within a LP the set of transitions
to be fired in parallel.

The basic design of an ECATNet LP in the implementation of the SYNC simu­
lator follows the description given for CMB-DA, with some modifications that take
advantage of the set of communication operations offered by the MPI library. MPI
offers an excellent support for global operations such as broadcast and reduction
operations.

122

Chapter 7. Synchronous Simulation of ECATNets 123

7.2 The Synchronous Simulator

7.2.1 Logical Processes

Like conservative algorithms, ECATNet synchronous algorithms do not permit any
causality errors. The set of LPs in the simulation process incoming messages only
when the underlying synchronisation algorithm can guarantee that they will not
subsequently receive a message with a smaller timestamp. The data structures
according to the synchronous approach are: (1) a Local Virtual Time (LVT) repre­
senting an accumulated value of firing times in a LP and whose value is equal to the
global clock, (2) an event list (EVL) ordered by time of occurrence; (3) input queues
(IQ) (one queue per each input channel), which collect recently arrived messages
ordered by time; (4) output queues (OQ) (one queue per output. channel) which
keep messages to send, ordered by time.

7.3 Simulation Engine

7.3.1 T ypes of M essages

The causality of events is preserved over all LPs by sending timestamped token
messages of two types: C rea te .to k en s (t,p,TT ,number) is a synchronisation times­
tamped message sent by LP* to LPj to indicate the number of the actual Cre-
a te .to k en s messages it is ready to send; C reate_tokens(t,p,TT,CT) is a message
carrying CT when t in LPi fires leading to a deposit of tokens in place p in L P j .

7.3.2 A lgorithm

The synchronous simulator is very much like the conservative one: SYNC has the
same data structures and behaves as CMB-DA by not violating the causality con­
straint. An ECATNet LP takes into account the following considerations:

• when partitioning with SCS, the distributed conflict resolution algorithm de­
scribed in §5.6.4 is needed. After the LPs synchronise globally and the new
global clock is known, a transition t G LPj has to wait for any Tokens .available
messages sent from p G Ptin. As soon as the marking of place p is updated
because of the process of an event C reate .tokens, p has to inform t ^ Tpout
so that t can compete for the available tokens. The LPs synchronise and
communicate via the four messages: Tokens_available, Tokens .requested ,
Tokens_allowed and Tokens.consum ed;

Chapter 7. Synchronous Simulation of ECATNets 124

• for both partitioning techniques (SCS and EP), the algorithm described in
§5.6.6 regarding the places with limited capacity is needed when the next
transition to fire t G LPj has its enabling conditions IC and TC true and has
to request a deposit of tokens to p G Ptorit via messages Deposit .request and
Deposit .request _ACK.

Each ECATNet LPj executes a loop of four basic operations :

1 . LP* computes the minimum timestamp Tj among the events stored in the
event list (Start.Fire, EndJFire, Create.tokens) and the messages stored
in IQ (Create.tokens). Collectively, the LPs compute the minimum among
all those values, Tmjn = min(Tj) using a reduction operation. This global
operation also performs a barrier synchronisation,

2. Event consumption. All the events in the with timestamp < Tmjn can be
executed safely, because there are no relationships among them. During this
step, internal events (Start_Fire, End J'ire, Create.tokens) are stored in
the event list, while external events are stored as messages in OQ. LP* advances
its clock to reach Tmjn.

3. Message distribution. LPj sends the messages generated in the previous step.
In order to avoid deadlock situations, this is done in two phases:
• every neighbour is informed about how many messages will be sent to it via
Create_tokens(t,p,TT,number) messages, and
• messages are actually sent (Create_tokens(t,p,TT,CT)).

4. Message Reception. LPj receives all the external events sent to it by other
LPs. This is also done in two phases:
• gathering from the neighbours the number of messages to receive, and
• messages are actually received.

Messages distribution and gathering phases are designed in such a way that all
the messages generated in one iteration are safely received and stored in the same
iteration, without interfering with the next one. The resulting algorithm for a LP
in the SYNC simulator is as follows:

Chapter 7. Synchronous Simulation of ECATNets 125

clock = 0; LVT = 0;
while (clock < end_of_simulation) {

T = MinimumTimestampO; /* Minimum among Events/Messages in EVL/IQ */
clock = GlobalMinimum(T); /* Minimum among all the LPs */
LVT = clock;
while (NextEventTimeQ = = LVT){

if(TokenTime(First(EVL)) < TokenTime(First(IQ)))
Exe cut eEvent (First (EVL));

else ExecuteMessage(First(IQ));
}
SendMessage();
ReceiveMessage();

}

7.4 R esults of the Experiments

7.4.1 O utput D ata

The output of SYNC also consists of a set of statistics about the simulated model
such as the maximum and average number of algebraic terms in places, the number of
transitions fired,... plus a set of measurements about the behaviour of the simulator
itself. Some interesting measurements are also obtained, for example:

• number of positive and synchronisation messages;

• the number of barrier invocations in the simulator.

• time statistics: time spent processing event (Event Proc.), sending positive and
synchronisation messages (Comm. Send), receiving positive and synchronisa­
tion messages (Comm. Recv), awaiting for messages to be received (Blocking),
barrier synchronising (Sync.), awaiting at the end barrier to terminate the
protocol (Term. Protoc).

7.4.2 Perform ance M easures

The experiment on the distributed simulation of the ECATNet model of the Ethernet
transmitting station presented in section 5.7 was performed with SYNC. It took the
simulation 15 minutes 47 seconds to execute on 3 processors.

Chapter 7. Synchronous Simulation of ECATNets 126

1800

CMB-DA ♦
TW-LZ —
SYNC —

SEQ

1600

1400(AVc0ou
tA

1200

» 1000 s
he0
3OuXW 400

200

0 2 3
Number of Processors

(a)

3

Ideal —2.5 CMB-DA
TW-LZ
SYNC2

1.5

0.5

0
2 3

Number of Processors
(b)

Figure 7.1: (a) Execution Time of SYNC, TW-LZ and CMB-DA; (b) Speedup over
their One Processor Execution.

We found that synchronisation overhead considerably outweighs the time spent
doing simulation work and that the simulator was terribly greedy at synchronisa­
tion barriers where a global reduction operation is performed first to compute the
new value of the global clock (by invoking GlobalMinimum), followed by a broad­
cast operation to make this value known to each LP. Software support for global
synchronisation in MPI makes each global barrier relatively easy to use. We were
not surprised to find that synchronisation overhead can account for up to 65% of
total simulation runtime. Figure 7.1 shows the execution times of SYNC, CMB-DA
and TW-LZ simulators implementations with the same scenario as in section 5.7.
Speedup (by comparison with the distributed simulation code running on a single
processor) of 1.8 using 3 processors was observed using the SYNC engine.

We investigated the influence of the synthetic workload on the SYNC simulator’s
performance by varying the value of W to correspond to 1, 10, 100, 1000 and 10,000.
The experiments with significant synthetic workload in Figure 7.2 exhibit a more
balanced communication/computation ratio. Figure 7.3 shows: (a) the execution
times for various values of W; (b) the speedup obtained by comparison with the
sequential simulation code running on a single processor. It can be seen that a poor
amount of speedup of 0.7 is obtained with the larger value of W on 3 processors
(Figure 7.4).

In SYNC, the parallelism is exploited efficiently when multiple events occur at
exactly the same time. However, the amount of attainable parallelism and the
granularity could be too small to be useful. Also, we realise that the simulator per-

C h a p ter 7. S ynchronou s S im u la tion o f E C A T N ets 127

Load = 10

1 2 3

LP

Load = 1000

1 2 3

LP

Load = 100

100%
80%
60%
40%
20%

1/

p
B |m B P® ! ■

2

LP

Load = 10,000

■ Sync.

O Blocking

□Comm. Recv

■ Comm. Send

■ Event Proc.

Figure 7.2: SYNC: Impact of the Workload onto the Execution Profile (3 PEs).

formance suffers if the barrier synchronisations must be performed very frequently.
This situation occurs when few events occur at exactly the same time, or if load im­
balance causes long waiting times at synchronisation points. From the experiment,
we see that synchronisation overhead depends on four factors:

1. the frequency of sysnchronisations is controlled by the synchronisation time
which depends on Min(LVT*) of each ECATNet partition;

2. the duration of a synchronisation depends on the time it takes to execute the
synchronisation operation and on the time spent waiting at the synchronisation
point (which is enormous on a NOW). In MPI, all collective operations are
blocking. Therefore, this could severely limits speedup;

Chapter 7. Synchronous Simulation of ECATNets 128

1600
CMB-DA ••-••••

TW-LZ -*-■
SYNC

SEQ

1400

1200

1000

800

600

400

200

0
100 1000 1000010

Synthetic Workload
(a)

1.4 CMB-DA
TW-LZ
SYNC12

0.8

0.6

0.4

02

0
100 1000 1000010

Synthetic Workload
(b)

Figure
Times
SEQ.

7.3: Influence of the Synthetic Workload in the Simulation, (a) Execution
for SEQ, SYNC, TW-LZ and CMB-DA (3 PEs); (b) Achieved Speedup over

3. the level of detail: the lengthier and/or more frequent the synchronisations, the
larger the synchronisation overhead. Exploiting the parallelism where multiple
events occur at exactly the same time to attain a large and useful parallelism
depends merely on transition firing times: if there is a set of transitions in
the system that have the same (deterministic or stochastic) time value, these
transitions might S ta rt-firing / End-firing in parallel. On the other hand,
if very few events occur at the same time, the performance of the synchronous
simulator is expected to be poor because of frequent synchronisations leading
to a very small number of events to be executed;

4. the number of simulated ECATNet LPs: it takes m LPs less time to execute
the synchronisation operation than n LPs, when m < n.

7.5 Conclusion

In SYNC, events are consumed in timestamp order preventing causality errors, to oc­
cur. Only those events with the same timestamp are executed concurrently and they
are causally independent. Although it was easy to design (it actually re-uses most of
the code of CMB-DA), the cost at barrier synchronisation in a NOW environment
could be enormous. However, it is possible for some models that simulation work can
outweigh synchronisation overhead (even if the synchronisations are frequent): more

Chapter 7. Synchronous Simulation of ECATNets 129

1.4
CMB-DA

TW-LZ
SYNC

11

0.8

0.6

0.4

0
32

Number of Processors

Figure 7.4: Speedup of SYNC, TW-LZ and CMB-DA over SEQ (W=10,000).

(useful) work can be done between synchronisations, and synchronisation overhead
is amortised over many target processors.

In terms of difficulty of implementation, we can say that the synchronous sim­
ulator has been the simplest to program and debug. The conservative one needed
considerably more development time, but it was done in first place, so it served to
acquire most of the experience used with the others. The optimistic has been the
most difficult to program, and the hardest to debug.

Chapter 8

Case Studies and Performance
Results

In the previous chapters we have presented three distributed simulators able to simu­
late ECATNet models. This chapter presents experiments that have been executed
with those simulators, with the aim of characterising how the parameters of the
ECATNet model, the synchronisation strategy and the ways of organising the sim­
ulator influence the achieved performance. An analysis of the results allows us to
suggest suitable combinations of algorithms to efficiently carry out simulations of
ECATNet models.

8.1 Introduction

In this chapter we present the results obtained after performing a set of experiments
with the distributed simulators and the sequential one, whose purpose was to get an
insight into their behaviour under different conditions: parameters of the ECATNet
models and ways of organising the LPs. We are more interested in the behaviour of
the simulators than in getting useful informations about the model. What we want
is to show how some approaches to DDES are effectively useful for the evaluation of
systems modelled by ECATNets.

The presentation of the experiments is organised according to the synchronisation
mechanism: first CMB-DA, then TW-LZ and finally SYNC. An analysis of the
performance of each simulator is done after showing the obtained results and a
series of overall conclusions is given.

This chapter is structured as follows: the models under study and the rules we
follow during the experiments are presented in §8.2. The results of the experiments

130

Chapter 8. Case Studies and Performance Results 131

with the different models are discussed respectively in §8.3 (producer consumer
model), §8.4 (manufacturing system model) and §8.5 (pipeline model). Conclusions
are finally summarised in §8 .6 .

8.2 M odels under study

We carry out a set of experiments using the following ECATNet models:

1. Producer Consumer Model (4 LPs model);

2. Manufacturing System Model (8 LPs model);

3. Pipeline Model (16 LPs model).

The following rules are applied to simulate these models:

1. the partitioning has to be related to the firing rule: a LP should be a set of
transitions along with their input places such that local information is sufficient
to decide upon the enabling and firing of any transition. This is in order to re­
duce the number of messages exchanged between LPs and minimises overhead
(Efficient Partitioning);

2 . when a transition is enabled, it fires in a three phase firing;

3. the execution time of the sequential event-driven simulator running with the
same set of model parameters will serve as the reference point for the compu­
tation of speedup values;

4. synthetic workload: the efforts for real event processing work in the distributed
simulators must exceed the communication effort in order to achieve speedup.
To do so, the load is (hypothetically) increased on the processors (W = 1, 10,
. .., 10000);

5. the obtained performance results are represented in the form of collections of
execution time and speedup curves. LPs profiles according to the simulation
engine are also presented. The execution times represented in Tables and
the LPs profiles (distribution of total execution time among simulation and
synchronisation) are with no synthetic workload whereas the speedup figures
are represented with a large value of W (10,000) if not stated otherwise;

6 . mapping: each LP is assigned to a processor and resides there until the end of
simulation;

Chapter 8. Case Studies and Performance Results 132

7. the simulation is run for long duration cycles to prevent the performance results
to be dependent on initial conditions and to make them representative of the
real system.

After showing the experimental results, we proceed to analyse the effect that each
parameter of the model or of the simulator has in the execution time. When con­
venient, several parameters are grouped and studied together. It is clear that the
following parameters of the ECATNet model have a significant impact on the ex­
ecution time of the simulation: (1) the size of the model; (2) the structure of the
model; and (3) the scenario of the simulation.

8.3 Producer Consumer M odel

Many distributed systems are constructed as producer consumer systems, where
producer processes generate some data and consumer processes use the generated
data for further computation. As the producer and consumer processes may proceed
at different rates, applications use either an unlimited-size or fixed-size buffer for
temporary storage of the data. Instead of sending data directly to the consumer,
the producer deposits it in the buffer; similarly the consumer process requests data
from the buffer rather than directly from the producer process. The buffer must
ensure that the data is sent to the consumer in the same order that it is received
from the producer. Also, a producer process is blocked if the buffer is full; a consumer
is blocked if the buffer is empty.

Figure 8.1 describes an ECATNet model of a producer consumer system. The
model parameters include produce-rate, consume-rate, and buffer-size, where the
first two parameters represent the mean rates at which the producer and consumer
processes generate data and the third parameter is the size of the buffer. Produce-
rate and consume-rate axe represented by timed transitions P ro d u ce in LPi and
C onsum e in LP4 respectively. We suppose the remaining transitions Send in LP2

and R eceive in LP3 are immediate. The buffer is modelled by place B uffer in
LP3 (with possible limited capacity). In the following we study two applications for
temporary storage of data: in the first one the buffer’s size is unlimited whereas in
the second one we make it fixed.

8.3.1 U nbounding the Buffer’s Capacity

The ECATNet model described in Figure 8.1 is a set of four subnets. The buffer,
which is unbounded, is represented with place buffer in LP3 with an unlimited

Chapter 8. Case Studies and Performance Results 133

<data> <data>

Subnet 3Prodace Receive

Readv
Send

Ready_
ConsumeReady.P

ConsameReady_(
Produce

Ready.
Receic:Send BufferSubnet I Subnet 2 Subnet 4

Ready.P Ready_R

Figure 8.1: ECATNet Producer Consumer Model.

PEs SEQ CMB-DA TW-LZ SYNC

1 8 secs 5 mins 47 secs 4 mins 27 secs 40 mins 21 secs
2 - 3 mins 08 secs 2 mins 16 secs 22 mins 07 secs
4 - 2 mins 33 secs 1 min 48 secs 16 mins 03 secs

Table 8.1: Producer Consumer Model (Unbounded Buffer’s Capacity). Execution
Times of the Different Simulators.

capacity. The rewrite rule associated with the transitions are (in the model, IC =
DT):
P ro d u c e ^ : (R eady .P roduce^,Ready_P) -> (Ready_Send£p2,<data>)
Send£p2: (Ready _Send£p2,<data>) (Ready-Produce^,Ready _P) ® (B u ffe r^ ,-
<data>)
R eceive/^: (Buffer£,p3,<data>) ® (Ready-Receive^,Ready_R) —» (Ready-Consume/^
<data>)
ConsumeJ[/p4: (Ready -Consume ̂ p4, < dat a >) -* (Ready _Receive^p3, Ready _R)

The scenario of the simulation is as follows: duration = 16,000 cycles; the tran­
sition firing times are exponentially distributed with mean 2 .0 (produce-rate) and
1.0 (consume-rate). The ECATNet model is initially marked M(Ready-Produce) =
Ready_P in LPi, and M(Ready-Receive) = Ready_R in LP3 .

In the simulation, a total of 32352 transitions have been fired. The execution
times of the different simulators are shown in Table 8.1 and Figure 8.2. It is worth
mentioning that: (1) each of LPi, LP2 and LP4 has a single IQ; (2) No LP generates
End_firing internal events in EVL.

Chapter 8. Case Studies and Performance Results 134

CMB-DA •■•+•••
TW-LZ
SYNC

1000

900

?
8|

700

I 500
8
1 <00

0 3 4

Figure 8 .2 : Producer Consumer Model (Unbounded Buffer’s Capacity). Execution
Times of the Different Simulators.

R esu lts o f CM B-DA

From the structure of the model, we see that LPi sends a C reate_tokens(<data>)
message to LP2 after transition P ro d u ce fires (say with timestamp TT). In turn LP2
sends a Create_tokens(Ready_P) message to LPi and a C reate .tokens(< data>)
message to LP3 after transition Send fires with the same timestamp (TT) because
this transition is immediate.

According to the algorithm described in §5 .6 .3 , a transition t ^ OT, generates
a null message after computing lookahead. As null messages cannot be generated
because no transitions of this type exist in the model, we faced a deadlock situation
mainly because of LP3 which has to check the channel clocks CC2 and CC4. We
modified the algorithm so that LP3 sends a null message to LP4 (say with timestamp
CC2), which when received by LP4 will advance its timestamp by A Consume- This
advance increases the message-acceptance horizon and thus may allow any awaiting
C rea te .to k en s message in LP3 to be consumed. In this case null messages are
exchanged between LP3 and LP4 only.

From the LPs profiles in Figure 8.3 we can see that LPi and LP2 terminate the
simulation earlier than LP3 and LP4: both LPs wait 34% of the total execution time
at the synchronisation barrier before terminating the simulation (using 4 PEs). This
is perfectly understandable because as long as the size of the buffer is not fixed, LPi
and LP2 do not “block” (especially LP2 before depositing the data in the buffer),
thus work “faster” than LP3 (and consequently than LP4 as well) which has to

C h a p ter 8. C ase S tu d ies and P erform an ce R esu lts 135

C M B - D A

1 0 0 °/<

40%

L P

El Term. Pro toe.
■ B lock in g
□ C om m . R ecv
■ C om m . Send
H Event Proc.

T W - L Z

□ Other
■ B lock in g
■ R ollback
□ C om m . R ecv
■ C om m . Send

Event Proc.

S Y N C

1 2 3 4

L P

■ Sync.
■ B lock in g
□ C om m . R ecv
■ C om m . Send
H E vent Proc.

Figure 8.3: Producer Consumer Model (Unbounded Buffer’s Capacity). Execution
Profiles (4 PEs).

Chapter 8. Case Studies and Performance Results 136

4

CMB-DA ■
TW-LZ —
SYNC

3 i

3

2.5

2

1.5

0.5

0
2 3 4

Number of Processors

Figure 8 .4 : Producer Consumer Model (Unbounded Buffer’s Capacity). Speedup of
the Different Simulators over SEQ.

manage the reception of messages in two input queues (IQ2 and IQ4).
The behaviour of CMB-DA depends mainly on the way LPs synchronise in the

simulator. The number of “useful” messages (i.e., positive messages) managed by
the simulator is affected by the size of the model, its structure and the scenario
of the simulation. An increment in the number of these messages means that the
LPs have more opportunities to synchronise, while doing useful computation. Null
messages are needed less often, as LPs do not block frequently. We can say that
there is a high degree of “natural” synchronisation. However, when there are only
a few useful messages to process, LPs block often, and null messages axe needed to
maintain the LPs’ clocks updated. Then LPs spend most of their (real) time blocked
or processing null messages, i.e., synchronising, instead of making progress.

R esu lts o f TW -LZ

LPi and LP2 never rollback: the timestamp of each Create_tokens(Ready_P) sent
from LP2 to LPi is equal to the timestamp of the C reate_tokens(<data>) previ­
ously sent from LPi to LP2 as transition Send is immediate. LP3 is the only LP to
receive staggler messages from LP2 and LP4, which could lead to a rollback in LP4
as well (Figure 8 .3).

Regarding the effect of the synthetic workload on the performance of TW, a
large value of W may have an important effect on the speedup. In the CMB-DA
simulator, the busy-wait loop which emulates a high workload is done just whenever

Chapter 8. Case Studies and Performance Results 137

it is needed, and never has to be undone. On the other hand, with TW many jobs
are processed in a speculative way, and their effect might be undone in the future.
This means that, when the workload is high, the effect of erroneous computations
is also a serious drawback: it could be better to wait and consume a message just
when it has to be consumed, than to consume it and later undo its effects.

R esu lts o f SYNC

SYNC showed very poor performance for the following reasons. Firstly, each LP can
expect executing a S tart-firing internal event or a C rea te .to k en s message mak­
ing the density of events low. Secondly, if several transitions fire at the same time,
this does not necessarily mean that this occurs at the same synchronisation step. To
highlight this, suppose that LP2 receives a C reate_tokens(<data>) message with
timestamp TT from LPi after transition P roduce fires. If global clock is now equal
to TT at synchronisation step* and M(Ready.Receive) = Ready J t , transition Send
in LP2 fires first at TT. At step^+i, transitions P roduce in LPi and Receive in
LP3 fire at TT in parallel. Then at step^+2 , transition C onsum e fires at TT as well.
Thirdly, in addition to the excessive amount of time the LPs spend synchronising to
calculate and broadcast the new value of the global clock, additional overhead is in­
troduced by C reate_tokens(t,p,TT ,number) messages. In order to avoid deadlock
situations, at each step of the simulation each LP informs its neighbours about how
many positive messages will be sent to them via C reate_tokens(t,p ,TT ,number)
messages, and actually sends them via C reate .tokens (t,p,TT,CT). As the pro­
tocol is synchronous, at least one Create_tokens(t,p,TT ,number) message is sent
by a LP to its neighbours after each synchronisation step even when there are no
“positive” messages to follow at all.

TW-LZ performed better than CMB-DA: a speedup of 2.2 and 1.5 using 4 PEs
was observed respectively for these simulators (Figure 8.4). SYNC showed very
poor performance.

8 .3 .2 B o u n d in g th e B u ffe r’s C a p a c ity

In case the buffer is bounded, it is represented with place buffer in LP3 with a
limited capacity. The conditional rewrite rule associated with transition Send in
LP2 is now:
SendLP2: (Ready_Sendi,p2 ,<data>) -> (Ready.Produce/^,Ready_P) <g> (B u ffe r^ ,-
<data>) if M(Bufferl p z) © <data> < C(Buffer£,p3)

Chapter 8. Case Studies and Performance Results 138

<data> <daia>

Receive

Ready
Send »Ready_RReady_P

Ready_(
Produce

C onnm e

Ready_
ReceiceSend BufferSubnet I Subnet2 Subnet 3

Ready_P Ready_R

Figure 8.5: ECATNet Producer Consumer Model (P3 Partitoning).

P a rtitio n in g Perform ance Im pact

In addition to the experiments carried out with the partitioning into four subnets
(P4) described in the previous section (§8.3), we wanted to test the impact that a
different alternative of partitioning (and therefore of grain size) has on the perfor­
mance of the simulators, simply by assigning all conflicting transitions to the same
subnet, not only with their input places, but with their limited capacity ouput places
as well. The partitioning in Figure 8.5 is now a set of three subnets (P3) where LP2

generates an End_firing internal event in EVL after firing transition Send.
A transition t* in subnet* may have one or more output places with limited ca­

pacity in different LPs. Whether this transition is enabled will depend not only on
the marking in all its input places but in all its output places (with limited capac­
ity) as well. Assigning a transition and its output places with limited capacity to
the same subnet prevents LPs from exchanging synchronisation additional messages
because the enabling conditions can be tested locally: local information is sufficient
to decide upon the enabling and firing of any transition.

Four experiments were performed with different simulation engines and the pa­
rameters used in the experiments are summarised in table 8.2. The simulation has
been run with two different scenarios. In scenario 1 (SI), we make the produce-rate
< consume-rate; produce-rate = 1.0, consume-rate = 3.0. In scenario 2 (S2), we
make the produce-rate > consume-rate; produce-rate = 3.0, consume-rate = 1.0.
For both scenarios, the duration of the simulation = 16,000 cycles, and the capacity
of buffer is <data © data © data>. SI makes the producer a fast sender which
cannot continuously tansmit data faster than the consumer can absorb it, whereas
S2 makes the producer a slow sender which continuously tansmits data slower than
the consumer can absorb it.

Chapter 8. Case Studies and Performance R esults 139

Scenario SI - P3 SI - P4 S2 - P3 S2 - P4

Number of subnets 3 4 3 4
Number of PES 1..3 1..4 1..3 1..4
Results Fig. 8 .6 Fig. 8 .6 Fig. 8.9 Fig. 8.9

Fig. 8 .8 Fig. 8 .8 Fig. 8.11 Fig. 8.11

Table 8.2: Producer Consumer Model (Bounded Buffer’s Capacity). Experiments
Performed with Scenarios SI and S2.

Results of Experiment SI

A total of 21343 transitions have been fired, and the producer had 6 6 .6 % idle time
whereas the consumer 0%. The execution times of the simulators running scenario
SI are shown in Table 8.3: the three distributed simulators perform better with
partition P3 than with partition P4.

Partition P3 P 4
PEs SEQ CMB-DA TW-LZ SYNC CMB-DA TW-LZ SYNC

1 5 secs 2 mins 20 secs 2 mins 51 secs 16 mins 01 secs 3 mins 51 secs 7 mins 30 secs 44 mins 48 secs
2 - 2 mins 08 secs 2 mins 14 secs 12 mins 29 secs 3 mins 21 secs 5 mins 40 secs 22 mins 42 secs
3 - 1 min 57 secs 1 min 38 secs 8 mins 04 secs - - -
4 - - - - 2 mins 54 secs 3 mins 18 secs 19 mins 54 secs

Table 8.3: Producer Consumer Model (Bounded Buffer’s Capacity). Execution
Times for Partitions P3 and P4 - Experiment SI.

CMB-DA and SYNC: with P4, each time transition Send in LP2 has its input
conditions enabled (presence of a token <data> in place Ready_Send), it sends a
message to LP3 to request a deposit of tokens <data> in place Buffer via a De-
posit_request message (say with timestamp TT). After checking the marking of
place Buffer, LP3 replies by sending a Deposit_request_ACK message specifying
in its timestamp the time the deposit is possible. This time depends mainly on the
enabling conditions of transition Receive which, when it fires, destroys <data>
tokens in place Buffer, and consequently makes a new deposit of <data> possible
in this place. It is worth to mention that the communication time of LP2 and LP3 ,
and the blocking time of LPi and LP4 are quite important (Figure 8.7) especially for
CMB-DA. With P3, the simulators do not need to use Deposit_request and De-

Chapter 8. Case Studies and Performance Results 140

CMB-DA P3 -
TW-LZ P3 ■+■

CMB-DA P4 *
TW-LZ P4 +

SYNC-P3 — -
SYNC-P4 - -

Number of ProcessorsNumber of Processors

Figure 8 .6 : Producer Consumer Model (Bounded Buffer’s Capacity). Execution
Times for Partitions P3 and P4 - Experiment SI.

posit .request _ACK messages because the information concerning place Buffer’s
marking is available locally in LP2 . Thus the overhead is substantially reduced.
This also results in an important event processing time in this LP.

TW-LZ: with P4, as the protocol is optimistic, transition Send fires as soon as
its input conditions are enabled: LP2 does not really care about the actual marking
of place Buffer in LP3 and sends a Create_tokens message leading to a deposit of
<data> token in this place. When receiving this message, LP3 checks the marking
of place Buffer. If the deposit does not result in a capacity overflow, the message
is accepted and the deposit is performed. But in case a deposit of <data> exceeds
what Buffer can handle, LP3 will send a negative message asking LP2 to rollback
because an incorrect computation has been done. In this message, LP3 will specify
the time firing of place Send can take place (say TT)1. A rollback in LP2 may result
in a rollback in LPi as well (Figure 8.7). LP2 resumes its execution by sending a
new Create_tokens message (at TT). With P3, LP2 is prevented from receiving a
Create_tokens message which could result in an overflow of place Buffer’s capac­
ity leading to a rollback in LP2 because the information concerning place Buffer’s
marking is available locally. This again results in a reduction of overhead.

Although the frequent sending of Deposit_request and Deposit_request_ACK

1 This situation is similar to a flow control needed to force a sender to stop frequently to give the
receiver a chance “to breathe”.

C h ap ter 8. C ase S tu d ies and P erform ance R esu lts 141

□ Blocking
□ Comm. Recv
■ Comm. Send
i Event Proc.

1 Other
■ Blocking
□ Rollback
□ Comm. Recv
■ Comm. Send
1 Event Proc.

■ Sync.
□ Blocking
□ Comm. Recv
■ Comm. Send
I Event Proc.

Figure 8.7: Producer Consumer Model (Bounded Buffer’s Capacity). Execution
Profiles for Partitions P3 and P4 - Experiment SI.

Chapter 8. Case Studies and Performance Results 142

2
CMB-DA P3 -

TW-LZ P3 -
SYNCP3 -

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

0
2 3

2
CMB-DA P4 - ..

TW-LZ P4 - B -
SYNCP4 —

.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

0
2 3 4

Number o f Processors Number of Processors

(a) (b)
Figure 8 .8 : Producer Consumer Model (Bounded Buffer’s Capacity). Speedup (a)
Partition P3; (b) Partition P4 - Experiment SI (W =10,000).

messages using partition P4, CMB-DA performed better than TW-LZ which had to
manage the cascaded rollbacks in LP2 and LPi. A speedup of 1.6 and 1.5 using 4
PEs was observed respectively for these simulators (Figure 8 .8 (a)). However, TW-
LZ performed better using partition P3 (Figure 8 .8 (b)) where a speedup of 1.6 and
1.2 using 3 PEs was observed respectively for CMB-DA and TW-LZ. SYNC showed
poor performance.

Results of Experiment S2

A total of 21333 transitions have been fired, and the consumer had 6 6 .6 % idle time
whereas the producer 0%. The execution times of the simulators running scenario
S2 are shown in Table 8.4 and Figure 8.9: the simulators still perform better with
partition P3 than with partition P4, except for TW-LZ.

Partition P3 P 4
PEs SEQ CMB-DA TW-LZ SYNC CMB-DA TW-LZ SYNC

1 5 secs 2 mins 19 secs 2 mins 50 secs 13 mins 55 secs 3 mins 55 secs 3 mins 16 secs 49 mins 40 secs
2 - 1 min 57 secs 2 mins 14 secs 11 mins 09 secs 3 mins 01 secs 1 min 30 secs 28 mins 21 secs
3 - 1 min 25 secs 1 min 41 secs 7 mins 43 secs - - -
4 - - - - 2 mins 20 secs 1 min 24 secs 26 mins 17 secs

Table 8.4: Producer Consumer Model (Bounded Buffer’s Capacity). Execution
Times for Partitions P3 and P4 - Experiment S2.

Chapter 8. Case Studies and Performance Results 143

250
CMB-DA P3 - ..

TW-LZ P3
CMB-DA P4 —

TW-LZ P4 —
200

150

100

50

0
0 2 3 4

3000

2750

-------------- I-------
' SYNC-P3 - -

SYNC-P4 ■
2500

| 2250

§ 2000 \
I 17500
E 1500

g 1250

• ----- ---- ------ ------------

I 10000
m 750

...
• —

500 -w
250

0 - i.......... ■ i

Number of Processors
1 2 - 3

Number of Processors

Figure 8.9: Producer Consumer Model (Bounded Buffer’s Capacity). Execution
Times for Partitions P3 and P4 - Experiment S2.

CM B-DA and SYNC: with P4 and as for SI, the same observations are made.
E a c h t im e transition Send in LP2 has its input conditions enabled (presence of a
token <data> in place Ready .Send), it sends a Deposit-request message to LP3

(say with timestamp TT). However, with scenario S2 LP3 always replies via a De-
posit_request_ACK message specifying that the deposit is possible at TT because
n o to k e n s axe available in place Buffer. It is worth to mention that the communica­
tion time of LP2 and LP3 , and the blocking time of LPi and LP4 axe quite important
(Figure 8.10) especially for CMB-DA.

TW-LZ: with P4 we did not expect any rollbacks in LP3 with scenario S2, but
were not surprised to see that they do occur. The reason is that LP3 keeps accept­
ing Create_tokens(<data>) messages from LP2 which cause an overflow in place
Buffer because of a “late” reception of Create_tokens(Ready_R) messages from
LP4 (deposit in place Ready .Receive). The arrival of these straggler messages not
only prevents transition Receive to fire “on time”, but causes rollbacks. LP3 sends
a negative message asking LP2 to rollback as well because of incorrect computation
and specifies the time firing of transition Send can take place (say TT). A rollback
in LP2 may result in a rollback in LPi as well (Figure 8.10). LP2 resumes its exe­
cution by sending a new Create_tokens(<data>) message (at TT).

With partition P4, TW-LZ performed better than CMB-DA which had to man-

C h a p ter 8. C ase S tu d ies and P erform an ce R e su lts 144

■ Blocking
□ Comm. Recv
■ Comm. Send
1 Event Proc.

TW -LZ-4P

100%

80%
60%
40%
20%

0%

I I I« m m m

2 3 4

LP

1 Other
■ Blocking
□ Rollback
□ Comm. Recv
■ Comm. Send
i Event Proc.

SYNC-4P

1 2 3 4

LP

■ Sync
□ Blocking
□ Comm. Recv
■ Comm. Send
I Event Proc.

Figure 8.10: Producer Consumer Model (Bounded Buffer’s Capacity). Execution
Profiles for Partitions P3 and P4 - Experiment S2.

Chapter 8. Case Studies and Performance Results 145

2.5
CMB-DA P4 -

TW-LZ P4 —
SYNCP4 —2

1.5

0.5

0
2 3 4

2.5
CMB-DA P3 -

TW-LZ P3 ■*
SYNCP3 -2

1.5

0.5

0
2 3

Number of Processors Number of Processors
(a) (b)

Figure 8.11: Producer Consumer Model (Bounded Buffer’s Capacity). Speedup (a)
Partition P3; (b) Partition P4 - Experiment S2 (W =10,000).

age the frequent sending of D eposit_request messages by LP2 and the reply to
these messages of LP3 via D eposit_request_A CK messages, even when the re­
sponses were always positive, i.e., the firing of transition Send always took place at
the time specified by LP2 in the request. A speedup of 2 and 2.1 using 4 PEs was
observed respectively for TW-LZ and CMB-DA respectively (Figure 8.11(a)). How­
ever, CMB-DA performed better than TW-LZ using partition P3 (Figure 8.11(b))
where a speedup of 1.5 and 1.4 using 3 PEs was observed. SYNC showed poor
performance.

8.4 M anufacturing System Model

There has been a dramatic increase in the use of simulation to design and optimise
manufacturing systems. One of the reasons is that the increased competition in many
industries has resulted in a greater emphasis on automation to improve productivity
and quality and also to reduce costs. Since automated systems are more complex,
they can typically be analysed only by simulation.

The ability of ECATNet models for prototyping and analysing concurrent sys­
tems to exploit supervisor evaluation of discrete event systems is shown in [BCD98].
The recent work by Turner et al. shows how to bridge the gap between the users
of industrial simulation packages and the parallel simulation community [TLL+98].
This work consists in developing a methodology for automating the parallelisation

Chapter 8. Case Studies and Performance Results 146

of manufacturing simulations by constructing a mapping from the sequential simu­
lation model to an efficient parallel implementation.

We assume a physical system of four machines participating in a manufacturing
process. In a processing step, machinei produces subpart Ai of a product A. Sub­
part A2 is produced by machines 2 and 3 (both of which can produce concurrently).
Once one subpart Ai and one subpart A2 are assembled, machine4 produces subpart
A3 . One piece of A is an assembly of A1-A2 -A3 , and all subparts Ai, A2 and A3

require a single amount of assembly steps.

The system is modelled in terms of ECATNets (Figure 8.12):

LPi: source process, generates the production orders;
LP2 : machinei produces subpart Ai
LP3 : fork process
LP4 : machine2 produces subpart A2

LP5 : machines produces subpart A2

LPe: join process
LP7 : machine4 produces subpart A3

LPs: sink process.

Transition SendMi in LPi models the generation of the orders for processing. Tran­
sition ProdAi in LP2 , ProdA2 in LP4 , ProdA2 in LP5 and ProdAs in LP 7 model the
processing steps of parts Ai, A2 , A2 and A3 by machines 1 , 2 , 3 and 4 respectively.
Machines in the processing phase are represented by algebraic terms mi, m2 , m3

and 1114 in place P2 in LP2 , LP4 , LP5 and LP7 respectively, finished parts Ai by CT
to be deposited in place ReadyF in LP3 , finished parts A1 A2 by CT to be deposited
in place ReadyJ in LP6 , and the final product A1 A2 A3 by CT to be deposited in
place Collect in LPg (assuming this latter has an infinite capacity).
The rewrite rules associated with the model are:

S e n d M l^ : (ReadySz^, s) -> (R ead y S ^ , s) <g> (Q1lp2, s)
ProdAlpp2: (Q1lp2, s) <g> (M lL p 2 , ml) - > • (MlLp2, ml) ® (ReadyF^pj, AI)
SendM2lp 3: (ReadyFLP3, AI) ->■ (Q2^,p4, AI)
SendM3^p3: (ReadyFLp3, AI) ->• (Q3pp5, AI)
ProdA2 lp 4: (Q2lp4, AI) ® (M2 Lp4, m2) -> (M2lp4, m2) ® (ReadyJz,p6, A1A2)
ProdA2 //p5: (Q3pp5, AI) ® (M3lp5, m3) —> (M3lp5, m3) ® (ReadyJpp6, A1A2)

Chapter 8. Case Studies and Performance Results 147

Machine 2

LP5 m i /

Machine 4
Machine 3Machinei

Figure 8.12: ECATNet Manufacturing System Model.

SendM4£,p6: (ReadyJz,p6, A1A2) —> (Q4lp?, A1A2)
ProdA3iP7: (Q4x,p7, AI) <8 > (M4lp?, m4) —> (M4lPt> m4) ® (Collecting, A1A2A3)

The time behaviour of the system is modelled by associating timing information
to transitions:

X S e n d M l = 1-0 (in LPi); X p r o d A l = 1-0 (in LP2); X p rodA2 = 3.0 (in LP4); \ p r odA2

= 0.5 (in LP5); \prodA3 = 0.5 (in LP7). The remaining transitions are immediate.
In LP3 , if transitions SendM2 and SendM3 cannot fire in parallel, the decision place
ReadyF in LP3 selects randomly a transition to fire with equal probability 0*5.

The initial state of the system is represented by the marking of the ECATNet where
there is a “signal” (order) term in ReadyS (in LPi), and machines M l, M2, M3 and
M4 are in state “idle” (terms ml, m2, m3 and m4 in places Ml, M2, M3 and M4 in
LP2 , LP4 , LP5 and LP7 respectively).

8.4.1 R esults of the Experim ents

A total of 95894 transitions have been fired, and 15963 pieces of product A have
been produced. The execution times of the simulators are shown in Table 8.5 and
Figure 8.13.

R esu lts o f CM B-DA

LP3 , LP4 , LP5 , LP6 are the only LPs to use null messages. From the structure of the
model, we see that each LP has a single IQ, except LP6 which has to manage its two

Chapter 8. Case Studies and Performance Results 148

PEs SEQ CMB-DA TW-LZ SYNC

1 27 secs 13 mins 27 secs 13 mins 19 secs 2 hrs 14 mins 04 secs
2 - 8 mins 0 1 secs 7 mins 34 secs 1 hr 16 mins 18 secs
4 - 4 mins 51 secs 4 mins 17 secs 1 hr 4 mins 17 secs
8 - 3 mins 30 secs 2 mins 19 secs 32 mins 54 secs

Table 8.5: Manufacturing System Model. Execution Times of the Different Simula­
tors.

1000 8000
SYNC -* ■ -CMB-DA

TW-LZ 7000

<0Vc 6000

5000

1 4000I-
c
5 30003Oo
i2 2000

1000

84
Number of Processors

60 28
Number of Processors

Figure 8.13: Manufacturing System Model. Execution Times of the Different Sim­
ulators.

channel clocks CC4 and CC5 . As for the producer consumer model, in the absence
of a transition in LP4 and LP5 to generate a null message and increase lookahead,
LP6 often blocks, resulting in the blocking of LP7 and LPs as well. To remedy this,
LP3 has to send a null message to LP5 every time transition SendM2 fires, and a null
message to LP4 every time transition SendM3 fires with timestamp equal to LVT3

(transitions SendM2 and SendM3 are actually immediate). These null messages,
when received by LP4 and LP5 , will be forwarded to LP6 after increasing lookahead
by A(PrA2) respectively in LP4 and LP5 . When received by LPg, they break the
deadlock and allow any awaiting Create_tokens messages (either in IQ4 or IQ5)
to be consumed. It is worth to mention that from the structure of the model, LPi
does not receive any incoming messages. Consequently it is the fastest LP and waits
25% of the total execution time at the synchronisation barrier before terminating

C h a p ter 8. C ase S tu d ies and P erform ance R esu lts 149

C M B - D A

■ Term . Protoc.
□ B lock in g
□ C om m . R ecv
■ C om m . Send
a Event Proc.

T W - L Z

■ G V T
a C heckpoint
■ B lock in g
□ R ollback
□ C om m . R ecv
■ C om m . Send
a Event Proc.

S Y N C

■ Sync.
□ B lo ck in g
□ C om m . R ecv
■ C om m . Send
a E vent Proc.

Figure 8.14: Manufacturing System Model. Execution Profiles (8 PEs).

Chapter 8. Case Studies and Performance Results 150

4
CMB-DA

TW-LZ —
SYNC

3

15

2

1.5

0.5

0
2 84

Number of Processors

Figure 8.15: Manufacturing System Model. Speedup of CMB-DA, TW-LZ and
SYNC (W=10,000).

the simulation (Figure 8.14).

R esu lts of TW -LZ

LP4 rolls back frequently after reception of C reate_tokens(A l) positive straggler
messages from LP3 whose effect is a deposit of tokens in place Q2. After rolling back
and restoring a correct state, no antimessages axe transmitted because the previously
sent messages to LP6 are re-generated. However, this is not the case for LP6 which
receives C reate_tokens positive straggler messages from LP4 and LP5 . This may
result in sending antimessages to LP7 , and consequently in cascaded rollbacks in
LP7 and LPs (Figure 8.14).

Also, LPi works faster than the other LPs (2..8). It is also responsible for
GVT calculation (coordinator). We faced the situation where LPi was ready to
send a new GVT_PACKET message but did not receive the acknowledgement of the
previous one, thus was not able to send a GVT message (§6.3.5). The addition of a
certain degree of “conservatism” into LPi which advanced unboundedly imposed a
limitation to its ability to go into the future. LPi was allowed to advance to a certain
degree, calculated as the value of GVT plus a time window size (the time interval
between two GVT times computations). LPi would temporarily block if it tried
to go beyond. LPi resumed execution after receiving a GVT.PACKET message
acknowledgement.

Chapter 8. Case Studies and Performance Results 151

R esu lts o f SYNC

SYNC exhibited poor performance mainly due to the time LPs spend synchronising
(Figure 8.14). We observed a maximum of five events processed in parallel by the
LPs.

TW-LZ performed better than CMB-DA and SYNC as shown in Figure 8.15 where
a speedup of 3.7 using 8 PEs was observed.

8.5 P ipeline M odel

In the ECATNet model of Figure 8.16, each LP* models a processing element in
a pipeline system. The element waits for one input from its previous neighbour
LPj_i, performs a computation, then sends the result to its next neighbour LP*+i.
The model comprises 16 LPs, and each LP has 2 places and 2 transitions. The
rewrite rules associated with the model are:

1l LPi: (piLPj 5 x) (p2 LPi, y)
t2LPj: (piLPi, 0) ® (p2LPi, y) -»• (plLPi+1, x) /* (piLPi5 0) is equivalent to the
inhibitor arc concept */

We ran the simulation with the following scenario: simulation duration = 16,000
cycles; A(tl) = 0.0, and A(t2) = 1.0, and M(pi) = x. A total of 512032 transitions
have been fired.

8.5.1 Experim ent W ith Different Grain Sizes

Mapping the ECATNet model onto the NOW requires two steps: mapping subnets
onto LPs, and mapping LPs onto PEs. There are two trivial possibilities:

1. map each subnet onto a single LP, and then map each LP onto a single PE
as we did for the previous models. We say that the grain size of the LP
is minimum. A good deal of interprocess communication is needed, because
C reate_tokens external events need to be sent as messages;

2. map several subnets onto one LP, and then each LP onto a different PE. In
this case, many of the C rea te .to k en s events are internal and the interprocess
communication is significantly reduced.

Chapter 8. Case Studies and Performance Results 152

LP2

LPI

LP16

Figure 8.16: ECATNet Pipeline Model (16 Subregions).

We redesigned the LPs to allow the simulation of square of subnets while the ver­
sion previously used (Figure 8.16) was only designed for minimum grain size. It is
worth mentioning that in the case of a maximum grain size, any of the distributed
simulators (CMB-DA, TW and SYNC) running onto one PE behaves exactly like
the sequential simulator, except that the LP (simulating a single partition PI) sends
C rea te .to k en s messages (from LP16 to LPi in Figure 8.16) to itself rather than
inserting them in EVL.

Additionally, we wanted to test the impact of the different alternatives of grain
size have on the performance of the simulator. Various alternatives of grain size
are possible. Figure 8.17a represents the mapping for minimum grain size (partition
P16). Figures 8.17b, c and d represent a mapping for intermediate grain size leading
to 8 , 4 and 2 LPs respectively (partitions P8 , P4 and P2). Note that in partition
P2 a subnet simulated by a LP is 8 times larger than that used in partition P I 6 .
The execution times of the simulators for various partitionings are shown in Table
8 .6 and Figure 8.18.

Experiments with partitions P16 and P 8 are cases with workload W = 10,000
whereas P4 and P2 are cases without synthetic workload. We do use synthetic
workload when experimenting with partitions P16 and P 8 , but not with P4 and P2:
the way of giving more work to a LP is mapping onto it a larger number of subnets. In

C h ap ter 8. C ase S tu d ies and P erform ance R esu lts 153

□ □ □ □
□ □ □ □
□ □ □ □
□ □ □ □

BBSS
BBBB

□ Subnet

LP

(c) (d)

Figure 8.17: Mapping the Pipeline Model onto LPs. (a) Minimum Grain Size (16
LPs). (b) (c) (d) Intermediate Grain Size, respectively 8, 4, 2 LPs.

models with larger grain size (P4 and P2), the computation/communication ratio is
more balanced this way, and the local simulation work in terms of physical processor
cycles exceeds the computation/communication threshold.

8.5.2 D iscu ssio n

R esults of CM B-DA

The possible imposition of extra overhead by the use of null messages in distributed
simulation has caused much criticism on the useful of such approaches. When
analysing LP* in partition P16, we see that (1) it has a single input queue where
messages received from LP*_i are stored; (2) when the immediate transition ti fires,
a null message with timestamp Tsim + A(ti) + A(t2) is generated. As transition ti is
immediate, this timestamp is equal to the timestamp of the positive C reate_tokens
message generated when transition t 2 fires. Thus there is no need to generate null

Chapter 8. Case Studies and Performance Results 154

Partition SEQ CMB-DA TW-LZ SYNC

P16 (Min, 16 PEs)
P 8 (Int, 8 PEs)
P4 (Int, 4 PEs)
P2 (Int, 2 PEs)
P I (Max, 1LP) 6 mins 0 2 secs

2 mins 32 secs
2 mins 21 secs
2 mins 32 secs
3 mins 39 secs
7 mns 40 secs

3 mins 02 secs
2 mins 54 secs
3 mins 53 secs
4 mins 58 secs
10 mns 28 secs

2 0 mins 16 secs
19 mins 42 secs
11 mins 30 secs
8 mins 23 secs
8 mns 41 secs

Table 8 .6 : Pipeline Model. Execution Times for Various Partitionings.

messages and consequently the execution time for the CMB-DA simulator by reduc­
ing them improved by 40%.

From the experiments performed with different partitionings, the performance
of CMB-DA increases with the grain size of the LPs. This way, the computation/
communication ratio is more balanced. If, looking at the results of the experiments,
we compare maximum vs. minimum grain size, we can see that corse grain simu­
lation is more effective that fine grain simulation because a small number of LPs
synchronising results in lower overhead. If now we compare with the intermediate
grain size alternatives, it is clear that these have the best perfomance (P8 and P4).
From these experiments, we learned that it is good to have models with large grain
size, to balance the computation/communication ratio of the PEs.

R esu lts o f TW -LZ

Preliminary tests done with TW-LZ showed good performance figures when parti­
tioning with P16 and P 8 , and no rollbacks were observed. This is understandable
because as long as the accumulated firing times of transitions within each LP is
(A(tl) 4- A(t2) = 1.0) and ((A(tl) -1- A(t2))*2 = 2.0) respectively, there is no possi­
bility of receiving a straggler message. But the reason CMB-DA performed better
was because of state saving, antimessages management and GVT computation in
TW-LZ.

However, rollbacks were observed when partitioning with P4 and P2. We verified
that the big size of the state to save after firing a transition was also partially
responsible for the poor results of TW-LZ: the state of a LP is the combination of
all the state variables which represent the ECATNet subnet assigned to that LP,
plus a number of variables for statistics gathering. Also, with P4 and P2, the density
of events is, in general, very high and, for this reason, the probability of a straggler
to appear is very high too. This leads to continuous rollbacks in the LPs. It has

Chapter 8. Case Studies and Performance Results 155

800
CMB-DA-P2 -■+•■■■

TW-LZ-P2 ——
. SYNC-P2700

0)*0c0o
99

600

500
9
E 400h
c
- 300
3

ill 200

100

1
Number of Processors

2

4000

3500

I 3000
c0
I 2500
0| 2000
c
1 1500O9
u3 1000

500

0

1800

1600

1400

1200

1000

800

600

400

200

0

CMB-DA-P4 --+•••■
TW-LZ-P4
SYNC-P4 «

1 2
Number of Processors

CMB-0A-P16 -*•• •
TW-LZ-P16
SYNC-P16

10000

9
T3CO0
1

8000

<d 6000
EF
c0
- 40003O®

2000

8 168 2 4
Number of Processors Number of Processors

Figure 8.18: Pipeline Model. Experiments with Various Partitions. Execution
Times.

been monitored that almost all the events executed in a speculative way have to be
undone. The result is that the simulator looses most of its time doing the following
“management” activities:

• storing state copies and antimessages;

• traversing the input queue to locate events to annihilate, or to find the right
place to insert a straggler;

• coast-forwarding to construct appropriate state versions;

• sending and managing antimessages, and

C h a p ter 8. C ase S tu d ies and P erform ance R esu lts 156

C M B -D A

60%

2 0 %

□ B lock in g

□ C om m . R ecv

S i C om m . Send

H Event Proc.

T W -L Z

I 0 0%

80%

60%

40%

2 0 %

0%

■ G V T

□ C heckpoint

H B lock in g

□ R o l lb a ck

□ C om m . R ecv

■ C om m . Send

El Event Proc.

SY N C

■ Sync.

□ B lo ck in g

□ C om m . R ecv

■ C om m . Send

H E vent Proc.

Figure 8.19: Pipeline Model: Execution Profile of LPi for Various Partitionings.

Chapter 8. Case Studies and Performance Results 157

2
CMB-DA-P2 —

TW-LZ-P2 *“
SYNC-P2

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

0
2

Number of Processors
8

CMB-DA-P8 —
TW-LZ-P8 —
SYNC-P8

7

6

5

4

3

2

0
82 4

4
CMB-DA-P4

TW-LZ-P4
SYNC-P4 —

3.5

3

2.5

2

1.5

0.5

0
2 4

Number of Processors
16

CMB-DA-P16 —
TW-LZ-P16
SYNC-P16

14

12

10

8

6

4

2

0
2 4 8 16

Number of Processors Number of Processors

Figure 8.20: Pipeline Model. Experiment with Vaxious Partitions. Speedup
(W=10,000 for P16 and P 8 , No Synthetic Workload for P4 and P2).

• computing GVT.

For ECATNet applications, the cost of executing an event is very low, while the
state size could be huge. Even when incremental state saving is used the amount of
data moved for state saving is several times larger than the data moved to execute
an event.

Results of SYNC

According to the ECATNet structure and to the scenario of the simulation, the
set of LPs do the same work at each step of the simulation. Also, SYNC simply

Chapter 8. Case Studies and Performance Results 158

avoids sending/receiving C rea te .to k en s (t,p,TT,number) messages when no exter­
nal events axe generated. This minimises the number of messages exchanged between
LPs which is a critical factor for the simulation of complex systems and exploits the
net structure to obtain efficiency.

As mentioned previously, decreasing the number of LPs imposes a higher work­
load to the LPs. With partition P2, the ECATNet submodels have the largest size.
This results in a workload large enough to keep all the LPs busy, performing useful
computation most of the time and minimising the relative effort devoted to synchro­
nisation. If compared with performances of P16, P 8 and P4, the performance of the
simulation with P2 is improved by reducing communication time and waiting time
at synchronisation points.

The number of barriers executed by the LPs was observed to be 16,000, i.e.,
as many barriers as simulation cycles. The reason is simple: the density of events
S ta r t J ir in g , End-firing and C reate .to k en s is big enough to always have at
least one event per cycle. Thus, with this scenario SYNC behaves as a time-driven
algorithm.

SYNC behaves very much like CMB-DA, with only a significant difference: it still
takes the LPs a huge amount of time to perform reduction and broadcast operations
in a NOW, sooner degrading its performance. About the effective simulation time
of SYNC compared with CMB-DA, we can say that the difference is only due to the
way both programs axe instrumented. The synchronous nature of SYNC allows for
a more precise measure of the time spent in the different activities a LP performs at
each iteration. In CMB-DA the measurements are taken in an event-by-event basis,
which means a significantly higher number of calls to the function that gives the real
time clock value, and this affects the achieved accuracy.

In all the experiments with various partitionings (P16, P 8 , P4 and P2), CMB-DA
performed better than TW-LZ and SYNC as shown in Figure 8.20 where a speedup
of 1.5, 2.3, 5.8 and 9.1 using 2, 4, 8 and 16 PEs respectively was observed. For
SYNC, it is worth to mention the speedup observed with paxtitions P16 and P 8 (3.9
and 3 using 16 and 8 PEs respectively).

8.6 Conclusion

In this chapter we have presented our experiences using three distributed discrete
event simulation strategies to study three systems modelled by ECATNet models:

Chapter 8. Case Studies and Performance Results 159

a producer consumer system, a manufacturing system and a pipeline system. The
knowledge obtained from previous experiments with the Ethernet transmitting sta­
tion model has been applied, when possible, to the simulation of these models.

In general, we have confirmed our preliminary ideas about which characteristics of
the simulated ECATNet model help to improve the performance of the distributed
simulators: partitioning, structure of the net and scenario of the simulation.

1 Partitioning has the strongest influence on the performance of the simulators.
The initial ECATNet model has to be partitioned efficiently into subnets for two
reasons:

• to avoid the overhead due to the distributed conflict resolution algorithm in
CMB-DA, TW-LZ and SYNC by assigning the set of conflicting transitions
together with their input places to the same subnet;

• for models with places with limited capacity, to avoid (a) the overhead due the
synchronisation via D eposit_request and D eposit_request_A CK messages
in CMB-DA and SYNC; and (b) possible rollbacks in TW-LZ.

2 In order to take advantage of using CMB-DA, we need ECATNet models with a
high degree of internal communication, which allows the processes to remain syn­
chronised without sending null messages.

3 The knowledge of the behaviour of the ECATNet model may allow CMB-DA to
exploit some lookahead information, which helps maintaining a good performance
when the simulator has not useful work to do. The experiments performed with the
three case studies show that the structure of the ECATNet model must be exploited
so that a LP sends null messages only when they are needed.

4 It is important to use intermediate and corse grain processes, that is, to assign
a significant amount of work to each process. This way, less processes are used to
run the model, and the synchronisation effort is reduced. We have seen how using
intermediate grain sizes in the pipeline model always led to a good,performance.

5 We can say that the experience with CMB-DA and TW-LZ has been positive,
but that the experience with SYNC has been quite discouraging. In all the ex­
periments, CMB-DA and TW-LZ performed better than SYNC. The performance

Chapter 8. Case Studies and Performance Results 160

of the tested SYNC implementation is very poor, even after introducing a series
of optimisations. The conclusion for SYNC is that, although it exploits efficiently
the parallelism inherent in ECATNet models, it is not the right tool for the kind
of parallel environment used in this study. However, SYNC has the advantage of
a simple implementation, and can be used in environments where CMB-DA is not
applicable because of the presence of loops with zero timestamp increment. Another
good characteristic of SYNC is that it is based on a very simple algorithm, without
the complicated memory management strategies of TW.

6 It has been noticed that the communication demands of CMB-DA, TW-LZ and
SYNC are very strong in a network of workstations environment, where comunica-
tion costs are very high compared to computation costs: a collection of workstations
in an Ethernet network does not perform so well.

7 Concerning the parallel programming environment, the outstanding point is that
some results are really poor, mainly due to the characteristics of the computing
system used in the experiments (NOW), and the way interprocess communication
is achieved. In fact, for all the experiments except the one with the pipeline model,
the sequential simulator was much faster than the distributed simulators without
synthetic workload. A message passing mechanism is used for synchronisation and
communication, and a general purpose Ethernet network with the T C P/IP proto­
cols over it provides the necessary connectivity. This means that communication in
this environment is relatively slow, because of:

• the peak data rate of Ethernet: 10 Mb/s;

• the shared nature of Ethernet: the available data rate must be shared among
all the devices connected to the network, being or not part of the simulation
environment, and

• the software overhead imposed by the use of several layers of protocols (Eth­
ernet, IP, TCP, MPI). The communication protocols used inside a parallel
computer are much simpler; in particular, there are not as many layers. As
layering means encapsulation, i.e., addition of control informations, its effects
are worse for short messages than for long messages 2 3.

2 We axe speaking in this context about real messages interchanged between processing elements,
not about simulated messages.

3The actual messages managed by the distributed simulators are short: about 48 bytes.

Chapter 9

Conclusion and Further
Research

9.1 Summary

Throughout this thesis we have made a study of techniques for distributed simulation
of discrete event systems, with special attention to a particular kind of high-level
algebraic Petri nets models: Extended Concurrent Algebraic Term Nets. We started
reasoning the interest of this study:

1. the need to introduce the concept of time in ECATNets to specify practical
applications;

2 . the need to exploit efficiently the parallelism inherent in the models;

3. the need to turn to simulation because the formal specification of real systems
modelled by ECATNets is based on implementation concepts rather than the­
oretical ones;

4. to accelerate simulations, and

5. the consideration of simulators as interesting applications for their implemen­
tations in network of workstations and parallel computers.

The identification of causal dependencies among events allowed the relaxation of
some constraints the sequential simulators impose on the order events are simu­
lated, in such a way that several events can be processed in parallel, after splitting

161

Chapter 9. Conclusion and Further Research 162

the simulator into a collection of collaborating logical processes. However, a syn­
chronisation mechanism must be added to guarantee that the collection of logical
processes progresses, as a whole, in a consistent way.

We have presented three different synchronisation alternatives: conservative, op­
timistic and synchronous. CMB-DA, TW-LZ and SYNC are particular realisations
of those alternatives, which have been implemented and tested, first to study a model
from the domain of communication networks and to analyse the general characteris­
tics of each simulator, and then using three models to test how well these simulators
work with real world applications.

Implementations of the three simulators have been performed in a network of
workstations environment. A study of the characteristics of this environment has
been done, allowing us to understand how the execution times of simulations depend
on different characteristics of the synchronisation algorithm, the model under study
and the target multicomputer.

9.2 Contributions

We have shown how DDES has been successfully used to study a variety of real-
world systems, including the study of different aspects of parallel computing. Our
contribution in this field is the use of DDES to analyse the behaviour of Extended
Concurrent Algebraic Term Nets when used to model any existing or hypothetical
system. The contributions of this work can be summarised in the following points:

1 . The introduction of time to ECATNets. These nets enriched with temporal
specification are suitable to discrete simulation, thus making an important step in
their quantitative performance evaluation. Timed transition ECATNet formalism
provides a substantial contribution to the implementation of efficient, general pur­
pose discrete event simulation techniques.

2 . A description of a collection of alternatives for distributed simulation of dis­
crete event systems, with an evaluation of them using ECATNet models designed as
a test. Similar evaluations can be found in the literature, most of them using shared
memory multiprocessors, which allowed the implementation of a variety of optimisa­
tions. However, our work has been developed in a distributed memory environment
where message passing is the only means of communication and synchronisation.

Chapter 9. Conclusion and Further Research 163

3. A description of an environment for parallel programming, identifying the char­
acteristics that have an impact on the implementation of parallel algorithms. In
this context, distributed simulation algorithms can be considered as a case study on
parallel programming.

4. A detailed description of ECATNet models, along with the way they can be
simulated using an event-driven approach. A description of these models using a
C-like language has been done, able to be used by any of the simulation engines as
part of this work.

5. The implementation and analysis of three distributed simulators, using three
different synchronisation mechanisms:

• CMB-DA, a conservative simulator;

• TW-LZ, an optimistic simulator, and

• SYNC, a synchronous simulator.

Additionally, a sequential simulator (SEQ) has been implemented and tested, to use
the obtained results as a reference point to compute speedups.

6 . The design of an optimisation on CMB-DA that allows a reduction on the num­
ber of null messages used for synchronisation. Null messages are sent only when
they have a positive impact on the receiving LP. Additionally, null messages are not
stored in the receiving LP: the only effect of the reception of a null message is an
increment in the receiving channel’s clock. With this optimisation, the synchronisa­
tion effort of the simulator is notably reduced.

7. The introduction of the concept of grain size of ECATNet LPs in the distributed
simulators. For example, the synchronisation mechanism for CMB-DA requires LPs
to block frequently, while they await until it is sure that advance is possible without
causal risks. If only one LP is assigned to each processor, CPU power is wasted
while the LP is blocked. Assigning several LPs of smaller size to each processor
(which means that each LP simulates a smaller part of the system under study), the
CPU can be assigned to a non blocked LP. However, LP’s grain size should not be
too small, because in that case the overall number of LPs would be increased, and
more null messages would be needed to keep the simulator synchronised. After a

Chapter 9. Conclusion and Further Research 164

set of evaluations, it was shown that it is more advantageous to use intermediate or
maximum grain size LPs instead of minimum grain size LPs.

8. The characterisation of the event density of the simulated systems as an im­
portant parameter to achieve good performance in CMB-DA simulator. ECATNet
models with high event density achieve good performance, because the message in­
terchange for event scheduling provides the LPs with the necessary sychronisation,
and a few number of messages are required.

9. The characterisation that TW-LZ is a viable approach to the distributed sim­
ulation of ECATNet models. We confirm that, in different scenarios, TW can be
very effective, although the nature of the ECATNet models and the large size of the
data structures that represent the state of a LP. However, receiving stragglers due
to a violation of the causality constraint and/or an overflow in a place with limited
capacity make it the worst possible scenario for TW.

10. The conclusion that in the same conditions as in (8), SYNC performs well,
because all the LPs have a similar work to do between barrier synchronisations, ex­
ploiting parallelism efficiently. If the message density reduces, the performance also
reduces. However, it was shown after a set of evaluations that SYNC is definitely
not appropriate for ECATNet distributed simulation in a network of workstations.

11. The conclusion that a collection of workstations in an Ethernet network does
not perform so well. The cost of synchronisation is very high due to the slow com­
munication infrastructure based on TCP/IP over Ethernet. The sources of overhead
at a sender CPU, the network of routers and the receiver CPU lead to poor perfor­
mance of the distributed simulators compared with the sequential one.

12. Through the experiments that have been executed with the distributed sim­
ulators, we got an insight into their behaviour under different conditions. We char­
acterised how the structure and parameters of the ECATNet model, the synchronisa­
tion strategy, the ways of organising the simulator and the scenario of the simulation
influence the achieved performance. We conclude that CMB-DA and TW-LZ can be
considered as suitable approaches for the distributed simulation of ECATNets. The
main requirement remains a fast message passing mechanism for better performance.

Chapter 9. Conclusion and Further Research 165

9.3 Further Work

There are many ways to further extend the work presented here. The most appeal­
ing ones are given in the following points:

1. To build a complete analysis tool for ECATNets, based on conservative, Time
Warp and synchronous distributed simulation engines. The tool should be able to
allow a researcher to describe the system under study, given its ECATNet model and
a collection of parameters such as timings. Our system for modelling and simulation
with ECATNets currently consists of a sequential and three distributed simulators.
It is planned to extend the simulation system with another component: a net editor
which will allow the entering of a graphical representation of ECATNet models. A
graphical editor of an earlier style of algebraic Petri nets has been developed [BB92]
and will be modified to accomodate ECATNets and to offer a way of providing the
information to describe in a user friendly way.

2 . Implementation on Massively Parallel Processing architectures:

• Distributed memory environment: the communication in the distributed simu­
lators is modelled via message passing between different processors. This yields
a very portable implementation. Since the MPI library has been adopted, the
three distributed simulators (CMB-DA, TW-LZ and SYNC) can be success­
fully ported on Massively Parallel Processing architectures, such as the the
Cray T3E, the Thinking Machine CM-5 or the Intel Paragon.

• Shared memory environment: The simulation algorithms developed for a mes­
sage passing environment trivially adapt without performance loss to shared
memory by emulating message exchange via shared variables. The protocols we
proposed run in a distributed memory environment. Since distributed mem­
ory is not the optimal architecture for parallel simulation algorithms because
of the tight global synchronisation these algorithms impose, it will be inter­
esting to investigate the performance of these algorithms on shared memory
architectures. In this case, messages are exchanged through a global memory.

• In relation to the SYNC simulator, the current implementations follows a
SPMD programming model. It would be very interesting to implement a ver­
sion for SIMD machines in order to test its behaviour using several thousands
of processing elements.

Chapter 9. Conclusion and Further Research 166

3. Implementation of an ECATNet concurrent simulator. The distribution at the
event level with a centralised event list is particularly appropriate for shared memory
multiprocessors [JCRB89]. The model parallelism exploitation aims at a distribution
of single events among processors for their concurrent execution. If the event list is a
centralised data structure maintained by a master processor, concurrent events are
distributed to a pool of slave processors dedicated to execute them. In ECATNets,
the master processor in this case takes care that consistency in the event structure is
preserved, i.e., prohibits the execution of events potentially yielding causality errors
due to overlapping effects of events being concurrently processed. In addition to
this, the application of rewrite rules will find the set of transitions to be fired in
parallel, and the events processed in parallel are typically the ones located at the
same time.

4. Implementation in distributed shared memory environment. Most of the parallel
simulations applications found in the literature were run on shared memory archi­
tectures, very few on a network of workstations, a widely used hardware platform
which cannot be ignored by parallel simulation researchers. However, the implemen­
tation of an ECATNet concurrent simulator prototype using Phosphorus [CDMB95]
has been quite disappointing. Phosphorus is a distributed shared memory system
developed on top of the PVM, which makes the performance of the various simu­
lators (distributed and concurrent) built on top of two messages passing libraries
(MPI and PVM) difficult to compare.

A future ECATNet concurrent simulator in DSM can be implemented in MPI2,
which permits the use of one-sided communications. This is important to the appli­
cation programmer, because even loose synchronisation of the send-receive pair in
the algorithms imposes constraints and is no longer necessary. It is difficult to gain
acceptable speedup for parallel simulation in a network of workstations due to long
communication delays. One possible solution is to connect the workstations using a
high speed network, such as a fast Ethernet or an ATM network.

5. This study has, fundamentally, an empirical basis. An analytical study of the
way the different characteristics of ECATNet models, simulators and parallel pro­
gramming environment affect the execution time of simulators should be of great
interest. The difficult part is that the spectrum of parameters to consider is too
large. Several studies have been done in this direction, but most of them make a
series of simplifying assumptions which limit its applicability.

Chapter 9. Conclusion and Further Research 167

6 . The use of parallel simulation of ECATNets in rewriting logic. Rewriting has
been recognised as an efficient concurrent computational paradigm. The notion of
rewriting has been generalised so that functional computations, as well as other
parallel computations that are highly non-functional in nature, can be expressed
using a declarative and machine independent parallel programming [LMOM94]. A
new type of rewriting, Object-Oriented Rewriting, corresponds to actor-like objects
[Agh90, Agh96] that interact with each other by asynchronous message-passing.
Many discrete event simulation applications can be naturally expressed and paral­
lelised in this way.

Rewriting logic has been used as a semantic framework suitable for object-
oriented specification [LLW95] and implementation of the style of discrete event
simulation within rewriting logic [Lan96]. Further work will include the implemen­
tation of an ECATNet parallel simulator in Maude programming language [CDE+98]
which is an extension of OBJ [GKK+8 8], thus extending the domain of parallel simu­
lation and rewriting logic. Maude is a designed language of rewriting logic proposed
as a machine-independent parallel programming language that can be efficiently im­
plemented in parallel on many different machines, ranging from sequential, SIMD,
MIMD, and MIMD/SIMD machines [LMOMR94]. The description of the use of
object-oriented rewriting logic in the field of distributed simulation of ECATNets
has been given in [DB98]. This modest approach is driven from practical con­
siderations from the work on developing the distributed simulation framework for
ECATNets, and must be considered as a first step towards a solution of the prob­
lem. The interesting thing about rewriting logic and parallel simulation is to see
that concurrency occurs explicitly in the simulation model and implicitly in the logic.

7. The work presented in the thesis should be considered as a step in the direc­
tion of efficiently implemented distributed simulation techniques for high-level nets
such as CPNets. An approach is proposed in [BP97] to relate CPNets to ECAT­
Nets. Results concerning analysis techniques of CPNets can be used for ECATNets
analysis.

8 . The simulators developed should be used in the development of real applications:
distributed real time systems, distributed measurements systems and multimedia
applications.

Chapter 9. Conclusion and Further Research 168

9. It will be interesting to implement the synchronisation mechanisms in Java so as
to improve portability and move towards distributed simulation at the Web level.

Appendix A

Parallel Programming
Environment

A .l Introduction

In this appendix we present the parallel programming environment used for our
research in distributed simulation. All our experiments with the simulators: CMB-
DA, TW, and SYNC were made using an implementation of MPI (Message Passing
Interface) over a network of Sun Sparc workstations as a platform for parallel pro­
gramming.

A .2 M essage Passing Interface

The goal of MPI, simply stated, is to develop a widely used standard for message
passing programs. The interface should establish a practical, portable, efficient
and standard for message passing [Mes95]. Over the last ten years, substantial
progress has been made in casting significant applications in this paradigm. Each
parallel computer vendor has implemented its own variant. More recently, several
systems have demonstrated that a message passing system which is both efficient
and portable can be implemented. The purpose of MPI is to define both the syntax
and semantics of a core of library routines that will be useful to a wide range of
users and efficiently implementable on a wide range of computers.

MPI has emerged as the future standard for message passing in both distributed
and parallel computing environments. This standard is the result of contributions
from more than 40 organisations (hardware/software vendors, federal laboratories,
and universities). In designing MPI, the MPI forum sought to make use of the most

169

A ppendix A. Parallel Programming Environment 170

attractive features of a number of existing message passing systems, rather than
selecting one of them and adopting it as a standard. Thus, MPI has been strongly
influenced by many works at the IBM T. J. Watson research Center, Intel’s NX/2,
Express, nCUBE’s Vertex, p4, and PARMACS. Other important contributions have
come from Zipcode, Chimp, PVM, Chameleon, and PICL [Mes95]. MPI offers, for
the first time, an accepted standard for message passing. It is based on point-
to-point communication between pairs of processes and collective communications
within groups of processes. Additionally, it includes the specification of a much
richer set of features than previous message-passing models such as p4 and PVM.
These allow the programmer to manipulate entire process groups, define topological
structure for process groups, and explicit facilities to aid in the development and
use of parallel libraries.

Several implementations of MPI axe freely available. One of those is MPICH
developed by Argonne National Laboratory and Mississipi State University. It is
supported on a variety of parallel computers and networks of workstations. Parallel
computers that are supported include: IBM SP1, SP2 (using various communica­
tion options), Thinking Machine CM-5, Intel Paragon, IPSC860, Touchstone Delta,
Ncube2, Meiko CS-2, Kendall Square KSR-1 and KSR-2, SGI and Sun microproces­
sors. Supported workstations include: Sun4 family running SunOS or Solaris, HP,
DEC 3000 and Alpha, IBM RS/6000 family, SGI, Intel based PC clones running
Linux. Other available MPI implementations are:

• Edinburgh Parallel Computer Centre CHIMP implementation

• Mississipi State University UNIFY implementation

• Ohio Supercomputer Center LAM implementation

• University of Nebraska at Omaha WinMPI implementation.

MPI-2, recently developed [Mes97], provides extensions to the first release of MPI.
The areas of expansion are:

• Input/Output

• Active messages

• Process startup

• Dynamic process control

A ppendix A. Parallel Programming Environment 171

• Remote store/access

• Language bindings for Fortran 90 and C++

• Graphics

• Real-time support.

A .2.1 M P I Program s

The current MPI specification [Mes95] includes bindings for C and Fortran 77 pro­
gramming languages. MPI-2 [Mes97] include bindings for C + + and Fortran 90. In
the remaining, we will only discuss the C binding.

Any MPI program must include the header file “mpi.h”, where the definitions,
macros and function prototypes necessary for compiling the programs can be found.
Before using any other MPI function, a program must invoke M PI_Init(), to do all
the necessary set-up operations. After finishing (but before exiting) the function
M PIJFinalizeO must be called for cleaning up.

int MPI_Init(int argc, char **argv);

int MPI_Finalize();

After the initialisation, functions are available for point to point communication,
collective communication, and several environment management functions. In the
following sections we give a description of the functions which are relevant for our
work.

A .2.2 Com m unicators

MPI provides the function MPI_Comm_rank() which returns the rank of a process in
its second argument. Its syntax is:

int MPI_Comm_rank (MPI.Comm comm, int rank);

The first argument is a communicator. Essentialy a communicator is a collection
of processes that can send messages to each other. For basic programs, the only
communicator needed is MPI_C0MM_W0RLD. It is predefined in MPI and consists of all
the processes running when the program execution begins.

Appendix A. Parallel Programming Environment 172

MPI provides the function MPI_Comm_size for determining the number of processes
executing the program. Its first argument is a communicator. It returns the number
of processes in a communicator in its second argument. Its syntax is:

in t MPI_Comm_size (MPI.Comm comm, in t s ize);

A .2.3 Point to Point C om m unication

MPI offers two communication models, blocking and nonblocking, and four commu­
nication modes: basic, synchronous, buffered and ready.

Basic: MPI_Send completes when the message data and envelope have been safely
stored away so that the sender is free to access and overwrite the send buffer. The
message might be copied directly into the matching receive buffer, or it might be
copied into a temporary system buffer.
Buffered: MPI_Bsend completes immediately after storing the message in a local
buffer, managed by the user. Its completion never depends on the occurrence of a
matching receive.
Synchronous: MPI_Ssend only completes when a matching receive has been posted
and the message interchange has been completed.
R eady: MPI_Rsend can be started only if a matching receive has been already
posted. Otherwise the operation is erroneous and its outcome is indefined.

All four blocking send operations take the same arguments. The prototype of
MPLSend is as follows:

in t MPI_Send (void *buf, in t count, MPI_Datatype d a ta ty p e , in t d e s t , in t
ta g , MPI.Connn comm);

The blocking receive operation can match any of the send modes, and returns only
after the receive buffer contains the newly received message.

in t MPI_Recv (void *buf, in t count, MPI_Datatype d a ta ty p e , in t s rc , in t
ta g , MPI.Comm comm);

For the nonblocking model of communication, the functions: M PI.IsendO, MPI_Ib-
sendO , M PI.IssendO, M PI.IrsendO , MPI.IrecvQ are available to start an op-

A ppendix A. Parallel Programming Environment 173

eration. Several forms of MPI_Wait() allow a process to block until a previously
started operation (or set of operations) has been completed. Alternatively, a non-
blocking test of completion can be done using MPI.Test (). A non-committed posted
operation can be canceled with MPI_Cancel().

It is also possible to check if messages are pending to be received. MPI .Probe ()
is blocking, i.e., blocks the caller if no message is ready, until one is received.
MPI.IprobeO is just a nonblocking test. In either case, the message is not actually
received until a receive operation is done.

A .2.4 C ollective C om m unication

A collective communication is a communication that involves a group of processes.
All collective operations are global and blocking, that is, in order to perform an oper­
ation all the members of a group must call it, and control returns when it has been
completed. In many cases a root process is mentioned. Any process in a group can
be the root of an operation, but it is necessary that all members agree in defining
which process is the root. The collective communication functions provided by MPI
are:

M PI_Barrier(): barrier synchronisation across all group members.
MPI_Bcast(): broadcast from one member to all members of a group.
MPI_Gather(): gather data from all group members to one member.
M PI.scatter (): scatter data from one member to all members of a group.
MPI -A llgather (): a variation of MPI.Gather where all members of the group re­
ceive the result of the gather operation.
MPI_Reduce(): global reduction operation such as sum, max, min, or user-defined
functions, where the result is returned to only one member.
MPI_Allreduce(): a variation of MPI_Reduce() where the result is returned to all
group members.
M PIJteduce_scatter(): a combined reduction and scatter operation. First a reduc­
tion is done, and then the result (a vector) is scattered along the processes in the
group.
MPI_Scan(): scan across all members of a group.

A .2.5 D ata Types

One of the parameters of send and receive operations is the type of the data units
being transmitted (other being the number of units transmitted). Both sender and

A ppendix A. Parallel Programming Environment 174

MPI data type C data type
MPLCHAR signed char
MPLSHORT signed short int
M PIJNT signed int
MPLLONG signed long int
MPLUNSIGNED.CHAR unsigned char
MPLUNSIGNED .SHORT unsigned short int
MPLUNSIGNED unsigned int
MPLUNSIGNED-LONG unsigned long int
MPI-FLOAT float
MPIJDOUBLE double
MPLLONG-DOUBLE long double
MPI-BYTE
MPIJPACKED

Table A.l: MPI data types (C binding)

receiver must agree in the specified data type. A series of constants are defined to
choose the appropriate data type. Table A.l lists the data types available for’the C
binding.

The last two types do not correspond to any C data type. A value of type
MPIJBYTE consists of an octet, which is uninterpreted and different from a char­
acter. MPIJPACKED is used to interchange blocks of non-contiguous data items
which have been packed into a contiguous buffer. As MPI supports parallel compu­
tations across heterogeneous environments, the MPIJ3YTE data type can be used
to transfer data without any conversion of the different data representation formats
of the communicating machines.

A .3 Running an M PI Application on a NO W

The implementation of MPI includes a configuration program which sets up CHIMP
MPI (Edinburgh Parallel Computer Centre) for running in a network of Sun work­
stations running Solaris. The actual CHIMP version is 2.0 which is a distributed
Unix version SPARC running Solaris 2.1 (or later). Once the environment has been
configured, a Makefile is provided to build:

A ppendix A. Parallel Programming Environment 175

• a library with all MPI functions;

• scripts for compilation of MPI application code (mpicc for the C programming
language);

• mpirun, a tool for starting parallel programs in a way independent of the target
machine;

• a collection of manuals and other documentation.

Once the set of executables which make up the MPI application has been generated,
we must write a configuration file for the application. Items enclosed in brackets ()
and separated by commas represent MPI processes. Processes are specified by the
command that would execute that process; usually this will be the executable name
followed by any command arguments. These processes are normally placed arbitrar­
ily on the available processors: the only relationship automatically preserved from
configuration file to process placements is the co-locality of processes on processors,
i.e., if two processes appear in the same set of brackets in the configuration file, it is
guaranteed that they will be run on the same processor. The loader tool interprets
a configuration file and places processes on computing resources as specified. All
the machines of the configuration file have the same view of the file system, which
usually means that NFS (Network File System) is in use.

Appendix B

Glossary

B .l Petri N ets

In h ib ito r arc: axe that allows zero testing. An inhibitor arc from a place p» to
a tansition tj has a small circle rather than an arrowhead at the transition. The
firing rule is changed as follows: a transition is enabled when tokens axe all of its
(normal) inputs and zero tokens axe in all of its inhibitor inputs. The transition fires
by removing tokens from all of its (normal) inputs.

Random switch: probability distribution associated with the choice of the tran­
sition to be fired among a set of more immediate transitions in conflict at a certain
reachable marking. The distribution is in general maxking-dependent.

Let N = (P,T,F) be a net and x G X. Then:

P re-se t: noted » x = {y | (y,x) G F} (Pre-set of x G X).

P ost-set: noted x» = {y | (x,y) G F} (Post-set of x G X).

Siphon: let Po C P a set of places. Po is called a trap iff Po» C «Po.

D eadlock: Pq is called a deadlock iff »Pq C P0«.

176

A ppendix B. Glossary 177

B.2 Parallel Processing

B andw id th : amount of data that can be sent through a given communication cir­
cuit per second (an important communication channel’s parameter).

B arrier: a point in a program at which barrier synchronisation occurs.

B arrie r synchronisation: an event in which two or more processes belonging
to some implicit or explicit group block until all members of the group have blocked.

B roadcast: to send a message to all possible recipients.

Deadlock: a situation in which each possible activity is blocked, waiting on some
other activity that is also blocked.

G ranu larity : the size of the operations done by a processor between communi­
cation events. A process may be fine-grained or coarse-grained.

Host: a computer connected to a network.

Latency: time it takes for a packet to cross a network connection, from sender
to receiver (an important communication channel’s parameter).

Load balancing: techniques which aim to spread tasks among the processors in a
parallel processor to avoid some processors being idle when other have tasks queue­
ing for execution.

M apping: an allocation of processes to processors.

M essage passing: a style of interprocess communication in which processes send
discrete messages to one another.

O verhead: information, such as control, routing, and error checking characters,
that is transmitted along with the user data. It also includes information such as
network status or operational instructions, network routing informations and re­
transmissions of user data received in error.

A ppendix B. Glossary 178

P ara lle l speedup: ratio of the serial execution time of the best known serial algo­
rithm (TS) to the parallel execution time of the chosen algorithm (TP).

R ed u c tio n operation: an operation applying an associative or commutative bi­
nary operator © to a list of values {uo v\ ... vn_i} to produce (uo © Vi © ... © vn_i).

S hared m em ory: memory that appears to the user to be contained in a single
address space and that can be accessed by any process.

T h roughpu t: (1) the rate at which a processor can work expressed in instruc­
tions per second or jobs per hour or some other unit of performance; (2) the amount
of data a communication’s channel can carry, usually in bytes per second.

References

[ABC+91]

[ABC+95]

[ABL94]

[AC87]

[ACB84]

[ACLS94]

[AD91]

[Agh90]

[Agh96]

M. Ajmone Marsan, G. Balbo, G. Chiola, G. Conte, S. Donatelli, and
G. Franceschinis. An Introduction to Generalized Stochastic Petri
Nets. Microelectronics and Reliability, 31(4):699-725, 1991.

M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Frances­
chinis. Modelling with Generalized Stochastic Petri Nets. John Wiley
and Sons, 1995.

D.K Arvind, R. Bagrodia, and J.Y. Lin, editors. Proceedings of the 8th
Workshop on Parallel and Distributed Simulation, Edinburgh, Scot­
land, UK, Jun 1994. ACM/IEEE/SCS. SIGSIM Newletter 24(1), July
1994.

M. Ajmone Maxsan and G. Chiola. On Petri Nets with Deterministic
and Exponentially Distributed Firing Times. In Rozenberg [Roz87],
pages 132-145.

M. Ajmone Marsan, G. Conte, and G. Balbo. A Class of Generalized
Stochastic Petri Nets for the Performance Evaluation of Multiproces­
sor Systems. ACM Transactions on Computer Systems, 2(2):93-122,
May 1984.

D. Agrawal, M. Choy, H.V. Leong, and A.K. Singh. Maya: a Sim­
ulation Platform for Distributed Shared Memories. In Arvind et al.
[ABL94], pages 151-155.

H. Ammar and S. Deng. Parallel Simulation of Petri Nets Using Spa­
tial Decomposition. In Proceedings of the 1991 IEEE International
Symposium on Circuits and Systems, pages 826-829, Singapore, Jun
1991.

G. Agha. Concurrent Object-Oriented Programming. Communica­
tions of the ACM , 33(9): 125—141, Sep 1990.

G. Agha. Modeling Concurrent Systems: Actors, Nets, and the Prob­
lem of Abstraction and Composition. In J. Billington and W. Reisig,

179

Bibliography 180

[Ajm89]

[Ajm93]

[AL97]

[Aya93]

[Bal92]

[BB92]

[BBB+94]

[BBCC92]

[BBCC95]

editors, Proceedings of the 17th International Conference on Applica­
tion and Theory of Petri Nets, pages 1-10, Osaka, Japan, Jun 1996.
Lecture Notes in Computer Science 1091, Springer.

M. Ajmone Marsan. Stochastic Petri Nets : an Elementary Introduc­
tion. In G. Rozenberg, editor, Advances in Petri Nets 1989, pages
1-29, 1989. Lecture Notes in Computer Science 424, Springer-Verlag.

M. Ajmone Marsan, editor. Proceedings of the 1 4 th International Con­
ference on Application and Theory of Petri Nets, Chicago, Illinois, Jun
1993. Lecture Notes in Computer Science 691, Springer-Verlag.

T. Aura and J. Lilius. Time Processes for Time Petri Nets. In
P. Azema and G. Balbo, editors, Proceedings of the 18th International
Conference on Application and Theory of Petri Nets, pages 136-155,
Toulouse, France, Jun 1997. Lecture Notes in Computer Science 1248,
Springer.

R. Ayani. Parallel Simulation. In L. Donatiello and R. Nelson, editors,
Performance Evaluation of Computer and Communication Systems,
pages 1-20, 1993. Lecture Notes in Computer Science 729, Springer-
Verlag.

G. Balbo. Performance Issues in Parallel Programming. In K. Jensen,
editor, Proceedings of the 13th International Conference on Applica­
tion and Theory of Petri Nets, pages 1-23, Sheffield, UK, Jun 1992.
Lecture Notes in Computer Science 616, Springer-Verlag.

O. Bounouioua and M. Bettaz. A Graphical Editor-Simulator for Alge­
braic Term Nets. In Proceedings of the Second Maghrebin Conference
on Software Engineering and Artificial Intelligence, pages 177-190,
Tunis, Tunisia, Apr 1992.

F. Bacceli, G. Balbo, R.J. Boucherie, J. Campos, and G. Chiola. An­
notated Bibliography on Stochastic Petri Nets. In O.J. Boxma and
G.M. Kode, editors, Proceedings of the 3rd QMIPS Workshop (Part
I), pages 25-44, 1994. Performance Evaluation of Parallel and Dis­
tributed Systems, Vol. 105, CWI Tract.

G. Balbo, S.C. Bruell, P. Chen, and G. Chiola. An Example of Mod­
eling and Evaluation of Concurrent Program using Colored Stochastic
Petri Nets. Lamport’s Fast Mutual Exclusion Algorithm. IEEE Trans­
actions on Parallel and Distributed Systems, 3(2):221-240, Mar 1992.

E. Battiston, O. Botti, E. Crivelli, and D. De Cindio. An Incremental
Specification of a Hydroelectric Power Plant Control Systems using
a Class of Modular Algebraic Nets. In G. De Michelis and M. Diaz,

Bibliography 181

[BC92]

[BC93]

[BCD98]

[BCM8 8]

[BDF92]

[BEM90]

[Bet91]

[Bet93]

[Bil89]

editors, Proceedings of the 16th International Conference on Applica­
tion and Theory of Petri Nets, pages 84-102, Torino, Italy, Jun 1995.
Lecture Notes in Computer Science 935, Springer.

M. Bettaz and A. Choutri. Algebraic Term Nets: a Formalism for
Specifying Communication Software in the OSI Framework. In Pro­
ceedings of the Unified Computation Laboratory, pages 293-305. Ox­
ford University Press, 1992.

F. Bacceli and M. Canales. Parallel Simulation of Stochastic Petri
Nets using Recurrence Equations. ACM Transactions on Modeling
and Computer Simulation, 3(1):20—41, Jan 1993.

K. Barkaoui, A. Chaoui, and K. Djemame. On the Use of Algebraic
Petri Nets for Supervisor Evaluation of Discrete Event Systems. In
P. Borne and M. Ksouri, editors, Proceedings of CESA ’98 (Computa­
tional Engineering in Systems Applications), pages 465-469, Nabeul-
Hammamet, Tunisia, April 1998. IEEE.

E. Battiston, F. De Cindio, and G. Mauri. OBJSA Nets: a Class of
High-Level Nets Having Objects as Domains. In G. Rozenberg, editor,
Advances in Petri Nets 1988, pages 20-43, 1988. Lecture Notes in
Computer Science 340, Springer Verlag.

G. Balbo, S. Donatelli, and G. Franceschinis. Understanding Parallel
Program Behavior Through Petri Net Models. Journal of Parallel and
Distributed Computing, 15(3):171—187, Jul 1992.

B. Butler, R. Esser, and R. Mattmann. A Distributed Simulator for
High Order Petri Nets. In G. Rozenberg, editor, Advances in Petri
Nets 1990, pages 47-63, 1990. Lecture Notes in Computer Science
483, Springer-Verlag.

M. Bettaz. An Association of Algebraic Term Nets and Abstract Data
Types for Specifying Real Communication Protocols. In H. Ehrig,
K.P. Jantke, F. Orejas, and H. Reichel, editors, Proceedings of the
7th Workshop on Specification of Abstract Data Types, pages 11-
30, Wusterhausen/Dosse, Germany, 1991. Recent Trends in Data
Type Specification, Lecture Notes in Computer Science 534, Springer-
Verlag.

M. Bettaz. Specification Hautement Compacte et Modulaire de
l’Ethernet: la Station Emettrice. In Proceedings of CFIP ’93, Mon­
treal, Canada, 1993. Hermes, Paris. (In french).

J. Billington. Many Sorted High-Level Nets. In Proceedings of the
Third International Workshop on Petri Nets and Performance Models,
Kyoto, Japan, Dec 1989.

Bibliography 182

[BL94]

[BM93a]

[BM93b]

[BM95]

[BMSB92]

[BMSB93a]

[BMSB93b]

[BMSB94]

[BP97]

[Braunl93]

R.L. Bagrodia and W. Liao. Maisie: A Language for the Design of
Efficient Discrete-Event Simulations. IEEE Transactions on Software
Engineering, 20(4):225-238, Apr 1994.

M. Bettaz and M. Maouche. How to Specify Non Determinism and
True Concurrency with Algebraic Term Nets. In M. Bidoit and
C. Choppy, editors, Proceedings of the 8th Workshop on Specification
of Abstract Data Types, pages 164-180, Dourdan, France, 1993. Re­
cent Trends in Data Specification, Lecture Notes in Computer Science
655, Springer-Verlag.

M. Bettaz and A. Mehemmel. Modeling and Proving of Truly Concur­
rent Systems with CATNets. In Proceedings of 1st Euromicro Work­
shop on Parallel and Distributed Processing, pages 265-272. IEEE/CS,
1993.

M. Bettaz and M.Maouche. Modeling of Object Based Systems with
Hidden Sorted ECATNets. In Proceedings of M ASCOTS’95, pages
307-311, Durham, North Carolina, Jan 1995. IEEE.

M. Bettaz, M. Maouche, M. Soualmi, and M. Boukebeche. Using
ECATNets for Specifying Communication Software in the OSI Frame­
work. In W.W. Koczkodaj, P.E. Lauer, and A.A. Toptsis, editors,
Proceedings of the 1992 International Conference on Computing and
Information, pages 410-413, Toronto, Canada, May 1992. IEEE.

M. Bettaz, M. Maouche, M. Soualmi, and M. Boukebeche. Compact
Modeling and Rapid Prototyping of Communication Software with
ECATNets: a Case Study. Simulation Series, 25(1): 149-154, 1993.
SCS and IEEE.

M. Bettaz, M. Maouche, M. Soualmi, and M. Boukebeche. Protocol
Specification using ECATNets. Networking and Distributed Comput­
ing, 3(1):7—35, 1993. Hermes, Paris.

M. Bettaz, M. Maouche, M. Soualmi, and M. Boukebeche. On Reusing
ATNet Modules in Protocol Specification. Journal of Systems and
Software, 27(2): 119-128, Nov 1994.

F. Belala and L. Petrucci. Semantique des ECATNets en Termes de
CPNets : Application a un Exemple de Production. In Proceedings
of MOSIM’97, pages 367-375, Rouen, France, Jun 1997. Hermes. (In
french).

T. Braunl. Parallel Programming. Prentice Hall, 1993.

Bibliography 183

[BRR8 6]

[Bry77]

[BT94]

[Car89]

[CD97]

[CDE+98]

[CDFH93]

[CDMB95]

[CF93a]

[CF93b]

[CF95]

W. Brauer, W. Reisig, and G. Rozenberg, editors. Advances in Petri
Nets 1986, Part I. Lecture Notes in Computer Science 255, Springer-
Verlag, 1986.

R.E. Bryant. Simulation of Packet Communications Architecture
Computer Systems. Technical Report MIT-LCS-TR-188, MIT, 1977.

A. Boukerche and C. Tropper. A Static Partitioning and Mapping
Algorithm for Conservative Parallel Simulations. In Arvind et al.
[ABL94], pages 164-172.

J.A. Carrasco. Automated Construction of Compound Markov Chains
from Generalized Stochastic High Level Petri Nets. In Proceedings of
the 3rd International Workshop on Petri nets and Performance Mod­
els, pages 93-102, Kyoto, 1989. IEEE.

A. Chaoui and K. Djemame. Static Deadlock Detection in Ada Tasking
using a Logic of Concurrency. Technical report, Computing Science
Institute, University of Constantine, Algeria, Jul 1997.

M. Clavel, F. Duran, S. Eker, P. Lincoln, and J. Meseguer. An Intro­
duction to Maude (Beta Version). Technical report, SRI International,
Menlo Park, CA., Mar 1998. http://maude.csl.sri.com/manual/.

G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic
Well-Formed Coloured Nets and Symmetric Modelling Applications.
IEEE Transactions on Computers, 42(11): 1343—1360, Nov 1993.

R. Cabrera, I. Demeure, P. Meunier, and V. Bartro. Phos­
phorus: a Tool for Shared Memory Management in a Dis­
tributed Environment. Technical Report 95D003, Ecole Na-
tionale Superieure des Telecommunications, Departement
d ’lnformatique, Paris, France, Nov 1995. http://www-inf.enst.fr/''
research/publications_ec/demeure/demeure_95c.ps.

G. Chiola and A. Ferscha. Distributed Simulation of Petri Nets.
IEEE Parallel and Distributed Technology, pages 33-50, Aug 1993.
http://sokrates.ani.univie.ac.at/''ferscha/E-PAPERS/ieeepdt93.ps.-
gz.

G. Chiola and A. Ferscha. Distributed Simulation of Timed Petri
Nets: Exploiting the Net Structure to Obtain Efficiency. In Ajmone
Marsan [Ajm93], pages 146-165.
http://sokrates.ani.univie.ac.at/''ferscha/E-PAPERS/petrinets93.ps.-
gz.

G. Chiola and A. Ferscha. Performance Comparable Design of Efficient
Synchronization Protocols for Distributed Simulation. In Proceedings

http://maude.csl.sri.com/manual/
http://www-inf.enst.fr/''
http://sokrates.ani.univie.ac.at/''ferscha/E-PAPERS/ieeepdt93.ps.-
http://sokrates.ani.univie.ac.at/''ferscha/E-PAPERS/petrinets93.ps.-

Bibliography 184

[CFGR95]

[CGU+94]

[CH94]

[CM79]

[CM81]

[CN93]

[CR83]

[CSR93]

[CT95]

[CT96a]

[CT96b]

of M ASCOTS’95, pages 59-65, Durham, North Carolina, Jam 1995.
IEEE.
http://sokrates.ani.univie.ac.at/~ferscha/E-PAPERS/mascots.ps.gz.

G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN
1.7: GRaphical Editor and Analyzer for Timed and Stochastic Petri
Nets. Performance Evaluation, 24(1,2):47—68, Nov 1995.

J. Cleary, F. Gomes, B. Unger, X. Zhonge, and R. Thudt. Cost of
Sate Saving and Rollback. In Arvind et al. [ABL94], pages 94-101.

R.D. Chamberlain and C.D. Henderson. Evaluating the Use of Pre-
Simulation in VLSI Circuit Partitioning. In Arvind et al. [ABL94],
pages 139-146.

K.M. Chandy and J. Misra. Distributed Simulation: a Case Study in
Design and Verification of Distributed Programs. IEEE Transactions
on Software Engineering, SE-5(5):440-453, Sep 1979.

K.M. Chandy and J. Misra. Asynchronous Distributed Simulation via
a Sequence of Parallel Computations. Communications of the ACM ,
24(11): 198-206, Apr 1981.

H. Choi and B. Narahari. Efficient Algorithms for Mapping and Par­
titioning a Class of Parallel Computations. Journal of Parallel and
Distributed Computing, 19(1):349—363, Dec 1993.

J.E. Coolahan and N. Roussopoulos. Time Requirements for Time-
Driven Systems Using Augmented Petri Nets. IEEE Transactions on
Software Engineering, SE-9(5):603-616, Sep 1983.

K. Chung, J. Sang, and V. Rego. A Performance Comparison of Event
Calendar Algorithms: an Empirical Approach. Software - Practice and
Experience, 23(10):1107—1138, Oct 1993.

W. Cai and S.J. Turner. An Algorithm for Reducing Null-Messages of
CMB Approach in Parallel Discrete Event Simulation. Technical Re­
port TR-333, Department of Computer Science, University of Exeter,
1995. ftp://ftp.dcs.exeter.ac.Uk/pub/parallel/simul/rednull.ps.Z.

Cleary and J.J. Tsai. Conservative Parallel Simulation of ATM Net­
works. In Proceedings of the 10th Workshop on Parallel and Distributed
Simulation, pages 30-38, Philadelphia, May 1996. ACM/IEEE/SCS.

Q.M. Cui and S.J. Turner. A New Approach to the Distributed Simu­
lation of Timed Petri Nets. In Proceedings of SCS European Simulation
Multiconference, pages 90-94, Budapest, Hungary, Jun 1996. Society
for Computer Simulation.

http://sokrates.ani.univie.ac.at/~ferscha/E-PAPERS/mascots.ps.gz
ftp://ftp.dcs.exeter.ac.Uk/pub/parallel/simul/rednull.ps.Z

Bibliography 185

[DB94]

[DB98]

[DBGM95]

[DBGM96a]

[DBGM96b]

[DBGM98]

[DF97]

[DH90]

[Dje98]

[DTGN84]

K. Djemame and M. Bettaz. On the Parallel Simulation of ECAT­
Nets. Technical report, Computing Science Institute, University of
Constantine, Algeria, Jun 1994.

K. Djemame and M. Bettaz. Parallel Simulation in Rewriting Logic:
Some Observations. In Proceedings of 6th Euromicro Workshop on
Parallel and Distributed Processing, pages 197-203, Madrid, Spain,
Jan 1998. IEEE/CS.

K. Djemame, M. Bettaz, D.C. Gilles, and L.M. Mackenzie. Time
Warp Simulation of ECATNets. In Proceedings of 7th European Sim­
ulation Symposium, pages 171-175, Erlangen, Nuremberg, Germany,
Oct 1995. SCS.

K. Djemame, M. Bettaz, D.C. Gilles, and L.M. Mackenzie. Distributed
Simulation of ECATNets: A Conservative Approach. In Proceedings
of 4th Euromicro Workshop on Parallel and Distributed Processing,
pages 518-525, Braga, Portugal, Jan 1996. IEEE/CS.

K. Djemame, M. Bettaz, D.C. Gilles, and L.M. Mackenzie. Perfor­
mance Comparison of High Level Algebraic Nets Distributed Simula­
tion Protocols. In J.M. Charnes, D.M. Morrice, D.T. Brunner, and
J.J. Swain, editors, Proceedings of 1996 Winter Simulation Confer­
ence, pages 621-628, Coronado, CA., Dec 1996. ACM/IEEE/SCS.

K. Djemame, M. Bettaz, D.C. Gilles, and L.M. Mackenzie. Perfor­
mance Comparison of High Level Algebraic Nets Distributed Simula­
tion Protocols (full paper). Journal of Systems Architecture, 44:457-
472, 1998.

S.R. Das and R.M. Fujimoto. Adaptive Memory Management and
Optimism Control in Time Warp. ACM Transactions on Modeling
and Computer Simulation, 7(2):239—271, Apr 1997.

C. Dutheillet and S. Haddad. Regular Stochastic Petri Nets. In
G. Rozenberg, editor, Advances in Petri Nets 1990, pages 186-210,
1990. Lecture Notes in Computer Science 483, Springer-Verlag.

K. Djemame. Queueing Networks Versus Petri Nets: Two Performance
Case Studies in Distributed Simulation. In Proceedings of CNP’98
(Colloque National sur la Productique), pages 136-141, Tizi-Ouzou,
Algeria, May 1998.

J.B. Dugan, K.S. Trevedi, R.M. Geist, and V.F. Nicola. Extended
Stochastic Petri Nets: Applications and Analysis. In E. Gelenbe, edi­
tor, Proceedings of Performance’84, pages 507-519, Paris, France, Dec
1984. Elsevier Science Publishers, North Holland.

Bibliography 186

[Dun90]

[EM85]

[Ert94]

[FC95]

[Fel93]

[Fer92]

[Fer96]

[Fos95]

[Fuj88]

[Fuj89]

[Fuj90]

[Fuj93]

[FW94]

R. Duncan. A Survey of Parallel Computer Architectures. IEEE Com­
puter, 23(2):5—16, Feb 1990.

E. Ehrig and B. Mahr. Fundamentals of Algebraic Specifications
1. EATCS Monographs on Theoretical Computer Science, Springer-
Verlag, 1985.

W. Ertel. On the Definition of Speedup. In Halatsis et al. [HMPT94],
pages 289-300. http://www.fh-weingarten.de/~ertel/parle.ps.gz.

A. Ferscha and G. Chiola. Performance Comparison of Distributed
Petri Net Simulations. In Proceedings of the 1995 Summer Simulation
Conference, Ottawa, Canada, Jul 1995. SCS.
http: / / sokrates.ani.univie.ac.at/~ferscha/E-PAPERS/scs95ch.ps.gz.

F. Feldbrugge. Petri Net Tool Overview. In G. Rozenberg, editor,
Advances in Petri Nets 1993, pages 169-209, 1993. Lecture Notes in
Computer Science 674, Springer Verlag.

A. Ferscha. A Petri Net Approach for Performance Oriented Paral­
lel Program Design. Journal of Parallel and Distributed Computing,
15(3):188—206, Jul 1992.
http://sokrates.ani.univie.ac. at/~ferscha/E- PAPERS/jpdc92.ps.gz.

A. Ferscha. Parallel and Distributed Simulation of Discrete Event
Systems, chapter 35, pages 1003-1039. In Zomaya [Zom96], 1996.
http://sokrates.ani.univie.ac.at/~ferscha/E-PAPERS/handbook.ps.-
gz-

I. Foster. Designing and Building Parallel Programs: Concepts and
Tools for Parallel Software Engineering. Addison-Wesley, 1995.
http: / / www.hensa.ac.uk/parallel/books / addison-wesley / dbpp /.

R. Fujimoto. Lookahead in Parallel Discrete Event Simulation. In Pro­
ceedings of the 1988 International Conference on Parallel Processing,
volume 3, pages 34-41, Aug 1988.

R. Fujimoto. Time Warp on a Shared Memory Multiprocessor. Trans­
actions of the Society for Computer Simulation, 6(3):211-239, Jul
1989.

R. Fujimoto. Parallel Discrete Event Simulation. Communications of
the ACM, 33(10):31—53, Oct 1990.

R. Fujimoto. Future Directions in Parallel Simulation Research. ORSA
Journal on Computing, 5(3):245-248, Summer 1993.

B. Falsafi and D.A. Wood. Cost/Performance of a Parallel Computer
Simulator. In Arvind et al. [ABL94], pages 173-182.

http://www.fh-weingarten.de/~ertel/parle.ps.gz
http://sokrates.ani.univie.ac
http://sokrates.ani.univie.ac.at/~ferscha/E-PAPERS/handbook.ps.-
http://www.hensa.ac.uk/parallel/books

Bibliography 187

[Gax90]

[GBD+94]

[Gen8 6]

[GKK+8 8]

[GKP96]

[GMMP91]

[GT93]

[Hei8 8]

[HMPT94]

[Hoa85]

[Inm89]

[Inm90]

[JBW+87]

M. Garzia. Discrete Event Simulation Methodologies and Formalisms.
Simulation Digest, 21 (1) :3—13, 1990.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and
V. Sunderam. PVM 3 User’s Guide and Reference Manual. Tech­
nical Report ORNL/TM-12187, Oak Ridge National Laboratory, Oak
Ridge Tennessee 37831, Sep 1994. http://www.netlib.org/pvm3/ug.ps.

H.J. Genrich. Predicate/Transition Nets. In Brauer et al. [BRR8 6],
pages 207-247.

J. Goguen, C. Kirchner, H. Kirchner, A. Megrelis, J. Meseguer, and
T. Winkler. An Introduction to OBJ3. In S. Kaplan and J.P. Jouan-
naud, editors, Proceedings of the 1st International Workshop on Con­
ditional Term Rewriting Systems, pages 258-263, Orsay, France, 1988.
Lecture Notes in Computer Science 308, Springer-Verlag.

A. Geist, J.A. Kohl, and P.M. Papadopoulos. PVM and MPI: A Com­
parison of Features. Calculateurs Paralleles, 8(2):137-150, Jun 1996.
http: / / www.epm.ornl.gov/pvm/P VMvsMPI.ps.

C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezze. A Unified High-
Level Petri Net Formalism for Time-Critical Systems. IEEE Transac­
tions on Software Engineering, 17(2):160-172, Feb 1991.

D.W. Glazer and C. Tropper. On Process Migration and Load Bal­
ancing in Time Warp. IEEE Transactions on Parallel and Distributed
Systems, 4(3):318-354, March 1993.

P. Heidelberger. Discrete Event Simulations and Parallel Process­
ing: Statistical Properties. SIAM Journal on Scientific and Statistical
Computing, 9(6):1114—1132, Nov 1988.

C. Halatsis, D. Maritsas, G. Philokyprou, and S. Theodoridis, edi­
tors. Proceedings of the 6th International PARLE Conference, Athens,
Greece, Jul 1994. Lecture Notes in Computer Science 817, Springer-
Verlag.

C.A.R. Hoare. Communicating Sequential Processes, Englewood Cliffs,
N.J., Prentice-Hall, 1985.

Inmos Limited. OCCAM2 Reference Manual. Inmos Ltd., Bristol,
UK, 1989.

Inmos Limited. AN SI C Toolset. Inmos Ltd., Bristol, UK, 1990.

D.R. Jefferson, B. Beckman, F. Wieland, L. Blume, M. Diloreto,
P. Hontalas, P. Laroche, K. Sturdevant, J. Tupman, V. Warren,

http://www.netlib.org/pvm3/ug.ps
http://www.epm.ornl.gov/pvm/P

Bibliography 188

[JCRB89]

[JE91]

[Jef85]

[Jen92]

[Kau87]

[Kel95]

[KGS93]

[KY91]

[Lak95]

[Lam78]

[Lan96]

J. Wedel, H. Younger, and S. Bellenot. The Time Warp Operating
System. In Proceedings 11th Symposium on Operating Systems Prin­
ciples, volume 21, pages 77-83, 1987.

D.W. Jones, C.C. Chou, D. Renk, and S.C. Bruell. Experience with
Concurrent Simulation. In Proceedings of the 1989 Winter Simula­
tion Conference, pages 756-764. E.A. MacNAIR, K.J. Musselman, R
Heidelberger (Ed.), 1989.

K. Jensen and G. Rozenberg (Ed.). High-Level Petri Nets. Springer-
Verlag, Berlin, 1991.

D.R. Jefferson. Virtual Time. ACM Transactions on Programming
Languages and Systems, 7(3):404-425, Jul 1985.

K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods
and Practical Use. Volume 1, Basic Concepts. EATCS Monographs
on Theoretical Computer Science, Springer-Verlag, 1992.

F.J. Kaudel. A Literature Survey on Distributed Discrete Event Sim­
ulation. Simuletter, 18(2):11—21, Jun 1987.

C. Kelling. TimeNET-Sim - a Parallel Simulator for Stochastic Petri
Nets. In Proceedings of the 28th Annual Simulation Symposium, pages
250-258, Phoenix, AZ, 1995. IEEE Computer Society Press.

P.G. Kropf, K. Guggisberg, and M. Studer. Parallel Simulations with
High-Level Petri Nets on Transputers. Speedup Journal, 7(2):24-28,
Sep 1993.

P. Konas and P.C. Yew. Parallel Discrete Event Simulation and
Shared-Memory Multiprocessors. In A.H. Rutan, editor, Proceed­
ings of the 2 4 th Annual Simulation Symposium, pages 134-148, New-
Orleans, Louisiana, 1991. IEEE Computer Society Press.

C. Lakos. From Coloured Petri Nets to Object Petri Nets. In G. De
Michelis and M. Diaz, editors, Proceedings of the 16th International
Conference on Application and Theory of Petri Nets, pages 278-297,
Torino, Italy, Jun 1995. Lecture Notes in Computer Science 935,
Springer, ftp://opn.cs.utas.edu.au/pub/postscript/pn95-paper.ps.

L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. Communications of the ACM, 21(7):558-565, Jul 1978.

C. Landauer. Discrete-Event Systems in Rewriting Logic. In
J. Meseguer, editor, Proceedings of 1st International Workshop on
Rewriting Logic and its Applications, Asilomar, Pacific Grove, CA.,
Sep 1996. Electronic Notes in Theoretical Computer Science, Vol.4.

ftp://opn.cs.utas.edu.au/pub/postscript/pn95-paper.ps

Bibliography 189

[Lin90]

[Lin93]

[LK91]

[LKP92]

[LL90]

[LL91a]

[LL91b]

[LLW95]

[LM88]

[LMOM94]

http: / / www.elsevier.nl / cas/tree/store/tcs / free / noncas/pc / volume4 /-
landauer.ps.

Y.B. Lin. Understanding the Limits of Optimistic and Conservative
Parallel Simulation. PhD thesis, Department of Computer Science
and Engineering, University of Washington, Seattle 98195, Aug 1990.
(Available as Technical Report No. 90-08-02).

Y.B. Lin. Will Parallel Simulation Research Survive? ORSA Journal
on Computing, 5(3):236—238, Summer 1993.

A.M. Law and W.D. Kelton. Simulation Modeling and Analysis.
McGraw-Hill, 2nd edition, 1991.

C.A. Lakos, C.D. Keen, and E.J. Palmer. A Flexible Distributed Simu­
lator for Object-Oriented Petri Nets. In Proceedings of Transputer and
Parallel Applications Conference, Melbourne, Australia, Nov 1992.
ftp://opn.cs.utas.edu.au/pub/postscript/tapa92-paper.ps.

Y.B. Lin and E.D. Lazowska. Exploiting Lookahead in Parallel Sim­
ulation. IEEE Transactions on Parallel and Distributed Systems,
l(4):457-469, Oct 1990.

Y.B. Lin and E.D. Lazowska. A Study of the Time Warp Rollback
Mechanism. ACM Transactions on Modeling and Computer Simula­
tion, 1 (1):51—72, Jan 1991.

Y.B. Lin and E.D. Lazowska. A Time-Division Algorithm for Parallel
Simulation. ACM Transactions on Modeling and Computer Simula­
tion, 1 (1):73—83, Jan 1991.

U. Lechner, C. Lengauer, and M. Wirsing. An Object-Oriented Air­
port: Specification and Refinement in Maude. In E. Astesiano, G. Reg­
gio, and A. Tarlecki, editors, Proceedings of the 10th Workshop on
Specification of Abstract Data Types, pages 351-367, S.Margherita,
Italy, 1995. Recent Trends in Data Type Specification, Lecture Notes
in Computer Science 906, Springer,
htt p: / / www. mcm. unisg. ch / ~ ulechner / compass. ps.

C. Lin and D.C. Marinescu. Stochastic High-Level Petri Nets and
Applications. IEEE Transactions on Computers, 37(7):815-825, Jul
1988.

P. Lincoln, N. Marti-Oliet, and J. Meseguer. Specification, Transfor­
mation, and Programming of Concurrent Systems in Rewriting Logic.
In S. Jagannathan G. Blelloch, K.M. C handy, editor, Proc. DIM ACS
Workshop on Specification of Parallel Algorithms, DIMACS Series in

http://www.elsevier.nl
ftp://opn.cs.utas.edu.au/pub/postscript/tapa92-paper.ps

Bibliography 190

[LMOMR94]

[LP91]

[LPLL93]

[LWS91]

[MBBP97]

[Mes92a]

[Mes92b]

[Mes95]

[Mes96]

[Mes97]

Discrete Mathematics and Theoretical Computer Science. American
Mathematical Society, May 1994.

P. Lincoln, N. Marti-Oliet, J. Meseguer, and L. Ricciulli. Compiling
Rewriting onto SIMD and MIMD/SIMD Machines. In Halatsis et al.
[HMPT94], pages 37-48.

Y.B. Lin and B.R. Preiss. Optimal Memory Management for Time
Warp Parallel Simulation. ACM Transactions on Modeling and Com­
puter Simulation, l(4):283-307, Oct 1991.

Y.B. Lin, B. Preiss, W.M. Loucks, and E.D. Lazowska. Selecting the
Checkpoint Interval in Time Warp Simulation. In R. Bagrodia and
D. Jefferson, editors, Proceedings of the 7th Workshop• on Parallel and
Distributed Simulation, pages 3-10, San Diego, CA., May 1993.

B. Lubachevsky, A. Weiss, and A. Shwartz. An Analysis of Rollback
Based Simulation. ACM Transactions on Modeling and Computer
Simulation, 1(2): 154-193, Apr 1991.

M. Maouche, M. Bettaz, G. Berthelot, and L. Petrucci. Du vrai par-
allelisme dans les reseaux algebriques et de son application dans les
systemes de production. In Proceedings of MOSIM’97, pages 417-424,
Rouen, France, Jun 1997. Hermes. (In french).

J. Meseguer. Conditional Rewriting Logic as a Unified Model of Con­
currency. Theoretical Computer Science, 96:73-155, 1992.

J. Meseguer. On the Semantics of Petri Nets. In W.R. Cleaveland, ed­
itor, Proceedings of the 3rd International Conference on Concurrency
Theory, pages 286-301, Stony Brook, NY, USA, Aug 1992. Lecture
Notes in Computer Science 630, Springer-Verlag.

Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard. Technical Report CS-93-214, University of Tennessee, Jun
1995. http://www.mcs.anl.gov/mpi/mpi-report/mpi-report.html.

J. Meseguer. Rewriting Logic as a Semantic Framework of Concur­
rency: a Progress Report. In U. Montanari and V. Sassone, editors,
Proceedings of the 7th International Conference on Concurrency The­
ory, pages 331-372, Pisa, Italy, Aug 1996. Lecture Notes in Computer
Science 1119, Springer.

Message Passing Interface Forum. MPI-2: Extensions to the Message-
Passing Interface Standard. Technical report, University of Tennessee,
Jul 1997.
http: / / www.mpi-forum.org/docs/mpi-2 0 -htm l/mpi2 -report.html.

http://www.mcs.anl.gov/mpi/mpi-report/mpi-report.html
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html

Bibliography 191

[MF76]

[Mis8 6]

[Mol85]

[MPT91]

[MR94]

[Mur89]

[NH93]

[Nic8 8]

[Nic92]

[Nic93]

[NL93]

[NM95]

[NR91]

RM. Merlin and D.J. Farber. Recoverability of Communication Pro­
tocols - Implications of a Theoretical Study. IEEE Transactions on
Communications, COM-24(9): 1036-1043, Sep 1976.

J. Misra. Distributed Discrete Event Simulation. ACM Computing
Surveys, 18(1):39—65, Mar 1986.

M.K. Molloy. Discrete Time Stochastic Petri Nets. IEEE Transactions
on Software Engineering, SE-ll:417-423, Apr 1985.

S. Morasca, M. Pezze, and M. Trubian. Timed High-Level Petri Nets.
Journal of Real-Time Systems, 3:165-189, 1991.

P. Mussi and H. Rakotoarisoa. PARSEVAL: a Workbench for Queue­
ing Networks Parallel Simulation. Technical Report 2234, INRIA-
Sophia Antipolis, France, Apr 1994.
http://www.inria.fr/RRRT/RR-2234.html.

T. Murata. Petri Nets: Properties, Analysis and Applications. Pro­
ceedings of the IEEE, 77(4):541—580, Apr 1989.

D. Nicol and P. Heidelberger. Parallel Simulation of Markovian Queue­
ing Networks Using Adaptive Uniformization. In Proceedings of the
1993 ACM SIGMETRICS Conference on Measurement and Modeling
of Computer Systems, pages 135-145, Santa Clara, CA., Jun 1993.
Performance Evaluation Review 21(1).

D. Nicol. Parallel Discrete-Event Simulation of FCFS Stochastic
Queueing Networks. ACM SIGPLAN, 23(9): 124-137, Jul 1988.

D. Nicol. Conservative Parallel Simulation of Priority Class Queueing
Networks. IEEE Transactions on Parallel and Distributed Systems,
3(3):294-303, May 1992.

D. Nicol. The Cost of Conservative Synchronization in Parallel Dis­
crete Event Simulation. Journal of the ACM, 40(2):304-333, Apr 1993.

B. Nandy and W.M. Loucks. On a Parallel Partitioning Technique
for Use with Conservative Parallel Simulation. In R. Bagrodia and
D. Jefferson, editors, Proceedings of the 7th Workshop on Parallel and
Distributed Simulation, pages 43-51, San Diego, CA., May 1993.

D. Nicol and W. Mao. Automated Parallelization of Timed Petri-Net
Simulations. Journal of Parallel and Distributed Computing, 29(2):60-
74, 1995.

D. Nicol and S. Roy. Parallel Simulation of Timed Petri Nets. In
Proceedings of the 1991 Winter Simulation Conference, pages 574-
583. B.Nelson, D.Kelton, G.Clark (Ed.), 1991.

http://www.inria.fr/RRRT/RR-2234.html

Bibliography 192

[Pag8 6]

[Pet62]

[Pet81]

[Pet8 6]

[PS91]

[PSHH97]

[Ram74]

[Rei85]

[Rei8 6]

[Rei91]

[RH80]

[RM91]

A. Pagnoni. Stochastic Nets and Performance Evaluation. In Brauer
et al. [BRR8 6], pages 436-459.

C.A. Petri. Kommunikation mit Automaten. Technical report, Bonn:
Institut fiir Instrumentelle Mathematik, Schriften des IIM Nr.3, 1962.
Also english translation, Communication with Automata, New York:
Griffiss Air Force Base, Technical Report RADC TR-65-377, Vol.l,
Suppl.l, 1966.

J.L. Peterson. Petri Net Theory and the Modeling of Systems. Engle­
wood Cliffs, NJ: Prentice-Hall, 1981.

C.A. Petri. Forgotten topics of net theory. In W. Brauer, W. Reisig,
and G. Rozenberg, editors, Advances in Petri Nets 1986, Part II, pages
500-514, 1986. Lecture Notes in Computer Science 255, Springer-
Verlag.

A. Prakash and R. Subramanian. FILTER: an Algorithm for Re­
ducing Cascaded Rollbacks in Optimistic Distributed Simulations. In
Proceedings of the 24th annual simulation symposium, pages 123-132,
New-Orleans, Louisiana, 1991.

F. De La Puente, J.D. Sandoval, P. Hernandez, and F. Herrera. Paral­
lel Simulation for Queueing Networks on Multiprocessor Systems. In
Proceedings of 5th Euromicro Workshop on Parallel and Distributed
Processing, pages 240-245, London, UK, Jan 1997. IEEE/CS.

C. Ramchandani. Analysis of Asynchronous Concurrent Systems by
Timed Petri Nets. PhD thesis, MIT, Cambridge, MA, Feb 1974.
(Available as Scientific Report MAC TR-120).

W. Reisig. Petri Nets. EATCS Monographs on Theoretical Computer
Science, Springer-Verlag, 1985.

W. Reisig. Place/Transition Systems. In Brauer et al. [BRR8 6], pages
117-141.

W. Reisig. Petri Nets and Algebraic Specifications. Theoretical Com­
puter Science, 80:1-34, 1991.

C.V. Ramamoorthy and G.S. Ho. Performance Evaluation of Asyn­
chronous Concurrent Systems Using Petri Nets. IEEE Transactions
on Software Engineering, SE-6(5):440-449, Sep 1980.

H. Rakotoarisoa and P. Mussi. PARSEVAL: PARallelisation sur Re-
seaux de Transputers de Simulation pour l’EVALuation de Perfor­
mances. Technical Report RT-0131, INRIA-Sophia Antipolis, France,
Sep 1991. (In french). http://www.inria.fr/RRRT/RT-0131.html.

http://www.inria.fr/RRRT/RT-0131.html

Bibliography 193

[RMM8 8]

[Roz87]

[RW89]

[Sch97]

[SdSSW95]

[SS93]

[SSW95]

[Ste92]

[Tan96]

[Tau8 8]

[TB93]

D.A. Reed, A.D. Malony, and B.D. McCredie. Parallel Discrete Event
simulation Using Shared Memory. IEEE Transactions on Software
Engineering, 14(4):541-553, Apr 1988.

G. Rozenberg, editor. Advances in Petri Nets 1987. Lecture Notes in
Computer Science 266, Springer-Verlag, 1987.

R. Righter and J.C. Walrand. Distributed Simulation of Discrete Event
Systems. Proceedings of the IEEE, 77(1):99—113, Jan 1989.

K. Schmidt. Verification of Siphons and Traps for Algebraic Petri
Nets. In P. Azema and G. Balbo, editors, Proceedings of the 18th In­
ternational Conference on Application and Theory of Petri Nets, pages
427-446, Toulouse, France, Jun 1997. Lecture Notes in Computer Sci­
ence 1248, Springer.

P. Senac, P. de Saqui-Sannes, and R. Willrich. Hierarchical Time
Stream Petri Net: a Model for Hypermedia Systems. In G. De Michelis
and M. Diaz, editors, Proceedings of the 16th International Conference
on Application and Theory of Petri Nets, pages 451-470, Torino, Italy,
Jun 1995. Lecture Notes in Computer Science 935, Springer.

T.K. Som and R.G. Sargent. A New Process to Processor Assignment
Criterion for Reducing Rollbacks in Optimistic Simulation. Journal of
Parallel and Distributed Computing, 18(4):509-515, Aug 1993.

S. Schof, M. Sonnenschein, and R. Wieting. Efficient Simulation of
THOR Nets. In G. De Michelis and M. Diaz, editors, Proceedings
of the 16th International Conference on Application and Theory of
Petri Nets, pages 412-431, Torino, Italy, Jun 1995. Lecture Notes in
Computer Science 935, Springer.

J.S. Steinman. SPEEDES: a Multiple-Synchronization Environment
for Parallel Discrete-Event Simulation. International Journal of Com­
puter Simulation, 2:251-286, 1992.

A. Tanenbaum. Computer Networks. Prentice-Hall, 3rd Edition, 1996.

D. Taubner. On the Implementation of Petri Nets. In G. Rozenberg,
editor, Advances in Petri Nets 1988, pages 418-439, 1988. Lecture
Notes in Computer Science 340, Springer-Verlag.

C. Tropper and A. Boukerche. Parallel Simulation of Communicating
Finite State Machines. In R. Bagrodia and D. Jefferson, editors, Pro­
ceedings of the 7th Workshop on Parallel and Distributed Simulation,
pages 143-150, San Diego, CA., May 1993.

Bibliography 194

[TLL+98]

[Tur96]

[TZ91]

[Van93]

[Vau87]

[VdFC95]

[Vri90]

[WH87]

[WH94]

[WL89]

[WM93]

S.J. Turner, C.C. Lim, Y.H. Low, W. Cai, W.J. Hsu, and S.Y. Huang.
A Methodology for Automating the Parallelization of Manufacturing
Simulations. In Proceedings of the 12th Workshop on Parallel and
Distributed Simulation, pages 126-133, Banff, Alberta, Canada, May
1998. IEEE, (available as Research Report No. R369, Department of
Computer Science, University of Exeter),
ftp: / / ftp.dcs.exeter.ac.uk/pub/parallel/simul/method.ps.Z.

L. Turcotte. Cluster Computing, chapter 26, pages 762-779. In Zomaya
[Zom96], 1996.

G.S. Thomas and J. Zahorjan. Parallel Simulation. of Performance
Petri Nets: Extending the Domain of Parallel Simulation. In Pro­
ceedings of the 1991 Winter Simulation Conference, pages 564-573.
B.Nelson, D.Kelton, G.Clark (Ed.), 1991.

W.M.P. Van Der Aalst. Interval Timed Coloured Petri Nets and their
Analysis. In Ajmone Marsan [Ajm93], pages 453-472.

J. Vautherin. Parallel System Specifications with Coloured Petri Nets
and Algebraic Specifications. In Rozenberg [Roz87], pages 293-308.

V. Valero, D. de Frutos, and F. Cuartero. Timed Processes of Timed
Petri Nets. In G. De Michelis and M. Diaz, editors, Proceedings of
the 16th International Conference on Application and Theory of Petri
Nets, pages 490-509, Torino, Italy, Jun 1995. Lecture Notes in Com­
puter Science 935, Springer.

R.C. De Vries. Reducing Null Messages in Misra’s Distributed Discrete
Event Simulation Method. IEEE Transactions on Software Engineer­
ing, 16(1):82—91, Jan 1990.

M. Wilbur-Ham. Numerical Petri Nets, a Guide. Technical Report
111, Telecom Australia, Research Laboratory, 1987.

H. Wabnig and G. Haring. Petri Net Performance Models of Parallel
Systems - Methodology and Case Study. In Halatsis et al. [HMPT94],
pages 301-312.

D.B. Wagner and E.D. Lazowska. Parallel Simulation of Queueing
Networks: Limitations and Potentials. In Proceedings of the 1989
SIGMETRICS Conference, pages 146-155, Berkeley, CA., 1989. ACM,
New York.

C.M. Woodside and G.G. Monforton. Fast Allocatioii of Processes in
Distributed and Parallel Systems. IEEE Transactions on Parallel and
Distributed Systems, 4(2):164—174, Feb 1993.

ftp://ftp.dcs.exeter.ac.uk/pub/parallel/simul/method.ps.Z

Bibliography 195

[Zei91] B.P. Zeigler. Object-Oriented Modeling and Discrete-Event Simula­
tion. In M.C. Yovits, editor, Advances in Computers, volume 33, pages
67-114. Academic Press, N.Y., 1991.

[Zom96] A.Y.H. Zomaya, editor. Parallel and Distributed Computing Handbook.
McGraw-Hill, 1996.

