183 research outputs found

    PVDF-TrFE Electroactive Polymer Mechanical-to-Electrical Energy Harvesting Experimental Bimorph Structure

    Get PDF
    Research of electrostrictive polymers has generated new opportunities for harvesting energy from the surrounding environment and converting it into usable electrical energy. Electroactive polymer (EAP) research is one of the new opportunities for harvesting energy from the natural environment and converting it into usable electrical energy. Piezoelectric ceramic based energy harvesting devices tend to be unsuitable for low-frequency mechanical excitations such as human movement. Organic polymers are typically softer and more flexible therefore translated electrical energy output is considerably higher under the same mechanical force. In addition, cantilever geometry is one of the most used structures in piezoelectric energy harvesters, especially for mechanical energy harvesting from vibrations. In order to further lower the resonance frequency of the cantilever microstructure, a proof mass can be attached to the free end of the cantilever. Mechanical analysis of an experimental bimorph structure was provided and led to key design rules for post-processing steps to control the performance of the energy harvester. In this work, methods of materials processing and the mechanical to electrical conversion of vibrational energy into usable energy were investigated. Materials such as polyvinyledenedifluoridetetra-fluoroethylene P(VDF-TrFE) copolymer films (1um thick or less) were evaluated and presented a large relative permittivity and greater piezoelectric β-phase without stretching. Further investigations will be used to identify suitable micro-electromechanical systems (MEMs) structures given specific types of low-frequency mechanical excitations (10-100Hz)

    Performance improvement of piezoelectric materials in energy harvesting in recent days – a review

    Get PDF
    Piezoelectric elements are inevitable in modern day physics playing a vital role in many applications. Any piezoelectric element requires compression to produce energy in the form of a weak electrical ac signal. Mechanical vibrations are known to cause deflections which are enough to produce energy from the piezoelectric materials. In this paper, a review of the piezoelectric materials is made on their basic modes of excitation for producing energy. Also, various mechanisms and techniques used to harvest energy recently are presented and discussed extensively. Piezoelectric energy harvesting using MEMS is emphasized much as this is the era of micromechanical systems. Most of the piezoelectric energy harvesting systems relies on cantilever-oriented deflection to produce maximum vibration. In general cantilever beams fitted with piezoelectric materials produce electrical energy from mechanical vibration when deflected; hence detailed review on the different shapes of cantilever is also submitted. Significant parameters contributing to improved performance are dealt with special importance

    Automatic controls and regulators: A compilation

    Get PDF
    Devices, methods, and techniques for control and regulation of the mechanical/physical functions involved in implementing the space program are discussed. Section one deals with automatic controls considered to be, essentially, start-stop operations or those holding the activity in a desired constraint. Devices that may be used to regulate activities within desired ranges or subject them to predetermined changes are dealt with in section two

    Piezoelectric Energy Harvester Technologies: Synthesis, Mechanisms, and Multifunctional Applications.

    Get PDF
    Piezoelectric energy harvesters have gained significant attention in recent years due to their ability to convert ambient mechanical vibrations into electrical energy, which opens up new possibilities for environmental monitoring, asset tracking, portable technologies and powering remote "Internet of Things (IoT)" nodes and sensors. This review explores various aspects of piezoelectric energy harvesters, discussing the structural designs and fabrication techniques including inorganic-based energy harvesters (i.e., piezoelectric ceramics and ZnO nanostructures) and organic-based energy harvesters (i.e., polyvinylidene difluoride (PVDF) and its copolymers). The factors affecting the performance and several strategies to improve the efficiency of devices have been also explored. In addition, this review also demonstrated the progress in flexible energy harvesters with integration of flexibility and stretchability for next-generation wearable technologies used for body motion and health monitoring devices. The applications of the above devices to harvest various forms of mechanical energy are explored, as well as the discussion on perspectives and challenges in this field

    SUSTAINABLE ENERGY HARVESTING TECHNOLOGIES – PAST, PRESENT AND FUTURE

    Get PDF
    Chapter 8: Energy Harvesting Technologies: Thick-Film Piezoelectric Microgenerato

    Low power energy harvesting and storage techniques from ambient human powered energy sources

    Get PDF
    Conventional electrochemical batteries power most of the portable and wireless electronic devices that are operated by electric power. In the past few years, electrochemical batteries and energy storage devices have improved significantly. However, this progress has not been able to keep up with the development of microprocessors, memory storage, and sensors of electronic applications. Battery weight, lifespan and reliability often limit the abilities and the range of such applications of battery powered devices. These conventional devices were designed to be powered with batteries as required, but did not allow scavenging of ambient energy as a power source. In contrast, development in wireless technology and other electronic components are constantly reducing the power and energy needed by many applications. If energy requirements of electronic components decline reasonably, then ambient energy scavenging and conversion could become a viable source of power for many applications. Ambient energy sources can be then considered and used to replace batteries in some electronic applications, to minimize product maintenance and operating cost. The potential ability to satisfy overall power and energy requirements of an application using ambient energy can eliminate some constraints related to conventional power supplies. Also power scavenging may enable electronic devices to be completely self-sustaining so that battery maintenance can eventually be eliminated. Furthermore, ambient energy scavenging could extend the performance and the lifetime of the MEMS (Micro electromechanical systems) and portable electronic devices. These possibilities show that it is important to examine the effectiveness of ambient energy as a source of power. Until recently, only little use has been made of ambient energy resources, especially for wireless networks and portable power devices. Recently, researchers have performed several studies in alternative energy sources that could provide small amounts of electricity to low-power electronic devices. These studies were focused to investigate and obtain power from different energy sources, such as vibration, light, sound, airflow, heat, waste mechanical energy and temperature variations. This research studied forms of ambient energy sources such as waste mechanical (rotational) energy from hydraulic door closers, and fitness exercise bicycles, and its conversion and storage into usable electrical energy. In both of these examples of applications, hydraulic door closers and fitness exercise bicycles, human presence is required. A person has to open the door in order for the hydraulic door closer mechanism to function. Fitness exercise bicycles need somebody to cycle the pedals to generate electricity (while burning calories.) Also vibrations, body motions, and compressions from human interactions were studied using small piezoelectric fiber composites which are capable of recovering waste mechanical energy and converting it to useful electrical energy. Based on ambient energy sources, electrical energy conversion and storage circuits were designed and tested for low power electronic applications. These sources were characterized according to energy harvesting (scavenging) methods, and power and energy density. At the end of the study, the ambient energy sources were matched with possible electronic applications as a viable energy source

    Direct Scaling of Measure on Vortex Shedding through a Flapping Flag Device in the Open Channel around a Cylinder at Re ∼ 10^3: Taylor’s Law Approach.

    Get PDF
    none8noThe problem of vortex shedding, which occurs when an obstacle is placed in a regular flow, is governed by Reynolds and Strouhal numbers, known by dimensional analysis. The present work aims to propose a thin films-based device, consisting of an elastic piezoelectric flapping flag clamped at one end, in order to determine the frequency of vortex shedding downstream an obstacle for a flow field at Reynolds number Re∼103 in the open channel. For these values, Strouhal number obtained in such way is in accordance with the results known in literature. Moreover, the development of the voltage over time, generated by the flapping flag under the load due to flow field, shows a highly fluctuating behavior and satisfies Taylor’s law, observed in several complex systems. This provided useful information about the flow field through the constitutive law of the device.openSamuele De Bartolo, Massimo De Vittorio, Antonio Francone, Francesco Guido, Elisa Leone, Vincenzo Mariano Mastronardi, Andrea Notaro, Giuseppe Roberto TomasicchioDE BARTOLO, Samuele; DE VITTORIO, Massimo; Francone, Antonio; Guido, Francesco; Leone, Elisa; Mariano Mastronardi, Vincenzo; Notaro, Andrea; Tomasicchio, Giusepp

    Wireless communication over NFC with a constrained resouce device

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    Surface characterization of polyvinylidene fluoride (pvdf) in its application as an actuator

    Get PDF
    Polyvinylidene Fluoride (PVDF) is a common piezoelectric polymer. It is widely utilized because of its advantageous mechanical, chemical, and electromechanical properties. An interesting application for its properties lies in using it as an actuator, specifically for a microgripper device. The microgripper has many applications such as surgeries, microassembly, and micromanipulation. The friction force is an important criterion that greatly affects the gripping. This research studies the frictional behavior of the PVDF and effects of applied electrical potential. Approaches include tribological investigation of the polymer associated with surface properties. The surface characterization was conducted using a profilometer and an Atomic Force Microscope (AFM). In addition, the application of a PVDF material as a microgripper is addressed along with the design of the gripper. It was found that the friction could be turned-on and off because of external applied electrical potential. Such behavior was associated with the microstructure, where dipoles were aligned in an electrical field. Such active-friction has not been reported in the past. This work opens new areas of research in fundamental friction that benefits the design and development of small devices such as a microgripper

    MME2010 21st Micromechanics and Micro systems Europe Workshop : Abstracts

    Get PDF
    • …
    corecore