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Abstract: The problem of vortex shedding, which occurs when an obstacle is placed in a regular flow,
is governed by Reynolds and Strouhal numbers, known by dimensional analysis. The present work
aims to propose a thin films-based device, consisting of an elastic piezoelectric flapping flag clamped
at one end, in order to determine the frequency of vortex shedding downstream an obstacle for a flow
field at Reynolds number Re ∼ 103 in the open channel. For these values, Strouhal number obtained
in such way is in accordance with the results known in literature. Moreover, the development of the
voltage over time, generated by the flapping flag under the load due to flow field, shows a highly
fluctuating behavior and satisfies Taylor’s law, observed in several complex systems. This provided
useful information about the flow field through the constitutive law of the device.

Keywords: sensor technologies; sensor systems for water flow; hydrodynamics monitoring of rivers;
hydraulics; MEMS; fluid–structure interactions

1. Introduction

In the previous years, the development of fluid-dynamic measuring instruments
has been steadily increasing. Most flows encountered in practice are turbulent, and a
disk or a short cylinder placed in the flow coaxially sheds vortices. It is observed that
these vortices are shed periodically, and the shedding frequency is proportional to the
average flow velocity. This suggests that the flow rate can be determined by generating
vortices in the flow by placing an obstruction along the flow and measuring the shedding
frequency [1]. The flow measurement devices that work on this principle are called vortex
flowmeters. They consist of a sharp-edged bluff body (strut) placed in the flow that serves
as the vortex generator, and a detector (such as a pressure transducer that records the
oscillation in pressure) placed within a short distance downstream on the inner surface of
the casing aiming to measure the shedding frequency. The frequency of vortex shedding is
proportional to the average velocity over a wide range of Reynolds numbers, and vortex
flowmeters operate reliably and accurately at Reynolds numbers from 104 to 107. The
advantage of vortex flowmeter is that it has no moving parts and thus it is inherently
reliable, versatile, and very accurate, but it obstructs flow and thus causes considerable
head. Thermal anemometers, introduced in the late 1950s, can take thousands of velocity
measurements per second with excellent spatial and temporal resolution, and thus they can
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be used for studying details of fluctuations in the turbulent flow. A thermal anemometer is
called a hot-wire anemometer if the sensing element is a wire. The hot-wire anemometer is
characterized by its very small sensor wire—usually a few microns in diameter and a couple
of millimeters in length. The operating principle of a constant-temperature anemometer
(CTA), which is the most common type, is as follows. The sensor is electrically heated to
a specified temperature (typically about 200 ◦C), and it tends to cool as it loses heat to
the surrounding flowing fluid, but electronic controls maintain the sensor at a constant
temperature by varying the electric current (which is done by varying the voltage) as
needed. The higher the flow velocity, the higher the rate of heat transfer from the sensor,
and thus the larger the voltage that needs to be applied across the sensor to maintain it at
constant temperature. There is a close correlation between the flow velocity and voltage,
and the flow velocity can be determined by measuring the voltage applied by an amplifier
or the electric current passing through the sensor. Unlike thermal anemometry, Laser
Doppler velocimetry (LDV) [2] involves no probes or wires inserted into the flow, and thus
it is a nonintrusive method. Like thermal anemometry, it can accurately measure velocity
at a very small volume, and thus it can also be used to study the details of flow at a locality,
including turbulent fluctuations, and it can be traversed through the entire flow field
without intrusion. The operating principle of LDV is based on sending a highly coherent
monochromatic (all waves are in phase and at the same wavelength) light beam toward
the target, collecting the light reflected by small particles in the target area, determining
the change in frequency of the reflected radiation due to Doppler effect, and relating this
frequency shift to the flow velocity of the fluid at the target area. The particle image
velocimetry (PIV) [3] is a double-pulsed laser technique used to measure the instantaneous
velocity distribution in a plane of flow by photographically determining the displacement
of particles in the plane during a very short time interval. Unlike methods like hot-wire
anemometry and LDV that measure velocity at a point, PIV provides velocity values
simultaneously throughout an entire cross section, and thus it is a whole-field technique.
PIV combines the accuracy of LDV with the capability of flow visualization and provides
instantaneous flow field mapping.

As it is well known, vortex shedding phenomenon is governed by a Strouhal number
that represents the ratio of inertial forces due to the local acceleration of the flow to the
inertial forces due to the convective acceleration [4]. Several studies aimed to define the
relationship between Strouhal and Reynolds numbers have followed each other through
the years. Originally [5], measurements on a large circular cylinder in a pressurized
wind tunnel at Reynolds numbers from 106 to 107 have revealed a high Reynolds number
transition in which the drag coefficient increases from its low supercritical value to a
value 0.7 at Re = 3.5 · 106 and then becomes constant. In addition, for Re > 3.5 · 106, a
definite vortex shedding occurs, with Strouhal number 0.27. According to the experiment
of Bearman [6], vortex shedding frequencies were measured by using a model with splitter
plates, in which an oscilloscope displaying the fluctuating voltage of a hot wire gave
an accurate picture of the velocity fluctuation at the hot-wire probe. In the same way,
a constant value of St = 0.178 was found by Griffin [7] for subcritical wake Reynolds
numbers from 700 to 5 · 104. Okajima [8] determined Strohual numbers of rectangular
cylinders as a function of Reynolds number in the range between 70 and 2 · 104, using an
open-jet small wind tunnel and a towing-type water tank. A sudden discontinuity in the
Strouhal-number curves was noted for a ratio width/height of the cylinder in the range
between 2 and 3, highlighting the strong dependence on dimensional characteristics. A
few years later, Gonçalves and Vieira [9] performed a set of experiments in a pilot vertical
low turbulence hydrodynamic tunnel, where the emission of liquid dye, directly in non-
perturbed flow by means of a long hypodermic needle, has been utilized to create the
flow image captured by an A3 CCD high-resolution video camera in order to determinate
Strouhal number for Reynolds up to 600, as a result of processing. Taylor et al. [10]
have shown that birds, bats, and insects in a cruising flight flap their wings within a
narrow range of Strohual number 0.2 < St < 0.4, since the animals tune their frequency
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to achieve maximum propulsive efficiency. More recently, Eloy [11] predicted the optimal
Strohual number for swimming animals by the use of Lighthill’s large-amplitude elongated-
body theory. With the spread of optical methods, the particle image velocimetry (PIV)
technique has been used by Shi et al. [12] to visualize the vortex shedding processes from
parallel-plate thermoacoustic stacks in oscillatory flow conditions within an acoustic cycle,
phase-by-phase, in particular during the part of the cycle when the fluid flows out of the
stack—selected cases are shown for comparisons with hot-wire measurements. The wake
characteristics and the vortex shedding process in the flow past a circular cylinder may
also be studied through Large eddy simulation (LES), which is a mathematical model for
turbulence used in computational fluid dynamics, as made by Rodriguez et al. [13] for the
range of Reynolds numbers 2.5 · 105 < Re < 8.5 · 105.

The innovative element introduced in this work is the use of a thin films-based
piezoelectric cantilever, that acts as a flexible piezoelectric transducer, to determine the
frequency of the vortex shedding and consequently the Strouhal number St associated
with it, for a particular range of flow field in open channel, alternatively to the instruments
used in fluid dynamics previously mentioned. In the context of fluid dynamics, the
microcantilever has already found application as a rheological sensor to measure the
properties of Newtonian and non-Newtonian fluids in real time [14] and for sensing
of both the flow rate and the flow direction [15]. On the other hand, the piezoelectric
cantilever is also used to harvest energy [16–24], in the Internet-of-Things field [20,25,26],
to realize piezoelectrochemical hydrogen production [27], for biochemical sensing, parallel
multicantilever Atomic Force Microscopy (AFM) measurements and nanometer range
manipulation [28]. The strengths of this device are low cost, easily manufactured; although
intrusive, it is well suited for small scale models and can be used as a self-powering sensor.
The mechanical and electrical characteristics of the device and a general description of
the experimental setup will be presented in Section 2.1. Particular attention has been paid
to the danger of the fatigue stress and subsequent failure [29]. Moreover, we must verify
that the frequency of the release is not too close to the natural frequency of vibration of
the structure in order to avoid the phenomenon of resonance. To better understand the
aggregation processes with which the signal acquired by the device evolves, the correlation
function has been defined Section 3.1. In Section 3.2, a comparison with the results known
in literature regarding the relationship between Strouhal and Reynolds numbers will be
carried out. Subsequently, a second order theory based on mean and variance, described in
Section 3.3, has been applied to experimental data, in terms of output voltage, to recognize a
scaling power law, evaluate the development of scale exponent over time, and characterize
some aspects in the context of the vortex shedding, such as statistical distribution and the
ergodicity, through some relationships that connect the voltage fluctuations with the fluid
dynamics variables, such as velocity and pressure. Finally, in Section 4, a critical discussion
of results is undertaken.

2. Materials and Methods
2.1. Thin Films-Based Device and Experimental Setup

The thin-films-based device, previously mentioned, consists of a flag, clamped at one
end to a cylinder of diameter D = 2.00 cm [30,31], which oscillates in a media flow, as
shown in Figure 1a, and converts kinetic energy into electrical energy [23].

The experimental set-up is reported in Figure 1b showing the channel flume at a site
in EUMER Lab at University of Salento, where there is a water flow in steady conditions
with density and kinematic viscosity equal to ρ = 1000 kg m−3 and ν = 10−6 m2 s−1 at the
temperature of 25 °C, respectively. The flag device acts as a flexible piezoelectric transducer.
It is mainly based on a polyimide substrate (Kapton 100HN, 25 µm of thickness), on
which a multilayered structure was grown and microfabricated in order to guarantee high
sensitivity and flexibility. A detailed sketch is reported in Figure 2.
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(a) (b)

Figure 1. The sensor, mounted downstream of the bluff body, is affected by the vortexes and oscillates generating alternating
voltage (a). 3d view of the channel flume site in EUMER Lab of Unversity of Salento (b).

(a) (b)

Figure 2. The flexible structure of the piezoelectric devices was optimized to guarantee high flexibility and sensitivity. In
addition all the materials used for its fabrication are completely biocompatible, suitable for environmental use (a). The 3D
sketch highlights the extremely compactness of the transducer (b).

The multi-layered thin films structure consists of a piezoelectric layer of Aluminum
Nitride (AlN, 1 µm thick) sandwiched between two Molybdenum films (Mo, 200 nm of
thickness) acting as electrodes. AlN is a dielectric material presenting interesting elec-
trical and a natural piezoelectricity due to its crystal symmetry [16,20,21,28]. Since the
device will be employed as an underwater sensor, it needs to be fully electrically insulated.
For this reason, a thin film of Parylene-C (1.5–2.5 µm) is uniformly deposited, at room
temperature. This insulating layer covers the final device in a conformal way, making
it perfectly waterproof. The dimensions of the active piezoelectric area are 1.7 × 0.4 cm2

and it is positioned at the hinge of the flapping structure, where the mechanical stress is
higher during the flapping-induced oscillations. To fabricate the flexible devices, standard
microfabrication procedures as photolithography, wet and dry etching processes were
performed. In addition, a CNC laser cutter was used to define the elastic substrate ge-
ometry. The last step of the fabrication process consisted of the mechanical crimping of
the electrodes in order to connect the device, allowing the reading and post processing
of the electrical voltage signal generated by the piezoelectric film. The part of the device
with the electrical connections was then embedded into the cylindrical bluff body, keeping
still the connections waterproof. The voltage fluctuations v(t) generated by mode shapes
and deflections of the flapping flag, shown in Figure 3a, due to the flow field were then
recorded by an oscilloscope (Tektronix, MSO2000B) (see Figure 3b).
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(a) (b)

Figure 3. Flapping flag clamped at the cylinder (a) and Oscilloscope Tektronix MSO2000B (b).

Several measurements were performed in order to find a constitutive law and all the
stress–strain curves present the same shape, with an initial linear portion and then a non-
linear region. These curves result from Dynamic Mechanical Analysis (DMA) of the AlN-
based flexible flag. The Young’s modulus was determined as the slope of the first portion
of the stress-strain curves and calculated as an average value of several measurements.
Dynamic mechanical measurements were performed in controlled force mode (force rate
1 N/min) with a Q800 instrument (TA Instruments). The Figure 4 reports the average
curve obtained by DMA measurements, where a Young’s Modulus E = 2.5 ± 0.3 GPa was
extrapolated.
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Figure 4. Stress–strain relationship of the composite flag obtained by Dynamic Mechanical Analysis
(DMA).

The output voltage of the flexible transducer is directly related to the stress provoked
on the thin films structure by elastic deformations. Since the extremely flexible structure
is subjected to the vortices shedding downstream to an obstacle of cylindrical shape, the
deformations are very large; we would like to stress that the transducer is composed of two
parts: an active part, including the piezoelectric layer, and a pure elastic part consisting
only of the Kapton layer. The elastic part acts as a “fluid fluctuations collector” and the
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order of its deformations is about one centimeter; the active part, close to the hinge of the
structure is subjected to lower deformations, with the order of its deformations of few
millimeters. For these reasons, the structure can be approximated to a simple cantilever
beam if, and only if, we consider its piezoelectric part. For the aim of this manuscript, this
approximation is adequate to guarantee the relation between the output generated voltage
and the vortices shedding.

2.2. Strohual and Reynolds Numbers Relationship

The variables involved in this problem are the following: frequency of vortex shedding
fr, the height of flow in the open channel H, the diameter of cylinder D, the length of flag l,
bulk velocity u, the kinematic viscosity ν. Since the reference dimensions are two (length
and time), according to Buckingham Theorem we have four independent dimensionless
groups, among them Strouhal and Reynolds numbers. Therefore, we need to establish
the values of Reynolds and Strouhal numbers for the flow field in which this experiment
occurs. The assumptions used in the present study are: the flow is two-dimensional and
the fluid satisfies the incompressible Newtonian fluid assumptions, with Reynolds number
variable between 2000 and 8000, the piezoelectric constitutive material model is linear,
and the beam is thin and obeys the Euler–Bernoulli formulation [32], hence deflections
are small when compared to the beam dimensions [14]. As stated in Section 1, there are
two non-dimensional parameters that will govern the flow around a circular cylinder in a
uniform shear flow [33]. Reynolds number is the ratio of inertial forces to viscous forces
and is a convenient parameter for predicting if a flow condition will be laminar or turbulent.
It can be interpreted that when the viscous forces are dominant (slow flow, low Re) they
are sufficient enough to keep all the fluid particles in line, then the flow is laminar. Even
very low Re indicates viscous creeping motion, where inertia effects are negligible. When
the inertial forces dominate over the viscous forces (when the fluid is flowing faster and Re
is larger) then the flow is turbulent. Reynolds number is defined as:

Re =
u D

ν
(1)

where u is the bulk velocity, D is the diameter of cylinder, and ν is the kinematic velocity of
the fluid [34]. Instead, Strouhal number St is given by [35]:

St =
fr D

u
(2)

where fr is the frequency of vortex shedding from one side of the cylinder (in s−1),
u is the bulk velocity, and D is the diameter of cylinder. Dimensional analysis shows
that Strohual number may be expressed as a function of other dimensionless groups:
St = f(H/D, l/D, 1/Re), hence it is important to understand the relationship with Reynolds
number. A number of empirical and semi-empirical formulae for the St–Re relationship
over certain ranges of Re were proposed [36], for example in [37–42]. Once a steady inlet
flow rate Q was set equal to 2.16 l s−1, several configurations have been studied by varying
the length of the flag l and the height of the flow H in the open channel. According to the
continuity equation, in the stationary case, bulk velocity is given by u = Q/(BH) in which
B = 0.16 m is the width of the channel flume, whereas H is the height of the flow in the open
channel set by means of some hydraulic systems, such as sluice gates, reducing the flow
section upstream of the cylinder (see Figure 5). Knowing the bulk velocity u, Reynolds
number Re is obtained by Equation (1).

The period of “von Kármán’s vortex street”, due to the bluff body which disturbs the
regular flow and generates turbulence, is defined as follows [23]:

λ =
0.85 u
St u

D
= 4.25 D (3)
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since the whirls released from the bluff body travel with velocity of about 85% of the flow
velocity v. One basic requirement was that the cantilevers should oscillate only with their
first harmonic mode. Therefore, the length of the cantilever L is limited to the half of
the period of the “von Kármán’s” vortex street λ [17]. For the ratio L to D, one can find
L/D = 2.125 [22]. According to Pobering and Schwesinger [22], the pressure difference ∆p
can be calculated assuming that the rotational flow velocity of the whirls ur is about 1/3 of
the flow velocity u of the undisturbed fluid. Furthermore, taking into account that a gap
exists between two whirls on the opposite side of the cantilever, one can achieve for ∆p,
the following relationship [22] based on Bernoulli’s Theorem considerations:

∆p =
ρ

2
((u− u

3
)2 − u2) (4)

where ρ and u have been previously defined. Hence, the proposed sensor is also able
to measure the difference of pressure from each side of the flag by means the following
relationship that is derived from Pobering and Schwesinger [22] for a cantilever similar to
our device:

vpeak = K∆p
d31

e0er

l2

Tpzt
(5)

in which vpeak is the peak voltage developing on the electrodes during the deflection, d31
the piezoelectric strain constant, er the relative dielectric constant, e0 the dielectric constant
in vacuum, Tpzt the thickness of piezoelectric material, l the length of the cantilever, and
K is a constant that will be validated later in Section 3.2 according to our configurations.
As discussed in Section 1, high vibrations on the structure can damage it and for a long-
term analysis, the fatigue stress and subsequent fatigue failure could be significant. For
this purpose, preliminary Finite Elements Method (FEM) simulations were performed in
order to evaluate the mechanical behavior of the flexible transducers and its fundamental
resonance frequencies. The natural frequency of vibration f1 depends on bending stiffness,
Young’s modulus, length, width and mass of the cantilever beam [14,19].

H

l

Q

D

Figure 5. Longitudinal section of the experimental setup with the flag of length l clamped at the
cylinder of diameter D, inlet flow rate Q, and height of flow H in the open channel.

In particular, replicating the dimensions and the shapes of the sensors under test, we
found the values of natural frequency of vibration f1, for each length cantilever analyzed,
listed in Table 1. To ensure the correct use of the sensor, it is necessary to check that the
studied velocities are below the critical value. For this purpose, with the reference to the
studies carried out previously [30], we demonstrate that experiments fall into the stability
area (see Figure 6) defined as function of two non-dimensional quantities α = u/ub and
β = ρs/ρ, where ρs is the density of the flag equal to 3200 kg m−3, ρ is the density of
water, and ub =

√
EI/ρs a characteristic bending wave velocity (I is the moment of inertia

of cross-section of the cantilever with reference to the neutral axis and E is the Young’s
Modulus determined in Section 2.1).
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Table 1. Values of natural frequency of vibration, f1, of the cantilever for the several length l.

l [cm] 3.20 3.50 4.00 7.90
f1 [Hz] 8.40 7.38 5.40 1.10

0 2 4 6 8 10

0

20

40

60

80

Β

Α

Figure 6. Domain of stability for the flapping flag marked by the shaded zone [30]. The red point
represents our experimental data.

2.3. Direct Scaling Analysis on the Voltage Fluctuations: Taylor’s Law Approach

Then, our efforts have been focused on identifying a scaling power law based on
experimental data. Taylor’s law, also known as fluctuation scaling in physics [43], is one
of the most verified patterns in both the biological and physical sciences [44]. It states
that with respect to a non-negative stochastic variable X, the variance V = Var[X], or
equivalently σ2, is a power function of its mean µ = E[X]:

V = aµb (6)

where a and b are both positive constants [45], in particular b is called the scaling exponent.
It is titled by Taylor [46] who was the first one who proposed it after he surveyed some
classical population such as virus lesions, macro zoo-plankton, worms, and symphylids in
the soil, on the plants, and in the air, mites on leaves, ticks on sheep, and fish in the sea.
Given its generality, Taylor’s law can be applied to many fields of study. In ecology, the
random variable of interest is generally the size or density N of a censused population and
Taylor’s Law can arise in time or in space [47]. In addition, it was used to predict a decrease
in the population abundance variation along with a decrease in population density [48],
the relationship between prevalence and abundance given by the epidemiological model
developed for macroparasites providing a a measure of aggregation of parasites within
their hosts [49] the spatial distribution of plants and animals per unit area [50]. Originally
applied in ecology, the use of Equation (6) was spread in other sciences such as mathematics
in order to show that the variance and the mean of the primes do not exceed a real number
sufficiently large obeying Taylor’s law asymptotically [51]. Therefore, the present work
aims to validate a theory according to Taylor’s law approach for turbulent flow field and,
more precisely, in the context of vortex shedding. Our approach is based on a direct scaling
since analyses do not fit any specific model of v(t). This empirical approach is well-known
in literature, see for example [52] and in other contexts as to estimate the rate of sea level
rise at some selected tide gauges around the world [53], in porous media [54,55], and in the
framework of fluid mechanics [56,57].

3. Experimental Results and Discussions
3.1. Correlation Time

In the preliminary phase, our experimental analysis aims to find the aggregation time
of the measures.
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Hence, before analyzing the aggregation processes, it was necessary to understand
what time-scale ∆t considers to find a fluctuation scaling and also be useful for Strouhal
measures. For this purpose, the autocorrelation coefficient R(τ), estimable for any stochastic
process according to Equation (7), was helpful [58]:

R(τ) =
C(τ)√

Var[υ(t)]Var[υ(t′)]
(7)

we recall that the autocovariance C(τ) is a function corresponding to the covariance, Cov,
of the process with itself to pairs of time points, t and t′, defined as follows [58]:

C(τ) = C(t, t′) = Cov(υ(t), υ(t′)) (8)

with time-lag τ = t′ − t. Obviously, it must be −1 ≤ R(τ) ≤ 1. For processes arising in
turbulent flows, we expect the autocorrelation R(τ) to diminish as the lag time τ increases.
Usually, it decreases sufficiently rapidly that the integral of Equation (7), called integral
time-scale of the process, converges [59]:

Γ =
∫ +∞

0
R(τ) dτ (9)

From a physical point of view, Γ represents the time interval necessary for the process
to lose memory of its initial state [59]. The graphs in Figure 7 show the trend of auto-
correlation function referred to fluctuating signal, with reference to four recordings for a
total of 30 min corresponding to the two length cantilever (l = 3.2 cm and l = 7.9 cm) at two
different flow fields (Re = 5944 and Re = 683). The auto-correlation function reaches zero
value already at a time-scale of 3 min. Only the configuration characterized by l = 7.9 cm
and Re = 5944 is equal to zero at a time-scale of 5 min. Hence, voltage fluctuations behave
similarly to a turbulent structure. For this reason, our analysis must concern aggregation
processes with a time-scale lower than 3 min.

l=7.9 cm, Re=5944 l=3.2 cm, Re=6835 l=3.2 cm, Re=5944 l=7.9 cm, Re=6835

0 100 200 300 400 500 600

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ΤHsL

R
HΤ
L

Figure 7. Development of the autocorrelation function over aggregation time for each configuration.

3.2. Vortex Shedding Measures and Relationship Voltage-Pressure

In order to study the vortex shedding phenomenon, we defined Strouhal number
St considering in the Equation (2) the value of the frequency of vortex shedding fr equal
to the peak frequency fpeak obtained applying the Fast Fourier Transform (FFT) to the
time history of the fluctuating voltage v(t) recorded by the device (see Table 2), being
careful to delete the influence due to noise. For this purpose, a lowpass filter with a cutoff
frequency ωc has been applied to the signal. By making a comparison with the values
of natural frequencies f1 shown in Table 1, we can state that the the danger due to the
phenomenon of resonance is averted. Experimental data are plotted in the plane St− Re
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in which they are collected points corresponding to several experiments well-known in
literature (see Figure 8). As shown in Figure 8, our data are in the region of turbulent vortex
trail and also called laminar boundary layer on cylinder [40,60], also called subcritical
regime by Fey et al. (1998) [37]. Based on these results, we can state that the values of the
peak frequency fpeak of the signal of the voltage fluctuations are comparable with the value
of frequency of vortex shedding fr derived taking in the Equation (2) the Strouhal number
St = 0.21 as should be for the range of Reynolds number analyzed.

Table 2. Values of peak frequency fr of the voltage fluctuations v(t) and corresponding Strouhal
number St for the different analyzed configurations characterized by lenght of flag l, heigth of flow h
in the open channel, bulk velocity u and Reynolds number Re.

l H u Re fr St
(cm) (cm) (m s−1) (-) (s−1) (-)

3.2 4.6 0.293 5859 2.50 0.17
3.2 4.0 0.337 6738 2.35 0.14
3.5 6.9 0.197 3934 2.09 0.21
3.5 6.8 0.198 3963 2.20 0.22
3.5 6.8 0.198 3934 1.93 0.19
3.5 6.7 0.201 4022 2.11 0.21
3.5 6.7 0.201 4022 2.12 0.21
3.5 6.6 0.204 4083 1.98 0.19
3.5 6.5 0.207 4146 2.05 0.20
3.5 6.5 0.207 4146 2.00 0.19
3.5 6.4 0.211 4211 2.13 0.20
3.5 6.3 0.214 4278 2.22 0.21
3.5 6.2 0.217 4347 2.45 0.23
3.5 6.2 0.217 4347 2.45 0.23
4.0 10.7 0.126 2519 1.45 0.23
4.0 6.8 0.198 3963 2.01 0.20
4.0 5.6 0.241 4813 2.54 0.21
4.0 5.4 0.250 4991 2.33 0.19
4.0 5.2 0.259 5183 2.86 0.22
4.0 5.1 0.264 5284 2.54 0.19
4.0 4.7 0.287 5734 2.72 0.19
4.0 4.5 0.299 5989 3.01 0.20
4.0 4.4 0.306 6125 3.50 0.23
4.0 4.3 0.313 6167 3.67 0.23
4.0 4.0 0.337 6738 3.90 0.23
4.0 3.4 0.396 7926 4.54 0.23
7.9 4.6 0.293 5859 2.71 0.19
7.9 4.0 0.337 6738 3.54 0.21

Regarding the relationship between the pressure difference ∆p on each side of the
flexible structure, provoked by the fluid motion, and the peak to peak voltage vpeak of
the piezoelectric material, shown in Equation (5), a mean value of constant K was eval-
uated. The mechanical and electrical properties of cantilever are listed as follows: the
piezoelectric strain constant d31 = 2 ·10−12 m V−1, the relative dielectric constant er = 10.5,
the dielectric constant in vacuum e0 = 8.85 ·10−12 F m−1, the thickness of piezoelectric
material Tpzt = 1 µm, the cantilever lengths l are shown in Table 2. Numerical results high-
lighted a mean value of K = 1

2 · 10−5, such a value belongs to range between 0.09 · 10−5

and 1.41 · 10−5. Therefore, based on these last considerations, if we indicate with Z the
following expression:

Z =
d31

e0er

l2

Tpzt
(10)



Sensors 2021, 21, 1871 11 of 18

we can determine the following direct relationship between the peak to peak voltage vpeak
and the pressure difference ∆p as follows:

vpeak = KZ∆p (11)

where the product K · Z is in the average equal to 4 · 10−6. Hence, it is possible to state the
following approximated empirical formulae:

vpeak ∼ 4 · 10−3∆p (12)

with vpeak expressed in mV and ∆p in Pa.
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Figure 8. Strouhal number–Reynolds number relationship for circular cylinders taken from [5], the
black crosses represent our experimental data.

3.3. Taylor’s Law Analysis

Starting from the signal of voltage fluctuations v(t) shown in Figure 9 and recorded
by the oscilloscope, all values were shifted up, in order to have strictly positive voltages,
according to Taylor’s law (Equation (6)). Given a period of fluctuating signal equal to
30 min for the configurations discussed in Section 3.1, we consider the following time-scales
in seconds ∆t = 5, 15, 30, 40, 60, 90, 150, 180. For each time-scale, the mean and variance
were computed and plotted in a bi-logarithmic plane and through a numerical non-linear
fitting procedure with Mathematica©, an interpolating law of Equation (6) has been found
from the following relationship:

log V = log a + b log µ (13)

that represents a linear law in the log–log plane (see Figure 10).



Sensors 2021, 21, 1871 12 of 18

0 10 000 20 000 30 000 40 000 50 000 60 000 70 000

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

t

v
Ht
L

Figure 9. Time history of the voltage fluctuations v(t).
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Figure 10. Taylor’s law in the log–log plane at a time-scale equal to one minute for the first configu-
ration.

Once known the parameters of Taylor’s law a and b (Table 3), it was evaluated the cor-
relation coefficient r2 that represents a measure of fitting degree of the model to data points.

Table 3. Values of scaling exponent of Taylor’s law b for each configuration at several aggregation
time ranges.

b

∆t First Second Third Fourth
(s) l = 3.2 cm l = 3.2 cm l = 7.9 cm l = 7.9 cm

Re = 5944 Re = 6835 Re = 5944 Re = 6835

15 1.773 1.128 1.049 0.875
30 1.951 1.177 1.162 0.957
60 2.197 1.363 1.331 1.055
90 2.262 1.420 1.326 1.031

120 2.330 1.572 1.438 1.071
150 2.440 1,717 1.547 1.244
180 2.496 1.735 1.644 1.148

The values of r2 relative to each time aggregation range for all the configurations are
reported in the Table 4.
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Table 4. Values of r2 related to previous fitting laws for each configuration at several aggregation
time ranges.

r2

∆t First Second Third Fourth
(s) l = 3.2 cm l = 3.2 cm l = 7.9 cm l = 7.9 cm

Re = 5944 Re = 6835 Re = 5944 Re = 6835

15 0.953 0.964 0.971 0.970
30 0.952 0.967 0.978 0.975
60 0.952 0.964 0.985 0.978
90 0.975 0.964 0.983 0.978
120 0.977 0.966 0.985 0.977
150 0.977 0.973 0.989 0.973
180 0.974 0.971 0.991 0.981

From the values of r2 in the Table 4, it appears that regardless of the configuration
and time-scale considered, the correlation between the experimental data and the fitting
Taylor’s law is strong, since r2 is very close to one for all analyses carried out. By Table 3,
the minimum value of scaling exponent b is 0.875, assumed by the fourth configuration
at the time-scale equal to 15 s, instead the maximum value is 2.496 reached by the first
configuration at a time-scale of 3 min. The predominant range is the one between values
1 and 2, typical for the geographical population with relatively moderate degrees of
aggregation [61]. The only two configurations characterized by scaling exponents outside
this range are the first and the fourth configuration. The scaling law referring to the first
configuration presents values of scaling exponent higher than other configurations. This is
reasonable for the highly fluctuating time history of the signal (see Figure 9a) probably due
to the mechanical characteristics of material such as the increase of stiffness inducted by the
adapt to fatigue [29]. Instead, the fourth configuration is characterized by the lowest values
of scaling exponent since the fluctuating signal is almost homogeneous (see Figure 9d).
From a general point of view, the scale exponent b increases with the aggregation time ∆t,
no matter the configuration. According to the least squares method, both linear (Figure 11a)
and logarithmic law (Figure 11b) have been found in order to maximize the correlation
coefficient r2, consequently it has pointed out that the logarithmic law is the best fitting
line given that the scale exponent grows slightly with the aggregation time.
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Figure 11. Laws of variation of scaling exponent over the aggregation time: linear law (a) and logarithmic law (b).
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With the reference to the earlier cases of application of Taylor’s law, a logarithmic
trend of scaling exponent on aggregation time has also been found by [62] investigating the
endogenous and exogenous dynamics of 1354 stocks traded in the Chinese stock market. In
addition, analyzing the time series of trading volume of 22 liquid stocks traded on Shenzen
Stock Exchange in 2003, Mu et al. [63] reached the same outcome. Based on the previous
results, we can state a general variation law of the scaling exponent over time-scale:

b(∆t) = b0 + k log ∆t (14)

The values of b0 and k related to the configurations are summarized in Table 5,
by which we can deduce that b0 varies strongly with the configuration considered, hence it
probably depends on the flag length and height of the open channel, while k belongs to the
narrow range between 0.12 and 0.28.

Table 5. Values of b0 and k for the logarithmic laws.

First Second Third Fourth

b0 0.989 0.353 0.416 0.544
k 0.287 0.257 0.222 0.120

At this point, it is important to understand how the fluctuations v(t) are distributed.
If we plot in a plane (Figure 12), whose horizontal axis represents the values of voltage v(t)
and the vertical axis the frequency distribution fV with a width bin equal to 0.001 volts, we
obtain the histogram of frequency from which we can make some considerations for each
configuration analyzed.
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Figure 12. Comparison between the observed frequency distribution and the Gaussian probability density function.
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For example, the first configuration (see Figure 12a), given its shape, is characterized
by a considerable degree of uncertainty. This means that the distribution has a high
standard deviation according to results listed in the Table 3. In the second and third
configurations, we notice the presence of skewness, with a tail on the right side in the
second (see Figure 12b) and a tail on the left side in the third (see Figure 12c). The fourth
configuration (see Figure 12d) has the lowest standard deviation according to the highly
homogeneous shape of the fluctuating signal. Then, a comparison between the histogram of
frequency and some theoretical probability density function has been carried out. Anyway,
by means of the Method of Moments, it appears that the probability density function with
more likehoods to the real distributions of the voltage fluctuations v(t) is the Gaussian one.
This result is in agreement with the experimental evidence and numerical simulations as
well-known in literature about the distribution of the fluctuating component of velocity
u′(t) [58,59,64–66]. Therefore, based on this encouraging preliminary survey, several
geometric analyses in the channel flume will be carried out in order to validate this sensor
in other ranges of Strouhal and Reynolds numbers and on obstacles of other shapes.

4. Conclusions

In the present work, a thin films-based piezoelectric device, approximated to a can-
tilevered bending, is proposed for providing useful information for the flow field in the
open channel, especially in the context of vortex shedding. Several experiments were
performed in a channel flume site at the EUMER Lab at University of Salento for a specific
range of the Re = 103 order. As a first step, based on the analysis shown in Section 3.2,
it appears that the peak frequency of the voltage fluctuations, recorded by the device and
filtered by the influence of noise, is close to the frequency of vortex shedding for the flow
field studied. Based on these results, we can state that the flapping device could be helpful
to determine Strouhal number St, alternatively to the methods mentioned in Section 1.
Then, a direct scaling analysis of the voltage fluctuations has been carried out. It has been
estimated, for each analyzed configuration, in Section 3.1, the autocorrelation coefficient
that shows an ergodic behavior of the signal and the time-scale within which turbulent
structure is coherent. Consequently, it has been possible to demonstrate that fluctuations
of the flapping device, in terms of voltage, respond to Taylor’s law, applied in several
scientific and technical contexts, with the scaling exponents convergent in a particular
range between 0.8 and 2.5, as seen in Section 3.3. Moreover, a constant K = 1

2 · 10−5 has
been found in a relationship between the voltage and difference of pressure from each
side of the flag (Equation (5)). Since the difference of pressure from each side of the flag
is related to the rotational flow velocity of the whirls ur (Equation (4)), we have reason
to believe that also vortex shedding phenomenon and consequently the rotational flow
velocity of the whirls ur follow a scaling law (v(t)∼∆p∼ur), as shown in the Equation (12).
This consideration is enforced by a comparison between the frequency distribution of
voltages and some theoretical probability density functions (see Figure 12), that allows us
to state that the maximum similarity is reached with the Gaussian distribution. Further
investigations are being planned for validating other orders of Reynolds number, also on
obstacles of other shape, in order to find out if the scaling behavior of Taylor’s law could be
applicable as well. Future challenges could consist of applying Taylor’s law to the velocity
fluctuations, once the velocity cross-distribution in the open channel is known.
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