22 research outputs found

    De Casteljau's algorithm in geometric data analysis: Theory and application

    Get PDF
    For decades, de Casteljau's algorithm has been used as a fundamental building block in curve and surface design and has found a wide range of applications in fields such as scientific computing and discrete geometry, to name but a few. With increasing interest in nonlinear data science, its constructive approach has been shown to provide a principled way to generalize parametric smooth curves to manifolds. These curves have found remarkable new applications in the analysis of parameter-dependent, geometric data. This article provides a survey of the recent theoretical developments in this exciting area as well as its applications in fields such as geometric morphometrics and longitudinal data analysis in medicine, archaeology, and meteorology

    The Construction of Optimized High-Order Surface Meshes by Energy-Minimization

    Get PDF
    Despite the increasing popularity of high-order methods in computational fluid dynamics, their application to practical problems still remains challenging. In order to exploit the advantages of high-order methods with geometrically complex computational domains, coarse curved meshes are necessary, i.e. high-order representations of the geometry. This dissertation presents a strategy for the generation of curved high-order surface meshes. The mesh generation method combines least-squares fitting with energy functionals, which approximate physical bending and stretching energies, in an incremental energy-minimizing fitting strategy. Since the energy weighting is reduced in each increment, the resulting surface representation features high accuracy. Nevertheless, the beneficial influence of the energy-minimization is retained. The presented method aims at enabling the utilization of the superior convergence properties of high-order methods by facilitating the construction of coarser meshes, while ensuring accuracy by allowing an arbitrary choice of geometric approximation order. Results show surface meshes of remarkable quality, even for very coarse meshes representing complex domains, e.g. blood vessels

    Modelado jerárquico de objetos 3D con superficies de subdivisión

    Get PDF
    Las SSs (Superficies de Subdivisión) son un potente paradigma de modelado de objetos 3D (tridimensionales) que establece un puente entre los dos enfoques tradicionales a la aproximación de superficies, basados en mallas poligonales y de parches alabeados, que conllevan problemas uno y otro. Los esquemas de subdivisión permiten definir una superficie suave (a tramos), como las más frecuentes en la práctica, como el límite de un proceso recursivo de refinamiento de una malla de control burda, que puede ser descrita muy compactamente. Además, la recursividad inherente a las SSs establece naturalmente una relación de anidamiento piramidal entre las mallas / NDs (Niveles de Detalle) generadas/os sucesivamente, por lo que las SSs se prestan extraordinariamente al AMRO (Análisis Multiresolución mediante Ondículas) de superficies, que tiene aplicaciones prácticas inmediatas e interesantísimas, como la codificación y la edición jerárquicas de modelos 3D. Empezamos describiendo los vínculos entre las tres áreas que han servido de base a nuestro trabajo (SSs, extracción automática de NDs y AMRO) para explicar como encajan estas tres piezas del puzzle del modelado jerárquico de objetos de 3D con SSs. El AMRO consiste en descomponer una función en una versión burda suya y un conjunto de refinamientos aditivos anidados jerárquicamente llamados "coeficientes ondiculares". La teoría clásica de ondículas estudia las señales clásicas nD: las definidas sobre dominios paramétricos homeomorfos a R" o (0,1)n como el audio (n=1), las imágenes (n=2) o el vídeo (n=3). En topologías menos triviales, como las variedades 2D) (superficies en el espacio 3D), el AMRO no es tan obvio, pero sigue siendo posible si se enfoca desde la perspectiva de las SSs. Basta con partir de una malla burda que aproxime a un bajo ND la superficie considerada, subdividirla recursivamente y, al hacerlo, ir añadiendo los coeficientes ondiculares, que son los detalles 3D necesarios para obtener aproximaciones más y más finas a la superficie original. Pasamos después a las aplicaciones prácticas que constituyen nuestros principal desarrollo original y, en particular, presentamos una técnica de codificación jerárquica de modelos 3D basada en SSs, que actúa sobre los detalles 3D mencionados: los expresa en un referencial normal loscal; los organiza según una estructura jerárquica basada en facetas; los cuantifica dedicando menos bits a sus componentes tangenciales, menos energéticas, y los "escalariza"; y los codifica dinalmente gracias a una técnica similar al SPIHT (Set Partitioning In Hierarchical Tress) de Said y Pearlman. El resultado es un código completamente embebido y al menos dos veces más compacto, para superficies mayormente suaves, que los obtenidos con técnicas de codificación progresiva de mallas 3D publicadas previamente, en las que además los NDs no están anidados piramidalmente. Finalmente, describimos varios métodos auxiliares que hemos desarrollado, mejorando técnicas previas y creando otras propias, ya que una solución completa al modelado de objetos 3D con SSs requiere resolver otros dos problemas. El primero es la extracción de una malla base (triangular, en nuestro caso) de la superficie original, habitualmente dada por una malla triangular fina con conectividad arbitraria. El segundo es la generación de un remallado recursivo con conectividad de subdivisión de la malla original/objetivo mediante un refinamiento recursivo de la malla base, calculando así los detalles 3D necesarios para corregir las posiciones predichas por la subdivisión para nuevos vértices

    Extraction of topological structures in 2D and 3D vector fields

    Get PDF
    feature extraction, feature tracking, vector field visualizationMagdeburg, Univ., Fak. für Informatik, Diss., 2008von Tino WeinkaufZsfassung in dt. Sprach

    Diseño de nuevos algoritmos de guiado y navegación con evasión de colisiones para vehículos aéreos no tripulados.

    Full text link
    Tesis por compendio[ES] Debido a la creciente popularidad sobre la variedad de los Vehículos No Tripulados tanto en el campo militar como en el comercial, y de sus capacidades para navegar por diversos entornos, ya sean terrestres, aéreos o marinos, se evidencia que la clásica planificación de trayectorias y movimientos bidimensionales 2D podría no ser suficiente en un futuro inmediato. De esta manera, se debe resaltar que el presente trabajo aborda el problema de los Vehículos Aéreos No Tripulados (UAVs) de ala fija. En este sentido, la necesidad de encontrar una trayectoria navegable en el espacio euclídeo 3D se hace cada vez más necesario. En el caso de los UAV, considerar su cinemática para generar trayectorias suaves en tres dimensiones puede tener un interés significativo para la navegación autónoma aérea. Finalmente, los beneficios adicionales que se pueden producir son importantes. La principal dificultad de este problema es que los vehículos aéreos de características no-holonómicas se ven obligados a avanzar sin la posibilidad de detenerse a través de trayectorias 3D con curvaturas limitadas. En este sentido, se ha investigado la manera de proporcionar una completa caracterización de trayectorias óptimas para UAVs con un radio de giro limitado que se mueve en el plano tridimensional a una velocidad constante. Para completar tales tareas, un planificador de trayectorias no sólo debe proporcionar rutas tridimensionales para alcanzar una posición de destino sin colisionar con obstáculos, sino también debe asegurar que tal trayectoria sea adecuada para los UAVs que poseen propiedades cinemáticas específicas. Por lo tanto, el desarrollo del trabajo ha completado la algoritmia que genera una trayectoria discreta tridimensional al definir un conjunto de puntos 3D, resultantes de una división del espacio euclídeo tridimensional de manera dinámica, determinando las mejores opciones de avance, evitando analizar cada espacio del entorno completo. De esta manera, partiendo de los puntos 3D resultantes de la planificación de trayectoria tridimensional, se ha generado una trayectoria en forma de curva suave construida en función de las limitaciones de giro del UAV (resaltando que es difícil asegurar que el camino resultante cumpla con las restricciones cinemáticas en las tres dimensiones simultáneamente). Finalmente, es importante destacar que a menudo las restricciones mencionadas se calculan secuencialmente y de forma bidimensional, sobre un par de dimensiones desacopladas, lo que limita la capacidad de optimización. Para todo ello, se ha desarrollado un algoritmo de suavizado para un planificador de trayectorias que considera las restricciones cinemáticas tridimensionales completas sin desacoplar las dimensiones.[CA] Debut a la creixent popularitat sobre la varietat dels Vehicles No Tripulats tant en el camp militar com en el comercial, i de les seves capacitats per navegar per diversos entorns, ja siguin terrestres, aeris o marins, s'evidencia que la clàssica planificació de trajectòries i moviments bidimensionals 2D podria no ser suficient en un futur immediat. D'aquesta manera, s'ha de ressaltar que el present treball aborda el problema dels Vehicles Aeris No Tripulats (UAV) d'ala fixa. En aquest sentit, la necessitat de trobar una trajectòria navegable en l'espai euclidià 3D es fa cada vegada més necessari. En el cas dels UAV, considerar la seva cinemàtica per generar trajectòries suaus en tres dimensions pot tenir un interès significatiu per a la navegació autònoma aèria. Finalment, els beneficis addicionals que es poden produir són importants. La principal dificultat d'aquest problema és que els vehicles aeris de característiques no-holonómicas es veuen obligats a avançar sense la possibilitat de detenir-se a través de trajectòries 3D amb curvatures limitades. En aquest sentit, s'ha investigat la manera de proporcionar una completa caracterització de trajectòries òptimes per UAVs amb un radi de gir limitat que es mou en el pla tridimensional a una velocitat constant. Per completar aquestes tasques, un planificador de trajectòries no només ha de proporcionar rutes tridimensionals per assolir una posició de destinació sense col·lisionar amb obstacles, sinó també ha d'assegurar que tal trajectòria sigui adequada per als UAVs que posseeixen propietats cinemàtiques específiques. Per tant, el desenvolupament de la feina ha completat la algorísmia que genera una trajectòria discreta tridimensional a l'definir un conjunt de punts 3D, resultants d'una divisió de l'espai euclidià tridimensional de manera dinàmica, determinant les millors opcions d'avanç, evitant analitzar cada espai de l' entorn complet. D'aquesta manera, partint dels punts 3D resultants de la planificació de trajectòria tridimensional, s'ha generat una trajectòria en forma de corba suau construïda en funció de les limitacions de gir de l'UAV (ressaltant que és difícil assegurar que el camí resultant compleixi amb les restriccions cinemàtiques en les tres dimensions simultàniament). Finalment, és important destacar que sovint les restriccions esmentades es calculen seqöencialment i de forma bidimensional, sobre un parell de dimensions desacoblades, el que limita la capacitat d'optimització. Per tot això, s'ha desenvolupat un algoritme de suavitzat per a un planificador de trajectòries que considera les restriccions cinemàtiques tridimensionals completes sense desacoblar les dimensions.[EN] Due to the growing popularity of the variety of Unmanned Vehicles in both the military and commercial fields, and their capabilities to navigate diverse environments, whether land, air or sea, it is evident that the classic two-dimensional 2D trajectory and motion planning may not be enough in the near future. Thus, it should be noted that this paper addresses the problem of fixed-wing Unmanned Aerial Vehicles (UAVs). In this sense, the need to find a navigable path in 3D Euclidean space becomes more and more necessary. In the case of UAVs, considering their kinematics to generate smooth trajectories in three dimensions may be of significant interest for autonomous air navigation. Finally, the additional benefits that can be produced are important. The main difficulty of this problem is that air vehicles with non-holonomic characteristics are forced to advance without the possibility of stopping through 3D trajectories with limited curvatures. In this regard, research has been conducted to provide a complete characterization of optimal trajectories for UAVs with a limited turning radius that move in the 3D plane at a constant speed. To complete such tasks, a path planner must not only provide three-dimensional paths to reach a target position without colliding with obstacles, but must also ensure that such a path is suitable for UAVs that possess specific kinematic properties. Therefore, the development of the work has completed the algorithm that generates a discrete three-dimensional path by defining a set of 3D points, resulting from a division of the three-dimensional Euclidean space in a dynamic way, determining the best forward options, avoiding to analyze each space of the whole environment. In this way, starting from the 3D points resulting from the three-dimensional path planning, a smooth curve path has been generated, built according to the UAV turning constraints (highlighting that it is difficult to ensure that the resulting path meets the kinematic constraints in the three dimensions simultaneously). Finally, it is important to note that often the constraints mentioned are calculated sequentially and in a two-dimensional shape, on a pair of decoupled dimensions, which limits the ability to optimize. For all this, a smoothing algorithm has been developed for a path planner that considers the complete three-dimensional kinematic constraints without decoupling the dimensions.Este trabajo ha sido parcialmente financiado por el Gobierno de España a través del Ministerio de Economía y Competitividad bajo el proyecto de Investigación DP I2015−71443−R, y por la administración local de la Generalitat Valenciana a través de los proyectos GV /2017/029 y AICO/2019/055. El autor ha sido beneficiario de una beca otorgada por el Instituto de Fomento al Talento Humano (IFTH) (2015−AR2Q9209) a través del Gobierno de Ecuador.Samaniego Riera, FE. (2021). Diseño de nuevos algoritmos de guiado y navegación con evasión de colisiones para vehículos aéreos no tripulados [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/161274TESISCompendi

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen : 04. bis 06.07. 2012, Bauhaus-Universität Weimar

    Get PDF
    The 19th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 4th till 6th July 2012. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference. We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference
    corecore