6,816 research outputs found

    Determination and evaluation of clinically efficient stopping criteria for the multiple auditory steady-state response technique

    Get PDF
    Background: Although the auditory steady-state response (ASSR) technique utilizes objective statistical detection algorithms to estimate behavioural hearing thresholds, the audiologist still has to decide when to terminate ASSR recordings introducing once more a certain degree of subjectivity. Aims: The present study aimed at establishing clinically efficient stopping criteria for a multiple 80-Hz ASSR system. Methods: In Experiment 1, data of 31 normal hearing subjects were analyzed off-line to propose stopping rules. Consequently, ASSR recordings will be stopped when (1) all 8 responses reach significance and significance can be maintained for 8 consecutive sweeps; (2) the mean noise levels were ≤ 4 nV (if at this “≤ 4-nV” criterion, p-values were between 0.05 and 0.1, measurements were extended only once by 8 sweeps); and (3) a maximum amount of 48 sweeps was attained. In Experiment 2, these stopping criteria were applied on 10 normal hearing and 10 hearing-impaired adults to asses the efficiency. Results: The application of these stopping rules resulted in ASSR threshold values that were comparable to other multiple-ASSR research with normal hearing and hearing-impaired adults. Furthermore, in 80% of the cases, ASSR thresholds could be obtained within a time-frame of 1 hour. Investigating the significant response-amplitudes of the hearing-impaired adults through cumulative curves indicated that probably a higher noise-stop criterion than “≤ 4 nV” can be used. Conclusions: The proposed stopping rules can be used in adults to determine accurate ASSR thresholds within an acceptable time-frame of about 1 hour. However, additional research with infants and adults with varying degrees and configurations of hearing loss is needed to optimize these criteria

    Neural Modeling and Imaging of the Cortical Interactions Underlying Syllable Production

    Full text link
    This paper describes a neural model of speech acquisition and production that accounts for a wide range of acoustic, kinematic, and neuroimaging data concerning the control of speech movements. The model is a neural network whose components correspond to regions of the cerebral cortex and cerebellum, including premotor, motor, auditory, and somatosensory cortical areas. Computer simulations of the model verify its ability to account for compensation to lip and jaw perturbations during speech. Specific anatomical locations of the model's components are estimated, and these estimates are used to simulate fMRI experiments of simple syllable production with and without jaw perturbations.National Institute on Deafness and Other Communication Disorders (R01 DC02852, RO1 DC01925

    Consequences of subacute intratracheal exposure of rats to cadmium oxide nanoparticles: Electrophysiological and toxicological effects

    Get PDF
    Cadmium is a metal used in various industrial applications, whereby exposure to Cd-containing fumes is likely. The submicron sized particles in the fumes represent an extra risk due to their high mobility within the organism and high surface area. Toxicity of Cd on the liver, kidney and bones is well known, but there are less data on its neurotoxicity. Here, male Wistar rats were treated for 3 and 6 weeks by intratracheal instillation of CdO2 nanosuspension. The treated rats’ body weight gain was significantly decreased, and in the high dose rats (0.4 mg/kg Cd daily) the weight of lungs and thymus was significantly increased. In this group, the spectrum of spontaneous cortical electrical activity was shifted to higher frequencies, the latency of sensory evoked potentials was lengthened, and the frequency following ability of the somatosensory evoked potential was impaired – even without detectable Cd deposition in the brain. The data support the role of the nano-sized Cd in the causation of nervous system damage and show the possibility of modeling human neurotoxic damage in rats

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 128, May 1974

    Get PDF
    This special bibliography lists 282 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1974

    Processing asymmetry of transitions between order and disorder in human auditory cortex

    Get PDF
    Purpose: To develop an algorithm to resolve intrinsic problems with dose calculations using pencil beams when particles involved in each beam are overreaching a lateral density interface or when they are detouring in a laterally heterogeneous medium. Method and Materials: A finding on a Gaussian distribution, such that it can be approximately decomposed into multiple narrower, shifted, and scaled ones, was applied to dynamic splitting of pencil beams implemented in a dose calculation algorithm for proton and ion beams. The method was tested in an experiment with a range-compensated carbon-ion beam. Its effectiveness and efficiency were evaluated for carbon-ion and proton beams in a heterogeneous phantom model. Results: The splitting dose calculation reproduced the detour effect observed in the experiment, which amounted to about 10% at a maximum or as large as the lateral particle-disequilibrium effect. The proton-beam dose generally showed large scattering effects including the overreach and detour effects. The overall computational times were 9 s and 45 s for non-splitting and splitting carbon-ion beams and 15 s and 66 s for non-splitting and splitting proton beams. Conclusions: The beam-splitting method was developed and verified to resolve the intrinsic size limitation of the Gaussian pencil-beam model in dose calculation algorithms. The computational speed slowed down by factor of 5, which would be tolerable for dose accuracy improvement at a maximum of 10%, in our test case.AAPM Annual Meeting 200

    Multimodal imaging of human brain activity: rational, biophysical aspects and modes of integration

    Get PDF
    Until relatively recently the vast majority of imaging and electrophysiological studies of human brain activity have relied on single-modality measurements usually correlated with readily observable or experimentally modified behavioural or brain state patterns. Multi-modal imaging is the concept of bringing together observations or measurements from different instruments. We discuss the aims of multi-modal imaging and the ways in which it can be accomplished using representative applications. Given the importance of haemodynamic and electrophysiological signals in current multi-modal imaging applications, we also review some of the basic physiology relevant to understanding their relationship

    A transition from unimodal to multimodal activations in four sensory modalities in humans: an electrophysiological study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the long-latency activities common to all sensory modalities, electroencephalographic responses to auditory (1000 Hz pure tone), tactile (electrical stimulation to the index finger), visual (simple figure of a star), and noxious (intra-epidermal electrical stimulation to the dorsum of the hand) stimuli were recorded from 27 scalp electrodes in 14 healthy volunteers.</p> <p>Results</p> <p>Results of source modeling showed multimodal activations in the anterior part of the cingulate cortex (ACC) and hippocampal region (Hip). The activity in the ACC was biphasic. In all sensory modalities, the first component of ACC activity peaked 30–56 ms later than the peak of the major modality-specific activity, the second component of ACC activity peaked 117–145 ms later than the peak of the first component, and the activity in Hip peaked 43–77 ms later than the second component of ACC activity.</p> <p>Conclusion</p> <p>The temporal sequence of activations through modality-specific and multimodal pathways was similar among all sensory modalities.</p

    Biophysical Source Modeling of Some Exogenous and Endogenous Components of the Human Event-Related Potential

    Get PDF
    Methods of dipole localization were applied to human scalp-recorded electrical activity associated with a simple auditory cognitive discrimination task. Human neuroanatomy and neurophysiology were reviewed from a biophysical standpoint in order to describe the probable neurogenesis of electrical activity in the brain and on the surface of the head. Topographic electroencephalography (EEG) analysis and source localization methods were historically reviewed in detail, followed by a brief review of the history of non-invasive evoked potential (EP) and magnetic field measurements of human central nervous system activity. Four well known simple cognitive tasks were considered that were known to elicit non-obligatory brain responses, and the odd-ball task chosen. Three subjects listened to a series of two tones, one frequent and one rare, and counted the rare tones. During task performance, 40 to 46 channels of EEG activity were recorded from their scalps. From the EEG data, average evoked potentials (aEP) were calculated for the frequent and rare conditions. From these a difference response was calculated. All three of these EPs were plotted as equipotential maps over a schematic of a head for topographic display and the major distribution features discussed. These aEPs and maps matched those previously reported in the literature. From estimates of the spatial electrical power over the head, four peak components were selected for analysis by equivalent source modeling (ESM). These were designated the FP40, FP100, FP200, and FP350, where FP stands for field power. ESM demonstrated that one centrally located point dipole or two bilaterally symmetric dipoles could model the empirical data quite well. These results were discussed in relation to other topographic studies, as well as studies of intracranial recordings, lesions, and animal models. The source locations found were consistent with auditory cortical locations for the obligatory sensory peaks (FP40, FP100, FP200) and with brainstem locations as the source of the FP350 cognitive event-related peak.</p
    corecore