37 research outputs found

    Physics-Based Swarm Intelligence for Disaster Relief Communications

    Get PDF
    This study explores how a swarm of aerial mobile vehicles can provide network connectivity and meet the stringent requirements of public protection and disaster relief operations. In this context, we design a physics-based controlled mobility strategy, which we name the extended Virtual Force Protocol (VFPe), allowing self-propelled nodes, and in particular here unmanned aerial vehicles, to fly autonomously and cooperatively. In this way, ground devices scattered on the operation site may establish communications through the wireless multi-hop communication routes formed by the network of aerial nodes. We further investigate through simulations the behavior of the VFPe protocol, notably focusing on the way node location information is disseminated into the network as well as on the impact of the number of exploration nodes on the overall network performance.Comment: in International Conference on Ad Hoc Networks and Wireless, Jul 2016, Lille, Franc

    Swarm shape manipulation through connection control

    Get PDF
    The control of a large swarm of distributed agents is a well known challenge within the study of unmanned autonomous systems. However, it also presents many new opportunities. The advantages of operating a swarm through distributed means has been assessed in the literature for efficiency from both operational and economical aspects; practically as the number of agents increases, distributed control is favoured over centralised control, as it can reduce agent computational costs and increase robustness on the swarm. Distributed architectures, however, can present the drawback of requiring knowledge of the whole swarm state, therefore limiting the scalability of the swarm. In this paper a strategy is presented to address the challenges of distributed architectures, changing the way in which the swarm shape is controlled and providing a step towards verifiable swarm behaviour, achieving new configurations, while saving communication and computation resources. Instead of applying change at agent level (e.g. modify its guidance law), the sensing of the agents is addressed to a portion of agents, differentially driving their behaviour. This strategy is applied for swarms controlled by artificial potential functions which would ordinarily require global knowledge and all-to-all interactions. Limiting the agents' knowledge is proposed for the first time in this work as a methodology rather than obstacle to obtain desired swarm behaviour

    A Distributed Scalable Approach to Formation Control in Multi-Robot Systems

    Get PDF
    A new algorithm for the control of formations of mobile robots is presented. Formations with a triangular lattice structure are created using distributed control rules, using only local information on each robot. The overall direction of movement of the formation is not pre-established but rather results from local interactions, giving all the robots a common, self-organized heading. Experiments were done to test the algorithm, yielding results in which robots behaved as expected, moving at a reasonable speed and maintaining the desired distances among themselves. Up to seven robots were used in real experiments and up to forty in simulation

    An Introduction to Swarm Robotics

    Get PDF

    Formation and organisation in robot swarms.

    Get PDF
    A swarm is defined as a large and independent collection of heterogeneous or homogeneous agents operating in a common environment and seemingly acting in a coherent and coordinated manner. Swarm architectures promote decentralisation and self-organisation which often leads to emergent behaviour. The emergent behaviour of the swarm results from the interactions of the swarm with its environment (or fellow agents), but not as a direct result of design. The creation of artificially simulated swarms or practical robot swarms has become an interesting topic of research in the last decade. Even though many studies have been undertaken using a practical approach to swarm construction, there are still many problems need to be addressed. Such problems include the problem of how to control very simple agents to form patterns; the problem of how an attractor will affect flocking behaviour; and the problem of bridging formation of multiple agents in connecting multiple locations. The central goal of this thesis is to develop early novel theories and algorithms to support swarm robots in. pattern formation tasks. To achieve this, appropriate tools for understanding how to model, design and control individual units have to be developed. This thesis consists of three independent pieces of research work that address the problem of pattern formation of robot swarms in both a centralised and a decentralised way.The first research contribution proposes algorithms of line formation and cluster formation in a decentralised way for relatively simple homogenous agents with very little memory, limited sensing capabilities and processing power. This research utilises the Finite State Machine approach.In the second research contribution, by extending Wilensky's (1999) work on flocking, three different movement models are modelled by changing the maximum viewing angle each agent possesses during the course of changing its direction. An object which releases an artificial potential field is then introduced in the centre of the arena and the behaviours of the collective movement model are studied.The third research contribution studies the complex formation of agents in a task that requires a formation of agents between two locations. This novel research proposes the use Of L-Systems that are evolved using genetic algorithms so that more complex pattern formations can be represented and achieved. Agents will need to have the ability to interpret short strings of rules that form the basic DNA of the formation

    Overcoming Local Minima Through Viscoelastic Fluid-Inspired Swarm Behavior

    Get PDF
    My paper discusses a novel swarm robotic algorithm inspired by the open channel siphon phenomena displayed in certain viscoelastic fluids. This siphoning ability enables the algorithm to mitigate the trapping effects of local minima, which are known to affect physicomimetics-based potential field control methods. Once a robot senses the goal, local communication between robots is used to propagate path-to-goal gradient information through the swarm's communication graph. This information is used to augment each agent's local potential field, reducing the local minima trap and often eliminating it. In this paper real world experiments using the Georgia Tech Miniature Autonomous Blimp (GT-MAB) aerial robotic platforms as well as mass Monte Carlo test simulations conducted in the Simulating Collaborative Robots in Massive Multi-Agent Game Execution (SCRIMMAGE) simulator are presented. Comparisons between the resultant behaviors and potential field based swarm behaviors that both do, and do not incorporate local minima fixes were assessed. These experiments and simulations demonstrate that this method is an effective solution to susceptibility to local minima for potential field approaches for controlling swarms

    Evolved swarming without positioning information: anapplication in aerial communication relay

    Get PDF
    In most swarm systems, agents are either aware of the position of their direct neighbors or they possess a substrate on which they can deposit information (stigmergy). However, such resources are not always obtainable in real-world applications because of hardware and environmental constraints. In this paper we study in 2D simulation the design of a swarm system which does not make use of positioning information or stigmergy. This endeavor is motivated by an application whereby a large number of Swarming Micro Air Vehicles (SMAVs), of fixed-wing configuration, must organize autonomously to establish a wireless communication network (SMAVNET) between users located on ground. Rather than relative or absolute positioning, agents must rely only on their own heading measurements and local communication with neighbors. Designing local interactions responsible for the emergence of the SMAVNET deployment and maintenance is a challenging task. For this reason, artificial evolution is used to automatically develop neuronal controllers for the swarm of homogenous agents. This approach has the advantage of yielding original and efficient swarming strategies. A detailed behavioral analysis is then performed on the fittest swarm to gain insight as to the behavior of the individual agent

    Evolution of Neuro-Controllers for Robots\u27 Alignment using Local Communication

    Get PDF
    In this paper, we use artificial evolution to design homogeneous neural network controller for groups of robots required to align. Aligning refers to the process by which the robots managed to head towards a common arbitrary and autonomously chosen direction starting from initial randomly chosen orientations. The cooperative interactions among robots require local communications that are physically implemented using infrared signalling. We study the performance of the evolved controllers, both in simulation and in reality for different group sizes. In addition, we analyze the most successful communication strategy developed using artificial evolution
    corecore