
ABSTRACT

Title of thesis: OVERCOMING LOCAL MINIMA THROUGH
VISCOELASTIC FLUID-INSPIRED SWARM
BEHAVIOR

Loy McGuire, Master of Science, 2020

Thesis directed by: Dr. Michael W. Otte
Department of Aerospace Engineering

My paper discusses a novel swarm robotic algorithm inspired by the open

channel siphon phenomena displayed in certain viscoelastic fluids. This siphoning

ability enables the algorithm to mitigate the trapping effects of local minima, which

are known to affect physicomimetics-based potential field control methods. Once

a robot senses the goal, local communication between robots is used to propagate

path-to-goal gradient information through the swarm’s communication graph. This

information is used to augment each agent’s local potential field, reducing the local

minima trap and often eliminating it. In this paper real world experiments using

the Georgia Tech Miniature Autonomous Blimp (GT-MAB) aerial robotic platforms

as well as mass Monte Carlo test simulations conducted in the Simulating Collabo-

rative Robots in Massive Multi-Agent Game Execution (SCRIMMAGE) simulator

are presented. Comparisons between the resultant behaviors and potential field

based swarm behaviors that both do, and do not incorporate local minima fixes

were assessed. These experiments and simulations demonstrate that this method is

an effective solution to susceptibility to local minima for potential field approaches

for controlling swarms.

OVERCOMING LOCAL MINIMA THROUGH VISCOELASTIC
FLUID-INSPIRED SWARM BEHAVIOR

by

Loy McGuire

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2020

Advisory Committee:
Dr. Michael W. Otte, Chair/Advisor
Dr. Huan Xu
Dr. David Akin

© Copyright by
Loy McGuire

2020

Dedication

I would like to dedicate this work to my family who have given me more

support and encouragement than I could have ever asked for.

ii

Acknowledgments

I would like to share my gratitude towards my advisor, Dr. Michael Otte,

for giving me the opportunity to explore my passions further. I appreciate the

care you have shown for the academic and personal well-being of myself and all of

your students, and the guidance you have given me through my graduate student

experience so far. I would also like to thank Dr. David Akin and Dr. Mumu Xu for

granting me their time, patience, and advice as members of my committee.

To the institutions of the Naval Research Laboratories, the University of Mary-

land, and Miami University, I extend my thanks and appreciation for providing me

with mentors, peers, and experiences that have fostered the person I have become

today.

iii

Contents

List of Figures vi

List of Abbreviations vii

List of Algorithms viii

1 Introduction 1
1.1 Motivation . 2
1.2 Chain Siphon Method . 3
1.3 Related Works . 6

1.3.1 Swarm Motion . 6
1.3.2 Potential Field Formation Control 7
1.3.3 Potential Field Control Behaviors 7
1.3.4 Local Minimum Trap Avoidance 8
1.3.5 Physicomimetics . 9
1.3.6 GT-MABs . 10

1.4 Contributions of Thesis . 11
1.5 Outline of Thesis . 12

2 Algorithm Development And Integration Into A Boids-Like Method 14
2.1 Physicomimetic Open Channel Siphon Effect 14
2.2 Assumptions . 17
2.3 Control Equation . 18
2.4 Goal Seeking and Obstacle Avoidance 19
2.5 Lennard-Jones Potential And Using A Leader Heuristic 20
2.6 Other Attempts . 22

2.6.1 Chain Fountain Effect . 23
2.6.2 Static Chain of Communication Linkage 24
2.6.3 Queue Value Ceiling . 25

3 Application In Simulated and Robotic Experiments 26
3.1 Simulations . 26
3.2 Robotic Experiments . 29
3.3 Real World Blimp Usage . 32
3.4 Parameter Selection . 33

4 Results 36
4.1 Simulations . 36
4.2 Robotic Experiments . 41

5 Conclusion 43
5.1 Discussion of Simulation Results . 43
5.2 Discussion of Hardware Results . 45
5.3 Future Work . 46

iv

Bibliography 48

v

List of Figures

1.1 Visualization Of A Local Minimum 4
1.2 The Chain Of Local Communications 5
1.3 The Georgia Tech-Miniature Autonomous Blimp (GT-MAB) 10

3.1 3-D Simulation Environment . 27
3.2 Progression Of A Lennard-Jones Potential Behavior Simulation . . . 28
3.3 Progression Of A Chain Siphon Behavior Simulation 29
3.4 Progression Of The Chain Siphon Hardware Experiment 31

4.1 LJP 2-D Plot . 37
4.2 Leader-Heuristic 2-D Plot . 37
4.3 Chain Siphon 2-D Plot . 38
4.4 LJP 3-D Plot . 39
4.5 Leader-Heuristic 3-D Plot . 39
4.6 Chain Siphon 3-D Plot . 40
4.7 Data Collected From The Hardware Experiments 42

vi

List of Abbreviations

GT-MAB Georgia Tech-Miniature Autonomous Blimp

IR Infrared

LJP Lennard-Jones Potential

ROS Robot Operating System

SCRIMMAGE Simulating Collaborative Robots in Massive Multi-Agent Game Execution

vii

List of Algorithms
1 Siphon Behavior . 15
2 Obstacle Repulsion . 19
3 Lennard-Jones Potential Behavior . 21

viii

Chapter 1

Introduction

The field of path planning is broad and the application of appropriate methods

for certain scenarios can be complex and nuanced. Path planning can be broken

down depending on the type of system that requires it. One way is by organizing

it into single-agent, multi-agent, and swarm systems. Single-agent systems are the

simplest, only needing to focus on it’s own movement. Multi-agent systems add

complexity since agents need to be coordinated and avoid collisions. They may

have to use communication networks to share information between themselves or

with a central controller. The application of swarm systems takes this further in

using mass numbers of agents to accomplish coordinated goals.

The benefit of swarms is revealed by it’s distinction from multi-agent systems.

While both types of systems use multiple agents, swarms have the property of scala-

bility with respect to the number of agents within it’s system. Multi-agent planning

causes factors such as computation to increase exponentially as agents are added to

the system. Swarms are able to increase their numbers without causing the system

to fail.

The ability to scale opens many avenues to contribute positive capabilities to

the system, many of which take inspiration from and are displayed by biological

swarms. Ants work together to collectively lift objects that are too large for an

1

individual to carry and have been observed to build bridges by using ants in the

swarm to hang onto each other until their bodies fill in a gap. Bees also display

swarming tendencies through using large numbers to fend off predators disturbing

their nests. The ability to scale their numbers also benefits swarms by adding

redundancy measures, allowing swarm systems to accomplish objectives even when

agents within the system experience failures.

1.1 Motivation

To develop swarm capabilities for robots, the methods used to control them

must allow swarms to scale in size. This requires the swarm system’s control method

to handle increasing computational costs and communication complexity. To reduce

the complexity of path-finding computation and communication systems, and pre-

vent saturating communication bandwidths, different methods can be implemented

to direct the movement of swarms. One such method is by using potential fields,

which were originally used by Khatib [1] for controlling robot manipulator arms

but translate well for swarm movement. In potential fields methods all positions

within a workspace are associated with a magnitude. The gradient of the potential

field can be interpreted as a vector field imposed on the workspace and used to

control an agent. Usually, all agents are similarly affected by the vector field. This

translates well for swarms since individual agents can compute the potential field

local to them with little to no communication required, allowing the computation

to be distributed throughout the robots in the system. Therefore as more agents

2

are added to the system, more computational power is added as well.

One weakness of potential fields occurs when an area has a local minimum

potential surrounded by higher potentials, as seen in Figure 1.1c. This causes the

vector field to point inward, trapping agents in these areas and preventing them

from reaching the global minimum potential. This phenomenon is known as a local

minima trap. This thesis discusses a novel approach to combat the negative effects

local minima traps have when using potential fields methods to control a swarm.

1.2 Chain Siphon Method

My work introduces the chain siphon algorithm as a method of overcoming

the local minima trap. The chain siphon method leverages the inherent size of a

swarm to manipulate the local potentials of each agent to navigate them out of local

minima traps. In order to do this, it is assumed that the number of swarm agents

is large enough to create a chain of local communications from the goal area to the

local minimum trap. Through this communication chain, as seen in Figure 1.2, the

agents form a queue starting with the agents sensing the goal. The rest of the swarm

follows the agents ahead of them in the queue until they are all led to the goal area.

The emergent behavior of the swarm simulates a viscoelastic fluid exhibiting

the open channel siphon effect. Fluids characterized by this phenomenon are able

to “self-pour”; once the material starts pouring out of a container, it is able to pull

more of the material up and over the container walls. For swarm movement this

allows the agents to move around obstacles like the particles of a liquid while also

3

(a) Modeling a goal position as the global
minimum potential.

(b) Obstacle modeled as a high potential
area.

(c) Summation of the two potential maps.

Figure 1.1: An agent following the gradient of potential fields would move towards
the goal in (a) and be repelled from the obstacle in (b). This causes the low potential
area surrounded by higher potentials in (c), a local minimum trap.

4

7

6
6

5

4
3

2

1

Goal

Obstacles

Start

Figure 1.2: A visualization of the local chain of communication applied during chain
siphon behavior. The queue begins with the agent arriving within sensing range of
the goal and propagates backwards to neighboring agents. Note that the agent with
a queue value of 7 establishes a link with the closest agent with a queue value of 6.

enabling them to pull themselves out of local minima traps.

The chain siphon algorithm is tested in simulations and with real world robotic

experiments using a swarm of the Georgia Tech-Miniature Autonomous Blimps (GT-

MABs) in order to examine it’s performance. While the hardware testbed experi-

ments are set up as a centralized system, they are designed to be easily transitioned

into a distributed system with proper hardware. The central ground station sep-

arately communicates and controls all of the blimps, which in turn move within

the workspace. Sensor and communication restraints are artificially implemented

within the ground station. Despite these centralized factors the behavior of the

algorithm translates well to a swarm system because all sensing and communication

can be done at a local level. Within this work’s implementation only the goal seek-

ing behavior requires global knowledge of the goal position, although this could be

5

modified to fit the needs of different systems.

1.3 Related Works

The work discussed can relate to several different fields of research. Section

1.3.1 explores different modes of controlling swarm systems. A common approach

using potential fields in multi-agent and swarm settings is to coordinate formation

control, discussed in Section 1.3.2, and to implement different behaviors into the

control function, discussed in Section 1.3.3. Other methods of navigating local

minima traps are given in Section 1.3.4. Original works and different use cases for

physicomimetics are presented in Section 1.3.5, and the development of the GT-

MABs are in Section 1.3.6.

1.3.1 Swarm Motion

Many different methods are available to control swarms [2]. Although dis-

tributed systems are helpful for swarms, centralized systems can be used as well.

Becker et al. [3] use a common input to control mass numbers of simple robots by

manipulating them with the environment. This type of movement has been shown

to utilize complex environments [4] and systems with agent-unique dynamics [5]

to benefit the system. Another approach to swarm control is to model and direct

them as a traffic problem [6] [7]. Systems modeled like this can use Quadratic Un-

constrained Binary Optimization (QUBO) to optimize movement between multiple

swarms [8]. These methods differ from ours by using a centralized systems and tak-

6

ing a high level control approach, while the chain siphon method uses distributed

control for individual agents to produce emergent behavior.

1.3.2 Potential Field Formation Control

One approach to swarm control is by using specific functions to keep formation

control while trajectories are generated for the swarm system to follow using single

agent path planning methods such as Dijkstra’s [9], A* [10], RRT [11], and PRM

[12]. Barnes et al. has used bivariate normal functions [13] or sigmoid and normal

functions [14] to construct formation control equations. Agents have also been mod-

eled as spring-damper systems [15] to keep spacecraft swarms in formation. Bentes

and Saotome [16] developed trajectories using A* [10] that the swarm center would

localize around and follow. Other work [17] has used sampling based path planning

to create the swarm trajectory and used potential fields to drive the swarm along

it applying stochastic reachable sets as repulsive forces to dynamic obstacles. The

chain siphon method does not require the swarm as a whole to follow a trajectory,

instead each agent acting individually and interacting with it’s surroundings causes

an emergent behavior to form across the swarm.

1.3.3 Potential Field Control Behaviors

Potential fields are useful when implementing different control behaviors, which

can be weighted using Particle Swarm Optimization [18] to optimize which behav-

iors are most prevalent [19]. This method could be used on the chain siphon method

7

but differs by modifying behavior weights rather than implementing a new behav-

ior. Control behaviors have been displayed [20] with formation control using virtual

structures as well as collision avoidance using social potential fields between agents

[21]. The chain siphon method is not a collision avoidance method but can be used

in addition to them within the control equation. Real and virtual agents have also

been used as leaders for swarm control [22] by trying to match the swarm’s velocity

and headings with the leader’s. The chain siphon method’s use of a queue could be

said to make some agents leaders, but this is a function of what they sense and is

not a designation given a priori.

1.3.4 Local Minimum Trap Avoidance

There are multiple methods that have been used to avoid the local minima

traps for multi-agent movement. By using dynamic vector field generation [13][14]

many of the situations that cause agents to be trapped can be avoided. The agents

using chain siphon behavior do not passively rely on dynamic field generation but

use the method to actively avoid traps. By using dynamic internal fields [23] agents

are able to recognize the time interval they are in the local minima and after enough

time they force those areas to have higher potentials so they can escape. The method

in this paper does not rely on time intervals to initialize it’s behavior. Similarly,

using vortex inspired behavior and Brownian motion [24] agents are able to escape

local minima by increasing the energy they attribute to Brownian motion when they

sense they are stuck. Stochastic lateral disturbances have been used to avoid traps

8

[25] [26], and in the case of agents causing local minima for another or multiple

other agents then agents are assigned priorities and their speeds are augmented to

avoid interfering with other agents’ trajectories [27]. The chain siphon method does

not rely on stochastic movement in order to avoid local minima.

1.3.5 Physicomimetics

The DAEDALUS work from Hettiarachchi and Spears [28] uses an algorithm

dictated by the Lennard-Jones potential (LJP) equation [29] as the equation to

determine collision avoidance and swarm cohesion. The control equation in my

work uses this in addition to the goal seeking, obstacle avoidance, and chain siphon

behaviors. The LJP model is similar to a Boids [30] model of swarm movement,

although the alignment factor is moot as the agents, both GT-MABs and simulated,

move holonomically. This is categorized in the field of physicomimetics [31], a section

of potential fields methods [1] mimicking swarm behavior from physical phenomena.

I have used these previous works to add behavior that reduces the cost of running

into local minima in certain scenarios.

Physicomimetics has found use in many different scenarios. Sydney et al. [32]

used a Bayesian target detection method to modify a temperature gradient map

that augmented the the speeds of agents within a space. Systems have simulated

pheromone dispersion as a stigmergetic information indicator as an aid for search

algorithms [33]. Modeling agents as particles within a gas has also shown benefits to

agents as a coverage and obstacle avoidance method [34]. While these have different

9

applications than the chain siphon method, the approaches contain similarities.

The Lennard-Jones potential driven model has contains a likeness to the model

from Tanner et al. on flocking [35][36] and multi-robot movement [37]. This work

modeled a Boids behavior with separation, alignment, and cohesion elements that

were based off of a potential function, albeit not the Lennard-Jones potential func-

tion.

Figure 1.3: A close up picture of the GT-MAB hardware testbed used in the exper-
iments.

1.3.6 GT-MABs

The GT-MABs, as seen in Fig 1.3, were used as the robot for the experiments

discussed in this thesis. The dynamic model for the blimps was first presented in [38]

10

following procedures of previous works [39][40], and improved upon by considering

pitching, rolling, and aerodynamic damping effects [41]. A control system is built

around their models for actuating the GT-MABs for my experiments.

They have been used for a variety of applications. They have demonstrated

their ability to be deployed as a swarm system [42]. By syncing their movements

in an A* planned path [43], they demonstrated a time-based pattern control. They

were also used to test gesture controls allowing a single person to send commands

to a multi-agent system [44].

1.4 Contributions of Thesis

This work contributes to the field of swarm movement, but more specifically to

the field of swarm movement using potential fields to navigate environments. Works

using potential fields generally discuss the drawbacks attributed to the local minima

traps, although potential fields methods within swarm systems can be powerful tools

due to their ease of implementation into a distributed system. This work provides

another type of method which aids the field of swarm systems in accessing the

application of potential fields methods while reducing the drawbacks.

The solutions discussed earlier depend on stochastic methods that rely on their

randomness to escape local minima traps, usually increasing the magnitude of the

stochastic movements over time until their agents reach areas that will not lead

them back into the traps. This work contributes the use of more directed efforts

that don’t rely on stochastic processes, allowing more efficient movement that could

11

save time and fuel.

It also adds to the area of distributed systems, a hurdle keeping a number

of multi-agent methods from being available for swarm systems. Many multi-agent

methods that are not distributed break down as the number of agents in the system

increases, often due to limitations in computation or communications. Developing

the method to be available for distributed systems use allows for more capabilities

with swarm systems.

1.5 Outline of Thesis

Chapter 2 goes into the methodology of the swarm behaviors involved. In

Section 2.1 the technical approach of the chain siphon method is laid out and the

algorithm is displayed and discussed in detail. In Section 2.2 the assumptions made

for this work are discussed. Section 2.3 details all the behaviors that govern the

potential fields of each agent, and provides the full control equation. The equations

used for goal seeking and obstacle repulsion, as well as the algorithm to determine

how obstacles influence an agent’s local potential field can be found in in Section 2.4.

The derivation of a velocity term for the Lennard-Jones potential and the algorithm

it is incorporated in are described in Section 2.5, as well as the method of using

a leader heuristic. Section 2.6 discusses the initial technical approaches looked at

that ultimately evolved into the chain siphon method. Section 2.6.1 was an attempt

using a different natural phenomenon similar to the open channel siphon effect. A

discussion of the need for dynamic linking is in Section 2.6.2 which gives examples

12

of early issues found when using a a static queue generation method. The issues

associated with not limiting the maximum queue value is gone into in Section 2.6.3.

The preparation and guidelines for experiments and simulations conducted to

gather data on the different behaviors makes up the content in Chapter 3. Section

3.1 and 3.2 summarize how the simulations and robotic experiments set up their

environments and run. The implications of using the blimp platform in the physical

world is shared in Section 3.3. Section 3.4 discusses how parameters were selected

and which parameters were used in the simulations and hardware experiments.

Chapter 4 provides the results of the simulations and experiments set up in

the previous chapter. The results of the 2-D and 3-D simulations in Section 4.1

shows the data and the analysis of that data. The same type of content is given for

the hardware experiments in Section 4.2. The variation in the number of robotic

agents is discussed here as well.

The paper is concluded in Chapter 5 where a discussion of the simulation

results can be found in Section 5.1 and the discussion of hardware experiment results

is in Section 5.2. Section 5.3 ends the paper by examining how my work can be

expanded upon in future works.

13

Chapter 2

Algorithm Development And Integration Into A Boids-Like Method

In order to evaluate the performance of the chain siphon method (Section 2.1),

a full control equation (Section 2.3) was developed to direct the swarm towards a goal

and avoid obstacles (Section 2.4), which creates the local minimum trap, and gives

the swarm a holonomic boids-like behavior with the Lennard-Jones potential method

and creates a structure to implement a leader heuristic behavior(Section 2.5). The

development of the chain siphon method evolved from previous methods (Section

2.6) which had failure points prompting improved iterations of the algorithm.

2.1 Physicomimetic Open Channel Siphon Effect

The chain siphon method comes into effect when an agent senses the goal.

Each agent that senses the goal begins a queue which they are at the front of and

they broadcast their position in the queue so that neighboring agents can know.

These neighboring agents then place themselves in the next position in the queue

and broadcast their queue placement to their neighbors. This process repeats until

there are no more neighboring agents within range of the queued agents. The robots

then follow their neighbors that are ahead of them in the queue until they all can

sense the goal.

In algorithm 1 line 1 assigns the total number of agents in the swarm ns as

14

Algorithm 1 Siphon Behavior

1: ns ← Total number of agents in the swarm
2: loop
3: q = ns . Default position in queue
4: senseGoal()
5: if goal is found then
6: q = 1

7: qmin = ns
8: dmin ← Maximum neighbor range
9: queryNeighbors()

10: for every neighbor x do
11: vx = x.pos− self.pos . Rel. position vector
12: d = ‖vx‖
13: if x.q < qmin then
14: qmin = x.q
15: dmin = d
16: vlink = vx
17: if x.q = qmin and d < dmin then
18: dmin = d
19: vlink = vx
20: if qmin < q then
21: q = qmin + 1

22: if q > ns then
23: q = ns

24: broadcast(self.ID, q)
25: Csiphon = vlink.normalize()
26: return Csiphon

15

the maximum possible queue position. The queue value q of the agent is assigned

ns as it’s default value in line 3. If the agent is within sensor distance of the goal

then it changes q to a value of 1 in line 6.

The default minimum queue value qmin of the neighboring agents x and the

minimum distance value dmin are assigned their maximum possible values in lines 7

and 8 respectively. The agent searches for neighboring agents and their associated

queue values x.q and positions x.pos then finds their relative position vx in line 11

and distance d in line 12. The current qmin is compared with x.q, and if x.q is

found to be lower then it’s value is placed as the new qmin, it’s d as dmin, and vx

is designated as the vector pointing to the agent that is to be followed vlink in lines

14, 15, and 16. If x.q is the same value as the current qmin then the agent checks if

the neighbor is closer than the previous dmin. If it is dmin is given the new closest

value and vlink is set so it follows the neighbor in lines 18 and 19. This allows the

agent to follow the neighbor with the lowest x.q that it is closest to.

Once the qmin between all neighbors has been identified, the agent compares

it to its own q. If qmin is found to be less than q then in line 21 q is given a value of

1 more than qmin, except when it is greater than the maximum queue number ns.

Once the final value for q is determined, the agent broadcasts a message con-

taining its ID with q to the neighboring agents in line 24. Finally in line 25 vlink is

normalized and the resulting vector is assigned to Csiphon.

Weighting Csiphon sufficiently more than the other portions of the control equa-

tion causes the agent to follow the neighbor it has linked onto. Only control factors

that are able to approach infinity will have a noticeable effect once the agent is

16

linked, such as the obstacle or collision avoidance terms. This causes other behav-

iors such as adhesion between agents and goal seeking to become negligible.

2.2 Assumptions

The chain siphon effect relies on several assumptions and generalisations in

order to showcase it’s effectiveness against local minima traps. The first is that

there are enough agents in the swarm to be able to sense a goal and link to agents

stuck in local minima using a local chain of communication. Another assumption is

that the queryNeighobors() function in Algorithm 1 has been developed such that

agents will not try to link through obstacles to other agents. This can be equivocated

with the ability to both sense and communicate with other agents, such as an agent

needing both line-of-sight for their sensors to detect an agent and requiring them

to be within communications range. Within my simulations and experiments the

distance that agents were repelled by obstacles between them was larger than the

distance they would associate with an agent as a neighbor.

The other function in Algorithm 1 that has been generalized is how the goal

is sensed in the senseGoal() function. This requires that an agent is able to sense a

goal, whether it is a temporary goal or a global minimum, and it is able to reach the

goal. Within my implementation, an agent senses a goal once it reaches a certain

distance that allows it to be within sensor range. This works in the scenario set

up in the simulations and experiments, but may be leading agents into a new local

minimum if an agent senses the goal but obstacles obstruct the agent from reaching

17

it.

2.3 Control Equation

For showcasing the effect of chain open channel siphon, the algorithm was

incorporated into a swarm being directed by goal seeking, obstacle avoiding, and

flocking behaviors. The flocking behavior chosen for our swarm used a derivative of

the Lennard-Jones potential similar to Hettiarachchi et al. [28] for determining our

base behavior. The full control equation is as follows:

V = Wgoal ∗Cgoal + Wobstacle ∗Cobstacle

+ WLJP ∗CLJP + Wsiphon ∗Csiphon

(2.1)

This equation is a velocity controller, denoted by the vector V, which contains scalar

weighting factors Wi and control vectors Ci for each component of their respective

behaviors. The controller also limits the maximum speed.

An agent’s potential fields in the workspace assign the goal position as a global

minimum potential while obstacles are given potentials with magnitudes approach-

ing infinity. Interactions between agents use the Lennard-Jones potential method

which directs the swarm’s flocking and viscoelastic fluid-like behaviors. The repul-

sion factor of the Lennard-Jones potential method acts similar to the incompress-

ibility of the fluid, and the cohesion of the agents causes the viscous “flow” of the

agents pulling each other when moving around obstacles.

Concave obstacle configurations can create a local minimum that may trap

agents. As agents heading toward the goal they will tend to fill in the local minimum

18

trap until it is saturated, causing other agents to be repelled from the area due

to collision avoidance from the agents that are stuck. While the Lennard-Jones

potential behavior can be influential enough to destabilize some agents from a local

minimum trap, it is likely that there will still be agents stuck after most of the

swarm has passed by the obstacles. These scenarios are where the chain siphon

method shows its greatest value, as it is able to use the structure of the swarm to

propagate communication and sensor data backwards in order to free the agents so

the entire swarm is able to reach the goal with a reduced loss of agents.

2.4 Goal Seeking and Obstacle Avoidance

The goal seeking vector is determined through the following equation:

Cgoal =

(
Pgoal −Pcurrent

‖Pgoal −Pcurrent‖

)
∗ v0 (2.2)

where Pcurrent and Pgoal are the positions of the agent and the goal, respectively.

The resulting normalized vector is multiplied by a specified scalar initial velocity v0

to give the vector a desired magnitude.

Algorithm 2 Obstacle Repulsion

1: a← Obstacle repulsion value
2: loop
3: senseObstacles()
4: for every sensed obstacle x do
5: vx = x.pos− self.pos
6: d = ‖vx‖
7: vx.normalize()
8: r = −vxa

d2

9: Cobstacle += r

10: return Cobstacle

19

In algorithm 2 line 5, for each obstacle the agent finds the vector between the

position of the agent and the obstacle vx. If the obstacle is within the sensor range

of the agent, then the vector is normalized in line 7 and multiplied by the negative

of the repulsion value a and the inverse distance squared in line 8. This value is

added to the final vector Cobstacle in line 9.

2.5 Lennard-Jones Potential And Using A Leader Heuristic

The Lennard-Jones potential acts similar to the boids model, where it exhibits

cohesion and avoidance, although it creates the emergent behavior of forming lattice

structures from the agents when in steady flight and acts similar to a viscoelastic

fluid when the swarm moves around an obstacle. To perform this behavior, the

equation is defined as:

LJPr = 4ε

[(
σ

r

)12

−
(
σ

r

)6]
, (2.3)

where LJPr is the intermolecular potential, σ is the distance at which V is zero, r

is the distance from atom i to atom j, and ε is a parameter specifying the strength

of their interactions.

Hettiarachchi and Spears [31] used Equation 2.3 to find the force of the in-

teraction between particles so they could use it to drive their swarm behavior by

taking the negative of its derivative,

F = −
(
d(LJPr)

dr

)
, (2.4)

20

which becomes

F = −4ε

[
−12σ12

r13
+
−6σ6

r7

]
, (2.5)

Taking the derivative of this once more and generalizing it gives the velocities

of the agents,

v = 24ε

[
−26bσ12

r14
+

7cσ6

r8

]
, (2.6)

where b and c can be specified to change the attractive and repulsive movement of

the agent.

Algorithm 3 Lennard-Jones Potential Behavior

1: ε← Magnitude of attraction
2: b← Generalized parameter
3: c← Generalized parameter
4: loop
5: queryNeighbors()
6: for every neighbor x do
7: vx = x.pos− self.pos . Rel. position vector
8: d = ‖vx‖
9: vx.normalize()

10: r = 24ε

[
−26bσ12

c14
+ 7dσ6

d8

]
vx

11: CLJP += r

12: return CLJP

Algorithm 3 is similar to the one used to compute Cobstacle with the Lennard-

Jones derived velocity component used in line 10 instead of the inverse squared

distance.

The system has been set up so that it can be applied to a distributed system.

The only global information needed is the relative goal location, but this could be

substituted with an initial direction of the goal. Obstacles can be sensed in the

real world instead of having their information taken from a centralized matrix. The

21

Lennard-Jones potential method only requires an agent to sense its neighbors and

know their distance and direction from them. The chain siphon method communi-

cates locally between agents that it has sensed to be its neighbors.

Using a leader heuristic to take swarms out of local minima was used by

Mabrouk et al. [23] to guide a swarm out of an obstacle in a box configuration with

a hole big enough for agents to move through. The agents are initially using random

motion, they have global communication, and they have a global knowledge of where

the local minima is and where the area outside the local minima is. To implement

this method in my scenario I have restricted communication to local agents, but I

have designated areas outside of the local minima trap so agents know when to use

the heuristic. In Algorithm 3 after line 10 an agent would sense if a neighbor is

outside of the local minima. If they are, the agent increases the attraction to that

neighbor by multiplying r by a leader heuristic parameter e.

2.6 Other Attempts

The chain siphon method was developed after previous methods failed to pro-

duce desirable results. Each failure point that was discovered was analyzed to deter-

mine the root cause. Most analysis required examining all forces acting on an agent

during the time of failure, as well as how they were linked to other agents. Once

the causes of failure were isolated, solutions were implemented into the behavior.

22

2.6.1 Chain Fountain Effect

One attempted method was modeled after the chain fountain effect, or Mould

effect. This is a phenomenon where a long chain of small balls sits within a container

and has one end thrown out of the container with sufficient force. The reactive forces

of the balls and the rigid links moving out of the container causes the balls they are

connected with to follow them so more of the chain is pulled out. This continues

until the process is disrupted or the entire chain is pulled from the container.

The method was developed by using the same local chain of communication

method that the chain siphon effect implements, but the chain of communication is

static and cannot be reconfigured. Instead of agents querying their neighbors to find

agents furthest to the front of the queue, agents towards the front of the queue query

their neighbors to see where they are able to link backwards. The closest neighbor

to the querying agent was linked and given the next position in the queue. This

would cause the newly linked agent to perform the same process to find a neighbor

to link to, and the process would repeat until there are no more agents to link with.

This method breaks down once it reaches clusters of agents, such as the ones

within the local minima traps. While the intention was that as the chain moved

towards the goal and away from the trap the unlinked agents within the clustered

group would file into the trap and link to the end of the chain, what was found

to happen was the link would often intersect itself. This would cause an agent

to attempt to move across where two agents linked with each other further down

the chain. The agent attempting to move across the link would be repelled by

23

it’s collision avoidance from the two other agents, preventing it from following the

agent it was linked with. This would result in the agent attempting to follow it’s

linked agent after it had already moved past the obstacle, therefore running into the

obstacle and remaining stuck. If the agent it was linked with gets too far away then

the chain is broken, and all the agents in the queue behind it remain stuck with it.

2.6.2 Static Chain of Communication Linkage

The chain fountain effect-inspired method attempt showed the desirability to

allow multiple agents to chain to a single agent. This would minimize or eliminate

the issue of agents seeking to move through linked agents. The chain siphon method

was used as a solution to this issue, although different implementations were initially

tried. One such iteration used a static communication chain structure similar to the

chain fountain method. Once an agent was linked it would stop attempting to link

with other agents and would follow the agent it had linked with. This caused an

issue around obstacles with sharp geometry. Agents moving out of a local minimum

trap tend to hug the edge of the obstacle as they move around it. When multiple

agents are linked to an agent rounding the edge of the obstacle the agents closer

to the obstacle are pushed away from it due to obstacle repulsion while the agents

further from the obstacle are pulled towards it to attempt to follow the agent they

are linked with as closely as possible. This creates a ”pinching” scenario where

the outside agent is able to ”edge out” the inside agent. While both agents are still

trying to follow the agent they are linked with the inside agent is stalled from moving

24

until the outside agent moves far enough ahead to allow the collision avoidance to

stop pushing the inside agent backwards. This can cause the inside agent to be

pushed so far behind it is now trying to follow the agent it is linked with through

the obstacle, running into the obstacle and remaining stuck. This issue displayed

a need for dynamic generation of local chains of communication which would allow

the agents to continuously assess the best agent for them to follow.

2.6.3 Queue Value Ceiling

Another issue arose in scenarios where the geometry caused an agent to lose

the agent it was linked with. The agent would query it’s neighbors but would only

find the agent that is linked to it with a higher queue value. When this is the lowest

queue value within it’s neighbors then the agent thinks that agent is the furthest up

in the queue and tries to follow it, placing itself in the queue behind it and having a

queue value 1 higher than the neighbor. The neighbor now does the same with the

agent and this repeats between them while they continue incrementing their queue

values against each other. To avoid this issue a ceiling number was put on agents so

that they went back to a default state when they reached it. This number cannot

be too large or it will cause the agents to attempt to follow each other for extended

lengths of time. The maximum number this should be is the number of agents in

the swarm, as this would allow a single line of agents containing the entire swarm

to move towards the goal if needed, although this number could be smaller if the

size of the swarm is very large.

25

Chapter 3

Application In Simulated and Robotic Experiments

Our experiments consist of implementing our algorithm in a testbed with real

robotic blimps and separately within a simulated environment using virtual agents

for large numbers of samples. The robotic experiments run using the Lennard-Jones

potential and chain siphon behaviors in a 2-D structure using all of the available

agents in the lab. The simulations run using the Lennard-Jones potential, leader

heuristic, and chain siphon behaviors in both 2-D and 3-D environments across a

spread of the number of agents within the swarm.

3.1 Simulations

I choose to use the SCRIMMAGE [45] platform as the swarm simulator due

to the modularity of the system allowing an easy transition between behaviors and

its ease of scaling homogeneous swarms. For each type of behavior I set up both

2-D and 3-D simulations with an origin area the swarm initializes from, a goal area

they attempt to find, and obstacles arranged in a cul-de-sac formation appropriate

for the number of dimensions of each simulation. The obstacle is situated between

the origin and the goal with the concave side facing the origin.

For the 2-D experiments, the 3 obstacles are arranged in a V formation as

shown in Fig 3.2 and Fig 3.3. In the 3-D experiments, 5 obstacles are used as shown

26

Figure 3.1: The environment of the 3-D SCRIMMAGE simulations.

in Fig 3.1. 4 of them are placed on the same plane in a square and the 5th one was

placed above the empty middle space between them. Simulations were run for 100

simulated seconds. Most agents that reached the goal arrived within 30 seconds, the

excess time allowed any unstable agents in the local minimum trap to destabilize

and reach the goal or stabilize and remain stuck. If an agent had not reached the

goal by the end of the simulation then it was assumed to be stable within the local

minimum trap and counted as stuck.

For the each type of behavior in the 2-D and 3-D environments the simulations

are divided into sets by the number of agents in the swarm, ranging from 1 to 50

agents. Each set of simulations for a specified number of swarm agents consist of

30 Monte Carlo simulations that track the number of agents that made it to the

27

Figure 3.2: Sequence of frames from SCRIMMAGE simulating a swarm of agents
using the Lennard-Jones Potential behavior. Agents flow around it like a viscoealstic
fluid, although some remain stuck.

goal and the number that remain trapped. Their formation when they initialize

is randomized for every simulation to examine the robustness of the chain siphon

method as the way agents approach the local minimum trap contributes to how

many can become stuck.

28

Figure 3.3: Sequence of frames from SCRIMMAGE simulating a swarm of agents
using the Chain Siphon method behavior. Agents pull stuck agents out of traps.

3.2 Robotic Experiments

The GT-MABs localize using Vicon IR cameras and run using ROS. For com-

patibility with the previous waypoint controller the GT-MABs used, a “pseudo-

velocity” controller was implemented. The controller takes the velocity vector cal-

culated from equation 2.1 and adds it to the agent’s current position, restricted to a

specified maximum magnitude. This is updated every time the system receives new

position data.

29

The experiments are set up similar to the simulations, with an initial starting

area, a goal area, and a cul-de-sac obstacle between them. The workspace is artifi-

cially constrained in half in order to ensure the density of agents was concentrated

enough to allow for a chain of communications to be established. The goal region is

designated to be the half of the workspace past the obstacles to reduce the agents

needed to create the chain of communication back to the local minima. Experiments

are run in 2-D so that the Vicon system has all agents within its line of sight. The

trials started once all agents were in the air within the starting area and ended

once all agents not within the goal area were stabilized within the local minimum

trap or when all agents reached the goal area. At the end of each trial the agents

that had stabilized within the local minimum trap were counted as stuck. If agents

malfunctioned during the run they were designated as ”dead”. If an agent died near

the obstacle and trapped other agents the trial was deemed an outlier and the data

was not considered.

Experiments started out with 12 agents which gradually reduced to 8 agents

as they ran out of power or malfunctioned. Similar to the 2-D simulations, obstacles

are represented by 3 repelling forces placed in a cul-de-sac like configuration. In the

real world, stanchions are placed underneath the positions denoting the obstacles so

that visibility was not obscured by large physical obstacles.

The experiment is run using ROS on a central computer. Vicon data for

each agent is sent to the system, which determined the behavior for the agent

and calculated the velocity. The controller makes continuously updating waypoints

nearby the agent so it follows them. The inverse kinematics calculate the motor

30

Figure 3.4: A hardware experiment implementing the Chain Siphon method. Agents
are shown getting stuck in the local minimum then following their neighboring agents
around the obstruction.

31

commands for each agent, which are sent over Xbee.

3.3 Real World Blimp Usage

The GT-MABs were chosen due to having a movement modality that is similar

to the simulation agents, ease of implementation of software, and accessibility within

the lab space. The real world implications of using the blimps presented drawbacks.

While being a lighter-than-air vehicle allowed for long operating times between bat-

tery changes, this limited the payload weight each robot could carry. This issue was

circumnavigated by removing the on-board sensing and using a central computer to

direct the movements of the robots.

Using lighter-than-air vehicles also required them to be ballasted so they be-

came nearly-neutrally buoyant. Blimps were weighted with clay until they could

barely sink to the floor, ensuring they were near weightless but would not raise up

to the ceiling without their motors. The near-neutral buoyancy subjected them to

disturbances from the ambient air currents within the workspace. The environment

used for the experiments was a spacious high bay room which generated a large

amount of air circulation. Reducing circulation by eliminating air flow generation

sources, such as turning off active HVAC systems within the room, contributed to

improved control over blimp movement. There were also large high bay doors that

lacked insulation producing a temperature differential. Large mobile walls were

placed in front of them to reduce the effect they had on the air currents in the

experiment space, and running experiments in the fall and spring when the temper-

32

ature differential between the outside and inside was reduced contributed to more

accurate robot control.

In order to reduce the weight of onboard components, small motors were used

which allowed for the use of batteries with smaller C ratings. This improved the

amount of time the blimps were able to fly, but the small brushed motors had a

lifespan of roughly 5 hours of operation. To combat motor degradation and mal-

functioning, the motors were replaced at regular intervals to allow more consistent

experimentation.

The envelopes used to hold helium for the blimps were made of Mylar. These

held helium better than latex envelopes that were tested, but have reflective quali-

ties. This reflectivity interfered with the Vicon system that was used, causing the

IR cameras to detect reflections off of the balloons as opposed to just the reflective

Vicon markers placed on the balloons. The balloons had their top half coated with

a matte spray paint to reduce this source of noise for the Vicon system.

3.4 Parameter Selection

To choose proper parameters for each behaviour, the desired and undesired

effects of each parameter were identified. For example, when ε is too large the

attracting forces cause agents to stack up behind the local minimum trap, in a

”top hat” formation. Having ε too small decreases the cohesion of the swarm.

Designating the neighbor range too large causes agents to link to neighbors on

the other side of obstacles, keeping them stuck in local minima traps. Making it

33

too small results in agents not being attracted to each other because the range at

which they recognize a neighbor is placed within the collision avoidance range of the

Lennard-Jones potential equation.

The parameters were manually selected and tested to find the high and low

limits of the range where the undesired behavior begins to show. Then through

iterative manual selection, parameter values were chosen that intuitively displayed

the desired behavior.

The parameters within the simulation environment are unitless, but provide

reference to the relative scale each parameter is given. The initial speed is set to 10

and the maximum speed was limited to 30. Weights for the control equation compo-

nents for goal seeking, obstacle repulsion, and the Lennard-Jones potential behavior

are set to 1, while the leader-heuristic coefficient is 10 and the siphon component

weight is 75. The obstacle range is designated as 30 and obstacle repulsion is set to

1. The neighbor range is assigned 5, ε is 0.25, and collision range is set to 2.

In the physical experiments, the blimps roughly travel at 0.4 m/s at their

fastest speed. The maximum speed set for the experiments is 0.75 of the max speed

of the motors while the initial speed is 0.50 of the max speed. The range an agent

senses obstacles was 1.5 m, and the obstacle repulsion value is set to 10. Sensing

neighbors is limited to within 2.25 m, ε is given a value of 0.4, and the collision range

is placed at 0.25 m. Weights of 1.0 are set for goal seeking and obstacle avoidance,

while the Lennard-Jones potential weight is set to 0.05. During Lennard-Jones

potential behavior experiments the chain siphon behavior weight is set to 0, but

during chain siphon method experiments it is set to 20.0. A value of 50 is given to

34

a control behavior that keep the blimps within the designated workspace.

35

Chapter 4

Results

Based on the chosen parameters, our metrics are focused on how many agents

remain stuck in minimum traps. For simulations we collect data correlating the

number of agents within the swarm against the amount stuck. For hardware experi-

ments we focus on collecting data from a dynamically challenging platform and how

that affects the reliability of our results.

4.1 Simulations

For the Lennard-Jones potential behavior 2-D simulations in Figure 4.1, most

of the agents become stuck every time when using 4 agents or less in the swarm.

This number seems to increase logarithmically as the number of agents in the swarm

increases. The ratio of trapped agents to non-stuck agents stays relatively low

as the number of total agents increases. This is due to the local minimum trap

becoming saturated with agents, and in order for more agents to get stuck they

have to approach the stuck agents in a way that causes their cohesion and avoidance

behavior to stabilize their position, while also not getting destabilized by any other

agents passing near them. Having the swarm approach the area as a collective

minimizes this stacking, as there are many agents in the vicinity of the stack that

can destabilize it.

36

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

AG
EN

TS
 IN

 T
RA

P

AGENTS IN SWARM

2D LJP Agents Stuck in Trap

Figure 4.1: Data collected from the mass Monte Carlo LJP 2-D simulations.

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

A
G

E
N

T
S

 I
N

 T
R

A
P

AGENTS IN SWARM

2D Heuristic Agents Stuck in Trap

Figure 4.2: Data collected from the mass Monte Carlo leader heuristic 2-D simula-
tions.

37

0

1

2

3

4

5

6

7

8

9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

AG
EN

TS
 IN

 T
RA

P

AGENTS IN SWARM

2D Siphon Agents Stuck in Trap

Figure 4.3: Data collected from the mass Monte Carlo chain siphon 2-D simulations.

The 3-D simulations in Figure 4.4 show similar results to the 2-D simulations.

For simulations with 6 agents or less, almost all agents become trapped in every

experiment. The number of stuck agents levels out at 9 agents as the number of

swarm agents increases.

Using a leader heuristic behavior shows in Figure 4.2 the 2-D scenario that at

once the swarm has grown to 5 agents there is a reduction in the number of agents

getting stuck. This continues to decrease until an average of between 2 and 3 agents

become stuck for every change in swarm size. The 3-D results in Figure 4.5 show

the same behavior, but the change in behavior initiates around when there are 7

agents in the swarm, and decreases more slowly before it levels out.

38

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

AG
EN

TS
 IN

 T
RA

P

AGENTS IN SWARM

3D LJP Agents Stuck in Trap

Figure 4.4: Data collected from the mass Monte Carlo LJP 3-D simulations.

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

A
G

E
N

T
S

 I
N

 T
R

A
P

AGENTS IN SWARM

3D Heuristic Agents Stuck in Trap

Figure 4.5: Data collected from the mass Monte Carlo leader heuristic 3-D simula-
tions.

39

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

AG
EN

TS
 IN

 T
RA

P

AGENTS IN SWARM

3D Siphon Agents Stuck in Trap

Figure 4.6: Data collected from the mass Monte Carlo chain siphon 3-D simulations.

The 2-D and 3-D chain siphon method simulations in Figures 4.3 and 4.6 show

the same behaviors as the Lennard-Jones potential method simulations for a small

number of agents in the swarm, as expected when the swarm does not have enough

agents to establish the chain of communications back to agents that are trapped. In

the 2-D case, once there are roughly 11 agents in the swarm it starts to exhibit the

chain siphon effect, and the average number of agents stuck drastically decreases. At

15 agents it is able to consistently create a chain of communication and the average

number of stuck agents stabilizes near zero.

For 3-D agents we see the chain siphon behavior begins to exhibit when the

swarm is around 10 agents, as the average number of agents starts that get stuck

40

starts to decrease. This decrease continues until around 16 agents where it stabilizes

at zero.

4.2 Robotic Experiments

10 experiments are done for both the Lennard-Jones potential method and

chain siphon method experiments. The average number of agents stuck during the

Lennard-Jones potential experiments was 2.7 agents, with a standard deviation of

0.48. Generally 3 agents become stuck in a stable triangle configuration filling in the

obstacle concavity. An average of 0.3 agents malfunction during those experiments

with a standard deviation of 0.48.

The average number of agents that become stuck for the chain siphon exper-

iments is 1.1 with a standard deviation of 0.88, and 0.7 agents malfunction during

those samples with a standard deviation of 0.67. While the chain of communication

initiates during all of the experiments, factors such as the blimps drifting due to

atmospheric disturbances or their lack of fine motion control usually cause one to

remain stuck in the local minima.

The number of total agents doesn’t seem to have any noticeable effect when

agents are reduced from 12 to 8 as they malfunction over the course of the experi-

ments. This may not be the case if the number of agents reduces further though.

41

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

N
u
m

b
e
r

o
f

A
g

e
n
ts

LJP Hardware Experiments

Stuck Goal Died

(a) Data collected from the Lennard-Jones Potential behavior hardware experi-
ments

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

N
u
m

b
e
r

o
f

A
g

e
n
ts

Siphon Hardware Experiments

Stuck Goal Died

(b) Data collected from the Lennard-Jones Potential behavior hardware experi-
ments

Figure 4.7: The mean (dots) and one standard deviation from the mean (bars) of
agents stuck in the local minimum trap for each type of 3-D simulation.

42

Chapter 5

Conclusion

Using the results from the simulation and hardware experiments, evaluations

in the performance of the chain siphon method can be made based on the differences

between the Lennard-Jones potential, leader heuristic, and chain siphon methods.

The similarities within the analyses between the simulations and hardware exper-

iments can be used to evaluate how our results from the simulations translate to

physical world experiments.

5.1 Discussion of Simulation Results

For all scenarios in which the agents are able to establish a link to the chain

of local communications that the agent sensing the goal is a part of, almost all of

those agents are pulled to the goal. There were several 2-D simulations in which

agents would be pulled around either side of the obstacle and the final agent in the

middle would be pulled to both sides causing the attractive forces to balance out

and the agent would remain stuck. This could be an artifact of the size of the time

steps in the simulation being too large, or the last agents in the chains on either side

of the obstacle switching off having the smallest queue number due to more agents

in their queue finding the goal area. This was not observed in the 3-D simulations,

potentially due to the different geometry of the obstacle.

43

While this doesn’t guaranty that all agents in the swarm reach the goal, since in

some scenarios a chain of communication can not reach all the agents of the swarm,

the chances of establishing the communications chain improves with an increasing

number of swarm agents. As Figures 4.1 - 4.6 display, the drastic reduction in the

mean number of agents that become stuck in the chain siphon method simulations

after the number of agents has increased to 10 agents displays the capabilities of

the method. This can be contrasted to the Lennard-Jones potential method where

at that point the number of stuck agents is still increasing and the leader heuristic

method where the number of stuck agents has leveled off between 2 and 3.

The reduction in performance in the leader heuristic method compared to the

work from Mabrouk et al. [23] can be attributed to the domain that it is being used

in. Not having access to global communication limits the amount of stuck agents

that are able to be pulled from local minima, and the implementation in this work

still allows global knowledge of when an agent is outside of a local minima area. The

chain siphon method does not require these types of global capabilities, allowing it

to be better suited in communication and sensor range limited environments and

within distributed systems.

An analysis of the standard deviation through the simulations reveals insights

about the reliability of the chain siphon method. The standard deviation expands

more in the 2-D chain siphon method simulations at 9 agents compared to the

Lennard-Jones potential method data, showing the chain siphon method starting

to influence the agents in some trials during that set of simulations. The standard

deviation remains large until there are 15 agents in the swarm, showing between

44

9 and 15 agents the method is unreliable for this simulation setup. At 15 agents

the number of stuck agents has approached near 0 and remains there as the swarm

number scales up with minor relative variations. From this it can be seen that there

is a critical threshold for the number of agents needed in the swarm before reliability

can be assumed.

An analysis of the 3-D chain siphon method simulations shows the same con-

clusions at similar numbers of agents. Once the critical threshold for the chain

siphon method’s reliability has been reached it shows even more reliable results. Af-

ter the system grows to 16 agents the mean and standard deviation of stuck agents

are 0 for this simulation setup, even as the number of agents continues to scale.

5.2 Discussion of Hardware Results

The differences with the real world experiments arise from the robots chosen for

the experiments. Due to the blimps’ buoyancy being nearly neutral, they are heavily

influenced by the atmospheric airflow in the environment. This causes variations in

their positions in contrast to the simulation which has no unexpected variations in

positions or velocities. These variations create situations where the blimps would

start the queue chain and one of them may drift outside the range of the agent it had

previously been linked with. This would be less of a problem for robots with finer

controls or that could move along the ground, although a similar situation could

arise from the use of differential drive vehicles or other vehicles with nonholonomic

dynamics.

45

Despite the differences between the physical experiments and simulations, sim-

ilarities can be drawn by examining the reduction in the number of agents that are

stuck when using the chain siphon method compared to the Lennard-Jones poten-

tial method. The median number of stuck agents during Lennard-Jones potential

behavior experiments was 3, and the median for chain siphon method was 1. While

most chain siphon method experiments didn’t cause all agents to escape, the re-

duction in the number of stuck agents was a desirable result and showed positive

outcomes even when using imprecise moving platforms such as the GT-MABs.

5.3 Future Work

Future work could be done on this algorithm expanding the robustness of it’s

implementation. Developing a structure to use this without a static goal area would

improve functionality. For example, if an agent moving through a space could sense

other agents stuck, then a dynamic temporary goal could be placed outside of the

local minima trap to allow the agent to pull out the stuck agents. Another addition

could be implementing biasing factors so that the swarm does not need a complete

communications tether between the goal and the agents in the local minima trap in

order for them to escape from the trap. Biasing heuristics such as following agents

further from obstacles or ones with a higher velocity gradient, implying there are

agents stuck and agents moving, could aid in achieving this. Also modifying the

behavior so it can be used on vehicles with nonholonomic controls or heterogeneous

swarms would improve the capabilities of the algorithm. It could be beneficial to

46

run real world experiments in 3-D and on a truly distributed-capable hardware

systems, but the current platform restrains us from this and would require further

development to access this type of functionality.

47

Bibliography

[1] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. The International Journal of Robotics Research, 5(1):90–98, 1986.

[2] S. Chung, A. A. Paranjape, P. Dames, S. Shen, and V. Kumar. A survey on
aerial swarm robotics. IEEE Transactions on Robotics, 34(4):837–855, 2018.

[3] A. Becker, G. Habibi, J. Werfel, M. Rubenstein, and J. McLurkin. Massive
uniform manipulation: Controlling large populations of simple robots with a
common input signal. In 2013 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 520–527, 2013.

[4] Aaron Becker, Erik D. Demaine, Sándor P. Fekete, Golnaz Habibi, and James
McLurkin. Reconfiguring massive particle swarms with limited, global control.
In Paola Flocchini, Jie Gao, Evangelos Kranakis, and Friedhelm Meyer auf der
Heide, editors, Algorithms for Sensor Systems, pages 51–66, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg.

[5] Aaron Becker, Cem Onyuksel, Timothy Bretl, and James McLurkin. Control-
ling many differential-drive robots with uniform control inputs. The Interna-
tional Journal of Robotics Research, 33(13):1626–1644, 2014.

[6] Hamsa Balakrishnan. Control and optimization algorithms for air transporta-
tion systems. Annual Reviews in Control, 41:39 – 46, 2016.

[7] P. K. Menon, G. D. Sweriduk, and K. D. Bilimoria. New approach for modeling,
analysis, and control of air traffic flow. Journal of Guidance, Control, and
Dynamics, 27(5):737–744, 2004.

[8] S. James, R. Raheb, and A. Hudak. Uav swarm path planning. In 2020 Inte-
grated Communications Navigation and Surveillance Conference (ICNS), pages
2G3–1–2G3–12, 2020.

[9] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer.
Math., 1(1):269–271, December 1959.

[10] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science
and Cybernetics, 4(2):100–107, July 1968.

[11] Steven M. Lavalle. Rapidly-exploring random trees: A new tool for path plan-
ning. Technical report, 1998.

[12] L. E. Kavraki, P. Svestka, J. . Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation, 12(4):566–580, 1996.

48

[13] L. Barnes, W. Alvis, M. Fields, K. Valavanis, and W. Moreno. Swarm formation
control with potential fields formed by bivariate normal functions. In 2006 14th
Mediterranean Conference on Control and Automation, pages 1–7, June 2006.

[14] L. Barnes, M. Fields, and K. Valavanis. Unmanned ground vehicle swarm
formation control using potential fields. In 2007 Mediterranean Conference on
Control Automation, pages 1–8, 2007.

[15] Qifeng Chen, Sandor Veres, Yaonan Wang, and Yunhe Meng. Virtual spring-
damper mesh-based formation control for spacecraft swarms in potential fields.
Journal of Guidance, Control, and Dynamics, 38:1–8, 02 2015.

[16] C. Bentes and O. Saotome. Dynamic swarm formation with potential fields and
a* path planning in 3d environment. In 2012 Brazilian Robotics Symposium
and Latin American Robotics Symposium, pages 74–78, Oct 2012.

[17] H. Chiang, N. Malone, K. Lesser, M. Oishi, and L. Tapia. Path-guided artificial
potential fields with stochastic reachable sets for motion planning in highly
dynamic environments. In 2015 IEEE International Conference on Robotics
and Automation (ICRA), pages 2347–2354, May 2015.

[18] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings
of ICNN’95 - International Conference on Neural Networks, volume 4, pages
1942–1948 vol.4, Nov 1995.

[19] Rainer Palm and Abdelbaki Bouguerra. Particle swarm optimization of poten-
tial fields for obstacle avoidance. 09 2013.

[20] D. Zhou, Z. Wang, and M. Schwager. Agile coordination and assistive collision
avoidance for quadrotor swarms using virtual structures. IEEE Transactions
on Robotics, 34(4):916–923, Aug 2018.

[21] John H. Reif and Hongyan Wang. Social potential fields: A distributed be-
havioral control for autonomous robots. Robotics and Autonomous Systems,
27(3):171 – 194, 1999.

[22] Cezary Kownacki and Leszek Ambroziak. Local and asymmetrical potential
field approach to leader tracking problem in rigid formations of fixed-wing uavs.
Aerospace Science and Technology, 68:465–474, 09 2017.

[23] Mohamed Mabrouk and C.R. McInnes. Swarm robot social potential fields with
internal agent dynamics. International Conference on Aerospace Sciences and
Aviation Technology, 12, 05 2007.

[24] H. E. Espitia and J. I. Sofrony. Path planning of mobile robots using potential
fields and swarms of brownian particles. In 2011 IEEE Congress of Evolutionary
Computation (CEC), pages 123–129, June 2011.

49

[25] Matteo Guerra, Denis Efimov, Gang Zheng, and Wilfrid Perruquetti. Avoiding
local minima in the potential field method using input-to-state stability. Control
Engineering Practice, Volume 55:174–184, 07 2016.

[26] R. Gayle, W. Moss, M. C. Lin, and D. Manocha. Multi-robot coordination using
generalized social potential fields. In 2009 IEEE International Conference on
Robotics and Automation, pages 106–113, 2009.

[27] Fethi Matoui, B. Boussaid, and Abdelkrim Mohamed Naceur. Local minimum
solution for the potential field method in multiple robot motion planning task.
pages 452–457, 12 2015.

[28] Suranga Hettiarachchi, William Spears, Derek Green, and Wesley Kerr. Dis-
tributed agent evolution with dynamic adaptation to local unexpected scenar-
ios. volume 3825, pages 245–256, 09 2005.

[29] J. E. Jones. On the Determination of Molecular Fields. II. From the Equa-
tion of State of a Gas. Proceedings of the Royal Society of London Series A,
106(738):463–477, Oct 1924.

[30] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral model.
SIGGRAPH Comput. Graph., 21(4):25–34, August 1987.

[31] Suranga Hettiarachchi and William M. Spears. Distributed adaptive swarm
for obstacle avoidance. International Journal of Intelligent Computing and
Cybernetics, 2(4):644–671, 2009.

[32] Nitin Sydney, Derek A. Paley, and Donald Sofge. Physics-inspired motion
planning for information-theoretic target detection using multiple aerial robots.
Autonomous Robots, 41(1):231–241, Jan 2017.

[33] R. Rajan, M. Otte, and D. Sofge. Novel physicomimetic bio-inspired algo-
rithm for search and rescue applications. In 2017 IEEE Symposium Series on
Computational Intelligence (SSCI), pages 1–8, Nov 2017.

[34] Wesley Kerr. Gas-Mimetic Swarms for Surveillance and Obstacle Avoidance,
pages 193–221. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[35] H. G. Tanner, A. Jadbabaie, and G. J. Pappas. Stable flocking of mobile agents,
part i: fixed topology. In 42nd IEEE International Conference on Decision and
Control (IEEE Cat. No.03CH37475), volume 2, pages 2010–2015 Vol.2, Dec
2003.

[36] H. G. Tanner, A. Jadbabaie, and G. J. Pappas. Stable flocking of mobile agents
part ii: dynamic topology. In 42nd IEEE International Conference on Decision
and Control (IEEE Cat. No.03CH37475), volume 2, pages 2016–2021 Vol.2,
Dec 2003.

50

[37] H. G. Tanner, A. Jadbabaie, and G. J. Pappas. Coordination of multiple au-
tonomous vehicles. In 2003 IEEE Mediterranian Conf. Control and Automation
(MED), 2003.

[38] Sungjin Cho, Vivek Mishra, Qiuyang Tao, Paul Varnell, Matt King-Smith,
Aneri Muni, Weston Smallwood, and Fumin Zhang. Autopilot design for a
class of miniature autonomous blimps. pages 841–846, 08 2017.

[39] S. van der Zwaan, A. Bernardino, and J. Santos-Victor. Vision based station
keeping and docking for an aerial blimp. In Proceedings. 2000 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS 2000) (Cat.
No.00CH37113), volume 1, pages 614–619 vol.1, Oct 2000.

[40] S. B. V. Gomes and J. G. Ramos. Airship dynamic modeling for autonomous
operation. In Proceedings. 1998 IEEE International Conference on Robotics
and Automation (Cat. No.98CH36146), volume 4, pages 3462–3467 vol.4, May
1998.

[41] Qiuyang Tao, Jaeseok Cha, Mengxue Hou, and Fumin Zhang. Parameter iden-
tification of blimp dynamics through swinging motion. pages 1186–1191, 11
2018.

[42] Tristan Schuler, Daniel Lofaro, Loy Mcguire, Alexandra Schroer, Tony Lin, and
Donald Sofge. A study of robotic swarms and emergent behaviors using 25+
real-world lighter-than-air autonomous agents (lta 3). 10 2019.

[43] Jason Gibson, Tristan Schuler, Loy McGuire, Daniel M. Lofaro, and Donald
Sofge. Swarm and multi-agent time-based a* path planning for lighter-than-air
systems. Unmanned Systems, 08(03):253–260, 2020.

[44] Divya Srivastava, Daniel Lofaro, Tristan Schuler, and Donald Sofge. Gesture-
based interface for multi-agent and swarm formation control. 11 2019.

[45] Kevin DeMarco, Eric Squires, Michael Day, and Charles Pippin. Simulating col-
laborative robots in a massive multi-agent game environment (SCRIMMAGE).
In Int. Symp. on Distributed Autonomous Robotic Systems, 2018.

51

