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Abstract

A swarm is defined as a large and independent collection of heterogeneous or homogeneous agents
operating in a common environment and seemingly acting in a coherent and coordinated manner.
Swarm architectures promote decentralisation and self-organisaition which often leads to emergent
behaviour. The emergent behaviour of the swarm results from the interactions of the swarm with its
environment (or fellow agents), but not as a direct result of design. The creation’ of artificially
simulated swarms or practical robot swarms has become an interesting topic of research in the last
decade. Even though many studies have been undertaken using a practical approach to swarm

) construction, there are still many problems need to be addressed. Such problems include the

problem of how to control very simple agents to form patterns; the problem of how an attractor will

affect flocking behaviour; and the problem of bridging formation of multiple agents in connecting
multiple locations. The central goal of this thesis is to develop early novel theories and algorithms
to support swarm robots in. pattern formation tasks. To achieve this, appropriate tools for
understanding how to model, design and control individual units have to be developed. This thesis
consists of three independent pieces of research work that address the problem of pattern formation

of robot swarms in both a centralised and a decentralised way.

The first research contribution proposes algorithms of line formation and cluster formation in a
decentralised way for relatively simple homogenous agents with very little memory, limited sensing

capabilities and processing power. This research utilises the Finite State Machine approach.

In the second research eontribution,‘by extending Wilensky's. (1999) work on flocking, three
different movement models are modelled by changing the maximum viewing angle each agent
possesses during the course of changing its direction. An object which releases zin artificial potential ‘
field is then introduced in the centre of the arena and the behaviours of the collective movement

model are studied.

The third research contribution studies the complex formation of agents in a task that requires a
formation of agents between two locations. This novel research proposes the use of L-Systems that
are evolved using genetic algorithms so that more complex pattern formations can be represented
and achieved. Agents will need to have the ability to interpret short strings of rules that form the

basic DNA of the formation,
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Chapter 1  Thesis Overview

1.1 Motivation

Since the dawn of time, humans have observed a variety of interesting and intriguing patterns

found in nature dee to the natural movements of anirpals and insects. A flock of birds in

formation in the sky, a school of fish which turns and flees in perfect coordination (Shaw

1962), a groﬁp of eusocial insects (e.g. ants) foraging cooperatively for food. These kind of
behaviours that lead to organised formation is termed as “swarm behaviour” (Lie & Passino
2000). In recent times, researchers ffom many diverse fields have converged to study the
interaction in biological swarms and how to mede] them, through the observation of
organisation and evolution in the swarm agents. Researchers in the applied sciences, for

instance, have shown an even greater interest in swarm behaviour since the understanding of
these behaviours can lead to new optimisation techniques such as the Particle Swarm

Optimieation (Kennedy & Eberhart -1995) and Ant Colony dptimisation (Bonabeau et. al.

1999). These behaviour inspired algorithms can be applied in many fields, such as in networks

and telecommunication systems (Bonabeau et al. 1999), robotics (Beni 2005, Cao et al. 1997)

etc.

Recent advances in robotics in general and electronics in particular have started to make the
deployment of large numbers of inexpensive agents or robots for many practical applications
more vfeasi»ble. Such applications include for example search and reseue type tasks where these
inexpensive agents are tasked with looking for survivors in collaesed buildings after a natural
_ disaster like the aftermath of an earthquake. Agents in this instance have to perform dangerous
or»explofative tasks in .hazardous, unknown and remote environments. In deploying these
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agents, the number of autonomous agents involved can be very large, ranging from hundreds to -

thousands.

When dealihg with large numbers of agents, many problems need to be -addressed; Such
prdblems include the agent's design and architecture, task allocations, control strategy,
llocvalisatiori and sQ forth.‘ Another important question that needs to be addressed is one of
organisation. Agents in the system should be able to form and organise themselves aroﬁnd
complgk patterns which are generally required to perform specific tasks ina complex areﬁa.

This thesis focuses on the latter problem, i.e. the organisation of the robot swarms.

Although many approaches and solutions have been proposed to address the: organisation
issues, as swarm robotics is relatively a new field, there are still many aspects that can be -
investigated. With a fuller understanding, researchers may find solutions that lead to better

algorithms.

In this thgsis, the wide range of techhiques and .algorithmé currently being devéloped or
available is examined and studied in-depth. With this new understanding this thesis
e ‘proposes algorithms of line formation and c]uste; formation for relatively simple multi-
robot system using exisiing‘state based model, -
e studies the impact of 'collective movemeht model behéviburs in the presence of an
attractor unit (artificial potential field), and
® proposes a novel niethod ‘of robots formation connecting two- locations by using

'Lindenmayer Systems in conjunction with evolutibnary algorithms.

Original contributions are offered in the three kvey areas above through the study and analysis of
existing algorithms, improvements of these algorithms and finally and most importantly the

contribution of new algorithms.

In this Chapter, a brief introduction to self organisation, research context and outline of the

thesis is presented. Firstly an overview of self organisation systems including some definitions



is presented and some of the main ingredients that make up these swarm systems are explained.
The research in this thesis is then put into context. Finally, the outline of this thesis is presented

in Section 1.4.

1.2 Self Organisation
Self organisation in swarm systems refers to a broad range of patte‘mA-fonnation processes in
nature. Thése include sand grains forming rippled dunes (Figﬁre 1.1), orderly rows of clouds in
the sky, flocking behaviours in birds and so on. Camézine et al. (2001) in their book (p.8)
provided an “open” definition on self organisation as reproduced below:

“Self-organisation is a process in which pattérns at the global level of a

system emerge solely from numerous interactions among. the lower-level

components of the system. Moreover,. the rules specifying interactions

among the Sj/stem fs components are executed using only local inqumation, _

without reference to the global pattern”,

Figure 1 1: An example of pattern formation in nature, showing sand dunes.



Bonabeau et al. (1997) who worked closely on insects gave another definition on self
organisation which focuses more on ethological aspect as follows: |

“Self organisation does not rely on individual complexity to,dccount for

complex spatiotenlporal Sfeatures thaf emerge at the colony level, but rather

assumes that internctions amongst simple individuals can produce highly

structured collective behaviours”.

This thesis proposes the following summary definition
“In self-organised 'Swarming systems, pattern formation usually occurs
through local interactions of agents in the system without intervention by

external directing influences”.

There ére four basic ingredients that may contribute to the self-organising systems:
e multiple interactions |
° vampliﬁcation of fluctuation and randomnesn
® positive feedback .’

e negative feedback

Interaction is the main ingredient and it is a basic requirement for self-organising systems. In
- nature, interaction is needed to allow an agent to obtain information which is used to determine
a response. Obtaining information from an interactinn is a result of someA kind of
" communication with the nearest neighbburs or its environment. In the simplest case of flocking
birds for exalnple, the local information acquired in the interaction is simply the relative
position of other birds in the neighbourhood. This information is gathered directly. without the
need of direct communication, e.g.. bird to bird communication. It is also unnecessary for birds |
to leave some sort of “marker” in tne environment to communicate with the others in the flock.
In the case of foraging ants, ants also do not require direct communication with other
individuals, However, ants leave behind in their tracks Aa type’v of chemical substance called
pheromones as an environment marker to communicate with other ants (Bonabeau et al. 1997).
In cases like these (ants foraging and birds ﬂock{ng), it demonstrates that only by having
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indirect communication during an interaction is sufficient to produce complex behavioﬁr. In
many other cases, information usually transfers by direct communication. A wéll known
example of this type of interaction is the dancing performance by some species of bees. Whén a
bee returns from foraging to .the hive, the bee will perform a»dance that convéys information

about the approximate location of the nectar source (Bonabeau et al. 1999).

In biological .‘ systems, random fluctuation is a common ingredient in boosting up self
organisation perfonﬁance. Many of these systems do actually rely on certain .stochastic
elements to some degree for behavioural ﬂexibilfty. The amplification of ﬂuctuati‘on and
randomness often leads to the discovery of new solutions. Moreover, these fluctuations will
v also act as seeds in which new solutions énd‘s‘tructures can grow. A popular example of the -
random fluctuation fs caused by stochastic trail following in ant colonies. In the beginning, the
-ants will follow trails imperfectly due to the low concentrations of pheromone on the ground
(Deneubburg 1983). But when an ant loses the trail énd is lost in the environment, this ant has
the potential to find an undiscovered food source. Tﬁe newly found food could be a better food
source than the» currently being utilised by the colony. From this example, it shows that random

fluctuations are also vital to the swarm systems.

Another commoﬁ ingredient in self-organising systems is positive feedback or cumulative
causétion. Positive feedback promotes radical changes in the system by reinforcing it in the
same direction. A commonly observed example of positive feedback can be found again in the
trail-laying in ants. When an .ant finds food, it will leave behind a pherombne trail while
refuming to the nest. Others who find this trail will foll_ow the trail to the food source, and they
* will reinforce the initial trail as they return to the nest. As the resﬁlt of positive feedbaék, the

more ants that use the trail, the stronger the pheromone concentration will be.

Negative feedback in the self organising systems acts as a balancing mechanism of the effect of
~positive feedback. In nature, the autocatalytic process usually requires an opposing force in
- most cases, otherwise the system will use huge amounts of resources for a single particular

activity. Negative feedback usually occurs due to the depletion of limited individual or
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resources. In swarm systems, the negative feedback can be in the form of saturation, exhaustion
' overcrowding, and even competition within individuals. In the ‘case of foraging ants, the
negative feedback will cdme from the exhaustion of the food, 6vercrowding at the food source,
corﬁpetition between two or more food sources, limxited number of available ants, and so on and

so forth.

As there is no unique or satisfactory definition of self organisation, the summary above serves

as a set of heuristic rules to design or discover a self organising system.

In systems that lack self organisation, order or organisation can be imposed on them in many
different ways. The order not only can come through the presence of a supervisory team but

* through various directives such as pre-existing patterns in the environment as well.

1.3 Context

The origin of the work that is presented in this thesis is intimately related to and emerges from
the development of the -SWARM projeét (Intelligent Small World Autonomoﬁs Robots for
Micro-manipulation), funded by European Union Information Society Technologies (IST) 6th
framework programme (FP6-IST project 507006) which began in January 2004 and completed
at the end of 2008 (Woern et al. 2006.)‘. The project 'aims to take a leap forward in robotics
research by bringing together experts and 'combining expertise in micro-robotics, in distributed
and adaptive systems, and in self-organising biological éwann systems. The project also seeks
to produce technological advances to facilitate the mass production of micro-robots, which can -
then be emi)loyed as a “real” swarm bonsisting of up to 1000 robot agents. The agents that form
the swarm will each be equipped with limited pre-rational on-bqard intelligehce. 'I:‘he swarm
will consist of a huge number of 4heterogeneous robots, differing‘ in the 'type of sensors,
manipulators and compu'tatidnal power. Such a robot swarm is expected to perform' a variety of
abplications in the not too distant future, including micro assembly, biological, medical or

cleaning tasks.



The‘ main challenge in t_he I-SWARM project is to build a micro robot with the initial aim of
achieving a size of 4mm? (2mm x 2m x 1mm) cbmplete with sensors and manipulators. The
work in the first phase wa§ a joint effort of the partners in the Consortium to define the
minimum capabilitiés of a micro r;)bots which are able to self organise and able to have
emergent behaviours. As the size is the main issue in the project, based on the robot hardware

conéeived, the behaviour of the robot is designed by using a bottom-up approach.

Figure 1.2: Artist impression of cooperation befvv'eeh I-SWARM nﬁcrofobbts

Eéch of the I-SWARM robot has three “legs” (tWo at the‘ front and one at the back) made from
special materials (electro-active polymers) as a locbmotion unit. As the éwarm needs a
continuous supply of energy, micro solar cells and a thin film battery that acts as a buffer have
been mounted onto the main platform. The onboard electronics consists of an 8051 micro
controller core, analogue circhitry (for the power drivers for the actuators), and the A/D
converters (for communication and sensdr -modules and power management). Optical
communication using custom fabricated infra-red LEDs and photodiodes fechnol'ogy has Been
chosen-as the communication mod for the -SWARM robots. The communication range is set
to about 2-4 times the size of the robot in four direétions (front, right, back and left relative to

the robot).



At the time of writing, the I-SWARM robots have been manufactured as shown in Figure 1.3,
with the final size of 27mm® (3mm x 3mm x 3mm). The remaining tasks now are to program
the robots so that they can exhibit some sort of intelligence and show some kind of emergence

behaviours.

" Figure 1.3 The ﬁnal I-SWARM robot with dimension of3x3)&3 mnt’.

14 Structure'of the Thesis -

This rest of the thesis is organised as follows: -

e Chapter 2 gives background information and provides a literature review surrounding
other research related to this thesis. These include some baékground studies in the
biological, artificial intelligence and robotics field. An overview of the current state of

the art in the field is also presented.

e Chapter 3 introduces two robot swarm control algorithms which are used for .
distributed pattern formétions. In these control algorithms, there is no explicit
communication between agents and the pattern formations are formed based solely on
reactivity of the agents towards ité environments. Agents in this study have very little

memory, limited sensor capabilities and processing power.



° Cha;;ter 4 models collective movements or aggregations of robots swarms using simple
flocking rules. From the' model, aggregation behaviours that emerge from the different
movement models of relatively simple agents, which differ only in the maximum

turning angle and sensing range, are examined.

e Chapter 5 presents an orig'inal contribution on complex pattern formations of robots
swarms by combining Lindenmayér Systems (or L-Systems in short) and genetic
‘algorithms. In this study, it is shown that the pattern that is formed when connecting
two locations- can be échieved and represented. using simply evolved L-Systems,
-provided each robot has the ability to interpret short strings of L-Systems that forml the

basic DNA of the formation.

e Finally in Chapter 6, conclusions are drawn. The results and the performance of the
algorithms are discussed. Additionally the contributions of the research are summarised

and recommendations and directions for possible future research are proposed.



Chapter 2 - Literature Survey

‘2.1 Pattern Formations

~ Since the dawn of time, humans have been fascinated with the regular natural patterns that
emerge around them - soéial insecfs foraging, birds flocking, shepherding, not to mention.
countiess examples from physical systerhs such és. the orderly row§ of clouds and the

washboard pattern of sand ripples in deserts.

In biological systéms, groups of the same species of animals seem to move as a single unit,
changing direction in a split second which has led some researchers to believe that some kind
of communication or even “thought transference” must be involved as argued by Parrish &

Edelstein-Keshet (1999). In reality this behaviour is less mysterious.

Many believe that birds must have leaders, e.g. the bird at the front of the flock leads and the
others follow. But, in fact, most bird flocks do not have a leader. at all. There is no overall
control. Instead, the flock movements are determined by the instantaneous decisions of

individual birds.

Birds follow simple rules in response to interactions with their neighbours in the flock. Orderly
flock patterns arise from these simple rules, reacting to the movements of its neighbours. None
of the birds have a sense of the overall flock pattern. The flock is coordinated without a

cooidinator and organised without an organiser.
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There are many reasons to believe why animals aggregate in numbers. The most common
reason seems to be tha; it serves as a defence against predators. Having many eyes together
ensures that at least some will spot a predator while the qthers are feeding, resting, or looking in
the opposite directions (Vabg & Ngttestad 19v97)(Howard 1929). ‘Parrish and Edeistein-Keshet
(1999) pointed out that aggregation is actually an evolutionarily advantageous state: where it is
believed that aggregation may increase the chances of survival of newborns and juveniles from
being killéd by predators, such that the reproduction of the species can be continued. Secondly,
the aggregation also helps in. the search for food; where a large number of individuals has more

capability to sense and search than a single one.

In 1975, Powell conducted experiments on bird aggregation where he took a numbef of
Starlings (a species 6f bird) and put them in an aViafy. He then separated some of the birds oh ‘
their own and some in a group Qf around ten. He made an artificial hawk and flew it over the
Starlings énd noticed that birds 6n their own took a longer time to react than in the groups. He
- concluded that eyen though it Ihight be advantageous in some aspect for the Starlings to forage
on their own, it is better for them to forage as a group and take turns in looking out for .

- predators as they will be able to react more quickly in'danger.

A number of the anti-predator strategies in schools of fish, such as split, join aﬁd vacuole.
(Figure 2.1), performed by schools during predator attack are some of the most inferésting
behaviours in a swarm (Vabg & Ngttestad 1997). Another benefit of moving in formation is the .
dilution effect. The dilution effect is simply that the bigger the" group size, the sﬁlaller the
probability that each individual is attacked. Krause (1994) stressed that odd individuals are
attacked first; however that does not. mean that each indiyidual is fighting to gain accesé to the
safest location in the swarm. In 1994, Cresswell ol;served and Studied the behaviour of a
species ‘of bird called Redshanks. He found that once the group of the birds reaches a certain
number, vigilance no longer has such a crucial effect on the group. He also realised that it
actually became harder for an individual to be singled-oﬁt by a predator for attack and some

times by staying together it would even deter a predator.
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Figure 2.1: Schematic presentation of several anti-predator strategies in a school of fish. (Taken from
" Vabg & Ngttestad 1997) '

In the special case of ﬂying in a V-formation by large. birds such as geese and pelicans, there is
an energy béneﬁt (Lissaman & Shollenberger 197 0), since following birds can take advantage
of vortexes in the air produced ‘b.y the ones ahead of them (Gouid & Heppner 1974). Although
such formations élearly have leaders, these are temporary ones. Because a leading bird does not
gain aﬁy energetic ad\/antage from its position, it will drop back after some time whiie'ahother
takes the lead. It is not known if ﬂock members do this on a rotation basis, alfhough it is
possible that larger and stronger birds are in the lead a greater percentage of the time.
Alternatively, the V-fonﬁ may reflect a mechanism by which birds avoid collisions with other
birds and stay in visﬁal contact all the time (Goﬁid & Heppner 1974). Additional background
'oﬁ biological swarms.and why they aggregéte can be found in (Parrish et al. 2002)(Hamilton

1971) and references there in.
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2.1.1 Pattern Forming Paradigms
In designing artificial swarms, a variety of approacﬁes have been proposed to create global
behaviour or pattern formation of a group of mobile robots. Spears et al. (2005a) divided the

approaches in to two significant paradigms; Biomimetics and Physicomimetics.

2.1.1.1 Biomimetics

Biomimetics is a general description for an engineering proeess or system ‘that mimics
(imitating, copying, or learning from) biological systems. The term emerged frem biochemistry
and applies to an infinite range of chemical and mechanieal phenomena, from cellular processes v
to whole-organism functions. As an early example, the Wright brothers are said to have built
their aeroplane structure based on observations and analysis of bird flight. However,
researchers diverge in precisely hoW to deﬁne biomimetics. “Biomimetics” is often a vague

term, much like the “intelligent” term.

In the field of swarm engineering, Reynolds was one of the first researcher to investigate
behavioufal control animation (1987). He developed a system to model flocking characteristics
“of birds and fishes. It was based on three dimensional computational geometry of the sort
norreally used in cor_nputer_ animation or computer aided design. He called the generic
simulated flocking creatures as boids. The‘basic flocking model consists of three simple
steering behaviours which describe how an individual boid manoeuvres based on the positions
and velocities to its nearby flockmates. More detail about Reynolds's flocking algorithm will be

described later on in the next section.

Based on the schooling behaviour of ‘a group of tuna, Hanada "et al. (2007) proposed an
adaptive flocking algorithm. In this algorithm, an agent first dynarhically selects two of tlile.
neighbouring agents within its perception range and maintains a uniform distance with them,
resulting in three neighbouring agents form a regular triangle. As the numbef of agents grow,
the group of agents will form an equilateral trianglellattice. Secondly, in the presence of
obstacles, the swarm of agents is required to be divided into rﬁultiple smaller group in order to

avoid the obstacles. The split takes place by the relative degree of attractive force termed
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JSavourite force, which is similar to Newton's law of Universal Gravitation, that helps agents to

decide their direction in various environmental conditions. Based on the magnitude of favourite
vector }‘" , each agent decides where to move. A favourite vector ;’: for the passageway s;
_is defined by | f J.| = w,ld jz. where wj; is the width of the passageway and d; is the distance

to the passageway, as shown in the Figure 2.2. A set of favourite vectors [?jl 1<j<n} is

the representation of the passageways, and the agént will select the maximum magnitude of .

T,- denotes by ITJ e By combining the above methods, the swarm agents are enable to

split into multiple groups, and also can rejoin as a big group according to the environmental

conditions.

Figure 2.2: Illustration of a direction decision according to an eivironment
computation of magnitudes for each favourite vector. (Taken from Hanada et al.
2007). '

Another recent example of research in this category is the “pherobots” or pheromone robot
developed by Payton et al. (2004). Pherobots mimic chemical pheromones released by insects
to produce sophisticvate.d organised group activity that emerges out of the simple interactions
Abetween iﬁdi_viduals.‘ The key concept of pherobots ié, “Virtual Pheromones” which provide a
diffusive local-neighbourhood iﬁteraction mechanism by which the robots éommunicate and
coordinate. Unlike chemical pheromones releaSed by insects in “the environment, vinual
pheromones are tied to the rdbots thgmselves.' In addition, virtual pheromohes_are propagated as
- symbolic messages and aré received only by nearby neighbours. More detail about pherobots

will be described later on in the next section (Swarm Robotics section).
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Bayazit et al. (2002) pfoposed using rule—_based_roadmaps to achieve better group behaviour. In
this technique, first a roadmap as in Figure 2.3 is built. A roadmap is simply a connectivity
gfaph encoding representation of feasible paths in the environment. Each node of the graph is é
- configuration of the robbt that satisfies certain requirements, collision-free for' iﬁstance.
Cohnectioﬁs between nodes of the roadmap graph represent feasible paths. Secondly, rules at
each node are added. The rules may be as simple ;as “Go to next node in your path”; or can be
as complex as .“wait for others to arrive, then select a leader, follow the leader”. Their results
show that the the performance of agents using rule-based roadmap behaviours is very close as if

the agents have complete global knowledge of the arena.

o -
w

: Obstac}e

Figure 2.3: A roadmap. Black dots represent nodes; connections between nodes represent
feasible paths. (taken from Bayazit et al. 2002)

Bayazit et al. (2004) then extended their model to achieve different behavi_ours from their
swarm robots. One of the interesting beh‘aviours presented is shepherding between adoganda
ﬁock of sheep. The dog. agent tries to move the ﬂéck toward a goal, the dog steers the flock
‘from the rear and if ‘any subgroup separates ouf, it is the dog's job to move the subgroup back to
the flock. ‘Their work ShoWed that complex group behaviours can be generated if some global
information of the environment is available which can not be modelled wiﬁh local information

alone.
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- In the European SWARM-BOTS project, the agents behaviours are directly inspired by the
collective behaviour of social insects colonies and other social animal societies (Dorigo et al.
2004a).> In particular the project focuses on the study of the mechanisms which govern the

processes of self-organisation and self-assembling in artificial autonomous agents.

2.1.1.2 Physicomimetics

Another approach to creating global behaviour of a group of mobile robots is called '
“phyéicomim'etics” or “artificial physics” (Spears et al. 20052). Physicomimetics is a-general
description for engineering' processes or systems which gain inspiration from physical systems
" such as fluid flow analyses,.Newtonian analyses and kinetic analysés. The key points in
physicomimetics are:
® Any aggregate behaviour seen in classical physics is‘ potentially reproducible with
collections of mobile robots. | |
® Any design is not restricted to copying physical systems precisely, i.e. modifications
can be made. |
e Understanding qf classical physics can be used to synthesise the emerged collectiQe

behaviour.

In physicomimetics, the research is focused on robotics behaviours that are similar to those
shown by solids, liquids and gases (Spears et al. 2005a). In solids, crystalline formation for
example, is excellent for distributed sensing tasks, to create a virtual antennae or synthetic

aperture radar. For such tasks it is important to maintain connectivity and a lattice geometry.

Liquids are good fbr obstacle avoidance or narrow passage traversal tasks, while moving

towards a goél, since fluids easily manoeuvre varound obstacle_s while retaining connectjvity.
Gases are useful for coverage, sweeping and exploration. For these tasks it is neCessary that
covérage can be maintained, even if with individual robot failures. Gag-like behéviours are

created using purely repulsive forces.
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‘Chgng et al. :(2005) proposed an algorithm for coordinating a swarm 6f homogenous mobile
agents to spatially self-aggregate into arbitrary shape using only local interactions, which they
called SHAPEBUGS. SHAPEBUGS consists of two main processes; trilateration and gas
expansion movement. A trilateration process allows an agent to find its perceived position on
the“consénsus coordinate system, and éubsequently adjust it; while gaé expansion movement -
~ model will force agents to disperse within the defined 2-D shape. T.he advantageiof the
- algorithms are that; agents can easify aggregate into any user-specified shapes, using a
formation procéss' that is independent of the number of agents within formation; and secondly
'.agents can automaticaliy adapt to increase and decrease of agents, as well as accidental

displacement.

Zarzhitsky et al. (2005) introduced a cherhi'cal plume tracing (CPT) method based on
computational fluid dynamics. The algorithm itself is divided into three subtasks; starting from
finding the _chemicaL then tracing it to the source using CPT methdd, and finally identifying the
soﬁrce. Iq finding the cheinical, agent ﬁses a method called casting, which consists of zigzag or
spiralling motion to increase exploration-coverage. In tracingthe plume; first, the agents use
gravifational forces (artiﬁcizil physics) to arrange thellnselves into a hexagohal formation and
~form a mobile adaptivé sensor network, so that agents could share real flow-field parameters of -
ﬂuid dynémics with six Of, their closest neighbours. These flow-field parameters or variables
are use to -calculate the next navigational decision using the pfoposéd technique called

fluxotaxis. Fluxotaxis uses the concept of mass flux, which can be ‘written in a differential
equation form as: __a_p=v.( pf/’) where [ is the mass density of the plume, y is the
ot 4
fluid's velocity, and the product of pV is called the mass flux, or the rate of change of mass
flow per unit area. With fluxotaxis, each agent in the robotic lattice computes the amount of
local chemical flux pV , passing through virtual ‘sdrfac_es formed by neighbouring swarm
agent. In addition, fluxotaxis is designed to maximise the use of available sensor data by

combining the fluid Velocity and chemical velocity (Spears et al. 2005b). The final subtask is to
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»i'dentify the sohrce of the chemical. They (Zzirzhitsky et al. 2005) showed that ttleir fluxotaxis
algorithm is able to demonstrate statistically and practically significant gains in performance
over other two most popular .altematives, i.e. chemotaxis and anemotaxis, even in an
environment with obstacles. Even though their current results look promising, they have yet to
include a more advanced turbulence model, learning the threshold of the plume/ chemical, and -

increasing the number of obstacles. -

By using what is described as social . potentials techniques, Balch end Hybinette (2000)
achieved large scale multi-agent formations. The tecltnique was inspired by the crystal |
generation process. Each agent had local attachment sites attracted to other agents. When the
swarm encounters obstacle, agents are able to avoid obstacle depending on the behaviour based
rule combinirtg the concept of an attractive and repulsive forces; i.e. repulsion from obstacles
with attraction to the goal. The technique seems easy to implement however, the parameters

need effort to adjust to perform successful flocking.

' Speers and Gordon (1999) showed how to control swarm robot systems using a
' phyéicbmimetics frameWork. Their initial application on solids based pattern formation,
required that a swarm of micro-air vehicles (MAVs) self organise into a he)tagonal lattice,
creating 5 distributed sensing grid with a fixed spacing between MAVs (Kellogg et al. 2002). In
liquids-based formation, they use the same approach as solids-based pattern formation only by
changing the parameter that balances the attractive and repulsive components (Gordort-Spears
& Spears 2002). The switch between the two behaviours (solid and liquid) acts very muclt like
phase transition. In gas-based formations which are good for sweeping the arena, swarm robots
must not ohly avoid obstacles but they must also sweep. behind the obstacles to minimise'holes
in the coverage. In this case, the swarm robots must not move too quickly since it may cause a
failure to sweep behind the obstacle, and they must not to move too slow. To achieve this, the

optimum speed of the swarm robots has to be found (Spears & Gordon 1999).
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2.1.2 Organised Formations

Organised formations problem in a group of robots can be described as the coordination of the -
rbbots to form and maintain a formation Qf a certain shape, suéh as forming a line (Bahceci et
“al. 2003). Solutions.for ;his problem are currently being used in se#rch and rescue operations,
‘space explorations and remote terrain, landmine removal, unmanned aerial vehicles (UAVs),

‘control of satellites erc.

Various animal species also exhibit organised formation of patterns as a result of coilective and
cooperative behaviours amongst individual. Couzin and Krause (2003) state that, organised
formations occurred when each entity in a group maintains a specific distance and orientation to
each other while in motion. Examples of such organised formations include birds flocking, fish

schooling and wildebeests migrating as-shown in Figure 2.4.

The works/studies in organised fdnnation can be broadly separated into two distinct categories:
centralised and decentralised formation. Centralised formation is where there exisfs an entity or
more, acting as a supervisor or controller which can oversee the whole gro_upl and command
_ éach individual in the group accordingly. A well known biological examplé of the centralised
organised formation is that of the sheepdog in which the system acts as a controller that

controls and guards the movement of the sheep herd. '

The second cétegory is decentralised organised formations. In this category, there isi no
controller or sup.ervisor to control the organisation and coordination of each individual. Each
- individual in the group reactively plans its n_ext‘movement usually according to physical cues
_within its local neighbourhood. These physical cues can be anything iﬁ the envirpnmentﬁ such
as obstacles, other individuals in the neighbourhood range, or may be the intensity of the light.
Examples in this category include line formation ny ants, flocking of birds and schooling of

fish.
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(b)

(c)

Figure 2.4: Example of biological swarms. (a) Wildebeest herd grazing across Savannah Kenya (reproduced with
permission from the Planet Earth Productions). (b) Wild parrots, wheeling in the sky, in Edgewater New Jersey,
USA ( repraduced with permission from Stephen C. Baldwin, brooklynparrots.com). (c) School of Silverside fish
(reproduced with permission from R Kent Wenger)
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2.1.2.1 Centralised

In centralised organised formation techniques, a computational unit can oversee the whole
group of agents and plans the action of the group individuals accordingly (De La Cruz &
Carelli 2006)(Tanner & Kumar 2005). The action that should be taken by each agent is then
transmitted to the agent via some kind of communication methods. There are not many works
done in this category, after all if will defeat the purpose of swarm robotics v;/hich emphasises -

decentralised control.

- De La Cruz and Carelli (2006) proposed a controller for positioning and traeking the desired
agent formation. It operates in a centralised way and consists of two stages. At first a complete
dynamic of a unicycle-like mobile agent and its linear parameterisation is medelled.;Then the
input-output feedback linearisation of the model is performed. On the second stage, the model
of multi-agent systeme is obtained by arranging all the feedback linearised agent models intoa
single equation. This multi-agent model is expressed in terms of formation states by applying a
coordinate transformation. Finally the inverse dynamics technique is then applied to design a

- centralised formation control; which can be applied both to positioning and tracking the desired

agent formations. They proved their method by using physical agents ‘where, the agent

formation errors for distance and angle errors are 0.05m and 0.03rad respectively after 17.5

seconds.

Tanner and Kumar (2005) introduced a navigation function through which a group of mobile
agents can be coordinated such that they can form a particular fonnation, while moving in a
group and avoiding collisions in the environment. In thie approach, graph theory is used, where
the properties associated with the interconnectien graph are shQWn to affect the shape of the
navigation function. The potential field produced by the function ensures that almost global
asymptotic convergence of the agents to a particular oriented formation shape, while
guaranteeing collision avoidance in the process. Although the proposed scheme is centralised,

the potential function was constructed in a way that facilitates complete decentralisation.
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. ¢
Other centralised methods commonly used for mobile agents can also be used for multi-agent

systems. Such methods include the many path planning élgorithms. In path planning, there are
many algorithms that have already been proposed. The efficiency of an algorithm can usually
be evaluated in 4 different Ways (Russell & Norvig 1995):

L. C(')mélete_ness: Does the search can find a solution?

2. Optimality: Does the search can find the optimal,solutibn?

3. Timé complexity: How l‘on’g is the time taken to complete the solution?

4. Space complexity: How large inemory is needed to perform the search?

Path plann_ing searches can be divided into two distinct categories, heuristics and stochastic
searches. ‘H.euristi.c search strategies use problem specific knowledge beyond the definition of
the problem itself, thus can find solutions more quicker more efficient compafe to stochastic
search strategies. The are many well known heu'ristic.s search algorithms, which include the A*
search (A-star search), Greedy bestQﬁrst search, Memory-bounded heuristic search, Rec'ursiv.e
best-first search (RBFS), and so on. However in this the§is, only the A* search will be
introduced briefly, as ‘it will be used as one of the basis for comparisons in one of the three

contributions presented.

The A* search is one of the most widély used seafch élgorithms. It ‘is a best-first, graph search
algorithm that calculates the least-cost path from a given initial node to anothgr node. The
- nodes are eyaluated by: | |

- fn) = g(n) + h(w) . @D
.where g(n) is the cost to reach the goal, and k(n) is the. cost to get from the node to the goal.
éince g(n) gives the path cost from the start node to node n, and h(n) is the estimated cost of the
optimdm (cheapest) path from node n to the géal, then the j(h) is the estimated cost of the
' cheapest solution through node n For thét reason, the optimum local solution is the-node with
the lowest value of g(n) + h(n); provided that the heuristic function ‘h(n) ‘satisfies certain

conditions. -
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It uses a distance-plus-cost heuristic function (usually denoted f{x)) to determine the ‘ord'er in
which the search visits nodes in the tree. The distance-plus-cost heuristic is a sum of two
functions: the path-cost function (usually denoted g(x), which may or may not be a heuristic)
and an admissible "heuristic estimate" of the distance to the goal (usually denoted A(x)). 'fhe,

~ path-cost function g(x) is the cost from the starting node to the current node.

2.1.2.2  Decentralised

Studies on organised pattern formations in a decentralised way are receiving increased attention
in récent years. There are two distinct approaches to the coordination and organisation of multi-
agent systems reported in the literatures; the first is the behaviour based approach, and the

second is the leader-following approach.

Behaviour based.approach

~ In the Behaviour based control approach, the systems often .use relatively little internal variable
state to model tﬁe macroscopic behaviour. The controllers consist of a selection of behaviours
that -maintain'and/or achievé goals (Mataric 1999). For example, “collision-avoidance” will
maintain the goal of preventing collisions and v“homing” will achieve the goal'of reaching some
home destination. In more complex behaviours, some primitive behaviours of agents such as
“collision-avoidance” énd “goal seeking” are predefined, and the final forration control of
agent is derived ffom a weightiﬁg of the relative importance of each behaviour. The advantage
of the approach is that the group dynamics contain' formation feedback by coup_ling the
weightings of the actionsv taken. The disadvantages baro that the group behaviour cannot
explicitly defined, and the dynamics of the group are unpredictable making it hard to guaranteé ,

the stabi'lity of the whole systems (Takahashi ez al. 2004),

Freeman et al. (2006) proposed an algorithm called the “distributed estimation algorithr'ns”'
which allow agents i_n a communication network (or neighbourhood) to maintain the estimates
of summary statisfics deécribing the shape of.the curr'ent‘swarm. In this study, each agent is
able to controll and organise its velocity and acceleration and also sense its own position, and
exchange information with other agents Within its neighbourhood. As a result, the agents form a
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- communication graph with changing topology as the agents move. Each agent implements an
estimator that maintains an estimate of the current swarm formation stati'stics, based on its own
‘sensed data. and information received from neighbours, and a nonlinear motion control-

algorithm.

Nouyan et al. (2006) introduced the concept of chains with cyclic directional patterns; CDP-
chains in short. CDP-chains are a method in robotic exploration of unknown environments.
These chains are serve to explore the arena and esteblish a path between two points; food and
home. Furthermore, the CDP-chains are also recruiting other agents to the food along formed

path, and guide them to transport thé food back to the home.

Desai (2002) propoéed a graph-theoretical framework to control a team of agents moving in an
arena with obstacles while maintaining a specific formation. The framework uses control
graphs to define each agent behaviour or movement in the formation. The framework can also
handle transitions between any two of ‘the control graphs while avo.idihg obstacies. The
complexity of computations for control graphs increases with the ‘number of agents in the arena,
however due to the facts that computatiorls‘ are decentralised, the framework described is

scalable to a large group of agents.

Fierro and Das (2002) vproposed another graph-based technique to tackle moving formations of
a group of agents. They proposed a four-layer modular architecture for formation control

namely, group control, formation control, kinematic control and dynamic control. Above all,

group control layer is the hrghest layer which generates desired trajectorres for the whole group .

to move. Formatlon control of a team of agents is bu1lt from three different networks namely
physrcal network communication network and computanonal network. It malntams the -

formation by usmg local communication and relative position information.

" The kinematics control layer computes the required and angular velocities of agents. The
dynamrc control layer will ﬁnally deal with the task of realising the necessary speeds grven by

the kmematrcs control layer. The four-layer archrtecture represents an abstraction amongst tasks
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required at different levels. For instance, agents with different dynamics such as mass, inertia
and friction, can be used by changing the dynamics control layer on-the-fly, which in the end
will promote reusability of the architecture. The reusability property makes the architecture

very attractive for formal control applications, and will promote robustness to the systems. ' _

Kaminka and Glick (2006) designed a multi-graph monitor framework for érganised formaiion
controllers thaf optimises the desired properties, for instance sensor usage for robustness. The
framework consisted of two main strategies: cost optimal formation control graphs and
dynamic switching of control graphs. Cost optimal formation control uses graph theoretics

techniques that can be used to compute sensing policies that maintain a given organised |
formation, whilst dynamic switching of control graphs is a protocol allowing controllers to be |
switched on-line, to allow agents to adapt to sensory failures. Their results show that the use of
dynamic protocol will allow formations of phyéical agents to move signiﬁcantly faster and with

greater precision whilst reducing the number of formation failures.

Yang et al. (2007) described an approach for controlling organised formation; of multiple
wheeled agents with parametric uncertainties and actuator saturations in the environment A;Jvith
obstacles. In this approach described, firstly, a cOliisiQn-free t;ajectory is generated by
introducing a non-convex optimisation problem. If the agents following the trajectory find that
they are moving élose to an obstacle, a new trajectory will then be generated by solving the -
optimisation problem under convex.obsbtacle assumption. Secondly, to keep the agents traéking
the reference trajectories orv formations, a distributed moving horizo'n control scheme is used.
Under this scheme, the whole optimisation problem is divided i.nto several simple optimisation
p;‘oblems accofding to the number of cooperative agents, thus reducing complexity of ‘the
computation. Furthermore, close-loop propertiés inclusive of stability and robustness are

guaranteed.

Pavone and Frazzoli (2007) developed a distributed control policy that allows agents to achieve
different symmetric formations. The proposed scheme is inspired by the cyclié pursuit strategy,

which is an attractive approach since it is decentralised and requires a minimum number of
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communication links between agents to achieve organised formations. The proposed control
policy generalisgs the notion of a classic cyclic pursuit algorithm by letting each of the agents
pursue its leading neighbour along the line of sight rotated by a common offset angle. The key
features with this method are stability of the systems and the possibility to achieve many

different formations with the same simple control law.

»Mastellone et al. (2007) introd.uced a ;:ontrol scheme that achieves dynamic formation control
and collisidn avoidance for a gréup of nonholonomic agents. At first, for collision avoidance
and tracking of a reference frajectory.for a single agent, a feedback law using Lyapunov-type
analysis needs' to be derived. Secondly, by ektending the derived result to the casé of multiple
nonholonomic agents, different classes.ofl multi-agent pfoblems involving an interacting group
of nonholonomic agents such as formation control can be addressed. Finally, by combining the
preyious results, the problém of driving a group of agents according to a given trajectory while

maintaining a specific formation can be addressed.

Cohen and Peleg (2006), studied and proposed a local spreading algorithm for mdbilé agents in
1-D and 2-D. In the study, oblivious or .memory-less agenis are used. The goal in this study is
to spread N agents evénly within the perimeter of a given region. The algorithm for local
spreading smates that:
e first, each agent must first move to somewhere or some pbint so that it is at an equai
distance with neighbours;

e secondly, the agents must move until there is no visible neighbour in the range.

For both 1-D and 2-D, at every time step it will calculate the average over all agents of the

minimum distance to the nearest “object” (agent); (d.v) is defined as follow:
1o | -
' dav = WZ mln[dlj} (2.2)

where the object considered in taking the minimum are all other agents and all p'oirits of the
* perimeter of the region. The next task is to move the agent to a point so that the agent will not

perceive others within its vicinity.
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In 1-D local spreadirig, agents are refer to according to their order on the line, and denote the
.position of eaéh agentas i, 0<i<N-—1, attime ¢, in the global .coo‘rdinate syStems by Ri[1].
The spread algofithm for agent in 1-D spreading is as follow:

® If no other agents are in sight, then do nothing.

: Ri+l+Ri—l

e Otherwise, move to the point >

In 2-D of local spreading the algorithm becomes a bit complicated. The algorithm is based on
each agent i, dividing space into four quadrants Qo to O3, according the orientation as shown in
the Figufe 2.5. The spfead algorithm for agents in 2-D spreading is given as follows:
e Forj=0,..,3do:
@ m; <« cﬁdrdinate of nearest agent or perimeter point in quadrant Q;.
(b) d; « dist(i, my)
® g « argmin; {d}}; Anin = min; {al,:}:' dopp =dsq
min"“dopp

e Move away from the current location by qu.

*Ymin

Figure 2.5: The four quadrants of agent's view. (Taken from Cohen and Peleg 2000)

- Sun z;nd Waﬁg (2007) described a synchronous céntrol approach to swarms of mobile agents in
switching betweeﬁ different organised formations. At first, a position synchronisation error is
;deﬁned as differential position error between every pair of two neighbouring agents; and it is
dérived according to the desired formation. Then a decentralised trajectory tracking cohtroller

is developed with feedback of position and synchronisation error. The developed tréje‘ctory
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tracking controller is proven and guarantees that asymptotic convergence towards zero of both
position and synchronisation errors. From their simulation, the results demonstrate the

effectiveness of the proposed synchronous control design for the formation control.

Antonelli et al. (2005) propos'ed a technique for formation control of multi-agent systems. The
proposed techﬁique which they named Null-Space-Ba;ed Behavioural Control, is a beha\./iour
based .téchnique which aimed at coordinating a group of mobile agents while performing
different_missions.v The missions are firstly decomposed into several elementary tasks and, for
each of the task; a motion reference command for each agent is elaborated referring to a
kinematic approach. The techniqué is fhen combined with the output required by eéch tz;sk in
order to obtain the final motion command for each agent. In .properly handling multiple,
eventually conflicting tasks, it uses a hierarchy-based épproach that uses the null-space
projection. From' their simulation results, they showed timt null—space-baéed behaviour control
offers the advantage to ensure the achiévement of the output of the higher-priority task' withoﬁt
being affected by the output of lower-priority task (Antonelli ez al. 2000, 20(')7).' However, due
to its analytical nature, the proposed technique needs the definition of a suitable task function

that admits computation of a proper Jacobian, which may be obvious for some tasks.

Nguyen and Do (2006) proposed a constructive method to design cooperative controllers based
on local potential functions. The cooperative controllérs are the controllers that force a group of
mobile agents to achieve organised formation while a‘vqiding collisions with other agents.
Firstly, ski.mple point-mass agents are considered to clarify the design philosophy. The teF:hnique
is then extended to non-holonomic agents, and finally local potential functions are constructed
to design gradient based cooperative controllers. This cooperative controller is designed to
achieve almost global asymptotic convergenée of a group of mobile agents to a particular
_formatioﬂ in term of both shape and orientation, with a guaranteed of no collision between

agents.

Avrutin et al. (2007) introduced the concept of connecting objects via random growing trees

(RGT) in swarms of agents. In the working arena, there are at least two objects in addition to
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swarm agents. One of the object is labeiled the base and the others is the target objects. The
‘go'al is to “bridge” or connect the base and target objects by using the swarm agents. At ‘thev
beginning, agents aro_ uniformly distributed over the arena. The bridging task consists of finding
every object, encircling the objects, ond connecting them (goal-target) by lines of égents that
should bé as short as possible. The RGT approoch can be split into three main phases:

° E_xploration: Agents oxp_lore the arena, looking for objects (goal or target) and encircle

| the object. | |

e Formation of treesi Position one chain at the circle around the object and begin to build
a tree out of chains using open end of this first chain as the root.

e Reduction of the rree: After all objects have co‘nnected to overy other object, unneoded
ohains have to leave the tree. By doing this, tne remaining lines of agents should be
reduced to the niinirnal nocessary number of agents needed to connect the objecto.

As an addition, the formation of a first tree may already begun at one object whilst another one

(object) has not been found yet.

Leader-follower approach

In the leader-following approach, some agents will aot as lea(iers while others as followers. The
leader agentn track predefined reference trajectories, ‘and the followers track transforined
,Ave_rsions of the states of their nearest neighbours according to some given methods or schemes.
The advantage of this approach is that it is easy to control multiple agents in a desired
formation using only two different controllers and it is suitable for describing the formation of
robots (Takahashi et al. 2004); Fnrthermore it is easy to understand and implemerit; even if the
leader is perturbed by disturbances, the formation can still be maintained (Nguyen & Do 2006).
The disadvantages in this approach includes the difficulty to consider the ability gap of an agent
(Takahashi et al. 2004), there is no explicit feedback to the formations and if the follower is

perturbed, the formation cannot be maintained (Nguyen & Do 2006).

Das er al. (2002) studied and proposed a vision-based framework for the development of non-

holonomic multi-agent systems by composing simple sensing, estimation, control, and
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coérdinatio_n blocks in a bottom-up approéch. The framework allowé the designers to build-
complex .Iflulti-a.gent systems especially for leadér-following structure aigoﬁthms from simple
controllers and estimators. The main key. features of the approach are a suite of >control and
estimation algorithms, and a model for switching that allows a group of agénts to maintain a
prescribed formation. The switching model will also allovy t_he‘ agent to change its formation in

the presence of obstacles.

Takahashi et al. (2004) broposed a controller which is based on the ability of agents to use the
leader-following strategy organised formation. The proposed scheme consists of thr_ee steps.
First, a performance index for each agent, such as maximum acceleration, maximum velocity .
and maximum'forque of a motor, is quantified. Secondly, based én the performance index or
based on the ability of the agent, a new controller is then proposed. Finally, for collision -
avoidance, a compliance controller us&ng virtual repulsion was proposed. Takahashi also
showed that by using the proposed scheme, agents in leader-following formation can keep the

. formation even if the leader is changed.

Javaid et al. (2004) proposed a distributed control algorithm where organised fonnatién of
agents can be grown dynamically by using local sensing and minimal éommunication; In this
. algorithm, the controller on each agent consists'of four different behaviours hamely, leader,
wanderer, meﬁbe_r and candidate. The leader agent is predeﬁnedv whenever the system is
initialised. The leader will maintain the formation and heading, where only the leader knows
the goal information. For the wanderer, the agent is programmed with the behaviour where its
task is to look‘for the formation. The member agent, is programmed with the behaviour when
the agent is part of the formation; when this behaviour is active, the agent will follow ‘its
immediate leader and maintain a fixed distance to it. Caﬁdidate, is the behaviour when an agent
finds the formation and communicates with the other group members that it is going to attach
with in the formation. The communicatioh between a candidate and it; neighbour or immediate
~leader is used for information exchange that consists of the tybe or shape of the formation, the

number of agents currently in the formatioh, maximum number of agents allowed for the
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form.'litiori, and any other formation parameters (radius of the circle for instance). Oncé all the
necessary information is obtained, the agent will calculate its pan angle to keep in view of its
neighbour and.the distance from it. The formation of agents gréws from a single agent to a
maximum possible number of agents. while in motion. The first agenf, i.e.v the leader, are
predefined as mentioned previously. Others will try to jqin or make formation with the leader.
Whilst in the formation, agents will try to maintain a regular polygon shape and hence make a
virtual circle if the number of agénts in the formation is adequate. The controi algorithm is

minimal but lacks the ability to maintain formation in the existence of obstacles.

Gustavi and Hu (2005) proposed control algorithms for multi-agent systems with limifed sensor
information. The proposed control algorithms are only based on agents with locél information
and without global knowledge. In the first algorithm, vertical trzicking is designed such that the
follower agent follows the leader agent's trajectory while maintaining the distance towards the
leader. In the second algorithm, horizontal tracking is designed to make the follower agent
move side by side with the ledder agent at some predefined distance while maintainihg bsame
orientation as the leader agent. The third control dlgorithm is combination of vertical and
horizontal tracking; in this algorithm Gustavi and Hu showed that by combining the first two
“algorithms, more complex multi-agent organised formation can be formed. waever, the
stability of the systems which can be affécted by switching between the first two different

algorithms yet remain to be shown.

Li et al. (2006) focused on the leader-follower type of organised formation control algqrithm of
multiple differential-driven wheeled mobile agents. The propos'ed control strategy is derived
from the dynamics of the agent directly. The control strategy takes the acceleration ability of
the agent into account énd uses only its local .sensing data and small data communication to
achieve organised formation control. From the experiments shdwn, whenever the leader agent
tracks different trajectories, the follower agents can always adjust itself to form the desired
fonhation as quickly as possible, and it §vill maintain the formation stably over time. From the

extensive experiment done by Li et al., it shown that the method is quite effective for formation
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establishing and stable for the formation within their abilities.

Chen .et al. (2007) proposed a deqentralised formation control system baéed on dynamic
reéulations and sched.ulin.g scheme. From thé sim}liations of a typical leader-following triangle
formation‘ (orV-formation), the trajectory of the group can be calculated in advance or can be
plahned in real time by the leader. The leader apprdaéhcs its desired goal in an arc:type
trajectory, therefore the real trajectory, being piecewise-smooth, can be obtained. Furthermore,
the followers adjust and maintain the formation shape with the piecewise-smooth arc trajectory
as well. Whiie maintaining the formafion shapé, the control regulation svs;itches internally
between OTR (Offse; regulation) and SDR (Spacing distance regulation) depending on the
dynamic formation framework of .the formation. Thué it promotes”adaptability which is very .

attractive in the multi-agent systems.

Sorensen and ‘Ren (2007) introduced a unified formation control scheme using th¢ leader-
follo‘wer approach with consensué-based formation control. In this schefne, an agent requires
only local neighbour-to-neighbour information exchange. In addition, an extended consensus
algbn’thm ié applied 'to estimate the time varying group trajectofy information in a distributed
manner. A consensus-based distributed formation control strategy is then applied to each agent
based on the estimated group traje;:tor'y information. Sorensen and Ren also studied the effect
of th¢ multiple grbup leader and found that by increasing the number of group leaders within
the formation, agent estimate of the formation state is improved and the system is robust.

against single point failure.

Fredslund and Mataric (2002) used a neighbour referenced method, where each of the follower
- agent keeps a single “friend” at a desired angle g, uéing some appropriate sensor. The angle ¢ is
predetermined in a particular type of geometric pattern. When agents flock, a leader will

navigate a path while the follower agents maintain the angle and distance to their neighbohrs.

Parker et al. (2004) proposed a tightly-coupled cooperation in heterogeneous agents performed

by two different types of agents, namely leader and simple. agents. In this strategy, leader
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agents which have rich sensing capabilities assist simple agents with limited éapabilities for
navigation and obstacle avoidance. But such a strétegy makes the leader more costly and the

team becomes less robust to the failure of the leader.

2.2 Definitions
2.2.1 Intelligence
Kennedy et al. (2001), in their book,.stated that:
“»Intelligeﬁce is a word usua.lly used to describe the mental abilities of
humans; though it can be applied to other organisms and even to inanimate
- objects li'ke computers and computer programs. There is very. little
agreemen? amongst psychologists and amongst computer scientists about
" what this word means, and almost no agreement between these two

groups”.

Fogel (1995) claims that a good definition of inteiligence should appiy both to humans and
machines equally well, and believes that the concept should apply to evolution as well as to
behaviours perceptible on the human time scale. Fogel concluded in his paper that iﬁtélligencg,.
whether in an animate or inanimate context, can be :deﬁned as the “ability of a system to adapt

its behaviour to meet its goal in a range of environment”.

The discussion of intelligence in computer sciénce is often intertwined with the Turing Test
(Turing 1950). Turing gave intelligenqe a simple definition:
“intelligence is fundamentally the ability to solve problems, particularly

unusual or new problems”.

" The Turing test itself sounds simple enough where a subject is placed in a room with a
keyboard and a monitor, while in another room there is a computer and a person. The subject
will then type questions into the keyboard and receives a reply from the other side of the room.

A summary of the test is: if the subject is unable to tell if the computer's responses were
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- generated by human or the machine, then the machine is considered intel.ligent (Kennedy et al.
2001). This test has been subject to different kinds of criticism and has been at the heart of

many discussions in Al, philosophy and cognitive science communities for the past 50.years.

Beni (2005) commented 6n an example of a manufacturing plarit, in which a manuféqturing -
machine which produce's a mechanical piece for a car in an ordered manner but in a predictable
way is not considered as intelligent. Likewise, even the roiling of dice where the outcome is
- unpredictable and does 'not produce order is not considered as intelligent. He then concluded
that, the maiii characteristics’ of intelligent behaviour is the production of something ordered

and the outcome should not be predictable, i.e. emergent intelligent behaviour.

Dorigo and Schnepf (1993) believe that intelligent behavidur cannot be created in .artiﬁcial
systems without the al;ility to interact with a dynamically changing unstructured environment.
They added that cognition of the robot emerges only when autonomous systems tiy to impose
: structure on the perceived environment in order to survive. These structures in tum:pro'vide the
ground work for moré intelligent behaviour such as; the skills to learn, the emergence of goal-
directed behaviour and the development of problem-solving methodologies. These basic
cognitive skills have been developed as part of the evolutionary process, and unlikely to have

been present in biological systems from the beginning of the life.

The reseaich in this thesis address the problem of pattern formation of robot swarms or swarm
systems. Earliest work on Swarms comes from the -research on social insects. Biologists have
been inspired by cooperative behaviours of insects like ants and bees, which led to intense
reseaich on their behaviours. The central to the swarm systems are decentralisation alid self-

organisation which promote the emergence behaviour. |

To date, there many definitions of intelligence have been defined by several groups. The work
in this thesis is related to robot swarms or swarm systems. As this thesis is related to swarm
‘systems, this thesis deﬁnes brief definition of intelligence as:

“the ability to solve problems in unpredicted way” .
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2.2.2 Swarm Intélligence

Insects that live in colonies such as ants, bees termites and wasps have been living on earth for

rnillions of years, building nests, organising production and foraging fdr foods. It has been
| known that they care about order and cieanliness. They have a simple communication’

mechanism and warning system, maintain an army and divide labour. In addition, they are very

flexible and can adapt well in the changing environment. This flexibility makes the colonies

‘ robust (Bonabeau et al. 1999).

In 1989 when Beni and Wang were investigating the properties of simulzited, self—onganising'
agents in the framework of cellular robotic systems, théy introduced the cdncept of Swarm
Intelligence (SI). SI is an artificial intelligence technique based around the study of coilcctive
behaviour in decentralised, self—organised systems. It is composed of unintelligent individuals,
but the group demonstrates complex behaviours (Bonabeau et al. 1999). Such systems are
typically made up of a population of simple individuals which interaci locally with one another

and with their environment which lead to the emergence of global behaviour.

The main feature of self-organisation is that a system's organisation or movement does noi
explicitly depend on external control factors. In other words, the organisation emerges solely
due to the local interactions between individuals and their environment (Camazine et al. 2001).
The organisation can evolve dynamically either in time or space and can maintain some kind of
stable form or can show transient phenomena. An example of such a system'is that-of a colony
of ants sorting eggs vi/ithout any particular ant knowing the sorting algorithm itself (Bonabeau

et al. 1999).

Like the word intelligence, the definition of emergence (or emergent behaviour) has attracted
the attention of some researchers'. Taylor (1990) asserts that the emergent properties are
collections of units at a lower level of organisation and, through their interaction, often give rise

to properties that are not the mere superposition of their individual contributions.
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Steels (1991) describes “emergent functionality” as a function that is not achieved directly by a
component borAhierarchical system of components, but indirectly by tﬁe interéctions of more
primitive components amongst themselves and with the world.v Mataric (1993) defines
emergeﬁt behﬁviour for swarm intelligence as follows:
“emergent behaviours is apparent by global states which are not explicitly |
| programmed in, but it results from local interactions amongst individuals. It
is considered interesting based on some metric established by the

observer”.

Despite several differences in the definition of emergence, one common theme connects all
these definitions in the AI (Artificial Intelligence) community, i.e. emergent behaviour occurs
as a result of local interactions amongst individuals and between individuals and their

environment.

Many social insect societies exhibit interesting complex behaviours in organising themselves to
perform specific activities such as foraging and nest building. Cooperation amongst individuals
arises through an indirect communication mechanism, called stigmergy and by interacting

through their environment (Holland & Melhuish 1999).

Stigmergy is a w01;d coined by the biologist Grassé in the 1950s. The word. itself was used to
explain the task coordination anci regulation in the context of nest building by termites. In'
termites nest building activities, Grassé showed that the activities do not depend on the
individual workers themselves but mainly are achieved by the current nest structure. The
current local nest configuration is of course was configured by the previous termite activity in
which will tfigger the current activity or configuration of the local afea of the nest. The
configuration will then again stimulate the response of a same termite or a different one in the

colony.

Although there is normally no centralised control structure dictating how individual agents

should behave, local interactions between such agents often lead to the emergence of collective
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behaviour. Such systems can be found in nature and include ant colonies, bird flocking, fish

schooling, animal herding, bacteria moulding etc.

Interactions between individual insects in social insect colonies have been well documented.
Some éxamples of such behaviours are bee dancing and ants' pheromone trail-laying during
food foraging. These simple communication systems between insects lead to the collective

intelligence of social insect colonies.

Take ants ‘as an example. First, an ant takes a bite from a food source and then wanders off.
After a short while, lots of ants will begin to queue in néat lines to and.fro', f(.)llyowing what
seems like the shortest route between the food ﬁnd the nest. It seems like ants hz;ve some kind
of higher inte'lligence, and yet ants only havelseveral hundred neurons to help. themb consider -
what to do next. In fact, ants do not plan, they just react to their environmenf (Bonabeau et al.

1999).

Many ant speciés have trail-laying and trail-following behaviour when foraging. When an ant
stumbles across a bieée of food, it does not remember where it is, it just depdsits a chemical
trail using pheromones as it moves from food source to its nest. To find food, others will follow
these trails (Franks ez al. 1991). At first, ants choose between a long and short path at-random,
but because more ants trave_l the shorter path in a given time, the pheromone trail reinforces the
pherorhone signal. This will become the favoured path. This method of using the world as a
memory bank is the aforementioned stigmergy. The procéss where an ant is influenced towards
a food source by another ant or by é chemical traii is called recruitrﬁent. Recruitment based

solely on pheromone trails is called mass-recruitment (Franks et al. 1991). -

As w'i‘th ants, ;he self-organisation in honeybees is also based on relatively simple rules of
individual insect behaviour. The 'ru‘le.s specify that the‘ interactions amongst the systeni's
: &onstituent units are exeéuted on the basis of purely local information, without reference to the
global pattern. This is an emergent property of the system rather than a propérty imposed upon

~ the system by an external ordering influence.
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Self-organisation of honeybees is'base‘d on simple rules of individual insect behaviour (Von-
Frisch 1968). When a bee finds a nectar source, it then goes back to the hive and relinquishes
its nectar to a hive bee. Each hive has a so;called dance floor area in which the bees that
: discbver nectar sources dance in a way to recruit and convince their hive-mates to follow them.
After the nectar is exhausted, the bee can either:
® abandon the food source and become an uncommitted follower again, or
e continue to forage at the food source without recrﬁiting hive-mates, or
o dance and thus recruit the hive-matés before it returns to the nectar source.
The dance is a communication mechanism uéed for recruitmient in honeybees, in which the

information about distance, location and quality of a nectar source is also transmitted.

Within the dance area, the bee dancers “advertise” different food areas. The mechanism by
which a bee decides to follow a specific dancer are yet to be well understood, but it is always
considered that the recruitment amongst bees is always a function of the quality of the food
source (Camazine & Sneyd 1991). From the experiments conducted by Camazine and Sneyd
(1991), they confirm that not all bees start foraging simultaneously, but begin foraging at a rate -

proportional to the difference between the eventual total and the number presently foraging.

By writing programs that model the natural behaviours of swarming animals or insects,
programniers in the field of Computer Science can solve many complex problems. In swarm
applications, the agents working on the problem usually have no knowledge that a problem
even exists, they are in fact just continuing with their “natufal” behaviour, and it is that

behaviour that helps solve the problem.

In recent times, many researchers have shown an increasing interést in building multi-robot
systems or, on a much larger scale, robot swarms'. Unlike other studies on multi-robot systemis
in general, swarm robotics emphasises self-organisation and emergent Eehaviotx; in a large
number of agents whilst promoting scalability, flexibility and robustness of the system by only
using limited local capabilities. This also requires the use of relatively simple robots, equipped

with limited communication mechanisms, localised sensing capabilities and the exploration of

38



- decentralised control strategies.

2.3 Swarm Robotics
Swarm .robotics i‘s a new approach for the coordination of multi-robot systexﬁs which consist of
lélrge numbers of relatively simple physical rpboté. The goal of this approéch is to.study how
relatively simple physiéal embgdied agents can be constructed to collectively accomplish tasks
that are beyond the capabilities of a single agent. Sahin (2005) gave a formal definition of
swarm robotics as follows:
” “Swarm robotics is the study of how a large number of relatively simple
. éhysically embodied agents can be designed such that a desired collective
behaviour emerges from the local interactions amongst agents and between

the agents and the environment”.

Cao et al. (1997) suggegt that the earliest study oﬁ swarm robotics was started in the early
1970s, although there was limited interest in the area. At the time, coordination and interaction
- of multiple agents were being focused in the field of distributed artificial intel]igénce, DAI for
short (Cao et al. 1997). However the investigatioﬁs were limited to the problemé involving
software agents. This tendency remained until the late 1980s, when roboticists began to explore

cooperative robotic systems (Arai et al. 20()2).

Oné of the eﬁrliesf studies in the cooperativé robotics field was related to cellular robotics
systems. C_ellﬁlar robotfc systems such as CEBOT (CEllular roBOT) was initially studied by
Fukuda et al.‘(1989). The CEBOT system is a robotics system which consists of severai
homogenous agents in the system. The agents, which th‘ey refer to as “cells” can make
connections and separations between them, which in tufh will reconfigure the structure of their
systems. Moreover, thé system is able to reconfigure itself into an optimal structure depending

on purpose and environment.
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Unlike other studies on distributed robotic sysiems, in general, swarm robotics emphasises self-
organisation and emergence in large numbers of robots and promotes scalability and robﬁstness
by using only locél communication. These emphases promote the use of relatively simple
robots, equipped With scalable communication mechanisms, localised sénsing abilities and the

. exploration of decentralised control strategies.

Moshtagh et ‘al. (20065 developed vision-based control laws for flocking on non-holonomic
swarm agents. In this approach, agents are fixed with a éamera that has a fish-eye lens capable
of seeing the entire surrounding of ' the agent (with a field of view of 360°) for visual
measurements of velocity alignment. The controller will need the values of bearing, optical
flow and time-to-collision, all of which can be measured from imageé taken from the (;amera.
From their simulation results, there are visible differences on the cohvergence rates between the
noise free and noisy environments. For the rioisy environment, a Gaussian random noise was

added to the measurements of bearing.

Esposito and Dunbar (2006) controlled the coordination of swarm agents towards multiple sub-
goals while maihtaining some rangé of wireless connectivity with a line-of-sight constrainf
between agents in the presence of obstacles.l To solve the problem, ‘théy propo;ed a method for
composiﬁg multiple pdtential functions, which indicate a set of possible input directions into a
single feasible movement direction from the condition that the state vector of the agent

approaches the minima of the potential function.

The first potential function is the Navigation Function. The Navigatibn Function is the Basis for
ensuring the goal completion.portion of the problem (g— ¢) is at least achieved. Generally,
Navigation 'Functions are artiﬁciélv potential fields that simultaneously provide obstacle
avoidanqe; and almost always, convergénce té a goal configuration. The Navigation Function

for agent i is define as follow:

dz(‘]i'q{)
[d*(q;,q])+IT}Lyd (q,,0,)]"

¢ () = (2.3)
Where O; is obstacle j, Oy is the boundary of the workspace, d(qi, g) denotes distance of agent
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gi and agent gj, and k is a parameter. The parameter £ must be selected to be high enough so that

all local minima, except at ¢/ disappear.

The second potential field is the range. The range between ageﬁt gi and g; is define as follows:

| . 0 . lfd(q,,qj) < Puax
(l)ij" ge(qirqj) = @4

d*(q;, q;) — P otherwise

Where p,,,. is the maximum range of agent g; and agent g;. The potential only possesses
minima at configurations where the constraints are satisfied, but is not strictly a navigation

function.

The third potential is the Line-of-Sight (L.O.S.). If two agents q,: and g; are in dangef of loosing
sight of each other, it means that one of them (e. g. agent ¢;) is occluded from the other's (e.g.
agent ¢;) view by an obstacle. The line connecting the two agents at the last time when L.O.S.
was satisfied is referred to as the occlusion line, OL. The line of sight constraint is enforced by
a following potential:

0 if L.O.S.

¢;'(g.9,) = - 25
d*(q;,OL) otherwise .

Where d%(gi, OL) denotes the distance from agent g; to the occlusion line. The potential only
possesses minima at configurations where the line-of-sight constraint is satisfied, but does not

serve as a proper Navigation Function.

In the technique described above, all the agents must pasé on the same side of an obstacle for
the agehts to remain connected. In order for all the agents to remain connected, the swarm must
- either have a leader of some sort, or some on-line method for achieving consensus on which
path to take.i Another consequence of this technique is that due to the existence of saddle points,

the swarm is occasionally unconnected.

With the recent technological advances, the development of swarm robotics is becoming more

and more feasible. There are already a number of on-going and completed projects that aim to
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develop and/or control large numbers of physically embodied agents. Such projects are

discussed herewith.

2.3.1 The Autonomous Nano- Technology Swarm (ANTS) _

The Autonomous Nano- Technology Swarm (ANTS) is a project funded by NASA (Natlonal
Aeronautics and Space Administration, USA) (Curtls et al. 2000). In this prOJect the mission is
to develop a swarm of autonomous satelhte agents that will search the asteroid belt for aster01ds
with spec1ﬁc characteristics. There will be around 1000 agents involved. Each agent will have a
high deg;ee of total or near total autonomy. The social structure of agents is based-on hierarchy
by using heuristic approaches. Agents also have the ability to modify their operation
autonomously. This is crucial for agents to réﬂect the changing nafore of the mission, the

distance, and the low bandwidth communication back to earth.

In the mission, agents are divided into three categories which is basod on the agent's ability:
® Ieaders: the leader will Have rules and goals for the mission; the leader will also
coordinate the wor‘k effort of the worker agents.
o Workers: the workers will perform tasks given by the leader and follows the r’uleo for
the mission. |
o Messepgers: messengers will relay and coordinate communications and information

between leaders, workers and the Earth. .

Leader agents are equipped with models of the types of science they want to perform. Parts of
the model include the ability to communicate with messenger agents that then relay the
information to thé; worker agents. Teams of agents will carry out the work together to form

models of asteroids as well as form virtual instruments.

.2.3.2 The Swarm-bots project

The Swarm-bots project funded by the European Community (Dorigo et al. 2004b). The project
lasted for 42 months and completed in March 2005. The main objective of the project is to seek

new approaches to the design and implementzition of self-organising and self-assembling
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‘mobile agents. The agents are composed of a number. of simi)]er, insect-like agents (called s-

bots), which are capable of self-assembling and self-organising to adapt to its environment.

There are three sets of objectives in the Swarm-bots project:
® dynamic shape formations,
® navigation on rough terrain, and

e scaling up.

In the dynamic shape formation, the s-bots are able to self-assemble into a number of different
planar and 3-D geometric configurations, for instance like those formation found in ant

colonies and in patterns of differential adhesion by developing cells.

In navigation on rough terrain, the s-bots will be able to move across the terrain arena guided
by sensory informatioh gathered by the individual s-bots. Th.ere’a’re three sub-objéctives that
have beén defined:
e S-bots shoﬁld be able to maintain the original or current shape configurétion while
following light. |
® S-bots should be able to recoﬁﬁgure automatically while following light through
narrow passagés and tunnels.
e S-bots should be able to reconfigure their shape to pass over a hole or through a steep
concave region that could not be passed by a single s-bot.
‘@ S-bots should be able to move from point A to B on rough terrain on a shortest posSible

trajectory.

Finally, the objective in the scaling up is to study the impact to the swarm-bots robotic systems

when the user increases the number of the s-bots in both categories as described previously.

2.3.3 The Pheromones robotics project
The Pheromones robotiés project funded by DARPA (Defence Advanced Research Projects

Agency, USA). This project seeks approaches to the design and implementation of self-
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organising and decentralised control of the robots (Payton et al. 2004).

In this project, Payton et al. (2004) developed a fealistic model of the pheromone based
communication of ants by using eight directional infrared transmitter-receiver pairs attached to
the top of the agentsv. The pherbmones are assumed to be transferred between the agents as 10-
bit messages by using the infrared transmitter-receiver. Each agent then retranemits the
message it gets by reducing the intensity of the pheromone and decrements the hop count in the
opposite direction. This method is used maihly to generate the path between two points in an

unknown area by a swarm of agents.

2.3.4 The GUARDIANS project

‘The GUARDIANS (Group of Unmanned Assistant Robots Deployed In Aggregative
Navigatioe supported by Scent detection) project is a three year programime funded by the k
European Community and started in January 2007. The objective of the project i',s to develop a
swarm' of autonordous robots that‘consists of several robots that will navigate through an
~ industrial warehouse in smoke or on fire. Amongst the possible tgsl_(s that agents. should be able
to perform are: searching the warehouse to explore the environments and gather informatioh for
dlap building, and Supperting the firemen to reove around in the environment while avoiding

obstacles (Penders et al. 2007).

2.4 Robot Architecture

Many werks in- the swarm robotics field are inspifed by the behaviour besed control
architecture (Brooks 1986)(Arkin 1998)(Balch & Arkin 1998). One of the pioneers in the
behaviour Eased field was Braitenberg (1984). He describes a series of thought experiments in
~ which “vehicles” wifh simple internal structure, where sensors are directly coupled to the
- motors, behave in unexpectedly complex ways. He deyeloped simple control archit_ec‘tures and
created a wide rahge of vehicles producing sophisticated emergent behavieur,'which he then
'labelled with terfns such as aggression, condice, fear, foresight, love:andeven optimism.

Braitenberg gives this as evidence for th‘e "law of uphill analysis and downhill invention™.
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However, these systems were inflexible and were not reprogrammable. A possible example of -

Braitenberg vehicle is illustrated as in Figure 2.6.

il

Figure 2.6: Artist impressions of Braitenberg vehicle.

‘In 1.986 Brooks introduced the subsumptién architecture (see Figure 2.7), where each task-
achieving behaviours are represented in separate layers. Individual'layeré work on individual
goais concurrently and asynchronéusly. At the lowest level, each behaviour is répresented using
a finite state machine model, and.higher levels are allowed to subsume the activity of the lower

ones but not the other way around.

—p- ‘Level3 —-' .
| V
— Level 2 —jv '
Level 1
Sensors P Level0 P A ctuators

Figure 2.7: The Brook's subsumption architecture. .

Brooks (1991b) also stated that, in order for an autonomous mobile agent to be considered
intelligent, the agent must be robust and extensible, and have multiple goals and sensors. In this

architecture, although the robot has multiple goals, not all sensors reading are adopted. Only the
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ones with perception processing identified as extremely reliabl¢ are to be used. Aﬁ advantage of
the system is that it is inherently modular from a software design perspective, and it enables the
robotics system designer to expand the agent competency by adding new behaviours without
redesigning the old ones. Brooks (1991a) later suggested that researchers should focus on
highly simplified intelligent systems rather than having an unrealistic goal of replicating the

level of human intelligence.

~Although the ’subsumpfion architecture has many good characteristics, in many cases, multiple
and possibly conflicting goals cannot be achigved (Rosenblatt & Payton 1989)(Barnes ef al.
1997). As the name subsumption implies, conflicting goals are often resolved by having one
behaviour's commands completely override the other's. Even though it may be highly desirable
for the systems to act simultaneously,ito accdmmodafe the needs of bc;th behaviours there is no

way to arrive at a balanced solution.

Another early behaviour based mobile agent control architecture is known as the mbtor
~ schema-based architecfure (Arkin 1989). Schemas are a methodology used to describe the
interaction between ‘perception and action. It can be adapted to yield a mobile agent system that
is highly sensitive to its currently perc‘eived world. Motor scherﬁas operate in a concurrent,
independent and communicating manner, which can-produce paths that reﬂect.‘the uncertainty
in the detection of the objects and yet, can cope with conflicting daté arising from diverse

sensor modalities and strategies.

Up to the mid 1990s, many researchers were of the opinion that‘ behavioural agents were
incapable of achieving moré complex tasks than simple can collectihg, box pushing, herding or
moving in formation. Problems such as behaviour éonﬂi‘ct resolution, behaviour adaptation and
behaviour scheduling had been identified as the main issues for multiple mobile agents to co-

operatively perform a complex task.

Several approaches have been developed to address these issues. One of the approaches is

known as the Behaviour Synthesis Architecture (BSA) (Barnes et al. 1997). BSA has four
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: differént behaviour levels cailed: self, envéronment, species and task. Sensory stimuli (in BSA)
prOQide the appropriate internal and external state information needed for the various behaviour
‘levels and frofn gach relevant lével, appropriate motion responses a're generated that relate to
the desired agtuation.‘ In any behaviour level, there are a number of behavz;our patterns (bp's),
where it defines what a robot's motion res'ponse should be for a given sensor input, and also
. provides a measure as to how the relafive importance of the response varies with respect to the

same sensor input.

2.5 Artificial Life

Conventional artificial systems are usually designed strictly i_n a top-down manner. In this
- approach, the systems are designed to function precisely and effectively.for special purposes
and- specifically under closed domain. Thus, these systems fail to respond appropriately to |
unexpected situations. On the other hand, for natural systems as well as their entire behaviours
emerge through bottom-up brocesses. ‘Thes.e natural systems do adapt themselves quite weil in
their environment that exhibit dynamic and unpredictable characteristics.” Moreover, they also

can cope with a variety of difficulties.

2.5.1 Inspirations from Natural Systems

. In the field of Artiﬁcial Life (Alife), where models are based on the natural system‘s, generally a
bottom-up approach is used (Bedau 2003). The work in Alife can be loosely divided into three
categories: soft, hard and wet, where soft is software based, hard is hardware based, and wet is
biochemistry based. The essential features of Alife models were given by Langton (1988) as
follows: | |

® they cqnsist of populations of simple agents;

e thereis no single agent that directs any of thve Vo-ther agents;

® cach agent's specifications (program) detéiis the .'way in which it reacts to local

-situationé within its environment, including encoﬁﬁters with other agents;

e there are no rules in the system which dictate global behaviour, therefore
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® any behaviour at levels higher than the individual agenfs must.be emergent.

One of the earliest models of Alife was mbdelleci by Newmann (1966). Newmann designed the -
.Alife model when he created his well known self—reproduciﬁg, computational-univérsa] cellular
'automzita. Ne_wmanﬁ was first intended to built phySical self-rebuilding robots and the design
was known as the kinematic model. As the work progressed, he realised that the huge cost of
providing the robot with parts of which to build its replicants. Because of this huge cost, he
then developed his design around mathematical abstraction, thus c%eating the first

implementation of cellular automata.

Another early example of A]ife was created by Walter in 1956. He‘ constructed two mobile
autonomo.us rbbots usi_ng vaives and light sensors, named Elmer and Elsie. Elmer and Elsié
were programmed to search for a set level of light intensity. Upon seeing light, they will move
towards the light; if the intensity of the light is too strong, they will move away from it.
Whenever the power is running low, they will return to the hutch to reéharge their power. Next,
Walter fixed a light on both of thgm. At first, they moved towards each other aﬁd engaged in
the fascinating dancé which he described in his book, “The Living Brain” (Walter 1963).
However when the light in the hutch is switched on, Elmer and Elsie w‘ill stop “dancing”,

ignore each other and head towards the hutch.

The;e are many works and developments in Alife which are relevant 'tQ this thesis, one of them
is the artificial fishes in a 3-D virtual physical world which was de;leloped by Terzopoulos et
al. (1994).‘T hey emulate the individual fish's locomotion, behaviour and appearance as an
autonomous agent situated in its simulated physical domain. Moreover, the fish can learn how
to control their internal muscles to méve hydrodynamica]ly. They also emulate the complex -

group behaviours in a certain physical domain.

Figure 2.8 shows the functional overview of the artificial fish. The body of the fish houses a
brain or mind with motor, perception and learning centre. The motor system consists of

actuators and a set of motor controllers, which drive the dynamic model of the fish. They
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(Terzopoulos et al. 1994) built the motor controllelfs unit by gleaning information from the fish
biomechanics literatures, thus their fishes can swim realistically. In the perception centre, tHe
perceptioh of the fish relies on a ‘sét of on-board virtuai sensors to pr'ovide‘ sensory information
about the dyhamic environmeﬁt. In the brain part of _the perception centre there is a peréeptual
attention mechanism which allow the fish to train its sensors at the World in a task-specific way,
which will then filter out sensory information that is unnecessary té its current behavioural

needs.
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Fi iguie 2.8: Control and information flow in artificial fish. ( Taken from Terzopoulos et al. 1994)

The behaviour centre of the artificial fish acts as a inedium between its perception system and
its motor system. The intention generator in tl'lebbehaviodr system is the fish's cognitive faculty
which hame‘sse's_ fhe dynamics of the perception-action cycle. Finally, the learning centre
enables the artificial fish to-learn how to locomote thfough practice and sensory information.
- The learning centre also enables ihe ‘ﬁsﬁes to train themselves to accomplish higher levels of

sensorimotor tasks, e.g. manoeuvring to reach a visible target.
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Schmickl and Crailsheim (2007a) developed an algorithm for swarm robotics navigation baéed
‘on a technique of signal propagation seen in slime mould as in Figure 2.9. In tﬁis technique,
agents will wander and search randomly in an arena. When a target is found by an agént, the
agent will then sepd out a signal using LED ﬂashés notifying other agents about the location of
the target. The signal is detected by the others, who will then forward or re-transmit the signal
using the same method. Tﬁe process will go on and on, resulting in a wave-like signal

propagation such as that exhibited by slime mould.

Figure 2.9: Example of slime moulds aggregation wave patterns. Each step of the transition from top left
. to top right and then to the centre takes about 30 minutes. Images courtesy of P.C. Newell.

Schmickl and Crailshei'm (2007b) proposed é new method for communication and navigation
within swarms of agents inspired by trophallactic behaviourl exhibited by honeybees. In their
method however; the receiver agent cén query about the “nutfitional” or ﬁiness value of the
local surfounding agents. From the nutritional vélue, the agent knows the gradient and can

decide whether to go up-hill or down-hill. -

. Garnier et al. (2005) modelled a control algorithm of collective decision such can be seen
performed by grbup of cockroaches. The control algorithm itself is based on small simple set of
behavioural rules as follows:

e Random walk behaviour in the centre of arena, with constant rate of changing direction
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and forward oriented distribution of turning angles.
@ Wall following behaviour when reaching the periphery of the arena, with constant rate
to leave the edge and come back towards the centre of arena.
e Stop at any nioment under the shelter (dark plaée), stay motiqnless for sdme tiine and
théh move again.
e Stop for some time if perceive any other agént within perception range, stay motionless

for some time and then move again.

They (Gamier ez al. 2005) successfully'implemehted their control algorithm on the Alice
micro-robots, with two shelters (dark place) placed in the arena. Based on their observations,
the behaviours of the agents weré similar to the behaviour exhibitéd by cockroaches, in which
the cockroaéhes tend to aggregate in the dark area. Moreover, if there are more than one shelter
available invthe aréna, cockroaches will usually collectively choose one of the shelters to be the

aggregation location.

Kodati et al. (2007) designed and fabdcated a micro underwater robot, named MARCO.
MARCO gains inspiration from the boxﬁsh'(see.Figur'e 2.10), this being is highly stable and
fairly manoe_uvréble. With multiple fins, the boxfish can manoeuvre in confined spaces with.
near zero tuﬁing radius. Furthermore, it has been found that the boxy shape is respénsible for
~ self correcting mechanism that makes its trajectories immune to watef disturbances. It is
believed that MARCO will be able to be used in many applications such as environmental

monitoring, ship wreck exploration, inline pipe inspection, forming network sensor and so on.

Zhang ei al. (2007) constructed another biologically inspired fish-like robot. They designed the
robot to be able of propelling itself through oscillations of a flexible caudal fin, like a real
underwater fish. The caudal fin is driven by a unique actuator called electrostatic film mofor. At
the current state, their robot achieves fish-like manoeuvring and approximate velocity of 0.018

* m/s in dielectric liquid.
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Figure 2.10: A boxfish. MARCO (Kodati et al. 2007) the under water robot gains
_ inspiration from boxfish.(Image courtesy of divegallery.com)

Shao et al. (2006) intraduced situation-based action selection mechanism for multiple fish-like
agents to achieve cooperative transportation task. In this approach, each agent has an ID and the
agent will do the task if and only if the conditions are met. The only problem with this ap’proaéh
is that, there is | no overlap in the rules of the conditions. If one of the égents fails, the

cooperative task will not be succeeded.

2.5.2 -L-Systems

Lindenmayer _Systemé (L-Systems) is one of the many branches of Alife. 'fraditionally L-
Systems havé been widely used in the modelling of branching structures and the growth
process of biological objects such as plahts and micro-organisms. As technology advances, L-
Systems have attracted more and more researchers from many diverse fields. Most researches
on L-Systems concentrate on the modelling of plant growth or modelling the growth of multi-

cellular organisms. However, in the following we review some works in other fields.

Hornby and Pollack (2001) used L-Systems and evolutionary algorithms to create a variety of
virtual creatures. Their system made use of L-Systems to encode the creature and.an
evolutionary algorithm engine to evolve the creature. The creatures evolved ‘by the system

consisted of hundreds of parts. The end-product are “natural looking” creatures. The
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components that make up the creatures include bar structure, every single type of joint, chain
structures efc. Once a set of creatures ére created, they will be evaluated by the evolutionary
algorithm engine to find “fittest” creature. The ﬁtﬁess of the creature is evaluated based on the
" distance moved by the creature's centre gravity. Ro]ling and stepping are peﬁitted but
dragging impoées a penalty. Their resi_J_lts show that, over half of the simulation runs are able to
generate interesting results and the most common creature movement involves rolling
sideways. Another interesting movement is that of an undulating sea-serpent, like an inch-

worm.

Zarhir (2001) formulated parametric L-Systems to generate branching structures that can
‘,embod}./ the physiological laws of arterial branching. He gives an example by showing that a
complete cast of the arterial system of a rat can be modelled using parametric L-Systems as.in
Figure 2.11. From the fesults,.it was suggested that the parametric L-Systems can be used to
produce fractal like tree struct.ures. However, th¢ branching sfrucfures' parameters generated

differ siightly with the variability_ inv branching i)arameters observed in arterial trees. The
parameters include the asymnietry ratio, the area ratio, branch diameters, and ‘branching angles)
The’, main issue in generating branching structures of arterial bfan;:hing is that the source of
: variabilify in those pérameters is not known, thus, it cannot be- accurately reproduced in a
model. Finally, he concludes that the L-Systems with _a‘random'choice of parameters can be

made to mimic some degiee of the observed variability, but the legitimacy of that choice is not

clear.

Mariano et al. (1995) used L-Systems to generate large instances of the Euclidean Travellingr
Salesman Problem (ETSP). They gave 4 examples and sucéessfully showed how L-Systems
can generate patterns or paths for thé: ETSP. The pattems'uséd in their work are MNPeano,
MPeano, Koch and Da;/id's star. However, the method has a drawback where the distance

between each of the two cities has to be the same.
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Figure 2.11: A complete cast of the arterial system of a rat.
Modelled by parametric L-Systems (Zamir 2001 ).
Salvador et al. (2002) proposed the multi-fractal network traffic model based stochastic L-
Sy_s'tems. Their work consisted of an alphabet of arrival (packet) rates which is defined by:
A= {ALAL.0d), AER), i=1,..,L (2.6)

and with production rules that randomly generate two arrival rates from a previous one.

Without loss of generality, they made an assumption that A;<A,<...<A,. From the rea]»data :
observed, the L-Systems parameters are fit by the fitting procedure. It sfarts by fixing a
sampling interval A and considers the time series representing the total ﬁumber of packet
arrivals in each sampling interval. The inference process in this model can be divided into three
steps:

® determination of the L-S'ystem alphabet and axiom,

- @ identification of the time scale ranges, and |

e inference of the L-System productiqn rules.
From their numeri.cal results, that include applying the fitting procedure to real observed data
with multi-fractal scaling behaviour showed that, L-System based models achieved an excellent

fitting performance.
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Kdékai et al. (1999) used parametric L-Systems in the GREDEA (Grammatical Retina
Description with Evolutiohary Algorithms) system. GREDEA is a system to develop patient
speqiﬁc monitoring programs for examining the blood circulation of the retina, which can be
used on patients with diabetes who’ need to be monitored over long periods. At the beginning,
the retina of a patient is scanned with laser ophthalmoscope ‘(SLO). Then a parametric L-
- System is deyeloped in which will create the pattern closest to fhe vascular tree of the patient's
retina. The main feason for the L-Systgms used here is because the L-Systems ﬁeeds less

storage than storing a picture.

Other examples of the Alife have been described in the Organised Formations section in this

Chapter.

2.6 Swarm Modelling
In médelling swarms, many mathemati;:al models were proposed by biologists to gain insights
into the nature of swarming behaviour (Parrish et al. 2002). Most of the models proposed are-
focused on the spatial model, where space is direétly or indirectly considered within the model
(Gazi & Passino 2004). In the spatial model, Parrish et al. (2002) suggested that there are three
distinctly differeﬁt approaches that have been used to model the swarm dynamics; namely
Eularian, Lagrangian and behaviour-based model (Reynolds 1987)(Grunbaum & Okubo

1999).

2.6.1 Eularian model

The first model is bgsed on the statistical mbdel and uses the Eularian framework to describe
the mean-field density of swarm.. In this approach, Edelstein-Keshet (2001) modelled the
swarm as a density in spatial space by a partial differential equation that is based on a diffusion
approximatiqn of the random motion. Mogilner and Edelstein-Keshet (1999) extended the
model by ihtegrating non-loca l interactions, such as visual or auditory sensing. Although the
model invites many analytical results that can be produced, the model is however limited to

large and dense swarms with no big discontinuities (Parrish et al. 2002).

55



2;6.2 Lagrangian model
The second model is Based on individual-based path gene;ation, where Lagrangian equations
are used to describe the motion of each individual member in the swarm (Gazi & Passino
2004)._ In this model, all attractions amongst individuals are modelled as attraction and
repulsion forces. Furthermore, all attractions befween iﬁdividuals in the swarm can be modelled
as botential functions, and the motion of each individual follows the negative gradient of the
potential surface, which in turns serves as an attractive feature of this model. Moreover, by
constructing a Lyapunov function which is associated with the potential force, the minimiser
corresponding to the stable staite ofi the swarm can easily been shown, Although the form of
éttraction / ‘repulsion functions in this model are varied, it is understood that the aggregation is
caused >by the ‘long-range attraction and the short-range repu’l‘sion (Couzin & Krause
2003)(Mogilner et al. 2003). For instance, Mogilner ef al. (2003) proposed a model where -
attraction and repulsion terms were exponential with different magnitudes. With the model,
they derived the individual distance of a large group, which in the end revealed a condition on

the attraction and repulsion to avoid dispersion of swarm.

2.6.3 Behaviour-based model

The third spatial approach uses a behav‘iour-based- model. In this approach, no éxplicit
mathematical equationé are proposed, and all interactions amongst individual agents are
described by some behaviour rvules. In the field of swarm engineering, Reynolds (1987) was
one of the first té simulate behavioural control animation. He developed a system to model
flocking behaviour and coord.itllated movements seen in birds and fish in which he named the
creatures as boids. The basic Reynolds' flocking model is based on three simple st_eering
behaviours, namely cohesion, sepﬁration and alignment, which describes how an individual
boid should change its .heading or direction and velocity based on the positions and velocities of
its nearby'neighbdurs or flockmates. It is worth noting that in s‘o‘me literatures, the rules are also
known as flock centring, collision avoidance and velocity matching which refer to-cohesion,

separation and alignment respectively.
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Figure 2.12 shows threg | basic strategieé ~of Reynolds' ﬂocking rules. The ctircles indicate
sensing range for the boids in the centre. This means that the boid in the centre of 4the circle can
see or senses other boids within the circle. From the left is the cohesion, separation and
alignment strategies respectively. Cohesion strategy as shown by the red boid on the left in»t'he
Figur¢ 2.12, the boid feels the urge to steer tovstards the average position of its flockmates in its

vicinity, resulting in the boids staying close to one another.

. ' 1
‘Figure 2.12: Reynolds's basic flocking steering strategies. The circle indicates the neighbourhood range
of the agent 's in the centre of the circle. The left shows cohesion, the centre shows separation, and the
right shows alignment strategy respecttvel y.

The green boid in the centre of Figure 2.12 exhibits the separatién strategy; this strategy is to
ensure that the boid is maintaining a safe distance frpm its flockmates and encourages the Boid
population to .avoid crowding the neighbourhood. Finally, the blue boid on the rightvof Figure.
2..12 demonstrates the alignment strategy ‘which sometimes is referred to as the velocity
matching strategy. This rule encourages the boid to move with a similar héading and velocity as

its flockmates.

By .usin‘g Reynolds's model of boids, Tatmer et al. (2003a, 2003b) investigated the algebraic
- graph theoretical properti.es of underlying interconnection graph between agents. They also
showed the relationship between the graph connectivity and stability of the flocking behaviour

in fixed and dynamic topology.

There is one other similar work to Reynolds's flocking model, which was develdped by Viscek

et al. (1995). Viscek proposed a simple model in which each agent's heading is updated at
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every time step as the average of headings of the agent itself and its nearest n¢ighb0ur plus
some additive noise. By comparing Viscek's model with Reynolds's model, it can be concluded
that Viscek's model is a special case of Reynolds' model, where all agents move with same
velocity, only following an alignment rule and only considering the ﬁearest neighbour as a
' ﬂockmate. From the resulté of their simulatioﬁs, they (Viscek et al. 1995) showed that their
agents move in a coherent manner, in which the headings of all agents converge towards a

common value.

Folino and Spezzano (2002) adopted Reynolds's flocking rules and proposed a ba'rallel spatial
clustering algorithm for swarm agents called SPARROW (SPAtial ClusteRing AlgoRithm
- ThrOugh SWarm Intelligence). The algorithm combined a smart exploratpry method based on
a fléck of birds with a density-based cluster algorithm to discover clusters of arbitréry shape

“and size in spatial data.

The motion of each agent follows thevReynolds's ﬂockinlg model. Furthermore, SPARROW
considers types of agents, grouped on the basis of the density of data in their neighbourhood.
To differentiate the different types of agents, different colours are used as shows in Figure 2.13
below; red, showing a high density of pattefn in the data, green a medium one, yellow a low
one, and white indicates a total absence of patterns. The main idea of SPARROW is to take
advantage of thé coloured agents in order to explofe ‘more accuratély in the tight cluster regions
and avoid the ones without élusters. In sjmulation, the red and white agent Wil] stop moving in
order tovsignal éut the type of regions, whilst the gréen and yellow agents will flock and move
toward dense cluster. In this algorithm, the agents behave like hunfers with a foraging
behaviour that allbw each agent to eXplore the spatial data while searching for cluster with
different sizes, shapes in noise data (Folino & Spezzano 2002); cluster with different densities
(Folino et al. 2003) in 2-D space. Moreover the algorithm also works in multidimensional

space (Augimeri et al. 2006).
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" Figure 2.13: Cohesion strategy in SPARROW, taken from Folino and Spezzano (2002). In this strategy, the
green agent in the centre feel the attraction towards red agents, and repulsion against white agent.

Olfati-Saber and Murray (2003) modelled a net flocking framework in the presence of multiple
obstacles in the arena. Net-ﬂocking is where agents in the flock wili have the “bonds” between
| them when they come within close proximity of each other. Agents will keep this bond and stay
close to each other.'The bond will break if bonded agents move apartv‘mor_e than the allowed
distance. The easy way to view net-flocking is to think the agents as the “atoms” and these
atoms are conhected to each other with these “bonds”. They showed that the flocking behaviour
is achieved by dissipation of energy according to a protocol that only requires the use of local
information. The three basic flocking rules of Reynolds' are hidden inside this protocol. They
defined fhree types of agents which are called.alpha, beta and gamma. These agents are then
used to create, what they call, net-flocking. They (Olfati-Saber & Murray 2003) also showed
that by using their framework, the split, rejoin and squeezing manoeuvres flocking whilg:

avoiding obstacles can be done.

Some other works on swarm modellin_g that are worth mentioning were researched by Levine et
al. (2000), Toner aﬁd Tu (1998) and Shimoyama et al. (1996). Levine et dl. (2000) created
rotating swarm agents known>as circular ant mills using a self-propelled particles Based model
in which each agent can interact wigh all other agents in the arena. They modelled the flock in
one- and in 2-D, and showed that the density of the flock drops to zero at the edge, or the

density of the flock has a sharp edge confirming the work done by Mogilner and Edelstein-
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Keshet (1999). Toner and Tu (1998) analysed Viscek's model and used a continuum mechanics
approach to model flocking behaviour. Shimoyama et al. (1996) proposed a mathematical
model of flocking and clustering motion such as collective rotation, chaos and wandering. They

also categorised the behaviours and characterised the transitions of the models.

2.7 Simulation Tools

In developing and simulating multi-agent systems or swarm robotic systems, there are a
number of purposely built cofnputer prog‘rams available and ready for use. In this thesis thfee
differen‘t soﬁware packages have been used to simulaté our swarming algorithms; these are the

Breve, Netlogo and MATLAB simulation tools.

2.7.1 Breve

The Breve toolkit (Klein 2002) was developed by Jon Klein during his year at. Hampshire
Collegé, USA as a thesis project, and wﬁs developed further into a Master's thesis at Chalmers
University of Technology, Sweden. Breve is also actively being developed as a platform for a

project building large scale simulations of evolutionary dynamics, and many other applications.

Breve is a free simulation environment distributed as an open-source software with
contributions from researchers from all over the world. It is designed for the simulation of
multi-agent, 3D spatial and physical systems. It allows users to observe the interactions of

predefined behaviours of autonomous agents in a continuous 3D world.

The world in Breve is represented as a 3D space and is able to facilitate 3D spatial simulations
as shows in Figure 2.14 below. Agents in the simulation can occup'y this 3D space to move
around and about and interact in the 3D space. Breve allows the agents to be spatially aware

and to comply with physical laws, therefore making the simulations closer to the real world.
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Figure 2.14: Example of Breve simulation world; showing the simulation of Braitenberg vehicle written by
Klein (2002). .

By enabling Breve's main feature of physical laws, onie can simulate breve agents to behave just
as r¢a1 objects do, according to the laws of physics. For example, if an agent is defined as a ball
and placed in the air above the floor, the physical simulation engine will make the ball
realistically fall towards the floor and bounce back, subject to gravitational forces and Newton's
Third Law. Amongst other things, the physical simulation engine in Breve can be used for

realistic simulation of robots, vehicles and animals as well.

Breve simulations are usually written in an object-oriented and easy to use language called
STEVE. The language borrows many features such as in C, Perl and Java. Brevé also features
extensible plugin architecture which allows programmers to write plugins and interact with pre-
existing code and projects. In the simulations, all aspects including object and memory
management, cpmmunication between agents, and integration are automatically handled by the

Breve engine (Spector et al. 2005b).

Another main feature of Breve is the fa'ct'that Breve supports the Push programming language.
Push was developed specifically for geﬁetic programming and other evolutionary
computational applications. Push is designed to avoid most of the complications that can arise
when writing evolutionary codes. The two main characters Qf Push programming are that it has
very unusual simple syntax and the ability fo work flexibly with multiple détatypes‘(Spector et

al. 2005a).
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Spector and Klein have used Breve in many of their works, includirig their most notable work
~ where they demonstrate the evolution of a form of multicellular organisation, and altruistic food

» sharing for flying agents (Spector et al. 2005b).

2.7.2 NetLogo

NetLogo was created in the spirit of th¢ Logb programming language which is easy to learn, to
use and to read, but also powerful enough to deal with complex concurrent problems. Logo was
developed by a mathematicianv Seymour Paperf in mid 1960s. At that time- Seymour was
working with the team from BBN'(formerly known as Bolt, Baranek and Newman), led by-
Wallace Feurzeig. The first implementation of Logo was written in LISP .(List Processing

languége) and released in 1967.

Logo was originally designed to introduce children to programming concepts and thus develop
better thinking skills that could be transferred into other contexts. It was aimed to be enable

.easy entry by novices and yet meet the needs of high power users.

The most well-known Logo environments have involved the turtle. The turtle is originally a
virtual creature that sits on the floor and could be directed to move around by receiving

commands from a user or programmer. The turtle is used to draw shapes, designs and pictures.
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Figure 2.15: Example of NetLogo simulation world, showing the simulation of the ant foragmg model
written by Wzlensky (1999).

NetLogo (Figure 2.15) was written and released by Wilensky in 1999. It was originally
developed at the Centre for Connected Learning and Computer—Based Modelling at
. Northwestern University and is in continuous development at the Center for Connected

Learning and Computer-Based Modelling at the same university.

NetLogo is well suited for modelling time-dependent complex systems and literally allows
users to give instructions to hundreds or thousands of independent agents operating
' concurrently. This makes it possible to eXplore the connection between micro-level individual

behaviour and macro-level patterns that emerge from the interactions of individuals.

NetLogo is specifically designed for deployment of models over the Internet and is written in
Java so the model can be run on all majof operating systems (NetLogo 2008). After five years
of development, NetLogo is a mature simulation tool which is stable and fast (Tisue &

Wilensky 2004).
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Extensive documentation, tutorials and demonstrations are available on the package’é website.
NetLogo comes with a Models Library which contains a l‘arge. collection of more than 140 pre-
written simulations code thai can be used and modified. These pre-written code in models |
library includes wide range of disciplines and education levelé; from natural to social sciences,

mathematics and computer sciences.

Even though NetLogo is distributed as a freeware, the functionality in NetLogo can easily be

extended thiough an Application Programming Interfaces (APIs).

There has been a considerable nmount of work compléted on multi-agent systems modelling
A using NetLogo. One of them is.the work done by Momen’ et al. (2007). In this work, they have
* modelled two species of “birds” andvstudie‘d the effect of multi-species flocking. These two
speéies of birds will attract ti) each other depending on the heterospeciﬁc-attraction parameter.
From the resulté, they showed that as the heterospecific-attraction increases, the flocking
efficiency also increases. 'Annther model using NetLogo is the work by‘ Veeraswamy et al.
(2006), where they prnmoted the use of path planning with the ant foraging‘technique.‘Results
of their simulations showed that the performance of the ant foraging problem can be improved
dramatically by combining the regular ant foraging algorithm with the A* path planning

algorithm. -

2.7.3 Other Simulation Tools

A number of other simulation tools exist that are used by the swarming community.

MASON, the Multi-Agént Simulator of Neighbourhood was developed by il joint effort of
Evolutionary Computation Laboratory (ECLab) and Center for Social Complexity of George
Mason University, USA (MASON 2008). MASON is written in JAVA to take advantage of its
portability,- operating system independence, object serialisation and strict math and type
definitions (Luke et al. 2005). It is designed to be used for a wide range of simple simnlation

with emphasis on swarm multi-agent simulations.
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MASON is released as an open—source in which users are free to use and modify the source
code. At present, there is little documentation and it has a relatively small user group. HoWever,
some of the documentation detailing of how-to use and some of the publications detailirrg the
imolementation or application of MASON are available for a prospective user to e\taluate

further (MASON 2008).

Webots™ is a proprietary software and developed by Cyberbotics Ltd.. Cyberbotics Ltd. is a
limited company derived from Swiss Federal Institute of Technology in Lausanne (EPFL) and

was founded in 1998.

Webots™ provides a rapid prototyping environment for modelling, programming and
simulating mobile robots. The robot libraries enable users to transfer control programs to niany
commercially available real mobile robots such as Khepera™ , Aibo™ and tho I;EGOTM
Mindstorms™ robots.. Webots™ offers numerous features to make the simolation tool easy to .
use and able to do complex computations (Michel 2004).'The features include: |
e allowing the user to model and simulate any mobile robot, includirrg legged, wheeled
and flying robots - |
o allowingvthe oser.to program the robots in C or C++ or JAVA, or from third party
software through TCP/IP
® using the Opeo Dynamic Engine (ODE) library for more accurate physics si‘mulation
. ® many examples with controller source code and models of commercially available
robots

e creating AVI or MPEG simulation video file for online or public presentations.

Many other multi-agent simulators exist, such as Gazebo, Player / Stage, Repast and so on. A
more comprehensive review .on multi-agent simulators can be found in Castle & Andrew

(2006) and Railsback et al. (2‘006)'and the references therein. -

65



2.8 Suniman*y

The pretext of this Chapter is aimed at trying to understand the conceptual and natural roots
surrounding pattern fdnhqtion in swarms. Various state of the arts methods related to the
subject have been reviewed. This lays out the ground work for thé original contributions that

will be presented in the following Chapters.

A number of popular robotics control architectures were reviewed and described in detail. ‘
These include the well known Brooks's subsumption architecture (1986) and Reynolds'
flocking algorithms (1987). Research work in autonomous mobile agents or robotics field has

since the early daysi suffered from difficulties associated with centralised planning.

A review of con‘trol algorithms for distributed pattern formation for robot swarms have shown
that the agents are more complex. In Particular, agents need communication modules (such in
Avrutin et al. 2007, Payton et al. 2004, Nouyan et al. 2006, Freeman et al. 2006, Desai 2002,
Fierrd & Das 2002, Kaminka & Glick 2006, Pavone & Frazzoli 2007, etc.), or the ability to
perform complex. calculations (such in Yang er al. 2007, Desai 2002, Takahashi 2004,
Mastellone et al. 20‘07, etc..'), or the requirement for vision based sensors (such in Das et ql.
2002). in vorder to carry out pattern formation tasks. With these levels of complexity, the
(hardware) c.ost of building swarm agents increases significantly. In addition complex agents
have a higher probability of failure to due to the integration of multiple crucial components. In
keeping complexity down, agents will have minimal sensors and onboard processing power.
" The problgm now becomes determining how relatively simple agents can be controlled. Thus it

is a challenge to design pattern formation control algorithms on such a simple swarm agent.

In the review on t'he swarming behaviour, most of the work iﬁ the liferature reported involving
repelling and attrzicting factors or “repulsion and attraction forces” (such in Tanner 2003,
Hanada 2007, Olfati-Saber’ & Murray 2003, Esposito & Dunbar 2006, Chen et al.‘ 2007,_Desai '
2002, Mastelone et al. 2007, Yang et al. 2007, etc.). These repelling factors are used in agent-
to-object and/or agent-to;agent interactions so that agents will not collide with each other

and/or with another object (obstacle avoidance strategy). On the other hand however, the
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attrac'ting factor only accounts for agent-to-agent attractions which is usuallyvused in a strategy
such that agents will remain close-to each other, for exarﬁple the cohesion strategy as in
(Reynolds 1987). The problem of the attracting factor for agent-to-object ‘interaction"still needs
to be examined. It vwi'll be interesting to investigate how agent-to-object attraction forces will

affect the behaviours of swarming agents.

With regard to the bridge formation connecting two objects or two locations (such as in Avrutin
et al. 2007, Nouyan et al. 2006) an important issue is that to be able to connect the two
- locations, the proposed algorithms require a l_arge ﬁumber of agents. A particular problem arises
when -only the minimal nﬁmber of agents that are reqﬁired to make a bridge formation are
present in the arena. Fof example, if there are ‘twent.y agents in the arena and a minimum of
twenty agents are needed to form a certain bridging formation in the arena, the proposed
algorithms might take a long 'time to find a solution withéut additional agents. Worst still ‘it
might not be able to find the §olution at all within the pérmissible time frame. It is then useful
to devise an alternative algorithm even if it is not fully automated or self organising for the |

reason that self-organisation is not always the best solution for every problem.

The next three Chapters describe the overall methodology by which the research was carried

out including developing areas identified in this Chapter.
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‘Chapter 3  State Based Models

The aim of swarm engineering is to design multi-robot platforms that are able to mimic
biological robot swarms in performing tasks where a group of robots, each of which has rlimite-d
capability, Canv perform better than just the éne. In simulating large scale swarms,
computational cost plays an important role, thusv limiting and stagnating development. Many
stgdies have been undertaken using a pracvtical approach to swarm construction. Amongst these
are studies» investigating navigation and exploration' tasks, task allocation, eleméntary

construction, and communication.

In this Chapter, two control ‘algorithms'using the Finite State Machine (FSM) approach are
developedfo support simple swérm robots in swarm robotics pattern formation, where complex
behaviours can emerge from interactions between agents and each agent with the environment.-
This Chapter proposes thaf by alternatively switéhing on and off a combination of transmitters
and sensors of agents, different variety of agent behéviours can be achieved. The work here is
loosely motiv.ated by ants which have limited metﬁory and limited ability and yet they are able
to form a line to and fro from their nest to a food sdurce. In the first algorithm the agents are
tested with forming chaiﬂs or lines, and in the second they are tested with forining a cluster. In
both cases agents have very little memory, linﬁfed sensing capabilities and processing power,
there is no explicit communication between agents and the 'formations are formed based solely

on environment cues.
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3.1 Introduction
The _abiiity to self-organise in é predicted way is important for the accomplishment of a Wide
range of tasks in the swarm robotics dqmain, thus many different approaches >have been
proposed (sﬁch as in Avrutin et al. 2007, Péyton et al. 2004, Nouyan et al. 2006, Freeman et al.
2006, Desai 2002, Fierro & Das 2002, Kaminka & Glick 2006, Pavone & Frazzoli 2007, etc.). ‘
| Each agent in the swarm system is capable of performing very simple tasks, but when these
agents aggregate, they are able to act as a larger entity which is able to perform more complex
tasks. To achieve this, iniﬁal studies have to be undertaken in ordef to undcfstand the act of

swarming by biological systems and inferring rules that govern the swarm movement.

The research in this Chapter' was conceived during the initial development phase of the EU FP6
I-SWARM broject. Several initiatives have been undertaken to create, understand and simulate
swarming behavioufs. Due to the limited capability of the I-SWARM agents, which directly
affects the number of sensors that can be mounted on them, and their limited processing |
capabilities, novel methods: for encoding and processing information- have to:be déveloped.
Moreover, due to the size of the agent and to reduce the manufacturing costs,v communication -
modules are not present on the agents', thus excluding the ability to communicate explicitly like
| agents in multijrobot systerﬁs. Agents have very little memory and lirﬁited sensing capabilities

which are used to detect obstacles and other agents.

In this piece of research, the main interest is in studying and imp]ementing rules thaf lead to
basic swarming behaviour on very simple agents. In the field of swarm robotics, .which
emphasises the cooperation and collectivity of groups of agents, individual agents are usually
controlled by simple strategies. Complex behaviours are often achieved at the gro-up or‘bolony
level by exp'lvoiting local interactions amongst agents, and its en.vironment. In designing control
algorithms for swarm agents, often complex strategies are avoided. Instead, simpler principles

such as homogeneity of agents and distributiveness of control algorithms are preferred.

There are many related works in swarming that are already mentioned in Chapter- 2 (Section
2.6, page 54). However, the control algorithfns proposed in these works require high agent
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complexity in term of hatdware (such in Das et al. 2002, Yang et al. 2007, Desai 2002,
Takahashi 2004, Mastellohe et al. 2007, Avrtltin et al. 2007, Payton et al. 2004, Nouyan et al.
2006, Freenﬁan et al. 2006, Desai 2002, Fierro & Das 2002, Kaminka & Glick 2006, Pavone &
Frazzoli 2007, etc.), which is the lu.xury that the ag‘en’ts within this research do not have. For
examples, agents in (Das et al 2002) need vision-based sensor; in (Yang et al. 2007, Desai
2002, Takahashi 2004, Mastellone et al 2007, etc.) need to perform complex calculations
hence requiring large amounts of memory and processing power; and in (Avrutin et al. 2007,
‘Payton ez al. 2004, Nouyan et al. 2006, Freeman et al. 2006, Desai 2002, Fierro & Das 2002,
Kaminka & Glick 2006, Pavone & Frazzoli- 2007, etc.) the agents requlre a fairly complex ’

communications module installed, thus defeatmg the aim of swarm intelligence.

With the aforementioned constraints, two particular pattern formation tasks that have been
addressed in this research are how swarm agents can be coaxed into forming a line or chain and
‘how agents can be programmed to cluster in a bounded arena under the constraint that agents
have a limited memory, sensing ability and proceésing power. This work is loosely inspired by
the observation of aht colonies, but unlike ants these agents do not release pheromones in order
to attract other ants. Rather agents use infra-red transmitters to attract other agents to

themselves.

3.2 Tasks and Approaches

With the limitation of agents as previously mentioned, the FSM approach has been chosen in
this part of the research. The tasks that have been chosen for the collection of relatively simple
agents toperform are line formation and cluster formation. The agents do not have any p.rior
knowledge about the dimensions of the working arena or how many other agents are present in
 the arena. These other agents can also be viewed as dynamic obetacles in the environment. The
sensihg range is small relative to the working arena. In this research, at reactive decentralised
control algorithm has been investigated and used to perform the abovementioned tasks. The
.mission is to complete the speciﬁc task while avoiding collisions with other agents and the

wall.

- 70



In the following section, the simulated world is first described, followed by the agent design
and its dynamics. Next the control mechanisms will be described at both low and high levels.

The results of the simulations are then presented and discussed.

3.3 Simulation Environment

3.3.i Simulator and agent designs

The experiments presented in this Chapter have been conducted in a physical simulation engine
called Breve (Klein 2002), first introduced in Chapter 2. Bieve is specifically designed for the
'simulatiori of multi-agent, 3-D spatial and physical systems. Hence agents will be subjected to
normal Newtonic laws. As shown in Figure 3.1, the working arena consists of a floor which is
defined as a cube of 70 by 70 patches with thickness of 5 units in the Breve world. Along the
perimeter of the floor, the wall has a thickness and'height of 4 units. The wall is inclgded to

prevent agents from falling off the end of floor.

- Figure 3.1: Simulation world; showing floor, wall with seven agents in the
- arena.

Swarm systéms can either be homogeneous or heterogeneous systems. In a homogeneous
swarm system, agents usually consist of physically identical .agents with exactly the same
hardware and software capabilities. Whilst on the other hand, in a heterogenedus swarm

system, the agents may be different, such as at the hardware or software levels. Even if the
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agents have exactly the same hardware configurations and control software, if each agent has a
unique identifier, the swarm system is considered as a heterogeneous swarm system. Hence in a

homogeneous swarm system, each agent is identical in all respects.

Within this study, sevéral homogeneous physical embodied agents with homogéﬁeous and
heterogeneous control have been designed to examine a ﬁumber of sWaming algorithms. As
showvn.in Figure 3.2, each agent is installed with a ring of 8 equélly spaced infrared transmitte_r-
feceiver pairs around its turret, that enables the agent to attract and detect other agents»fro.m its
local environment. In addition to transmitter-receiver pairs, the agent has two driving wheels
and two omnidirectiénal wheels, which allow the agent to move in any arbitrary direction and}

step once it is commanded to do so.

The agent has been defined as a mobile multibody object. The body of the agent, which has
been labelled as RoboBody has been defined as a root body or root link. The RoboB_qdy then. has
been connected to other parts of the agent, such as wheels and seﬁsOrs. The RoboBody has been
construc.;ted using a PolygonDisk ‘o_bject and has been defined with a radius of 2 units with
thickness of 0.75 vunits and with sides of 40 units. The wheels have been created using.' the
. PolygonDisk objéct as well with a radius of 0.60 unit;, thicknesé of 0.21 units and sides of 40
units. The wheels are referred to as leftWheel and rightWheel‘ to differentiate the left and right

wheel of the agent.

: Oméidirectionalb v \ Infra-red
wheel Infra-red

transmitter Driving
wheel

receiver

Figure 3.2: Simulated agent
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The leftWheel and rightWheel are then assembled to the left and right side of the undercarriage .
of RoboBody. To be exact, the leftWheel is connected to RobbBody at the point of (0, -0.30,

-1.20), and the rightWheel is at (0, -0.3, 1.20) as shown in Table 3.1.

The joints between the wheels and RoboBody has been defined as a revolute joint so that the
- wheels can be controlled to roll backward and forward‘ just like a physical wheel. The
omnidirectional wheel supports have been cohstructed using spheres with radii of 0.20 units.
The supports have been placed at the front and the back of RoboBody. The front support,
frontSupport is connected to RoboBody at the point of (1.5, -0.68, 0), and the back,
.backSupport support is at A(-1.5, -0.68, 0) as shownbin Table 3.1. The joints between
omnidirectional wheel and RoboBody has been defined as a Ball joint so that the wheel can

rotate freely in 360 degrees.

Eight pairs of infra-red transmitters and receivers have been created. The transmitters and
receivers have been defined as spheres. The pairs are then assembled at the top and near the end
side of the RoboBody spaced at 45 degrees apart as shown in Figure 3.2. The transmitters and

receivers faces outward and are perpendicular to the side of the RoboBody.

Table 3.1: Agent's parts

Agent's parts Shape - Link - Joint type Connected to
i ‘ . RoboBody at
RoboBody PolygonDisk with: Primary None Not available

sides = 40, thickness
=0.75, radius =2

leftWheel _PolygonDisk with: ~ Secondary Revolute joint - (0,-0.3,-1.2)
sides = 40, thickness ’
=0.21, radius = 0.60

rightWheel PolygonDisk with: Secondary ' Revolute joint ©(0,-03,1.2)
sides = 40, thickness
=0.21, radius = 0.60

frontSupport Sphere w(i)tg: radius = " Secondary Ball joint ('1 .5,0.6,0)

backSupport Sphere w(i)t-g: radius = Secondary Ball joint (-1.5, 0.6, 0)

transmitters Sphere w(i)t'lg: radius = Secondary - Fixed joint various
receivers - .Sphere “81{15 radius = Secondary Fixed jpim . various
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These infra-red transmitter and receiver pairs are labelled 1 through 8 in the clockwise manner
from the front position of the agent to differentiate which one which. These pairs are used for
attracting and locating other agents in the environment. The transmitters can be switched on

and off individually.

The lime, Blue and red colours of the transmitters.as in Figure 3.2, are used te indicate that
those tran_smitte_ré are switched on. When the transmitter is switched off, white is used. The
chosen colours aré also used to assist the'observer to recognise in which direction the agent is
fecing. As indicated in Figure 3.2, red is on the left and right side and lime is at the front and.
.baek side of the agent. For each pair, the infra-red receivers are placed in front of the

transmitters, this is to avoid the receiver from receiving the signal transmitted by its own pair.

The transmission and detection range of transmitters and receivers has been set to twice the
radius of RoboBody, i.e. 4.0 units. The transmission angle for transmitter is set to 25 degrees,

whilst the detection angle is 45 degrees.

" The collision sensor is located at the front of the RoboBody just below the infra-red receiver

number 1. The sensor range is set to 4.0 units and the detection angle is set to 60 degrees.

'3.3.2 Agents dynamics
The locomotion of the agents are non-holonomic, where there is a restriction on the maximum
possible turning angle of the agents. Turning is achieved through two driving wheels located

just below transmitters 3 and 7. The movement of wheels are governed by the input receivers.

At the beginning of the simulations, the natural velocity of wheels have been set to 2.50 rad/s.
The natural velocity is the speed at which the wheels turn in the absence of sensors or receivers
input. Each wheel can be controlled individually by changing the value of left and / or right

wheel velocity, namely leftSpeed and rightSpeed respectively.
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In this study, several flags for the agent's movement have been defined. These include speedUp,
slowDown, speedNorm, speedStop, turnRight and turnLeft as shown in pseudo codes in Table
3.2. At any one time, only one or none of the flags will be set to true while the others are set to

false.

From Table 3.2, when speedUp is switched to logic true,.both léﬁSpeed and rightSpeed Will
increasev their value basedv oﬁ,their current vaiue by 1.3 times. The speedUb method will be
activated if the distance between the agents is gréater than 3 unit. The increment of leftSpeed
and rightSpeed values will stop when either the current value of éeftSpeed or rightSpeed is
reached or is greater than 3.0, or the speedUp flag is set to falseb. The speedUp method is ﬁseful
~ when an agent is far from the other agents and is trying to keep close to the others withi'n the

allowed distance.

The slowDown method is the opposite of speedUp. The slowDown method will be activated if
the distance between agents is less than 2 unit and greater than 1 unit. Whenevef the sldeoWn
flag is set to true, the leﬁSpeed and rightSpeed parameters will be reduced by half unt'}l it
reaches the value of zero or the flag is sqt to false, whichever comes first. Th_e slowDown
method has been used in the simulations whenever the agent comes to close 'contact to other.

agent(s) or obstacle' before comes into a halt.

Whenever an agent needs to turn to the right or left, the flag turnRight or turnLeft will be set to
true accordingly. As shown in the Table 3.2, during the turnRight method, the rightWheel will
turn to the opposite direction of leftWheél, resulting in a negative value of the rightSpeed. The

turnLeft method on the other hand, will set the leftWheel turning in the opposite direction.

.The movement of an agent can be stopped by setting the speedStop flag to true. This will set the
leftSpeed and rightSpeed to zero, resulting in the agent coming to a halt. The speedStop method
will be activated if the distance between agents is less than 1 unit. The last elementary flag as’

shown in Table 3.2 is called speedNorm, this method will be activated if the distance between

1 Inthis Chapter, even though there no obstacle has been defined, agents treat the perimeter wall as
“obstacle”. o o

75



agents within 2 and 3 unit. In this method, both wheels will be set to naturalVelocity, resulting

the agent will move on to straights line forward.

Table 3.2: Pseudo code for agents dynamics

while speedUp do _
if leftSpeed < 3.0 and rightSpeed < 3.0 then
leftSpeed = leftSpeed * 1.3
rightSpeed = rightSpeed * 1.3
~end if
end while

while slowDown do : - :
if leftSpeed > 0 and rightSpeed > 0 then
leftSpeed = leftSpeed * 0.3
rightSpeed = rightSpeed * 0.3
end if '
end while -

if sunRight then
leftSpeed = leftSpeed * 1.0
rightSpeed = rightSpeed * -1.0

end if
if rurnLeft then
leftSpeed = leftSpeed * -1.0
rightSpeed = rightSpeed * 1.0
end if
if speedStop then
leftSpeed =0
rightSpeed =0
end if-
if speedNorm then
leftSpeed = naturalVelocity
rightSpeed = naturalVelocity
end if :
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3.4 Encoding of Rules

Within this research, since agents in the final I-SWARMFagents have a Hmited amount of
memory,. the rules goveming the motion ‘,of each agent (in this Chapter) afe based on a
behaviour based architecture, consisting 6f three states represented by finite state automatons as
shown in the state diagram of Figure 3.3. Each state corresponds to a differen_t behaviour. At
each simulation time step only one behaviour is active. .The‘ transitions between agents are
-dependent on the sensory inputs which is represented by s in the Figure 3.3; where s = 0 means
there is no sensory input whilst s > 0 means there is at least one of the agent's sensdr gives a

positive reading.

To test the hypotheses of pattern formations of robotic swarm using state modeis, twé control
algorithms have been proposed, narﬁely line for}nation and clvuster'ing. In line formation, all
ageﬁts have been controlled homogeneously, 'whilst in clustering, agents have been controlled
heterogeneously. for clustering, two types of agents are defined, that is attractor and searcher

agents which use different control sets.

s>0

randomWalk “following

Figure 3.3: State diagram for line and cluster formation. States are shown as labelled circles while
transitions are depicted as arrows. Each transition is labelled as event which triggers the transitions.
Letter s represents sensory input to the agent; where s = 0 depicts no sensory input, while s > 0 means -

there at least one of the sensor gives a reading.
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The approaches for line formation and clustering are thus described. First the behaviours are
described, followed by the cdnditioné that trigger the transition between behaviours for all
agents, ie. in line formation and searcher agents in clustering, and finally a high-level

descriptions for line formation and clustering control algorithms is provided.

The three behaviours designed into the agent are:

e - randomWalk: agent performs a random walk in the arena lookieg for others within its
vicinity. All infra-red transmitters are switched on for line formation and all are off for
clustering. .

e following: move towards the agent in front. Back three infra-red transmitters
(numbered 3, 4 and 5) are switched on, others are off for line formation; front three
(numbered 1, 2 and 8) are off while others are on for clustering.

® wait: moves with the current wheel epeed. On-off arrangement for infra-red

transmitters are same as in the following behaviour.

The behavioural transitions are:
e randomWalk — follewing: if agent perceived another agent. Note that an agent only
can be perceived by other agent if and only if its infra-red signal is detected by the
other ageﬁt. | | | |

e following — wait: if an agent lost the infra-red signal that has been detected before.
® wait — randomWalk: if an agent perceived the agent that was fost previously.

e wait — randomWalk: if an agent could not detect the lost infra-red signal within

permitted time frame.

»3v.4.l Line formation

At the beginning of the simulation, agents are placed va‘t the predeﬁned location as shown in
Figure 3.4. Typically, an agent will not detect any other agents in its vicinity and is in the
random walk state. The movement of the agent while in randomWalk state is that at every

simulation time step the agent will have a small probability of 0.005, or one in 200 chances to
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turn its direction of heading. This is to avoid agents moving in a Bfownian motion; moreover it
will give agents the ability to scan a wider area in a shorter period of time. When the agent
needs to change its direction, it will choose randomly either to turn left or right by either 45 or

90 degrees.

(a) (b)

Figure 3.4: Agents start position in the arena for; (a) line formation, (b) clustering.

While in the randomWalk state, the agent will switch on all its transmitters as shown by the
agent on the right in Figure 3.5 to attract others to its positions. At the same time, the agent will
look around and tries to find for external infra-red signals from another agent through its

receivers and within its sensitivity range.

forward direction

® ° e° e

¢ randomWalk? )}

< u» following ? -

’ 4

Figure 3.5: Transmitters' on-off arrangement for line formation. Agent on the left is in the
Jollowing state where three transmitters at the back is switched on. On the right is in the
‘ randomWalk state where all transmitters are on.
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As shown in Table 3.3 algorifhm 1, during the randomWalk state, the agent will read each of
the receivér values until it gives the logic true, ie. the agent perceives another agent. Reading
the values of the receivers is done sequentially, from the front to the rear and from right to left.
In other words, the value from the receivers will be read by the following order of feceivef's
- number: 1, 2, S, 3,7, 4, 6 and finally 5. The sequential reading of sensors is in line with the

limited processing capability of the on-board microcontroller of many swarm robots.

Table 3.3: Pseudo codes for three states in line formation algorithm.

Algorithm 1. randomWalk() | Algorithm 2. following() Algorithm 3. wait()
switch-on all transmitters : switch-on transmitters (4,5,6) | while (coﬁnter <50)do
for (each receiver) do switch-off transmitters for (each receiver) do
- if (any receiver) (1,2,3,7,8) . if (any receiver)
following() for (each receiver) do ' following()
end if if (any receiver) else
end for ' Jollowing() | counter ++
| endif ‘- end if
if (all receivers == false) end for
| reset counter end while
wait()
end if - if (counter >= 50)
end for randomWalk()
| end if

As sooﬁ as one of the.receivers detects the existence of another agent within its neighbourho.dd,
it will fall into the following staté and make the necéssary turn towards the agent. The agent
Qill also ignore the receivers that are read.ing while turning or changing its heading. For
example, if the receiver numbered 7 detects the signal, the agent will turn 90 degrees to the left
and ignore the reading from receivers until the turning task is done. Likewise for receiver -

number 3, it will turn to the right by 90 degrees and ignore the readings from receivers until
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-completed the turning task.-

In the following state, the agent switches off all its transmitters except the three to the rear,
numbered 4, 5 and 6, as the agent oﬁ the left shown in Figure 3.5. The reason behind this is to

attract another agent to its rear in order to form a line.

Theré is no explicit communication faking place between the ageﬁts. Agents rely solely on their
receivers to -control the movement. This kind of behaviour is known as cue based behaviour
v where agents react to stimuli in its environment. As shown in Table 3.3 algorithm 2, during the
Jollowing state, as in the r’andomW&lk state the ageni will rez_ld each of its receiyers val.u.es
sequentially from the front‘ to the rear and from right to left until one of the receivers detects the
infra red signal from the agent in front. If the signal is detected, the agent will remain in the

Sollowing state.

Due to the fact that infra-reci .transmi'tters and receivers have a limited effective transmission
and detection range and angles, a wait state has been introduced. This is to prevent the agent
from moving to the randomWalk state from the following state directly it loses the signal by a
few degrees. This can happeﬁ when the agent in front is turning or changing its heading by a
féw degrees. During this wai state, the agent will keep moving fofward without turning left or
right with its current wheel speed. As _ih the following state the agent will only switch on the

rear three transmitters, numbered 4, 5 and 6

As can be seen in the algorithm 2 of Table 3.3, the counter is reset to zero every time the agent
exits the following state and enters the wait state. In the wait state, the agent will read each of

its receivers values sequentially as in following and randomWalk state.:

While in the wait state (algorithm 3 of Table 3.3), if the agent detects any infra-red signal from
any other agent, it will change its state to the following state, and make a necessary turn
towards the front agent. If the agent does not detect any signal, it will increase the counter by .

one and continue to read the receivers values.
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This continues until the agent detects the wanted signal or the counter reaches (or exceeds) the
value of 50, whichever comes first. If the agent detects the signal, it will change its state to the

following state, otherwise it will return to the randomWalk state.

3.4.2 Cluster formation

For cluster formation amongst agents, two types of agents namely attractors and searchers
have been predefined. The attractor agent will act as a leader and will try to attract searcher
. agents to its position. The pseudo codes and state diagram that govern the searcher agents

movement are shown in Table 3.4 and Figure 3.3 (in page 77) réspectively. :

During the simulation, the attractor agent switches on all its transmitters permanently in order
to attract searchers to gather around its position. It also moves randomly in the arena until it

bumps into other agents several times, and it will stop at that position. -

Table 3.4: Pseudo codes for three states in cluster formation algorithm.

Algorithm 1. fandomWalk( ) | Algorithm 2. Sfollowing() Algorithm 3. wait()
switch-on all transmitters switch-on transmitters while (counter < 50) do
for (each receiver) do (3:4,5,6,7) for (each receiver) do
if (any receivér) ‘ switch-off transmitters (.1,2;8)> if (any receiver)
following() |for (éach receiver) do . following()
endif if (any receiver) : else
end for Jollowing() . counter ++
end if end if
if (all receivers == false) ~end for
reset counter : end while
wait()
end if ' S vif (counter >= 50)
end for randomWalk( )
| end if

82



As shown in the state diagram in Figure 3.3 (in page 0, the searcher will begin the simulation
in the randomWalk state. While in randomWalk state, the searcher agent will switch off all its

transmitters and it will move randomly in the arena while looking for others.

At every simulation time step, searchers in the randomWalk state and the attractor will have a
small chance with a probability of 0.005 to turn its direction of heading. When turning, the

agent will choose randomly either to turn 45 or 90 degrees to the left or right.

As shown in Table 3.4 algorithm 1, during the randomWalk state, the searcher will read each of
its receivers until any infra-red -signal from any othervagent is detected. Reading is done
sequéntially from front to rear and from right to the left as in the line formations method

discussed earlier.

Oncé'thé searcher detects any infra-red signal, the searcher will move into the following state
~and turns towards the detected signal. While in the following state, the searcher will switch on
all its transmitters except the three at the front as shown by the agent ‘on the left in the Figure
3.6. By doing so, it will attract other s.earchers to its Back or side in which will fonn a cluster of

agents in the end.

During the following.state (Table 3.4, algorithm 2), as in the randomWalk staté the agent will
read each of its receivers values sequentially from front to the rear and from the right to the left
until one of the receivers detects the infra red signal frorﬁ the agent in front. If the signal is

detected, the agent wiil remain in the following state. Otherwise the agent will move to the wait

state and reset the wait counter to zero.

In the wait state (Table 3.4 algorithm 3), the searcher agent will keep on moving forward with
its current wheel speed and on-off arrangement of its transmitters. The searcher agent will also
read its receivers value as before. If any of the receivers detects any infra-red signal, it will |

move back to the following state and make the necessary turn as in the line formation.
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Figure 3.6: On-off arrangement of transmitters for cluster formation. On the left is the searcher
agent in the following state switching on all the transmitters except the front three. Agent on the
right is the attractor switching on all its transmitters.

If the searcher agent is not able to dgtecf tﬁe wanted signal, it will increase the counter by one
and will search agam for the signal. The process will loop until the searcher detected the signal
or the counter reaches the value of 50 or greater, whlchever comes first. If the signal has been
found, the searcher will move back to the Jollowing state, otherwise it will move to the

randomWalk state.

3.5 Experiments

3.5.1 Simulations setup

As préviouSly mentioned, the research in this Chapter has been undertaken in corijuﬁction with
the I-SWARM project; where agents have little memory, Hmitéd sensing capabilities and no
communications module installed on them. The goal of the simﬁlations was to evaluate the
ctmtrollers under the most basic chditions. In particular, we.placed no obstacle in the working
environment and agents are plaéed_at the same position and orientation at the start of each
simulations as shown in Figure 3.4 (page 79). In these simulations, seven agentsA have been'
used. We employ a bounded arena of size 70x70 units in the Breve world, as mentioned
previously, for‘ail the simulations. Fifty one runs are made for each épnti‘ol 'algorithms. The
performance was evaluafed at the ehd of the simuiations and all runs for line formation and
clustering were executed for 300 and 200 simulation seconds respectively to provide enough
time fqr all agents to complete the task. The simulations were recorded into a movie format,

and the data for analysis were recorded at every 20 simulation seconds.
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3.5.2 Evaluating line formation
| In evaluating eac‘h control» algorithm, first the number of agents that are in the randomWalk
state are counted. As the numbér 6f agents in the simulations was fixed at seven, the number of
agents in the randomWalk state towards the eﬁd of the simulation is ideally one. When this
'happens, the agent which is in the randomWalk state will act as a leader for other agents. In
other words, agents in the working arena will follow the agent' ahead of itself, in the end will

result a moving queue.

The reason for counting the number of agents in the randomWalk state is that if we supposé that
each of the agents in randémWalk state acts as a leader for line formation, then the number of
~ leaders in the environment will represents the number of lines or chains that formed iin the
arena. In this study this number should be minimal i.e. one; this will show that iﬁ the arena

there is only one leader and one line or chain amongst the agents have been established.

Figure 3.7 shows the plot of the mean number of agents that are in the randomWalk state
against time over 51 simulations run. As can be obsérved from the plot, the number of agents in
the randomWalk state decreases over the first 100 seconds, andvthén stabilises aftérwards. This
shows that agents' are able to form a line or two within the first IOQ seconds. The low variation

- of the standard deviations demonstrates the consistency of the algorithms.
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Figure 3.7: Number of agents in the randomWalk state in line formation against time.
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In order to further understand how the agents converge, Table 3.5 shows the percentage of the
number of agents in the randomWalk stéte over 51 simulations run. As the simulations began,
all the agents fall into the randomWalk state which amounts to 100% if there are seven agents.
At t = 20 seconds, only 1.96% or in other words, only once in the entire simulations run that
one of the agent was not in the randomWalk state. Towards the end of the simulations,
specifically from 150 to 300 seconds as we can see from the plot and the data provided, around
90% of the simulation runs have managed to form two lines or less, in which more than half of
the time only one agent is in the randomWalk state and acts as a leader for the entire agents.
From the observations during the simulations, there are a number of times where agents were
successfully formed a single line and then split into two linés due to the limited. angle of
transmissions and receivérs. We believe that this can Be avoided by increasing the counter for

the wait state.

Table 3.5: Percentage of number of agents in the randomWalk state over 51 simulations run for line '
formation.

Time ;
Agents 0 20 |40 | 60 80 | 100 | 120 | 150 | 180 | 210 | 240 | 270 | 300
1 0 0 0 | 7.84 [21.57]|49.02| 54.9 |49.02]39.22 |52.94 | 52.94}58.82 | 62.75
2 0 0 0 [31.37| 45.1 |39.22|37.25|39.22| 54.9 [39.22{43.14{35.29|35.29
3 0 0 9.8 [37.25|19.61| 9.8 | 7.84 | 9.8 | 5.88 | 7.84 | 3.92 | 5.88 | 1.96
4 0 0 (47.06|17.65|11.76| 196 | 0 |-1.96| O 0 0 0 0
5 0 0 |3137|588|19 | 0 0 0 0 0 0 0 0
6 0 | 196 [11.76| O 0 0 0 0 0 0 0 0 0
7 100 |98.04| O 0 0 0 0 0 |-0 0 0 0 0

Consider the snapshots taken during one of the simulativc.)n runs for line formation-in Figure 3.8
at 40, 100, 190 and 240 séconds respectively. In Figure 3.8(a) and (b), three of the agents have

detected other agents hence have moved into the following‘state. Other agents which are in the |
randbmWalk state will remain in the state until it detects another agent which they can follow.
Figure 3.8(c) shows two of thé agents are in the the randomWalk state and as can be seen that
the agents have formed two lines; one with two agents and the other with five agents. Figure
3.8(d) shows that towards the end stage of the_ siﬂlulation which shows the agents have

successfully formed a line.
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(c) ', (d)

Figure 3.8: Stages in lmeformattons (a)att =40[s]; (b) at t = 100(s]; (c) at t = 190(s], and (d) at t =
240(s].

3.5.3 Evaluating cluster formation

In cluster formation, as mentioned previously two types of agents namely searcher and
attractor agents.have been deﬁn'ed.b The evaluation process is sirﬁilar to those in the line
formation, but this time we take searcher agents into account Aand counted the number of
searchers fhat fall into the following or wait state. In the simulation, we have a totai of seven
agents, six of them are searchers and one is an attractor. As cluster formation 1mphes the task
for the searcher agents is to roam in the working arena and look for and gather around the
attractor. As the number of searchers is fixed to six, ‘ideally towards the end of the simulation

all searchers found the attractor and the number of searcher agents in the following state is six.

87



Figure 3.9 is the plot of mean number of searcher agents that are in the following or wait state
against time over 51 simulations run. As can be seen from the plot, from the start of simulations
up to around 70 seconds, the number of agents changes rapidly. The rate of convergence seems

to slow down after approximately 70 seconds and stabilises after 140 seconds.

Cluster formation
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Figure 3.9: Number of searcher agents in the following state in cluster formation against time.

- Table 3.6 gives an overview of the percenfage of the number of searchers in the following or
wait state over 51 simulations run. At the beginning of the simulations, none of the searchers
are in the following or wait state, giving 100% to number of searchers 0. At 40 seconds, the
number of searchers increases, but for most of the simulation runs only three or less of the

- searchers were; in ihe Jollowing or wait state. Also at 40 seconds, only once frdm the entire

simulation runs that all the searchers zire already in the following or wait state, or have already

completed the ;ask of clustering. From 140 seconds, at least five of the ;searchers are in the

following or wait state and more than 80% of the simulations run the task has been completed.
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Table 3.6: Percentage of number of agents in the randomWalk state over 51 simulations run for cluster
Sformation. :

Time _ .
Agents .0 20 40 | 60 80 100 | 120 | 140 [ 160 | 180 | 200
0 100 | 64.71 | 5.88 0 0 0 0 - 0 0 0 0
1 0 |3333]19.61 1 3.92 0 0 0 0 0 0 0
2 0 1.96 | 23.53 | 7.84 | 3.92 | 1.96 0 0 0 0 0
3 0 0 129411373 | 1.96 | 1.96 0 0 0 0 0
4 0 0. 11569 3333 17.65| 13.73 | 3.92 0 0 0 0
5 0| O 3.92 | 23.53]39.22 | 29.41 | 2941 | 17.65 | 13.73 | 11.76 | 9.8
6 0 0 1.96 | 17.65 | 37.25 | 52.94 | 66.67 | 82.35 | 86.27 | 88.24 | 90.2

Figure 3710 shows the snapshots taken during one of the simulations runs for cluster formation
at different time stages. Figure 3.10(a) shows that at the beginning of the simulation, aH agents
were in thé raﬁdomWalk state. Thevattrac'tor permanently switches on all the transmitters,
whilst the searchers switch off all the transmitters during the randomWalk state. Figure 3.10(b),
shows that two of the searches have é_lready encduniered the attractor resulting in the
;earchers switching én the transmitters to its side and back. Fighre 3.10(c) and (d) show the
simﬁlation runtime at 100 and 160 seconds respectively. At these times most of the searchers
haQe perceived the attractor or other agent with the transmitters turned on. Finally Figure
3.10(d) shows towards the end of the simulation wh.ich shows all the agents successfully

forming a cluster.

‘ The stfategy of the agent in the cluster formation simulation is the same as in the line formation
» algérithm, where the agent does not use any ‘kind of explicit communication and relies only on
its sensors or receivers to control its motion. 'Moreover, itis aﬁ auto-catalytic process, the more
there are agents in the cluster, the larger the cluster becomes and the more likely other agents '

are to discover the cluster, th‘us,reinforcing the growth of the cluster,
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Figure 3.10: Stages in cluster formations in one of the simulation runs: (a) at t = 0[s]; (b) at t = 40[s]; (c)
att = 100(s], and (d) at t = 160[s]. :

3.6 Discussions
~ An experimental study of two simple control algorithms for pattern formation in robot swarms,
usiﬁg state-based and rule-based systems, have been presented. The agents are Vd.esiglned to be
- homogeneous in hardware which have constraints in ‘processing power, little memory and
limited ability, and it has been shown how the simple ilgents can be controlled in a

homogeneous and heterogeneous way such that basic organisation can be achieved.
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From the results, it is shown that by automatically switching on and off a combination of
transmitters and sensors, a variety of agent behaviours can be achieved. It is also shown that -
simple pattern formation of mobile robot swarms can be obtained by using only simple rule sets

without the need for any direct communication between agents.

The overall aim of this research was to investigate two different, but crucial problems in robot .
swarm. Firstly, the problem sf self-organising in a robot swarm into an interesting pattern is a
challenging task that has been studied by several research groups. 'Secondly, the potential for a
swarm of robots to generate solutions that can meet real world constraint still remains to be

achieved.

During this study, the major constraint that was identifies was the processing power and the on-
‘board sensing capability of the robots. With limited capabilities, it might look that nothing
~ substantial could be achieved by each individﬁal agent. Hence, a way need to be found to

overcome this issue.

The work discussed in this Chapter is related to achieving interesting and coherent behaviour
from a number of simple agents. These simple agents only'have little memory, limited sensing

capabilities and processing power.

It is a much simpler task to design a controller for a robot that maximises its oWn sensing
abilities, but the result is likely to be a very deterministic behaviour. By using the local
interactions between robots, other information can be harnessed within the environment that is
not necessarily directly available to all robots. This requires the agents to have the ability to
perform localised signalling to their nearest neighbours. In this scenario, aggregation patterns

are important for the flow of information within the robot swarm.

By having certain patterns encoded in the robot swarm, complex tasks can be more easily
performed. Such patterns for example; line formation or a moving queue, can be useful in

cleaning-type tasks, search and rescue tasks, optimal path finding between two points etc.
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Another example is clustering, where the pattern will be useful for information sharing within
the working arena, or to.do some complex processing which could not be achieved by single

agents due to limited local sensing and computational capabilities.

- Another important area of investigation is the composition of several behaviours to produce’
more solutions in .mere complex scenarios. This way, a robot must use the limited sensing
capabilities- with some degree of contex‘t.in order to “understand” its situation. This will give it
the information it needs to make a decision on switching between rule sets. For example, u;ing
only its IR sensors, a robot can differentiate between an obstacle and another robot. If a robot
pieks up an IR signal, it can determine if it is reflected byi an object by switching off its |
transmitters. Using this simple method, a robot can be part of a moving qeeue formation until.

discovering an object before taking action based on this information.

By combining localised signalling and context within a scenario, this work prbvides a step
towards robot swarms being able to emulate complex dynamical pattern formations such as

those present in nature, in social insects for example.

In this Chapter it has beep shown hOstimple agents can be given simple rule sets to prodﬁce
interesting behaviours. As each state within the state diagrarri is governed by rules to perform
that automaton, sp the resﬁlting aggregated behaviour can be built upon to ppoduce even higher
levels of coordination. Ultimately what looks like a massive cooperation emerges from what are

essentially local interactions.

From a practical approach, the work developed ip this chapter lbl'asv been usedpy Fernandez et
al. (2005) to copstmct SHUBOTS at Sheffield Hallam University. The SHUBOT agents are
| shown in Figure 3.11; Each SHUBOT robot has low complexity‘ and is low-cost, and so wopks
ideally as swarm-capable agents to compleinent the work carried out in this Chapter. The -
SHUBOT consists of thIee modular platfofms, namely: the microcontroller module, the sensor
module, and the locomotioh and powering.module. The modular design approach was taken to

allow for future pos'sibilities of . either. expanding the platform or changing the sensor

92



configurations. '

Femandez et al. (2005) designed and studied various sensor combinations and bresented three
of the behaviours. The first behaviour is achieved when all transmitters / receivers
combinations are switched on. In this behaviour; agents transmit its location and detects other
agents at the same time. The behaviour is not deterministic dué to:

° 'indeﬁnite obstacle avoidance lock, due to the fact that since all transmitters are
switched on, and when the agent encounfers an obstacle and avoids it, it may again
perceive the empty space as an obstacle, thus turning into the obstacle again.

e the breaking of robot chains, due to the fact that when an agent is folfowing another

agent in the vicinity the robot will rotate through by 180° when it gets too close.

The second behaviour is the leader-follower (line formation) behavi‘our as shown in Figure
3.11..Iﬁ this behaviour an agent acts as the leader and other as followers, allowing for long
chains to be formed. The leader switches off the back three receivers, so that it does notbdetec't
any follower. The leader roams and avoids obstacles. The followers on the other hand haQe all
it's receivers and transmitters switched on, which allows it to detect a leadér, or ahother_

follower agent that it can follow.

A/ microcontroller

module
sensor module

\Iocomot ion
and

powering

module

Figure 3.11: The SHUBOT and four SHUBOTs pelforming line formation ( Féﬁzandez et al. 2005)
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The third behaviour is a clustering behaviour. In this behaviour, agents switch on the three
frontal receivers, so other agent can be detected towards the front. When an agent is detected it
" follows it. Due to the fact that all transmitters are switched on, lateral following also occurs

which results in a clustering behaviour.

Furthermore, their results (Fernandez e al. 2005) showed that the agents (SHUBOT) were able
to distinguish between obstacles and other partner agents in the .working environment. The
method for doing so was to'use. a triple check approach as shown ih Figure 3.12. It was also
'found that the agents encoﬁntered some difﬁculty ‘due to multiple reflection from boundaries
and a variety of infra-red sources, which has been ignored during the simulations. Nevertheless

it was found that the simulations did provide a useful study in developing the physical agents.

Is the front sensor
activated?

Switch off the
front transmitter

Switch on the

Is the front sensor g
front transmitter

still activated?

Yes Is the front sensor
' still activated?

No
Obstacle No obstacle
presem present d

Fzgure 3.12: Obstacle avoidance on SH UBOT The triple check is due to the fact that the robot's own
infra-red transmztter may affect sensing.
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To sum up, “fin this Chaptér, two control algorithms using the FSM approach for pattern
fonngtion have been devised to support relatively simple swarm agents that have very little
memory, limited sensing capabilities and processing power. It has been shown that even with
relatively ‘simple swarm agents, Simple pattern formation of mobile swarm agents can be
obtained by using only simpie rule sets without the need of any direct communication betWeen
agents. In this work, different variety of agents behaviours are achieved by switching on and off

a combinations of transmitters and sensors.
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Chapter 4  Modelling of Collecﬁve Movement

Self-organising systems usually comprise a large number of autonomous and reactive agents
where aggregations or collective. movements are defermined mainly by their neighbourhood
influences. Generally these systems have been used to s_irﬁulate and study natural and biological
phenomena. With recent technological ad{/ances, the realisation of deploying hundreds (if not
thousands) of swarm agents is becoming more viable. This Chaptef‘examines ho§v an artificial
potentiél field affects the collective movement of swarm robots. In the next two sections the
history and background of the flocking algorithms ahd collective movemént in robotics are
provided. Thereafter the sir.nulation methodology and its impleméntation will be described. The

results are evaluated and conclusions are drawn.

4.1 Introduction
In nature, there are countless examples where animals or insects gather in a large groups, A
displaying collective movement and self organise in a coherent fashion. These patterns are
evident in numerous other examples of animal or insect migration behaviours such as the great
herds of antelopes and wildebeest thundering across the Savannah iq Africa, and Monarch
butterflies migrating south from North America into remote mountain tops in central Mexico
_ téwards the end of summer days. The way that these appear coordinated and synchfonised

according to local rules is fascinating to discover. -

It is hard to believe that for such a large group there does not exist a single entity or a leader to
control the group's behaviour. For example, in the case of the birds flocking or fish schooling,

the bird or fish at the front of the flock seems to lead, and the others to follow. On the contrary,
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most bird ﬂocks and fish schools are leaderless. In fact the movements of the flocks and

- schools are determined by instantaneous decisions of individual bird or fish.

Orderly flock patterns arise when each agent iﬁ the ﬁqck follows simple rules in response to
dynamic interactions within neighbourhood. Such movements are a prime example of self
- organisation in swarms. Camazine et al. (2001) state that the»main feafufe of self organisatién ié
that a system's _organisaiion or movement does not explicitly depend on external control factors:
In . other wdrds, the organisation emerges solely due to the chal. interactions between
indiyiduals and their environment. The organisation also can evolve in either space or time and
can maintain some kind of stable form or éan show in transient phenomena. An example of
such a system i$ that of a colony of ants sorting eggs without knbvﬁng any particular sorting

* algorithm (Bonabeau et al. 1999).

An exahple of self organisation in a swarm is the flocking of birds. As previously mentioned in
Chapter 2 (page 57), Reynolds (1987) was one of the first to simulate flocking behaviéurs of
“birds. The ‘basic Reynolds' flocking algorithm is based on steering behaviours of which he
labelled as Separation, Alignment and Cohesion. Thé result of the simulations was a movement
model that mimics variqus swarms in vnature, a s-chool of fish for instancé. Since the flocking
work of Reyn(;lds (1987), there are many works which are rélated to and extended from the
flocking or swarming aigorithms.l Wilensky (1999) for example, further developed the -
simulation inspired by the boids algorithm. The élgorithﬁ presented by Wilensky (1999)
(described in the next section) is very similar to the original boids algorithrﬁ but not entirely the

same.

Other works which Were inspired by the Réynolds‘_include the work of Tanner (2003), Hanada
- (2007), Olfati-Saber & Murray (2003), Des.ai (2002), Mastelone et al. (2607) etc. Most of the ‘
works reportéd in articles involve “répel” and “attract” factor (such in Tanner 2003, Hanada
' 2007,- Olfati-Saber & Murray 2003, Esposito & Dunbar 2006, Chen et al. 2007, Desai 2002,
Mastelone et al. 2007, Yang et al. 2007, etc.). These 'repel facltors are used in the agent-agent

- and/or agent-object obstacle avoidance sbtrategy, meanwhiie the attract factor is only used in the
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agent-agent cohesion-like strategy. The work in this Chapter investigates and examines the
problein of agent-object attraction factors by extending the flocking algorithm of Wilensky
(1999). This will lay groundwork of how agent-object attraction factors affect swarms

behaviour in performing an aggregation task.

4.2 Collective Movement in Robotics

Movements in mobile agénts.can be classified into two categories, holonomic and non-
holonomic motion. Holonomicity in mobile agent refers to the relationship between
controllable movement DOF (degree of freedom) and the total DOF of a given agent. If the
controllable movement DOF is larger than total DOF, the agent is céﬁsidered tobea holonomic

agent.

For example, let us consider a mobile agént with two wheels, one on each side of the a;genf's
| body. Each wheel has two DOF which can be contrqlled to turn either clock-A or anti-clock-
wise, independently, and thus the agent has 4 controllable DOF. By having different directions
(clock- or anti-clock-wise) and/or speed of the wheels, the agent can freely move on a planar

surface with 3 physiéal DOF; hence the agent is a holonomic agent.

In multi-agent systerhs,'eaqh agent has to control its motion in order to form some degree of
éo_hesive motion with other agents within the group. Methods for acﬁieving collective and
coordinated motion are dependent on the sehsing and proceésing capabilities of the agent.
Generally, the movement of agents are mainly reactive which is completely determined by
reflexive movement dynamics. Interactions between agents and its dynamibc environment will

result in “complex” macroscopic behaviour and promote self organisation in the end.

In swarm robotics, collective movement is a very important aspect of many tasks. Often, agents
have a limited sensing range and it is important for agents to stay close to each other while
moving in the arena. One example of collective movements is the formation movement, where

agents are required to keep a fixed distance and angle relative to other agents within their -
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neighbourhood. ~Applications of collective movement include search and rescue,. tasks
distributed sensing grid, lawn-mowing, vacuum cleaning, box pushing (Kube & Zhang 1992),

foraging (Jones & Mataric 2003), etc.

In this Chapter, the research is focused on analysjng the aggregation behaviour of large grbups
of agents that follow swarm robotics control paradigms. in particular, we model how a large
gréup of agents would behave in the existence of an artificial attractor while flocking in the
arena. This work is inépired by the obsefvation of phbtotactic organisms, Such as moths which
ﬂy towa_rds a light source. In the simulations carried out in this chapter the light source is

modelled as an Artificial Potential Field (APF) to attract agents.

The remainder of this Chapter is organised as follows. In the next section, the simulation
approach will be described. The simulation methodologies are then explained and some
snapshots of pre-simulation runs are offered. After that the evaluations of each model are

shown, and this is followed with discussions.

4.3 jSimulation Approach'

In this study, a freeWare simulation tool called NetLogo '(2008) has been used. In NetLogo, the
2-D world is made up of turtles, patches and an ébserver. _Tﬁﬂles or turtle breeds can be used to
* define mobile objects. The patches will define the floor or ground in which tﬁrtles can move
around on. The patcheé can also be used to define any other'visible or invisibl‘e objects in the
arena. Turtles and patches caﬁ have individual variables and characteristics and can follow
some set of predefined rules. The observer in the model will be able to oversee everything that

is going on in the world.

The model for simulation is based upon its participants, we name them as agenis, arena and the
object; and sets of rules. The object, in our case is a static object which we define as turtle
“breed”. The rules determine the behaviour of each individual participants, and also specify the

way in which these participants will interact with each other.
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As mentioned above, the arena has been defined based on patches. In these simulations a
spherical or wrapped around working arena size of 201 by 201 patches was chosen. The size is
sufficiently large to accommodate the large number of agents that we intend to simulate. At the
 centre of the areha as shown in the Figure 4.1, patch coordinate of (0, 0), an object called

" attractor has been defined and placed. The attractor releases an APF in the arena.

. .
.o . . . .

. . Pa—

Figure 4.1: Example of a working arena with 300 agents.

Agents are declared as a turtle breed, which are mobile agents. In NetLogo, agents can
concurrently carry out soﬁle instructions and interact with other agents. Breeds are groups of
mobile égents thét have same characteristics and follow the same set of rules. The agent has
* been modelled such thét each agent can sense or perceive others around its neighbourhood in
360-degrees within ité visibility range, as shown in Figure 4.2. Visibility range is the Qariable
whefe we define how far each agent can see>or sense from its vpo'sition; while the rﬁovement
span is a set of maximum angles that are available for the‘agent to chaﬁge its direction either to

“the left or right for its very next movement step.
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movement movement
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Figure 4.2: Representation of an individual agent

In this Chapter, Wilensky's (1998) flocking model has been used and extended. The model is an
attempt to model and mimic the flocking of birds which is inspired by the Réynolds' flocking
model (Reynolds 1987). As in Reynolds' model, Wilensky's»'modelv does not have any
predefined ‘leader and all agents follow the three strategiés of flocking, i.e. separation,
alignment and cohesion. For these strategies, Wilensky limits the turning angle of each
strategies using variables called max-separate-turn, max-align-turn and max-cohere-turn. As
vthe names of the variables imply, max-separate-turn represents the maximum angle an agent
can take during separatioﬁ strategy; max-align-turn is for alignment and max-cohere-turn is for

the cohesion strategy respectively.

Even though the cohesion .and alignment strategies in the Wilensky's model are similar to the
Reynolds' model, the separation strategy is slightly different. In Reynolds' model, the
separation strategy takes into consideration a number of agents in the neighbourhood of which
a distance is maintained. On the other hand, in Wilen‘sky's model, only the closest agent to itself
is'considcred. In this strategy, the agent uses maxfseéaraze-tztm angle and turns away from the -

closest agent.

4.4 Methodology and Implementation

4.4.1 Simulation methodology
As mentioned in the previous section, for this study, Wilensky's (1998) flocking model has

been adopted and adapted. The attractor in the centre of the arena releases an APF from its
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position as defined by equation (4.1) below.

! if distance> fieldRadius
field = _ | -
o l;ﬁiﬁzciteus otherwise

The strength of the APF's field is dependent on the patch's distance from its origin, which in our
case is represented by the attractor: The circular area of the field is subject to a variable,
fieldRadius which has been set to 63. As shown in Figure 4.1, the white background represents

the area which is not affected by the applied field.

~ The number of agents in the simulations are varied between 100 and 500, with 100 increments.
At the beginning of all the simulations, agents are randomly distributed in the arena, which are

represented as small black dots as shown in the Figure 4.1.

Withiﬁ this study, three different movement models have been modelled, namely fish-like,
mosquito-like and ﬁieﬂy-like. Note that we are not modelling the movement of fish, mosquito
or ﬁrg_ﬂy; the name siinply implies the type.of observed collective movement of agents in the
- arena under the different parameter sets. The differences between each movement models are
due to the movement span and visibility range of eaéh agent respectively. As shown in Table
4.1, visibility range and movement span for the fish-like model have been set to 10 unit-patches
and 10-degrees; for the mosquito-like‘model 7 unit-patches and 45-degrees, while for the

firefly-like model they are 5 unit-patches and 90-degrees, respectively.

Table 4.1: Variables for movement models

movement model “movement span visibility range
Fish-like - A 10 , 10
Mosquito-like - 45 7
Firefly-like o 90
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As Wilensky's model of ﬂocking (1998) is being extended, three more variables from the
original model needed to be introduced; max-align-turn, max-cohere-turn and max-separate-
turn. These variables are the maximum angles that each agent can turn through during the

alignment, cohesion and separation rules respectively.

For these simulations, those three angles rely on the moverhént span angle; which is the
maximum turning angle of each agent for its next movement or time step. As shown in Table
4.2, the value for max-align-turn is set to half of the movement span angle, and max-cohere-
turn and nzax-separat_e-turn to one-third of the movement span respectively. Tnese values have
been chosen based on our obsérvﬁtions during the pre-simulations run such that eaoh movement
model exhibit “realistic” flocking. In “realistic” flocking agents are free to leave and enter the

flock, just as biologioal organism do.

Table 4.2: Flocking variables for each movement model

movement model | movement span | max-al ign-turn max-cohere-turn | max-separate-turn
Fish-like ‘ 10 1072 1073 1073
Mosquito-like - 45 45/2 4513 45/3
Firefly-like 90 9072 90/3 10/3

Throughout this Chapter, the agent"s velocity is fixed to one unit displacement, whilst the
agent's heading H, varies over time. The separation between agents (minimum separation) has
been set to two units of displacement, which seems a roasonable figure considering that the
velocity is one unit of displzicer'nent for each time step. The change of heading (H) is subject to
the APF and flocking rules which consist of separation, alignfnent and cohesion strafegy as
previously mentioned. In the separation strategy, the agent only considers the nearest agent, the

heading for separation (Hepararion) is defined as follows:

H current + max — separ ate—turn lf H current H nearest neighbour =0
- . 4.2)
H — max—separate—turn - * otherwise

%% separation

current
where Heumen is the agent's current heading and Hieares neighour 1S the nearest neighbour's current

heading. In this strategy the agent will turn away from its nearest agent by max-separate-turn.
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In the alignment strategy, the agent will change its heading with a similar heading or the

average heading of its neighbours. The heading for alignment (Haignmen:) is defined as follows:

Hah'gn lf churrent - Halign| = max— allgn —turn
H igmment = | H qypreng +max— align—turn elseif H e < H yign 4.3)
H pyors —max—align—turn . else

where Hui. is the average heading of neighbouf(s) within neighbourhood area. Ha, is defined

as the following equation:

1 < | .
H"”S" = - Z Hneighbou;' (4'4)

R, neighbour=1
where n, is the number of neighbours within the visibility range and Heignour is the heading of a

particular neighbour.

In the cohesion strategy, the agents will try to stay close to its neighbours. The heading for

cohesion (Honesion) 1s defined as:

Hcohere lf Ichrrem_ Hcohere| <max —cohere—turn
H ohesion = { H yypypers+max— cohere—turn elseif H o < Hoppore - 4.5)
H . —max—cohere—turn  else

where Heonere 1s the heading towards the centroid of agents in the neighbourhood and defined as:

n. na

' 1 1 ’ :
H cohere = H|— Z xneighbaur’ — Z y neighbour . (46)

na neighbour =1 a neighbour =1

where n, denotes the number of agents within neighbourhood range; Xucighour aNd Yneighour are the
neighbour's x-coordinate and y-coordinate respectively; and H(x, y) means set the heading
towards the coordinate of (x, »). As previously mentioned, we héve set the maximum turning’
 angle for each strategy as in Table 4.2. If the computed turning angle (|Heurren = Heohere| OF [Heurrens
— Haig|) is larger than the turning limif (max-cohere-turn, max-align-turn), then the maximum

turning angle will be used, such shown in the equations (4.3) and (4.5).

The movement models in this Chapter are governed by rules as represented in the flowchart in
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Figure 4.3. Ffom the flowchart, it is clear that in the movement models we havg four different
phases or four Behaviours which are represented by the rectangular boxes, i.e. wander, wandef
inside field, flock and flock inside field. Iﬁ the wander state, the heading of each ageht (Hvonder) 18
determined by the following way: o .

"+ random(movement span) | 4.7)

H = H

wander current

wheré Heuren: is the current heading; .and “random (movement span)” generates a random
number which is between -moveme.nt span and +movement Span. During the wander phase,
agents randomly change their heading either to the right or left depending on the positive or
negative sign of the generated movement span. If it is positive, it will turn to the right whilst

negative for the left.

For the flock behaviour, agents will first compute the distance of their nearest neighbour. The
distance is then compared with a variable called minimum separation. If the computed distance
is smaller or equal to the minimum separation, agents will use Heparae (€q. 4.2) as the next

heading. The headihg of the agent during flock phase (Hﬂ,,ck) is decided in the following manner:

H separation lf dis tanceneares! lleigfzbr)ur < mummum separ ation

Hﬁock = (48)
H otherwise

alignmentCohesion

* where Haignmentconesion 15 the average heading of Haignmen and Heonesion and given as follow:

H alignment +H

alignmentCohesion  — 2

H cohesion ( 4 9)

For the primitive heading inside the field of APF (Hpeiq) Which represents as the attraction

towards and repulsion against the centre of the APF has been computed in the following way

T p— (90 + ﬁ%ld) if field > 10 |
H poa = » (4.10)
r _ 10 .
H(xltmcmr * |90 - otherwise
field -

where field is the strength of the APF (as in eq. 4.1), Hauracwor is the heading towards the centre of

APF or attractor. Whenever the agent is close to the attractor or the field of the patch that the
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agent is at is greater than 10, the agent will repulse or turn away from £he attrﬁctor. Beyond
that, the .agent will Be attracted towards the attractor. In the above equation (4.10), there are
two operators in vthe equations, these operators are dependent on the which side the artractor is
at relative to the agent in question. If the attractor is on the right side of the agent, the top

operator will be used; if the attractor is on the left, the bottom operator will be used otherwise.

For wander inside field and flock inside field behaviours, the heading of agents are determined
by averaging the headings of the respected strategies, with the primitive heading inside the field

(Hpua)- The headings for these behaviours are defined as the following equation:

H wander+H Sfield ' Uc H wnmler+H field < movement span
2 : 2 .
HwamlerFieI(I = H l . vaan(ler_*_ H field (4 1 1)
current + move”lent Span e se l«f 'H current < 2
H,,.. — movementspan otherwise
Hg . +H H,.+H
flock field . flock field
=t = if Bl < movement span
2 2
H pocirions = .H + _ Ise if H H poe+H fo 4.12)
current nlovenlent span eLse l.f current 2
H, ... — movementspan ’ otherwise

where Hyanderriea 1S the agent's heading while in the wander inside field state; and Hocrea 15 the

heading for flock iilzside. field.

~ As the simulation starts, each agent enters either the wander or wander inside field state
depending on the agent's current position as shown in thé ﬂowéhart in Figure 4.3. If the agent's -
position is not affected by the APF, it wil} fall into the wander phase, otherwise it will be the
" wander inside field. While in the wander or wander inside ﬁéld phase, at each simulation time
sfep agents will have a chance to changé its heading randomly, but within the constfaint_s of the
movement span limit. Each agent then examines the position where they were at; if that

pérticular position is affected by the APF, or having a field value of larger than one (field > 1),
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the agent is then attracted to the centre of the field.

The agent then looks around, within its vicinity or visibility range, for flockmates. If any mate
is found, the agent flocks with the flockmates, otherwise it continues roaming. While inside the
field, the aforementioned rules were used with added attraction to the centre of the field, so that

agents will not leave the field.

wander ) wander inside

A fi(Rd‘

"~ vicinity 2.

V

flock inside
field

flock

Figure 4.3: Flowchart of movement mmodels

Figure 4.4 and Figure 4.5 show some sample trajectories and turning angle plots for each model
‘aftér we apply each different movement span respectively. From Figure 4.4 and Figure 4.5 wé
can clearly see the differences between ihe trajecfories and the plof éf turning angle against
.time of each movement model. Figure 4.4(a) shoWs fish-like motion where the movement is
like ﬁsh motién with a “calm” turning angle. Fish-like motion is useful for scannihg large areas
of the _afena 'in_ a short time period. Figure 4.4(b) and (c) show the trajectories of the mosquito-
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like and the firefly-like movement model, respectively. As we can see from the trajectories, the
firefly-like motion allows the agent to move around scanning in a small local area, and this can
be useful for searching for small objects in a small area, while the mosquito-like movement

appears to scan a wider area in the arena as well as its own neighborhood area.

- 4.4.2 Pre-simulation runs

In the pre-simulation runs, each movement model was asseésed without the attractor which
releases the APF to see how the the agents would Behave lin the areﬁa. We started the
simulations witﬁ 200 agents randomly distributed in the arena and allowed the simulations to

execute for 1,000 time steps.

Figure 4.6(a), (b) and (c) show the aggregation of fish-like, mosquito-like and - firefly-like
swarms movement m;)dels, réspeétiyely. From Figu?e 4.6(a) for the fish-like movement 'model,
the aggregation pattern that emerges shows that tHe agents congregate in large numbers in
several groups. The firefly-like movement model (Figure 4.6(c)), on the other hand, shows that

~agents formed several clusters with a smaller number of agents in each cluster.

In the mosquito-like movement model, Figure 4.6(b), the agents aggregate in several large and
small groups. This behaviour is similar to what Ikawa and Okabe (1997) suggested, that
mosquitoes do n§t remain at a single swarming site but repeatedly enter and leave ihe sites. For
this reason, in nature mosquitoes aggregate with large and small numbers in each group; hence,

the name moSquito-like movement model.
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Figure 4.6: Agents position at t = 1000 time steps of three movement models: (a) fish-like, (b) mosquito-
like, (c) firefly-like.

4.5 Evaluation

As statéd previously; several diffgrént numbers of agents were used in these simulations; i.e.
100, 200, 300, 400, and 500 number of agents were used. All simulations used a torus-wrapped
square arena of size 201 by 201 patches, such as the one shown in Figure 4.1. Thirty runs are
made for each movement model and each different number of agents with random initial
placement of the agents in the arena. The ﬁeldRadius fof the APF has been set to 63 (page 102).

This is to give sufficient space for-all 500 agents to reside in the APF's field considering the
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minimum separation of 2 units of displacement (page 103) between agent.

The performance was evaluated at the end of the simulation and all runs were executed for
7,000 simulation time steps to provide enough time for all agents to aggregate towards the
attractor which releases APF. The data for analysis was recorded at every 200 time steps

during these simulations.

4.5.1 Evaluating the fish-like movemént model

In evaluating each movement mociel,' the number of agents within the circlular area of the
attractor is first counted, or the circular area starting from the centre of the ‘ﬁeld, in our case,
from the patch at (0,0). As the number of agents in the simulations was fixed (varies from 100
to 500 with increment of 100 agents), and the working arena at 201 By 201 patches, increases
from.zero, we can expect that the number of agents should reach a maximum number when the
radius of the circular area originating from the the centre of field reaches 141, as it would
completely cover the arena. The reason for counting the number of agents within the circular

area was to pre-determine how close these agents are to the attractor.

As mentioned previously, for the fish-like movement model, the movement span is set to 10-
~degrees and visibility raﬁge to 10 patches. Figure 4.7 sho.ws the agent's location from one of the
simulations with 300 agents at three different simulation time steps of 150, 330 and 500 time
steps, respectively. From the figure, it is élear that as early és 150 time steps, more than half the
number of agents have already converged towards the centre of the arena or towards the

attractor.

During the flock inside field phase, the flocking agents exhibited a smooth circling behaviour
concentrated on the origin of the APF; in this case, the centre of the arena or the astractor. The
~ overall direction of the ﬂow appears to be random, sometimes clockwise and sometimes anti-
clockwise. The reason for‘ this is because as soon‘as'an‘ agent enters the field it will search
around for flockmates. If any is found, it will change its direction to match the majority of its

flockmates-in either a clockwise or anti-clockwise direction, resulting in the aforementiohed
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-efnergent behaviour inside the field.
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Figure 4.7: Positions of 300 agents in the arena at different time steps for the fish-like movement model
from one of the simulation runs; (a) at t=150, (b) at t=330, (c) at t=500 time steps. -

Table 4.3 provides a summary of the number of agents within the 60-patch radius from the
centre of the APF; Figure 4.8(a) and (b) are the plots of the number of agents within the circular
area from the céntre of the APF for the fish-like movement model, at simulation time éteps of
200 and 600, respectively. The results show that, at ¢ = 200 simulation time step, about 85%‘0f
the agents that are participating in the simulations aré already inside the field; in other words,

about 85% of the agents in the particular simulations have already converged towards the
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attrqc’ior, with a standard deviation of less than 5%. The highest standard deviation ié observed
in the simulation conéisting of 100 agents; this can be explained by the fact that the lesser the
number of agents in the arena, the more _time the agents need to scan through ar'ena.. At t =600
simulation time step, almost all the agents in the arena are already aggregated near the attractor.

with standard deviations of 1.5% for 100 agents, and less than 1% for 200 and more agents.

Table 4.3: FiSh-like hzovement model

| Time £ =200 £ = 600
Total number of agents | 100 200 |- 300 400 500 100 200 300 400 500

Mean number of agents 847 | 1732 | 262.1 | 347.7 | 432.8 | 99.0 | 198.9 | 297.9 | 394.7 |-484.5
within 60-patch radius '
from the centre of APF

% of agents within 60-| 84.7 | 86.6 | 87.4 | 869 .| 86.6 | 99.0 | 99.5 | 993 | 987 | 96.9
patch radius from centre
of APF

standard deviation 4.6 6.9 7.9 8.8 12.7 1.5 1.6 2.4 3.0 4.7
% of standard deviation 4.6 34 2.6 22 25 1.5 0.8 0.8 0.7 09

Figure 4.9 shows the simulation‘plots with 100 agents; the number of dgents within the circular
area from the attractor at 200, 400 and 600 simulation time step respectively. From the plots, it
can be clearly seen that the curves differ. At ¢ = 200, the number of agents increases gradually
withvnoticeably large standard deviation; while at 7 = 400 and 7 = 600, the standard deviations

decrease, showing that the agents movement have stabilised.

[
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Figure 4.8: Number of agents for the fish-like movement model within circular area from the
attractor; (a) at t = 200, (b) at t = 600 simulation time steps.
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fish-like movement model for 100 agents

120

100

80

0

Number of agents

40

20 /- £=200 -------
. . : £=400
; ; £=600 ===
0 ! 1 ,
0 . 20 40 60 © 80 100
Radius

Figure 4.9: Number of agents for the fish-like movement model within circular area from the centre
. of APF at different simulation time steps. :

4.5.2 Evaluating the inosquito-like movement model

As mentioned previously, for the mosquito-like rﬁovement model, visibility fange and
movement span have been set to 7 patches and 45-degrees, respectively. In this movement
model, without the attractor in the arena, agents appeaf to be form several clusters of varying

sizes as shown in Figure 4.6(b).

Figure 4.10 shows the sn‘apshots of one of the simuiation runs for the mosquito-like movement
model with 300 agents at three different time steps: 500, 1000 and 1500 time steps respectiVely.
At lt = 500, we notice that more than two-third of the agents have alréady converged towards
the centre of arena, at ¢ = 1000, the numbér of agents is increasing, and at t = 1500 almost all
the agents have found the APF releases by the attrdctor, resulting the agents aggregate néar the

centre of the arena.
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F igitre 4.10: Positions of 300 agents in the arena at differerit time steps for the mosquito-like movement
: model; (a) at t=0, (b) at t=500, (c¢) at t=1000, (d) at t=1500 time steps.

During the fl'(;ck inside field phase, the agents appear to move in a circulating motion around
the origin of the APF, but not as smoothly as that exhibited by the fish-like movement model.
In this ‘case the agents tend to stay a little closer to their flockmates, thus limiting the circulating
“movement. The emerged motion is brought about by the need for the agents tb move, but the

direction, whether clockwise or counterclockwise is indeterminate.

Table 4.4, Figure 4.11(a) and (b) are the selected data and plots of the results for the mosquito-
like movement model's simulations. Table 4.4 shows the number of agents within the 60-patch

radius from the attractor at the simulation time steps of 400 and 1200.
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Table 4.4: Mosquito-like movement model

Time t=400 t=1200
Total number of agents | 100 200 300 400 500 100 | -200 300 400 500

Mean number of agents 85.5 | 169.3 | 237.8 | 327.6 | 381.4 | 98.2 |.196.5 | 294.1 | 394.3 | 488.1
within 60-patch radius ‘ '
from the centre of APF

% of agents within 60-| 855 | 847 | 793 | 81.9 | 763 | 982 | 982 | 98.0 | 98.6 | 97.6
patch radius from centre
of APF

standard deviation 48 | 7.1 72 120 | 174 1.6 37 2.1 3.1 39
% of standard deviation 4.8 3.6 24 3.0 35 1.6 1.8 0.7 0.8 0.8

From the results, at ¢ = 400 simulation time steps, about 80% of the agents are within 60 patch
radius from the attractor. For simulations with 100 agents, there are 85.5% of the agents
converged toward the attractor compare to only 76.5% with 500 agents; with standard deviation

of 4.8% ilnd 3.5% respectively.

At ¢ = 1200 simulation time steps on the other hand showed that almost all the agehts in the
simulations are within 60 patch radius from the attractor, or inside the APF's field which was
released by the attractor. At this time the standard deviations are rather small with all of it

being less than 2%, and less than 1% for 300 and more agents.

Figﬁre 4.12 is the plot for sifnulations with 300 agents; ‘thé number of agents within circular
area from the artractor at 400, 600 and 1200 simulation timé step respectively. From the plot, it
can be ciearly seen that the curve idiffers at each different time steps. As the time increases from
200 to 400, and 600, the number of agents within the APF's field increased accordingly; anci the -

standard deviations show to decrease.
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mosquito-like movement model at t = 400

1
100 agents -----==
500 [F200 agents
300 agents ------- _
. S0 Sgense —— . ;.-%-—%E—-%?—,
500 agents :
n 400 . i .
. . -
e Fmm 3-----F--
g e A
- 300 .
: Pt S Fo--mr F--
............ .}5_.-..}-.‘-- =i
E ' 5 f‘ﬂ.znw—%
g 200 ] : ]
E T JT—F =2 3 £ T
= ;3 —F—F T ;
100 )
0
0 B * 60 80 100
Radius
(a)
mosquito-like movement model at t = 1200
]
100 agents =-===-= v
500 200 agents ‘....-- ]
300 agents ------- .
400 agents
400 500 agents . 2
g £ g e
<
o)
g
300
W
o
N
9]
8- 200 el v
£
o[ S ———— 7. . i
<
-0
0 B * °¢ 80 100
Radius
(b)

Figure 4.11: Number of agents for the mosquito-like movement model within circular area from the
-attractor; (a) at t = 400, (b) at t = 1200 simulation time steps. ' :
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mosquito-like mox}ement model for-300 agents
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Figure 4.12: Number of agents for the mosquito-like movement model within circular area from the
centre of APF at several different simulation time steps.

4.5.3 Evaluating the firefly-like movement model

For the firefly-like movement, the visibility range and mévement spanbare set to 5 patches and
90 degrees respectively. Figure 4.13 shows one of the simulation runs snapshots for the ﬁreﬂy-
like movement model at 7 = 1000, 2000 and 3000 time steps, respectively. At ¢ = 1000, e;/en'
though some of tﬁe agents haye already converged towards the attractor, we can clearly see
that a gfeat number of agents are sti"ll in the wander or flock phase; in qther words, agents are
roaming in the arena looking for flockmates or flocking outside the APF's ﬁeld. At ¢ =2000, the
number of agents outside the field seems to decrease significantly compared to ¢ = 1000. Atz =
3000, almost all the agents are in the wandéf inside field phase or have already converged

towards the field.
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Figure 4.13: Positions of 300 agents in the arena at different time steps for the firefly-like movement model

at: (a) t=0, (b) t=1000, (c) t=2000, (d) t=3000 simulation time steps.

During the flock inside field phase, unlike the previous two movement models, instead of

agents circulating the origin of the APF, the agents seem to only converge to the centre of the

APF's field and move around only within their small local area.

‘Table 4.5 shows the number of agents within 60-patch radius from the attractor; Figure 4.14(a)
and (b) are the plots of the number of agents within the circular area from the attractor for the

firefly-like movement model, at simulation time steps of 1000 and 3000, respectivély. Results

show that at t = 1000 time steps, about 85% of the agents are already inside the APF's field
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which has been set to 63 patch radius; in other words, about 85% of the agents have already



convergéd near the attractor, with standard deviations between 3.7% (for 400 agents) and 5.9%
(for 300 agents). At t = 3000 simulation time steps, nearly all the agents in the arena already

-aggregated near the attractor with standard deviations of less than 2%.

. Table 4.5: Firefly-like movement model

Time : : t=1000 t = 3000
Total number of agents | 100 | 200 | 300 | 400 | 500 | 100 | 200 | 300 | 400 | 500

Mean number of agents 83.8 | 172.4 | 251.7 | 343.0 | 421.0 | 97.3 | 196.4 | 294.5 | 393.1 | 490.0
within 60-patch radius ' '
from the centre of APF

% of agents within 60-| 83.8 862 | 83.9 858 | 842 1 973 98.2 98.2 98.3 98.0
patch radius from centre
of APF

Standard deviation . 5.8 8.1 17.8 149 | 253 1.6 2.0 2.8 2.9 5.7
% of standard deviation 5.8 4.1 59 | 37 5.1 1.6 1.0 0.9 1.0 1.1

Figure 4.15 shows thé plot for simulations with 300 agents; the number of agents within fhe
circular area from the attractor at three different time steps of 600, 2000 and 5000. From the
plot it can be clearly seen that at ¢ = 600, rﬁore thzin tWo-third of agents are already ’éonverged
toward the attractor, or within 60 patch radius from the attractor. At t = 2000 and t= 5000, the
number of agents within the APF's field increases, and the standard .deviations decreases

accordingly.
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firefly-like movement model at t = 1000
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firefly-like movement model at t = 3000
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Figure 4.14: Number of agents for the firefly-like movement model within circular area from the
attractor; (a) at t = 1000, (b) at t = 3000 simulation time steps.
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firefly-like movement model for 300 agehts
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Figure 4.15: Number of agents for the firefly-like movement model within circular area from the
centre of APF at different simulation time steps.

4.5.4 vMean distance

In order to further understand the convergence of the swarm, the mean distance, D of each
agent towards the attractor at each time step during the simulations as in (4.13) has been
computed; where x, and y, are the x-coordinate and y-coordinate of agent a, and n is the number

of agents in the simulation.

Z:: “ x+y“ (4.13)

n

D =

The value of the mean distance D, combines two observations from the swarm. First, it will
give us an insight on how well spread the agents are around the attractor, and the second is how

tight the agents or how close the égents are to each other in the cluster.

~Figure 4.16(a)-(c) are the plots of meah distance D, against time qu fhe fish-like, mosquito-like ‘
aﬁd firefly-like movement models, respectively. Table 4.6 and Table 4.7 shows the mean

distance D, for éaéh movement‘model at ¢ = 400,;1nd t = 5000 simulation time steps. Resﬁlfs

show that prior to convergence, the firefly-like movement model exhibit a considerably large

variﬁnce or standard deviation; as shown in Table 4.6 anﬂ the 'error. bars in the Figure 4.16(c).

For all the movement models as in the plots of Figure 4.16, Whén the system reéched

convergence, the mean distance D increases as the number of agents in the simulation
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“increased. For the ﬁreﬂy-like movement model as shown in the plots of Figure 4.16(c) and
Table 4.7 when the system converged, the mean distance D for 300 and 400 agents seems t.of

share the same value of 19.

For ease of comparisoh, Figure 4.17(a) and (b) show the plots 0f»mean distance D, against time
for each movement model with total number of agents of 300 'anci 500, respectively. As can be
observed from the plots, for the fish-like aﬁd the mosquito-like movement models, prior to
convergence the standard deviations of over 30 runs reaches to about 5; while for firefly-like

movement model has a higher standard deviation of around 10 prior to convergence.

Figure 4.17 also shows the significant difference in convefgence rates between the three
movement models. The graphs clearly show that the fish-like movement model converges
faster than the other two; while the firefly-like movement model is the slowest. This can be
explained by. the fact that for the fish-like movement model, with a small movement span of 10
degrees, agents can cover a wide area in a shorter time; whilst in the firefly-like movement
model, with a wider movement span of 90 degrees, the agents are more likely to scan within

their local area.

From the Figure 4.17(a), it can be seen that the mean distance, D, when the system reached
convergence, for the ﬁreﬂy-liké movement model is the smallest at around 18 units; while the

fish-like model in Figure 4.17(a), has the larg¢§t at around 27 units.

From Figure 4.7(c) for fish-like, Figure 4.10(c) for mosquito-like and Figure 4.13(c) for firefly-
like movement models, it can be seen that when the systems converged, they form loose,
medium and tight clusters, respectively. It is the innate tendency to form these kinds of clusters

that affects the mean distance D values in the plot of Figure 4.17.
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mean distance for fish-like movement model
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Figure 4.16: Convergence of mean distance, D for (a) fish-like, (b) mosquito-like, (c) firefly-like
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Table 4.6: Mean distance, D at t = 400 simulation time steps

Total agents Fish-like Mosquito-like Firefly-like
mean distance standard | mean distance standard | mean distance standard
deviation deviation . deviation
100 19.59 . 196 27.26 - 556 44.14 7.94
200 " 23.81 1.28 30.49 3.31 43.95 85
300 27.52 0.95 37.62 1.77 51.26 7.89
400 30.54 091 37.06 2.83 49.94 - 7.88
500 33.07 0.79 42.55 239 53.72 6.56

Table 4.7: Mean distance, D at t = 5000 simulation time steps

Total agents Fish-like ' Mosquito-like k Firefly-like
. .| mean distance standard mean distance standard mean distance standard
deviation deviation deviation
100 16.67 0.73 . 13.09 1.17 11.70 1.00
200 21.90 0.50 16.90 0.71 14.93 0.82
300 25.73 0.52 20.93 041 19.83 0.58
400 29.04 0.49 23.13 0.77 19.94 0.74
500 31.70 0.49 26.25 040 2275 1.60

4.6 Summary

The aim of the research in this Chapter was to investigate how a swarm of flocking agents will
behave in the presence of an attractive force field in the arena. Many previous studies have
céncentrated on a repulsive force field. Such ‘works include that of Borenstein and Koren
(1989), Kim and Khosla (1992), Khosla and Volpe (1988),v and Sifnmbns (1996). These works
tend to focus on the same problém in robotics, that of obstacle avoidance. There are also many
studies on attractive forces such as that in (Tanner 2003, Hanéda 2007, Olfati-Saber & M‘urray ‘
2003, Esposito & Dunbar 2006, Chen et al. 2007, Desai 2002, Mastelone et al. 2007, Yéng et
al. 2007? etc.). However the attractiye forces are only available in the agent-agent cohesion-like

strategy. In contrast, the research in this Chapter has examined the agent-object attractive force.

Within this Chapter, Wilensky's (1999) flocking algorithm has been extended and several

individual behaviours have been selected in terms of single-agent movement models. An object
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which releases an APF is then placed in the centre of the arend énd the effect of the APF to the
flocking behaviours is studied at a macroscopic level. From the results, it has been shown that
by changing th¢ limits of the angle through whicﬁ an agent can turn, in our case case the
.movement span, various swarming behaviours. can be vach.ie\'/ed. Several cohvergeﬂce '
behaviours are also achieved and these behaviours affect the convergence rate in performing an

‘aggregation task.

The flocking ‘model has many applications in the area of robotics and beyond. For example, a
group of flocking agents moving togeiher can act as a seﬁsof array, allowing them to locate a
_desired source in a more effective way. In this Chapter, we haQe identified, developed and
analysed a model for collective mo_vem'ent or flocking in the existence of APF in the arena.
Flocking towards  an attractor could be uséful in information sharing or relay whilst on.the
move. It is clear. that the data from simulations cénclude that: |
®  teams pf colleétive moving agents with a smaller movement span are more effective in
ﬁnding‘ the target (i.e. APF) than the larger moveméht span. With collectively moving
agents,jwhenever the APF (field > 1.0) is discovered by anA agent, the heading of the
» agenf will then be affected by the APF in whiéh it will turn its heading towar‘dsrt.he
APF slightly. When the agent changes its heading, humerqus other agent within its
neighbourhood are “pulled in” by local inter-agent influences so thai it ‘stays cibse to
| the each other. |
. collectively moving agents with a larger movement span 'ténd to stay close to eachl other
regardless of the APF. Whenever an agent finds a neighbour, it will try to chaﬁge its
heading towards the vneighbour‘ (obeying the cohesion sfrategy). The larger. the
movérnent spdn is, the larger the max-cohere-turn becomes; resulting in the‘agents.
having larger permissible turning aﬁgles and allowing the agent to turn tdwa?ds' its

neighbour quicker.
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Chapter 5' L-Systems for Formation Tasks

OneA of the main problems in swarm robot systems is that of communication, which roquires'
high bandwidth due to the ﬁlany-to-many communication between agents. This difectly impacts
on the ability to form complex patterns. Many previous studies in the field of robot swarms
have concentrated on two simple tasks: ziggregatioo and coordinated motion. However, to date,

these robots are not able to.move and form patterns in a complex way.

The resoarch in this Chapter proposes that by using evolutionary L-Systems, more complex
pattern formations in robot swarms can be achieved, provided each agent has the aoility to
interpr’ef short strings of L-Systems that form the basic DNA of the‘formation.b L-Systems has
been studied exfensiglely in the field of computer graphics and so this research presents the first
introduction of the use of L—Systomé into the area of _robot swarm formation. By using L-
| systems }the path between two locations can be represented which can later be used by mobilo
agents to form an arrangement along the path. In additioo, the. technique can also be expanded

into a path planhing algorithm.

5.1 Introduction

The beauty of natural patterns has, for decades,l attracted the attention of many researchers.
With technological advances, partioularly io computer graphics, compoter simulatioos can play
- .an important role for re_searchers to understand these formations and structures of these
patterns. In the field of biological systems, Prusinkiewicz (Prusinkiewicz & Lindenmayer 1990)

- is believed to be one of the first to model and visualise the growth of tree-like structures.
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In nature, many ants species lay trails of pheromones in order to attract other ants while
foraging. Laying pheromones is a good strategy in finding the shortest path between the nest

and the food source (Bonabeau et al. 1999).

When designing large scale multi-agent systems, or swarm systems, an ‘inherent question that
needs to be addressed is one of organisation. Agents in the system should be able to form-and
organise themselves around complex patterns which are generally required to perform specific

tasks in a complex arena.

Many previous studies in the field of swarm robotics have concentrated around two tasks:
aggregation (Dorigo et al. 2004a) and coordinated motion (euch as leader-follower)(Othman et
al. 2005). These robots are 'not able to move and organise in a eemplex way. We postulate that
this is due to the fact that there ie insufficient complexity in the representation of the systems
themselves. Hewever, previous representation methods such as graph schemes (Bayazit et al.

2002), defeat the challenge of swarm organisation by requiring high cornmunication bandwidth.

One of the requirements of of mobile agents in a swarm is the need to form an arrangement
along a path or bridg_ing formations that connect multiple locations. Here, the many path
planning algorithms can be used as well, where agents are needed to form an arrangement along
the specific path. In this case, the representation of the path is needed to be fed to the agents.
One of tne methods in representing paths is by using strings in a Logo-style (Abelson &
deSessa 1982) format. However this research proposes that the same paths can also also be -
represented by Lindenmayer Systems (Lindenmayer 1968) with shorter string length, which in

the end will save the communication bandwidth between the controller and mobile agents.

Many self-organised path formations algorithms are readily available for multi-agent systems
and these have been discussed in Chapter 2, such as Random Growing Tree (RGT) (Avrutin et
al.- 2007), Cyclic Directional Pattern (CDP),(Nouyan et al. 2006) and Virtual Pheromones
(Payton et al. 2004). However, self-organisation' is not always the besf answer forvevery

problem. In some cases, an alternative method might be preferable. For example, consider that
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in an arena a minimum number of agents that are needed to form an arrangement along the path .
"between two locations are present. The self~org;cmised algorithms (RGT, CDP, Virtual
Pherombnes) might take forever to form an arrangemenf along the path, and it might not be
able to complete the task within the permissible period at all. For that reason it is usefﬁl to

devise an alternative algorithm even if it is not fully automated or self-organise.

The technique developed in this Chapter proposes that for more complex patte‘m formations,»
. the level of agent comple_xity should be increased, albeit marginally. In doing so, one of the
basic themes 6f swarming, i.e. limited communication should be retained, is still adhered to. In
order to achie.ve this, the ﬁgeﬁt should have the capability to transfer information consisting of
~ short bitstrings to its immediate neighbours. It should also ﬁave the vprocessing capability to
interpret these bitstrings that form the basié DNA of thg formation. The transference of short
pieces of information is analogous to frophalléxis as a means of communication amongst

insects like bees and ants.

The. technique developed within this Chapter is té assi_st mgiti-ageni systems to form ah
arréngement along the path of two locations, as a communication bridge between twé separated
points for example. In this instance, agents are ne¢ded to make a formation along the path and
the information is then transmitted from one end to another using the agents in-between as a
medium. Furthermore, as the technique developed within this Chapter uses L-Systems (wl'livch
uses Logo-style representations), it can also be used as a new approach to path planning

algorithms.

In this Chapter we shall fuse ideas developed in the area of computer graphics with that of
robotics systems. We intréduce a general model for organisation based on Lindle'n:mayer
Systems (Lindenmayer 1968), with the additior; of ‘an. evolutionary algorithm for pattern
optirniéatidn. Lindenmayer Systems, or L-Systems for short, prbvide a éymbolic representation
of complex dynamic patterns, which were originally used to model biological growth.
Evolutionary adaptatiori of L-Systems alone is not a new idea but we shall show how we can

evolve speciﬁ¢ formations that can be used to guide the multi-agent system' into performing
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' éomplex formation-type tasks.

In the followihg section, the béckgfound surrounding the proposed technique is first described,
followed by the methodologies and implementations. Next the evaluation of the technique will -

be described. The results of the simulations are then présented and discussed. -

5.2 Background

5;2.1 L-Systems

In 1968, the theoretical biologist Aristid Lindenmayér (1968) proposed L-Systems; a
mathematical formalism as a foundation for an axiomatic theory of biological 'development. As
a biologist who studied the growth pattern of various types of multi~pellular microorganisms,
Lindenmayer at first, devised the L-Systems to provide a formal description of the develbpment '
of the microorganisms, iand al.so‘to illustrate the neighbourhood relationship between‘ cells. The
system was then extended to describe bigger and higher order plants with complex branching
structures. Later in the 1980's, L-Systems found several applications in computer graphics;Athe
two main areas of application are the generation of the fractals (Smith 1984) and the realistic

modelling of plants (Prusinkiewicz & Lindenmayer 19'90).

L-Systemé are considered as one of the “generative grammars” from the “formal grammar”
vfamily-o'r sometimes simply referfed‘as a “grammér family”. A formal grammar in computer
science is a description of a formal language which has a set of strings. Formal grammar can be
divided into two main categories; analytic grammar and generative grammar. An analytic
grammar contains sets of rules of how a string can be analysed to determine whether or not it is
a member of a pﬁrtiCular language, while on the other hand. generative grammar contains sets of

rules that annotate how strings in a language can be generated.
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(b)

Figure 5.1: Example of patterns generated by L- Systehzs (a) Outline of Koch island or snowflake fractal
after five iterations of rewriting. (b) Realistic modelling of Fall trees (image copyright of Svetlin (Alex)
Bosmndjtev of Umverszty of Calzforma in Santa Barbara)

In the sarﬁe manner of (Chomsky type) formal grammars, L-Systerﬁs generate strings of
symbols by repetitively substituting predecessors of given productions by their successors. The
basic idea of these grammars is to define éomplex objects or words by replacing parts of a
simple object through a set of rewriting rules or productions. These rewriting process can be
carried out recursively. waeVer the main difference between (Chomsky type) formal

grammars and L-Systems is that, in Chomsky grammars, productions are applied sequentially,
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i.e. one at a time. Meanwhile in the case of L-Systems, productions are applied concurrently to

all symbols in a givén string. This difference reflects the biological motivation of L—Systems

where productions are intended to capture cell divisions in multi-cellular organisms in which

many divisions may occur at the same time.

L-Systems can be classified in many different ways, such as:

Context sensitive (IL-Systems) and context free (OL-Systems).
'O Rules in context free L-System depends only on a single symbol.
'O Rules in context sensitive L-Systems depends on a single symbol and its

neighbours.

Deterministic (DL-Systems) and non-deterministic L-Systems.
O The L-System is consider as deterministic if there is exactly one production for one

symbol, otherwise it is non-deterministic.

Propagative (PL-Systems) and non-propagative L-Systems.
O _There are at least two symbols needed for the successor of a L-System to be
considered as a propagative L;Systcm, if there is only one symbol for the

successor, then it will be considered as non-propagative L-System.

Parametric L-Systems. .
O Parametric L-System operates on parametric words, which are strings of modules

consisting of their symbolic names with associated parameters.

These types of L-Systems can be combined. For example a DOL-System (where '0' stands for

“0-sided” or “O context”) is a deterministic context free L-System; a PIL-System is a context

sensitive with propagation; and so forth. Above all, DOL-Systems are the simplest type of the

L-Systems.
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The processes in an L-System can simply be divided into two parts: a generative and an
interpretative process. The main idea behind the generative process is the string rewriting

process.

The generative prdcess
Consider a DOL-System, which can be defined as a triplet‘ G=(S,P, d), where S is a general
symbol (a finite non-empty set of symbols); « is the initial start word which usually referred to
as the axiom or seed and it is an element of S; P is a set of production rules of the form of A —
jx (predeceésors — successors), where A € S is a symbbl in the alphabet and x€S* is a-
(possiblyv empty) string or word of symbols in the alphabet. Every symbol appears exactly once
at .the left of a production rule and this makes the system deterministic. As an example, let us
consider the following DOL-System:

G=(S,P, o)

S={F,R L}

o:F

p1:F ~ FRF

" pP2:R-> FL

p3:L—>L

The DOL-System is represented by F, R and L with the axiom represented by the letter F. For
each letter we specify a rewriting rule or production rule. The rule F .~ FRF means that the
predecessor letter F is td be replaced by the successor stfing FRF, the rule R - FL means that’
the pfedecessor letter R is to be replaced by ‘the successor string FL, and the L - L means that
the letter L will remain‘ as it is. The rew.riting process starts from a string called the axiom, in
our case it consist of a single letter F. In the first generati\}e process, the axiom F is replaced by
FRF usingvthe production F —~ FRF. In the second step, the word FRF consist of two letters,
both of which are simultaneously replaced in the next generative process. Thus F is’replaced by
FRF, R is replaced by FL, and the string FRF. FLFRF results. In a similér way, the simultaneous

replacement of all the letters will generate the following sequence of words:
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o F

P!(a) : FRF

PX () : FRFfLFRF

P (o) : FRFFLFRFFRFLFRFFLFRF

PYa): FREFLFRFFRFLFRFFLFRFFRFFLFRFLFRFFLFRFFRFLFRFFLFRF

The interpretive process

In the second part of the L-System, the symbols from one or multiple iterations of string are
interpreted and visualised. There are several ways to visualise the L-Systems, one of them is by

using the Turtle graphics method.

The Turtle graphic system was created by Seymdur Papert in 1960'5 (Abelson and deSessa
1982). The graphic is the trail left by a moving invisible “turtle”, with a state deﬁned by its

,‘pOsitioﬁ and direction. The state of the turtle may change as it moves a step forward, or as it
'turr;s at a given ang'l'eAin the same position. A state of the turtle is deﬁﬁed as a triplet as follows:.

x5, 0), |

where x and y represenf Cartesian coordinates of the turtle"s position, and the angle ¢ is the
heading or the difection that the turtle is facing. Given the step size d and anéle increment O,

" now let us reconsider the previous example of fhe DOL-System which consists of the three
following symbols:

S={F, R, L}.

Given the step size d and angle increment ©, now the t‘urtle can reépond to the following
interpretive rules: |
o F The turtle moves one step forward in the current direction it is facing lez_lying a
visible trail oh the ground by length of d. The state of the turtle changes to (x'; Y, ¢);
whérex’¥x-l¥dcos pandy'= y'+ d sin ¢.
; R The turtle will turn or rotate to the ﬁght by angle O. Thé state -of the turtle
changes to (x, y, ¢'); where ¢’ = ¢ - 6. .
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e L The turtle turns to the left by angle of @. The next state of the turtle changes to

(X, y,0"); where ¢'= ¢ +0.

There are many. other rules which can complicate the turtle's graphics and make it possiblé‘to '
generate more complicated patterﬁ. Amongst fhe most widély used are: :
e Upper case letters other than F , R and L have no graphic reprcéentation and the state of
the turtle remains unchanged. These letters known as non-graphical symbols.
® Lower case of letter f, makes the turtle xﬁove a step forward by displaéeme;nt d withouf
' dfawing a vbisible trail. By using this rule, it makes possible to construct fractal patterns
with unconnected sections. The lower case of lett_er fis usually known-as the -“moving”
- symbol.
® An open parenthesis [ pushes the current state of the turtle onto a »L[FO stack; while a
close pélrenthesis ] pops the top of stack and restores the turtle state. This extension
makes brénching possible.

e Braces { } indicate that the area that are enclosed in the braces must be filled.

The production rules in DOL-Systems are context free; in other words, the production ﬁles are
applicable regardless of the context in which the predecessor appears. In context-sensitive L-
Systems, the production rules are dependent on the pi‘edecessbr's context. For example in 2L-~
Systems or two-sided L-Systems, the productions will be in the form of ¢, < a > ¢z ~ z,b where
the strict predecessor letter a can produce string z if and only if the letter a .is preceded by
letters (or string) c.. and followed by cz. Thus, letters (or string) ¢, and cx are the left and right
context of the predecessor letter a. In 1L-Syst’erﬁs, the productions have one-sided context only;
the 'I-)roductions can’ either be in the form of ¢, < a — Zora>cg .—> z. OL-Systems, 1L-Systems
and 2L-Systems belong to a wider class of lL-Systexﬁs, sometimes called (k,1)-systems. In a

(k,1)-system, the left and right context is a word of length k and [ letters respectively. .

Suppose that we have a new sample of a context-sensitive L-System which has the following
axiom, o and productions, P:

o : abbaacc
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pi:b<a-b
p2ra-—¢ |
ps: b<b> é -
psb > a-a
ps:a<c - a
ps:c > b
The first few stﬁﬁgs generated by the L-System are gi;/en below:
o : abbaacc | |
P}() : cbcbeab
P%(a) : bbbbbch
P3() : bbbbbbb
P¥(a) : bbbbbbb

P%(t) : bbbbbbb

A context-sensitive L-System (CSL-Systeni) requires that if the neighboufs éf a symbol match
a particular context, then, that symbol should be replaced by the su}ccéssor symbél. If two
" rewriting rules apply for a certain symbol, i.e one with one-sided context and another with two- -
sided context, then the one with two-sided context is used. For instance, consider the third
symbol from the left in the axiom from the example above. The symbol b, is matched with.
production rules of ps and ps, in this case the production p; was used. In general, the rewriting
rule that is more specific will overrule the one that is less speciﬁc. However, it is possible to

encounter conflicts between several rules that can be applied to the same symbol.

5.2.2 Evolutionary algorithms

Genetic algqrithms (GA) were first introduced ip 1‘975 by John Holland (Davis 1991). GAs are
a class of stochasﬁc search and optimisation techniques’»ba'sed on the evolutionary ideas of
natural selection and genetics; The basic ideas of the GA are designed to simulate natural
systems processes that are nécessary, for évolution especially those that follow Charles Darwin's

principles of “Surviyal of the fittest”. Like in nature, if there is competition amongst individuals
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for limited resources, it will result in the fittest individuals dominating over the weaker ones.

The Genetic Algorithm

1. Initialise a population of individuals (chromosomes).
2. Evaluate each individual in the population based on the fitness.

3. Create new individuals by mating current individuals; apply mutation and
recombination as the parent individuals mate.

4. Delete members of the population to'make room for the new individuals.
5. Evaluate the new individuals and insert them in to the population's pool.

6. If the maximum number of generations is reached, stop and return the best
individual; if not, go to step 3.

Figure 5.2: Top-level description of a genetic algorithm

Figure 5.2 shows the aﬁatomy of a general genetic algorithms. The first step of the evolutionary
process usually starts from a randomly generated -initial population of ﬁossible solutions.
- Members in this population (called chromosomes.or genomes) of abstract representations are
use to contribute towards the next generation. In each genieration (step 2 in Figure 5.2), the
fitness for each individual is calculated and evaluated in some way by a fitness function. After
the evaluation process has taken place, (step 3 in Figure 5.2) the selection of rhultiple‘parent

chromosomes for crossover and 'mutatioﬁ is performed by randomly selecting from the
‘population, but it is usually influenced by their fitness scores. Some of the old individuals in the
population are then replaced with the newly constructed individuals -(step 4 and 5 in. Figure
5.2). A GA maintains a set of candidate solutions from which it performs a s¢arch by itera{ively
replacing members with poor fitness in the population, with individuals generated by applying
variafion to fitter members of tﬁe population. The GA coﬂlmonly terminates when either a
maximum number of generations has been reached, or a satisfactory fitness level has been
produced. If the GA has terminated due to a makinium number of generatioﬁs, a satisfactory

solution may or may not ‘havé been reached.
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5.2.2.1 Parent selection

The purpose of parent selection in.GAs is to increase the re'productive' chances of fitter
individuals in the hopes that they will produce even fitter offsprings. Many methods for
selection exists however in this section we will only gilve a brief description of Holland's
original parent selection method, i.e. roulette wheel selection method as described in Figure
5.3.. Each individuai is assigned ‘with a slice of a circular “rqulette wheel”, which is
prnportional to the individual's fitness. The wheel is then spun N times, where N is the total
number of indi{/iduals in the population. On each spin, the individual which is under the wheel's
marker is selected to be in the pool of parents for the next generation. This method-can be

implemented as in Figure 5.4.

Roulette Wheel Algorithm

1. Calculate the total fitness of all population memberé; call the result as total
fitness.

2. Generate n, a random number between O and total fitness.

3. Select the individual whose fitness, added to the fitnesses of the preceding
population individuals is greater than or equal to n.

Figure 5.3: The roulette wheel selection algorithm.

Roulette wheel selection example

Individual -1 2 3 4 . 5. 6 7

Fitnessscore 8 2 17 7 2 12 11
Running total 8 10 27 34 36 48 59

Random numbern 28 2 13- 41 31 57- 23
Individual chosen 4 1 3 6 .4 7 3

Figure 5.4: The roulette wheel selection example. The top table shows the fitness of seven individuals
and the running total of fitness. The bottom table shows the individual that would be chosen by the
roulette wheel method using these fitness values for each of six randomly generated numbers.
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In Figure 5..4, the population consists of seven individua‘ls with a total fitness of 59. The first
row in the Figure 5.4 depicts the index of each individual, the second shows the ihdividual"s
fitness, and the .third contains the runn_ing total of fitness. Figure 5.4 also shows seven numbers
fandomly generated between 1 and 59, together with the index of individual that would be
selected by roulette wheel parent selection for‘eéch of thése numbers. In-these cases, the; v
selected individual is the first dne at which the rﬁnning totél is greater than or equal to the
random number n. The effect of the roulette wheel selection scheme is to return a set of
randomly chosen parents. Although the sélection scheme seems t§ be random, each indiyidual's '
_chance to be selected is proportional to its ﬁtnéss. After a number of generatiohs, the selectién
scherﬁe will sideline the least fit individuals and ‘contribute to the spread of the fitter

individuals.

5.2.2.2 Crossover

After the selection of parents have taken place, the GA will use the parents to create new
individuals or offsprings.. Although there are many techniques in creating new offspring-s
described in the literature, only the traditional methods are described, i.e. crossover and

mutation operations.

In crossover operﬁtions as in Figure 5.5, two individuals‘are selected as parents. One-point or
single-point crossbver is the éiI-TlpleSt form of crossover operation. The crosgover point ‘is
choéen randomly. After the crossover point is selected, the parts of two parents after the
‘crossover position are exchanged to forrﬁ two new offsprings. Crossover operation in GA is
extremely importarﬁ. Many GA practitioners believe that if we remove the crossover operatibﬁ

in GA, the result is no longer a GA (Mitchell 1996). .

5223 Mutation

- Mutation is a GA operator that changes one or more gene value in an individual from its parent,
which will result in entirely new gene values being added to the individual. With these new
genes, the GA may be able to obtain a better solution. Mutation, as with the crossover operation

is an important operation in GA which helps the GA to prevent the population from stagnating
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at any local optima. Mutation usually occurs according to a mutation probability, which is
always set to a fairly low value. If the mutation probability is set too high, the search will turn
into a primitive random search. Figure 5.6 shows an example of the mutation operation. In this

example the genes of the parent has been mutated to form a new individual.

,1111“1'100000 Parentl

00000011111 Parent2

11110011111 Offspringl
0000i110000 0 Offspring2

Crossover point

Figure 5.5: Example of one-point crossover. The offsprings are made by cutting the parents at the point
“denoted by the vertical dotted line and exchanging parental genetic material after the cut.

11111100000 Parentl

1/01 11100}

10 0 Offspringl

F igure 5 6 Example of mutation operatton Offspringl is made by mutating the Parent] at 2”” and 9"
bits from left.

5.3 Methodologies and Implementatlons
As mentioned previously, the proposed system for organised formatlon of mobile agents
consists of:

® an algorithm for pattern formation,

e an algorithm for optimising pattern formation and’

e an encoding to represent each agent's position in the arena.
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In this thesis, a set of pattern construction commands have been used. These pzittern
construction commands are used as the input character string for the L-System so. that the. .
strings produced by the evolved L-System are a sequence of commands for producing complex

patterns.

Once a set of pattern construction commands are generated by the system, it will be passed on
to an encoding agent to represent each agent's position (in the arena) for evaluation. After -
building the pattern, it is evaluated using a multi-part fitness function for how well it fits in the

arena and these scores are passed back to the GA engine.

5.3.1 Pattern.construction

The pattern construction commands comprises the generative and interpretive module of the L-
System as shown in Figure 5.7 and Figure 5.8 respectively. In the generative module, it will
take as input an axiom (or. seed) a, a set of productions P and a set of symbols S as inputs. In .
this work, five symbols namely F, R, L,. [ and ] as elements of S were used to construct the L-
System strings, as showri in Figure 5.7 arid Table 5.1. F represents a forward movement of the
turtle in the curient direction by 5 units of displacerneiit. R and L will turn the turtle to the right
and to the left respectively, by 25-degrees. Symbols [ and ] are the push and pop operators and
are used to store and retrieve the stateiof the current location and direction in the LIFO stack. In
the generative module as shown in Figure 57, P incdrporates productions pi and p. The
production p; (pi: F - FFRF) means that in the rewriting process, F will be replaced by FRF,
' Whilst in the production p; (pz R - FL), R will be 'replaced' by FL. In the rewriting process, the
 iteration zero represents the axiom a. In the first iteration of the rewriting process, the axiom F
has been replacedv by FRF ikusing production p;. In the second iterzition of rewriting process, the
produét of the first iteration of rewriiing piocess (FRF) beéomes the subject of the rewriting.
The F and R symbols are replaced with the productions of p, and p simultaneously, resulting in

the string F. RFF LFRF after the second iteration of the rewfiting process is completed.
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VTabl'e 5.1: Design symbols and descriptions

Command Description
[ ] k Push / pop orientation to stack
F Move forward 5 unit displacement
R Rotate heading clockwise for 25°
L _ Rotate heading counter-clockwise for 25°
Input:

-  Axiom,a=F _
« Elements,S: { F,R,L,[,]} |
«  Productions, P: {pi, p2}

- piF - FRF

« pzR-FL

Rewriting process:

0 F
1)  FRF
2)  FRFFLFRF

3) FRFFLFRFFRFLFRFFLFRF -

Figure 5.7: Generative module of pattern construction command.

The interpretive modﬁle ‘as shown in Figure 5.8 then constructs patterns by generating a
sequc‘an‘c‘e of construction commabnds that specify how and where the.next mobile agent's
position would be in the arena relatiye to itself. This sequence of commands is based on the
instruction language for a Logo-style turtle (Abelson and deSessa 1982). A stack is also
maintained through the use of 'push’ and 'pop’ operators. A visualisation of the L-System is also
shoWn in the figure. The module takes a string and a set of interpretation rules as inputs. In this
example (Figure 5.8), the string is taken from the previous rewriting process after the 3™ =
iteration of the rewriting process, and the interpretation rules consist of F, R and L; Here, F
mean§ move forWard;lR means turn to the right for 90° and L means turn to the left for 90°. For

demonstration purposes, in the figure, only the first 15 letters from the string have been
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visualised.

Input:
. string: FRFFLFRFFRFLFRFFLFRF

|+ interpretation rules:
2> F: go forward
3> R:tum right 90°

2 L: turn Left 90°

Visual interpretation:

Figure 5.8: Interpretive module of pattern construction command. -

In Figure 5.9, the intermediary steps of building a pattern afe shown; where red dots indicate
the location of agents, and blue lines indicate the parent-child connection of the agents. Figure
5.9(a) is the axiom pattern which has been built fron; the string FFRFRFLFLLFF, while Figure
5.9(b) is the rule string pattern from‘the string RFLF. Figure 5.9(c) is the pattern formed after
the first iteratioh of rewriting the aforementioned axiom and rule using production rule of

F—RFLF.
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30-

25~

20;

10-
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Figure 5.9: Visualisation of L-System: (a) the

5.3.2 Representation methodologies
Within this research, two systems; DOL-Sys‘fems' and CSL-Systems have been designed to

represent the patterns formed by the robot swarms. For both systems, the same predecessor is

10 20 30
(a)

70;
60
500
407
300
200

10

40

45;
407
35r
307
25~
20;
15-

10r

10 20 30

(b)

20

30

(c)

60 - 70

40

axiom; (b) the rule string, (c) formed pattern after the first iteration
of rewriting process

used, ie. the symbol F. For DOL-Systems there is one production rule p{, whilst for CSL-

Systems four production rules are used (pi, P2 ps and ps). The arrangement of the production

rules used in this work is given below:

pi:

p2:

predecessor — succ;

¢, < predecessor ~ succ:
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ps : predecessor > cg = succs

ps: cL < predecessor > CR = SUCC4
where pi, p2, ps and ps are the production rules P, succ;, succz, succs, and succy are the ‘
successors, while ¢, and cz are the context for the left and the right side of the predecessor
respéctively. As mentioned in the previous section, during the rewriting process in the
generative module, the predecessor will bé replaced with a successor accofdingly. Letbus
consider pz, the predece;sor in this case will be replaced with succ; if the left context (cp) is .
met. In ps, the predecessor will be replaced with succ; if the right context (cx) of the predecessor
is met. Finally in p4, the predecessor will be replaced with succ, if and only if the right context
(cx) and the left context (c) of the predecessor.are met. However, based on the priority, the
‘more speciﬁc rewriting rule or production rule will overrule. For instance, if the conditions for

ps are met, the generative module will use ps and will ignore py, p2 and pa.

5.3.3 ' Evolutionary algorithms

5.3.3.1 Encoding

An individual L-System is optiﬁised by qsing an evolutionary algorithm. The initial populdtion |
of L-Systems is created by randomlly creating axioms, successors and contexts. The successor
will then replace all the symbols F in an axiom string during the rewriting process. The
evolutionary process then proceeds by:seleCting a collection of highly fit individuals as parents

and then using them to create a new population by mutation and crossover operations.

An initial L-System (axiom, suc.cessors and contexts) is created randomly using a blank
templafe with an arbitrary numbef of symbols (consisting of F, L, R, [ and )) to be included in
the string. For DOL-Systems, the axiom string is between 8 and 12 symbols in length, and the
successor string is between 10 and 12 symbols in length. For CSL-Systerﬁs, the length of the
axiom and successors strings are betw‘een 8 andb 12 symbols, and between 1 and'3 symbols for -
the both contexts (c. and cg). The reéson for limiting it to 12 symbois in length for axiorps and .
successors is that, if the length of an ‘axiom is-too long th might defeat the purpose of the

rewriting process of L-Systems (where the rewriting process is the core business), if after the
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first iteration of the rewriting process, the foﬁnéd patterﬁ has achieved the goal. Another reason.
is the intention to “grow” the formation. If the string becomes t00 long then there is insufficient
room to grow the foﬁnation. For the> contexts '(cL and cg) where we limit the length f.or‘ up to 3
-symbols is simply that, thé longer the context is the harder the condition (for the context) will
be met. During any time step of the simulation, the number of symbols F'in an axiom string and
“ rule string have been predeﬁnéd to have a minimum of two and one respectively. This way all

the L-Systems will generate patterns after they have been interpreted or visualised.

In using evolutionary algbrithms, ﬁpst the L-Systems are encoded to be a- chromosome-like
‘structure. Chromosomes forvb DOL-Systemé are made up of two genes or two parts. The first
gene is the axiom (o) and the sécond is the successor (sz'tccj): While for CSL-Systems, each
chromosome are made up from seven elements or‘ génes; an axiom (o), two contexts (¢, and cg)
énd four successors (succ, Succs, succs and succq). The ‘chromosome;like structure for DOL-
System, G and CSL-System, H are as shown below: |

e G:[a succil],

® H:[a cL cr succ: succy succs succs].

After the L-Systems‘are created, the rewriting process will be executed for up to 10 iteratibns or
until the number of symbol F reaches 100 or more, whichever comes first. From thege
solutions, the fitness will be calculated and evaluated once, and the number of rewriting
iterations of th¢ fittest individual will be recorded along with other fitness scores. If the fitness
of an L-System scores above a preset threshold, the L-System will be passed onto the GA povol'
which cohsists of 56 individuals; otherwise it will be discarded, and a new L-System will be
created to replace it. By doing this, the initial population of L-Systems will have a variety of
solutions with individual fitness values above the preset threshold, thus maintaining a healthy

population.

5.3.3.2 Selection method

In this research, as there are several fitness functions which lead to several fitness scores,

Goldberg's (1989) Pareto ranking method to rank the L-Systems popuiation with added
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rnodification has been used. Goldberg (1989) suggested non-dominated sorting to'rank the
population ‘according' to Pareto optimality. In this scheme, the currently non;dominated
' chrbmosomes or individuals in tﬁe population are given rank one and removed from the
population. ‘Thenv the population is ranked again, the newly non-dominated individuals in the
reduced population are assigned rank two and removed from the populatiqn; The process

continues until all the members of the original population are ranked.

In this case, different priorities have been‘ set for each goal. For instance, in attempting to meet
‘the goals, g = {gi, g2, g3}, where the priority of the former is higher than fhe lattér, e.g.
priority(g;) > priority(g2) qnd. priority(g'z) > priority(gs). In the first step of ranking process, the '
procedure suggested by Goidberg is followed by using tﬁe non-dominated sorting method for

all goals g. -

In the second step of the sorting process, firstly all the iﬁdividuals that have been given rank
one in the previous step are géthered, and then the group using the same process (;f non-
dominated sorting for goéls g1 and g, are ranked, until all the selected individijals have been
 ranked. Then the second ranked individuals from the previous step‘ are gathered and these are
sorted and ranked again for g; and g, and so forth. In the third step, after all the individuals have
been ranked into g1 and g, the population will then be ébrﬁed and ranked again inté g following

the second step procedure.

The next procedure is to decide which individuals in the population will be used. to create
offsprings for the next generation, aﬁd how many offsprings will be created. The purpose of
selection is to emphasise the fitter individuals in the population in the hope that their offspring
will in turn have an even higher fitness. Mitchell (19.96) stated that, selection has to be bélanced
with variation from mufation and crossover: a selection process that is too strong will result in a
_suboptimal but highly fit individual that will take over the population; whilst too weak and the

selection will result in slow evolution.
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Tournament Selection with Elitism methods was used in this wérk. In the Tournament Selection
method, two indi>viduals are first chosen randomly from the pbpulation. Then a random nun{ber
m, between 0.0 and 1.0 is generated. If the nuniber m is smaller than n (m < n) (where n is a
parameter, in our case n = 0.8), than the fitter individual will be selected as a parent, otherwise
the less fit one i‘s selected. The two individuals Will then be returned to the population and can

be re-selected again (Goldberg & Deb 1991).

Elitism (De Jong 1975) is a méthod to force the GA to r¢tain some number of best indi\}iduals
at each current generation and pass them on to the next generation. The best individuals could
be lost if they are not selected to reproduce or if they are destroyed by mutation and / or
crossover operations. In this work, we retained 5 individuals as elitists and passed them to the

next-generation without going through GA operations, such as mutation and crossover.

5.3.3.3 Genetic operators

Mutation (Figure 5.10) and blending (Figure 5.11) are used to créate new individuals. In
blending, parents will be selected randomly. Blending then takes place either in axiom strings

or rule strings between two parents and will produce two new individuals.

. Axoma ~ Successor,succ
FLRF[RFFRF]LRF LRFLRFLF[RLFLRF]F Parent
FLRFRER[RFFRF]LRF LRFLRFLF[RLFLRF]F  Offspringl
FLRF[RFFRF [T LRFLRFLF[RLFLRF]F  Offspring2

FLRF [R FFRF]LRF LRFEFRLF[RLFLRF]F  Offspring3

Figure 5.10: Mutation operation. From the Parent, Offspringl commits insertions of new 3 symbols;
Offspring?2 deletes 3 symbols in the axiom string; Offspring3 replaces 4 symbols in the successor string.

In mutation, after selecting the parent, the axiom or any successor will be mutated in a
predefined way. Changes in mutation that can occur include:
® inserting one or more symbols in random locations of the string, or

e deleting one or more symbols in the selected string, or
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o replacing one or more symbols with-random symbols.

For instaﬁce, let us consider the'DOL-System as-in Figure 5.10; if the L-Systém L1 (axiom
string L10L, SUCCESSOr string Lisucc;) is selected to be 'mutated,
Lo : FLRF [RFFRF] LRF |
Lisuccy LRF LRFLF [RLFLRF] F
Some of possible mutations are, |
® insert new symbol in the string, offspringl
o : FLRF RFR [RFRFRFRF] LRF
usucer : LRF LRFL F [RLFLRF | F
e delete random symbols, offspring2
'Lla : FLRF [RFFRF] ___
 uisucc; : LRF LRFL F [RLFLRF] F
‘@ replace symbols, offspring3
| Lo : FLRF [RFFRF] LRF

\.succ : LRF FFRL F [RLFLRF] F

For an example in blending, as shown in Figure 5.11 let us consider DOL-Systems; tWo parents, °
L2 (uva, wsuccr) and L3 (30, wasucc)) Were selectéd randomly aﬁd be used »to create two
offsprings, LC2 (L2, Lc;su_cc;) and LC3 (vcs0r, essucc;). First, LC2 will make a copy of L2, and
it will then insert a small part of L3 into it. This is done By replacing se;'eral symbois either
from axiom string or successor string from L3, to either axiom striné or sﬁccessor string of L2

to become LC2.
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Axiom, a Successor, succ

FLRF[RFFLL]JLRF LRFLLRLRFRLFLRF Parentl
; Parent 2
FLRF[REFLL]LRF -~ Offspring 1

LRFLLRLRERLFLRF Offspring2

FLRF[RFFLL]LRF LRFLLRLRFILREL Offspring3

Figure 5.11: Some of possible blending operations. At first, all the offsprings makes a copy of Parentl.
Offspringl replaces the successor string taken from Parent2; Offspring2 replaces some of its symbols in
the axiom string and replaces with some symbols taken from Parent2's axiom string; Offspring3 takes
and repldces some symbols in its successor string with some symbols taken from Parent2's successor

string. '

For example if the parent L2 with the following axiorﬁ 120 and SUCCESSOr asuccyis given by:
120 : FLRF [RFFLL] LRF |
wasucer : LRFL LRLRF RLFLRF

and the parenf L3 with the following axiom L3 and successor wsicer , are selected, i.e.

| 130 : FFLL RRFRF [LRFLRF] |

wssuccy * RRLF LLRRF LLRFLF

then the poséible blending results of LC2 ( Lc20t, Leasuccy ) are as follow:

e replace entire in successor string czsuce; with ssuce;:

rc20: FLRF [RFFLL] LRF

rcasuccr : RRLF LLRRF vLLRF LF;
e replace several symbols in axiom 0 taken from 130 :
w0 : FLRF FFLL LRF
veasuce; : LRFL LRLRF RLFLRF
'@ replace éeveral symbols in successor string 1casucc; taken from msucc} :
1200 : FLRF [RFFLL] LRF

Lcasuccr : LRFL LRLRF LRFL,

Another operation of evolutionary algorithms used in this work is the crossover operation. We

perform crossover operations in two different ways as follow:
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.® one is by swapping the gene(s) or element(s) in the L-Systems chromosomes as
shown in Figure 5.12,
e another is by swapping symbol(s) from the specific gene(s) of two different Iparents

as'shown in Figure 5.13.

For example in Figure 5.12, let us consider two parents from CSL-Systems, namely L4 and L5
.with the following chromosomes:
14: [L4(X L4CL [IACR‘L‘:SMCC] LASUCC? L4SUCC3 L4Sllbc,;]
L5 : [ Lsot LscL Lsck LsSUCC] 15SUCC2? LSSUCC3 LsSUCCq]
are selected to create two children of LC4 and LC5. Then the possible crossover fesults are as
follow:
® one gene swapping,
LC4 : [ Loy racL L4CR Lssucc!.vusu-cc; 14SUCC3 us'ucc,x]
LCS5 : [ s LsCL LsCr L4SHCC; LsSUCC2 LsSUCC3 ﬁsucc‘;]
® two genes swapping,

LC4 : [ L40 1s€L 14CR LaSUCC] L4SUCC? L4SUCC3 1aSUCC4]

LCS5 : [ Ls0i €L 15Cr LsSUCC) LsSUCC? LsSHCC3 L5SUCC4]

La{‘ . UCLH wCr LSUCC1  wSUCC: mSllCCJ{ uSUCC4 Parentl

Parent2

wSUCC2  14SUCCs  wsuccs -~ Offspringl

51
'

Jussucer )

_mSUCCr

Offspring2
s e Osprings
Offsprin g4

Figitre 5.12: Crbssover operation by swapping element(s) or gene(s). Offspringl and Offspirng2 depict
one gene swapping, and Offspring3 and Offsping4 show 2 genes swapping take place.
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| The second way of the crossover .operation is by swapping symbols from two genes of two. '
different parents. For instance in Figure 5.13, if we have two parents of 'CSL-Systems,'namely
L6 and L7,.and chogen succ; genes from both parents as follow:
wesuccz : LRFL RFLF [RLFLR] FRRF
wsuce: : FLRF [RFFLL] LRFR LFLRF
_té perfoﬁn a crossover operation. Some of possible solutions are as follow:
. one-point crossover,

LeeSuccs : LRFL RFLF LRFR LFLRF

wersuce: @ FLRF [RFFLL] [RLFLR] FRRF
® two-point crossover,

wessuccy : LRFL [RFFLL] LRFR FRRF

wersuce: : FLRF RFLF [RLFLR] LFLRF.

LRFLRFLF[RLFLR]FRRE  Parent!
Parent2
LRFLRFLFILF Offspring1
TJ[RLFLRJFRRF . Offspring2
LRFLIRFFLL]LRFRFRRF Offspring3
"LRERFLF[RLFLR][LFLRF Offspring4

Figure 5.13: Crossover operation by swapping symbols. Offspirngl and Offspirng2 show example of
one-point crossover; Offspring3 and Offsprig4 show the example of two-point crossover.

5.3.4 Evolving the patterns - pre-rlins

With all the ingfedients described above, pattern formation of robot sQarms can be modelled by
using the L-System evoiution process. In order to evolvg patterns, the first thing that needs to
be done is to define a task and the fitness functions. The simplest pattern formation for multi-
.agent systems is the exploration task. In this ;:ase, agents are expeqtcd to fan out along some
criteria. Figure 5.14 shows an example of an L-System that has b¢en evolved for exploration in
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an open arena, i.e. an arena without any obstacles. The arena size in this example has been set
to 100 by 100 unit square. Red dots iﬁdicate the location of agents, and blue lines indicate the
parent-child connvection‘ of the agents. In this example, the population size of the GA is 50. Two
production schemes are used. In the first reproduction module, elite parents are selécted for
crossover at rate of 33%. In the sécond reproduction module, random parents are selected With

a crossover rate of 60%.

At first glance it may seem that the pattern is somewhat random. However in reality, the
evolved string, i.e. the chromosome that represents the pattern, is regular and assumes the shape

shown after iterating through three times, with a preset axiom.

100~
90~
80~
70
60
50

40

10 1 1 L ! ! 1 1 I 1 i
0 10 20 30 40 50 . 60 70 80 90 100

Figure 5.14: Example evolution of an L-System that maximises spread for exploration purposes. Each red
point indicates the location of an agent, and the blue lines indicate parent-child relationship.
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5.4 Evaluation / Simulation

A series of simulatidns have been carried out to evaluate our pattern foﬁnation ‘algorithm
approach under different experimental condition;, i.e. the arrangement of the obstacles, and to
compare them. In particular, we considered the working. arcria to be in multiple levevls: of |
di.fﬁ‘culty, obtained by the various standard obstacle(s) arraﬁgements in the arena. In the
following sub-sections; the evaluation procedure is specified. The simulation methodology is

briefly described and finally the results will be presénted and discussed.

5.4.1 Task and procedure'

In this research, the topic of interest is how the pattern formations of robotic swarm can be
represented by (evolved) L-Systems. With all the basic ingredients in. hand, the tasks and the.
working arené need' to be defined. Simulations have been donevu'sing a proprietary software
from MathWorks Inc. callcd.MATLAB. Three different working arenas, as shown in Figure '
5.15, have been defined; namely open, cross and scatter, with a bounded arena of size 200 by

200 units. As their names imply,

e -the “open” arena refers to an arena without obstacles. This is often used to test the
minimum reqﬁirement to connect two points, and to analyse the complexity in path
-planning research.

‘@ “cross” refers to an arena where there is an obstacle with a cross shape present in the
centre arena — the cross serves as a major obstacle bet»;/een the two points that are to be
connected. | | |

® “scatter” refers to an arena where there are obstacles randomly scattered around the

arena — this essentially serves to test algorithms in a maze like environment.
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Figure 5.15: Working arenas where the black colour box(es) indicate(s) the obstacle(s): (a) open, (b)
cross, (c) scatter. The blue square on the bottom léft depicts the start location and the red square on the
top left of the arena shows the goal location.

5.4.1.1 Evolutionary process

To evolve patterns, several fitness functions have been defined. The objectivé is to evolve a
formation that connects two locations, i.e. start aﬁd goal as shown iﬁ Figure 5.15, while
avoiding obstacles (if they exist) in the arena. The start point is at the bottom left corner with
the coordinate of (10,10), and the goal location is defined as a squarevbox of 10 unit sides with

the centre coordinate of (180, 180).

The fitness of each individual is based on three elements, as follows,
fitness = { nOut, coverage, d2goal '} » 6.1)

The first element is the number of agents that reside in the restricted areas such as inside the
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area of an obstacle or outside of the the arena (nOut). For this element, we seek the number of
agents to be minimal or zero. The second element is the agent's coverage in the arena
(cbverage). The agent's coverage is defined by a measure of rectangular area required to
enclose or bound all the agents, ar_td we seek to maximise its value. The final element is based
‘on the nearest distance 'of' any agent in the formation to the goa'I location (d2goal). For this

element, the closer the individual gets to the goal, the fitter the individual is.

* Foran L- -System to be selected as one of the 1nd1v1duals for the initial population the L-System
has to have a certain degree of healthiness or score above a preset threshold In this work, the
initial threshold is set to ﬁve, i.e. a maximum of five agents are allowed in the prohibited area.
such as inside the obstacle or outside the arena perimeter. If the individual scores six in this
instance, the individual will be discarded and the new individual will be recreated. This value

of five will be optimised downwards to zero as the simulation executes.

54.12 Piece-wise solutions

As mentioned previously, the evolutionary algorithm has been configured to run with an initial
population cf 50 individuals with a preset fitness threshold and with a maximum of 100
generations. The evolutionary process will end if either:

® it reaches the maximuni number of generation, i.e. li)O, or

° | the fittest individual's fitness‘ scores have been stagnant for some generations.
In this Chapter, the abovementioned stagnancy numher has been set to 20. This means that if
the fitness scores of the ﬁttest individu'al stalls for the last 20 generations, the evolutionary

process will cease.

If any of the above conditions have been met, but the pattern formed has not reached the goal,
the evolutionary engine will then select one of the agents (points) according to some criteria as
a next start point. This essentially is used to create a nenfcontinaouc solution made up of
multiple 4segments. which offers more flexibility. The criteria for an agent (or point) to be
selected as a next start position are:

° the agent should be the nearest agent to the gOal,band
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e the agent is not too close to the obstacles.
In this work, the parameter that measures closeness to an obstacle is defined as 5 units

displacement.

After a next start point‘ has been selected, the evolutionary engine will start evolving the next
piece or segment of the L-System until one of the agents reaches the goal, or until it has

reached the maximum number of generations.

The aforementioned method has been tested with DQL-Systems and CSL-Systenis. The method
can be summarised as follow: |

1. randomly genefate 50 L-Systems,

2. evaluate and evolve the L-Systems for up to 100 generations‘,

3. if the formation has not reacﬁ the goal, then do the piece;wise solutions.
In the next subsection, the results from"‘the simulations are presented, and thé output is

discussed.

5.4.2 Results

The following results are collated by simulating the task of generating a formation connecting
two locations, namely start and goal as previously describc;,d. All simulations uses a square
- arena of size 200 by 200 units with three different obstac]és arrangement in the arena. Fifty one
" runs are made for each model (DOL-Systems and CSL-Systems) and each arena. The fittest

individuals' data for analysis were recorded at every generation during the simulation.

Figure 5.16, Figurei 5.17 and Table 5.2 provides an overview of the overall performance of the
proposed rﬁodel.v Figure 5.16 and Figure 5.17 show the graphs from 51 runs in the each one of
the arena arrangements for DOL-Systems and CSL-Systems reséective]y. From the graphs énd
“data (Table 5.2) obtained, the overall perfdrmance of DOL-Systems is better, in the senée that
the number of non-continuos segments of the L-Systems are lower compared to the one
exhibited by the »CSL-Systems. For DOL-Systems, more than 50% of the simulation rﬁns, ‘

regardless of the arena arrangement, evolves into 2 or less segments for the formed pattern. For
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the CSL-Systems however, even in the open arena, around 50% of the simulation runs ended up

- with having oneksegment for the L-Systems.

Table 5.3 and Table 5.4 are the tabulated data for the average of the total number of agents that
formed the pattern and its standard déviations for DOL-Systems and CSL-Systems respectively
with regard to the number of segments of the L-Systems. The results clearly show that as the
number of segments increases, the number of agents increases accordingly.. The difference
between the DOL-Systéms and the CSL-SystémS is small, when consi&ering the total number of

agents in the formations.

Figure 5.18, Figure 5.19 and Figure 5.20 show the the plot of the number of agents, coverage
and the nearest distance to the goal respectively against generations during the evolutionary
process from one of the DOL;Systems samples in the scatter arena. The plots are based -on the
_ﬁttesf individual of every geﬁeration. In this inst;mce, the DOL-System successfully formed the
pattern by connecting two locations with oﬁly one segment, at the poiht that the simulation
ended at 100" geperationQ From the plot in Figure 5.19, it 'clearly shows. that the coverage
(rectangular area required to enclosed or bound all the agents) increases as the nuﬁber of
generations increases where the goal is to maximise the area coverage in order to “grow” the
formation. Figure 5.20 is the plot of the nearest distance to the goal. As the number of
generation increases, the nearest distance of one of the agent ‘to the goal decreases. From the
plot we can see that the formation reaches the goal at around the 85" generation of the

evolutionary process.
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Figure 5.16: Distribution of number of successful simulations for DOL-Systems in each arena
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Figure 5.17: Distribution of number of simulations for CSL-Systems in each arena arrangement

162



Table 5.2: Distribution of number of simulations for each model of L-Systems in each arena

arrangement.
Open arena - Cross arena Scatter arena

Segments DOL CSL DOL - CSL DOL |  CSL

1 42 25 11 ' 1 8 -

2 8 26 25 : 15 31 4

3 1 - -9 19 12 17

4 - - "5 3 - - 15

-5 - - 1 13 - 12

6 - - - - - 2

7 - - - - - 1

8 - - - - - -

Table 5.3: Average total number of agents for Deterministic OL-Systems after 51 simulation runs.
with regard number of segments. '

Scatter arena

DOL Open arena Cross arena
Segments Average St.dev. Average St. dev. Average St. dev.
1 58.1 744 64.55 2.5 56 0
2 59.2 . 5.55 75.04 1641 64.9 11.76
3 70 0 108.22 28.35 72.58 14.34
4 - - 1184 14.15 - -
5 - - 141 0 - -
6 - - - - - -
7 - - - - - -
8 - - - - - -

. Table 5.4: Average total number of agents for Context-sensitive L-Systems after 51 simulation runs
with regard number of segments

CSL Open arena ~ Cross arena Scatter arena
Segments | Average St.dev. Average St. dev. Average St. dev.
1 60.04 5.63 60 0 - -

2 69.56 10.24 78.87 11.72 65.5 8.58
3 - - 90.89 .20.11. 8553 12.35
4 - - 119.33 25.15 111.93 22.8
5 - - 127.08 18.5 141 26.8
6 - - - T 148 46.67
7 - - - - 160 0

8 - - - - - -
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Figure 5.18: Number of agents against generations during the evolutionary process from
one of the DOL-System samples in the scatter arena
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Figure 5.19: Coverage against generations during the evolutionary process from one of the
: DOL-System samples in the scatter arena
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Figure 5.20: Nearest distance to goal against generations during the evolutionary process
from one of the DOL-System samples in the scatter arena
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The plots in Fig{Jre 5.21 are snapshots taken during the evolutionary process of a formed
pattern by the DOL-Systems from one of thé simulation runs in the open arena. In this instance,
Figure 5.21(a)-(e) show the developﬁlent of the first piece (or segment) of the DOI_;-System, apd
Figure 5.21(f) s‘hows‘ the final formed pattern. In Figure 5.21(a)-(c), it is clearly visible that the
L-Systems evolved into “Y” shaped péttern. This is due to the the axioms (a) for the L-Systems
that consist of the bracket symbols, [ and ], which céntribute‘to the branching structure in the
formation. The axioms a, successors, succ and the number of iterations for the fdrmations are

summarised as follow:

e Figure 5.21(a): RF[LLLFJFL, RFRFFLLF, 2

[\

e Figure 5.21(b): FJLLLFJFL, RFRFFLLF,

[\

e Figure 5.21(c): LF[LLFJFL, ~RFRFFFLLF,
e Figure 5.21(d): LF[LLJFL, ~ RFRFFFLLF, 2
e Figure 5.21(e): RFLF, FFRFFFL, 2

e Figure 5.21(f): FLLF, LLLLFFL, 2

In Figure 5.21(d), even though the axiom (LF[LLJFL) for the formation contains the bracket
symbols for the branching stfucturé, the evolved formation does not have a visible branch. The
reason for this is that in order to have a visible branching structure in the formation, at least one
F symbol needs to reside inside the bracket symbols, as such the axioms for Figure 5.21(a)-(c).

Figure 5.21(e) shows the final formation for the first segment at generation 48.

Figure 5.21(f) shows the final formation that reached the goal; in this formation, the second
segment of the L-System was grown from the nearest agent to the goal from the first segment
" of formation. The total number of agents that are required to construct the formation between:
' the start and goal locations in this instance is 58, consisting of 50 agents in the first segment

and 8 agents in the second.
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Figure 5.21: Evolving pattern formation of DOL-Systems in the open arena. The fittest L-System
Sor first segment in the: (a) 2nd, (b) 4th,(c) 6th, (d) 12th, (e) 48th generation; second segment in
the: (f) 28th generation, of the evolutionary process:



Figure 5.22 is the collection of snapshots showing the evolution of the DOL-Systems in the
cross arena from one of the simulation results. Figure 5.22(a)-(d) show the growth of the
pattern for the first segment of the.pattefn in the 5%, 10", 35" and 70" generation, and Figure
5.22(e)~(f) for the second segment in the 10" and 30" generation respectively. The axioms o,
: 'succéssors succ, the number of iteration and the number of agents that made the formations are
summarised as follow: | |

e Figure 5.22(a): RFLFRF, FRFL, 2, 12

e Figure 5.22(b): FFFRFFRR,  FRFL, 2, 20
e Figure 5.22(c): LFFFRFRF, FRFFL, 2, 45
e Figure 5.22(d): LFFFFRRFFREFF, FRFL. 3, 64
.o Figure 5.22(e):.R[RFFLL], RRFRF, | 2, 8
e Figure 5.22(0: RILFLJRF, . RRFRF, 2, 8

Figure 5.22(d) shows the final formation for the first segment of the L-System. In this instance
;however, the formation has not reached the target yet, and the second segment needs to be
grown. Figure 5.22(e)-(f) shéw the growth of the second segment. Even though the number of
~agents and the successor strings in these two are the ééme, the the evolved form;cltions are made
up from different axioms. The total number of agents in this formation is 72, consisting of 64

agents in the first segment and 8 in the second.
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Figure 5.22: Evolving pattern formation of DOL-Systems in the cross arena. The fittest L-System
for the first segment at the: (a) 5th,(b) 10th,(c) 30th, (d) 70th generation; second segment at the:
: (e) 5th,(f) 30thgeneration, of evolutionary process.

168



Figure 5.23 shows the growth of DOL-Systems in the scatter arena from one of the simulation
results. The axioms @, successors succ, the number of iteration and the number of agents that
made the formations are summarised as follows:

e Figure 5.23(a): FLFFFFFF, FFRR, 2, 12

o Figure 5.23(b): RFLFFRFFFF, RFLF, - 3, 24
e Figure 5.23(c): FFFFRF,  RFLF. 3, 40
o Figure 5.23(0): RR[FLFL],  RFR[LL[LFJRJFL, = 2, 18
e Figure 5.23@): F[LLFFL], FRFLLLFRRR, 2
e Figure 5.23(f): FL[F]L, FRFLLLFRRFR, 2, 3

- Figure 5.23(a)-(c) show the evolution of the first segment at 54 25 and 60" generation, whilst
Figure 5.23(d)-(f) show the evolution of the second segment at »5“‘, 10" and 40™ generation
respectively. Figure 5.23(d) clearly shows the interesting branching formation which is due to
the stacks (and represented by the square bracket symbols) in both thé axiom and the successor.
Figure 5.23(f) shows the final f§rn_1ati0n connecting start and goal location with 2 segments of
the L-Systems, in this instance the total number of agents that is able to produce the formation

is 72, consisting of 40 agents for the first segment and 32 for the second. -

Figure 5.24, Figure 5.25 and Figure 5.26 show the evolution of the CSL-Systems in the open,
cross and scatter arena respectively. Figure 5.24(a)-(d) show the evolution of the first segment
of the CSL-Systems at 2", 6", 8" and 12" generation respectively. From the snaﬁshots, it is
obvious in the growth of the CSL-Systems that as the number of genefations increases the
nearer thé closest agent to the goal location becomes. Figlire 5.24(e)-(f) depict the evolution of
the second segment of the formation with the number of agents at the 2™ gene;ation is 17, and
decrease to 12 at generation 32. Figure 5.24(f) shows the final formation which connects the
start and goal location that is made u;:; of 2 segments of CSL-Systems; with the number of
agents is 50 for the first segment and 12 for the second segment,i mﬁking the total of 72 number

of agents in the formation.
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Figure 5.23: Evolving pattern formation of DOL-Systems in the scatter arena. The fittest L-System for first
~ segment in the: (a) 10th, (b) 25th,(c) 60th generation; second segment in the: (d) 5th, (e) 10th, (f) 35th
: generation, of evolutionary process.
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Figure 5.24: Evolving pattern formation of CSL-Systems in the open arena. The fittest L-System for first
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generatzon of the evolutionary process.
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Figure 5.25: Evolving pattern formation of CSL-Systems in the cross arena. The fittest L-System
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Figure 5.25(a) depicts the formation of the first segment of the CSL-System at generation 25
with 20 agents. Figure 5.25(b)-(d) show the growth for the second segments; where in Figure
5.25(b) and (c_), the formations seem to make a “U-turn” tdwards the start location. Figure
5.25(&) shows the last generation for the second segment with 44 agénts required to éonstruct
the fénnation. Figure 5.25(e)-() shqw the eVolutioq of the third segment at generations 5 and
‘30 respectively. Figure 5.25(f) shows the final formaifion, in tliis_ instance the formation is made
up of three ségments_of CSL—Systems with tétal number of égents of 88, from which 20 agents
are required for the first segment, 44 agents for the second segment qnd the remaiﬁder are for

the third segment. -

Figure 5.26(a)-(b) show the formation of the first segment at generation of 5 and 25, which
requires 3Q and 40 agents to form respectively. Figure 5.26(c)-(d) depict the formation growth
for the second segment. Figure 5.26(c) shows that the evolved formation is moves further away
err_n the goal location, whilst in Figure 5.26(d) the formed pattern seems to grow towards the
goal location. Figure 5.26(e)-(f) show the evolution of the third segmént at 15" and 45"
generation. Figure 5.26(f) is. the ﬁnal formation that connécts the start and goal location. The
total number of agents in the formation is 81, from which 40 is required for the first segmenf,

21 fof the second segment and 20 for the third segment.

Table 5.5 is the tabulated data for thé average, standard deviation, median and minimum
number of agents for DOL-Systems and CSL-Systems in each arena respectively. From the
data, for overall performance whig:h is based on the average total number of ‘age'nts, the DOL-
Systems seem to outperforrﬁ the CSL-Systems in every arena arrahgément. The open arena
ends up with the smallest number of agents, followed by the scatter arena and the cross arena.
The minimum number of agents fof each' arena arrangement between DOL- and CSL-Systems
does not differ Signiﬁcantly. Fof the open arena, the minimum number of agents recorded for
DOL- and CSL-Systems are 50 and 52; for the scatter érena they are 53 and 56; and for the

_cross arena both require 60 agents respectively.
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54.3 Cdmparison with RGT and A* search algorithms

Comparative studies of the formed formation between the two locations of evolutionary L-
Systems with RGT (Random Grbwing Tree) and A* search algorithms have also been carried
out in this Chapter. For the theoretical background on RGT and A* search algorithms, readers
are advised to refer to Chapter 2, where background 'descfiptions and technical aspects of the

algorithms are mentioned.

A note that the A* algorithm is a path finding algorithm unlike the evolutionary L-System
algorithm proposed in this chapter which is essentially a pattern formation algorithm. However

 the final arrangement of both algorithms can be compared.

The comparison that has been done is based on the total number of agents that are needed to
form an arrangement connécting start and goal locations. The. simulations for both RGT and -

A* search have been been carried out using the NetLogo (Wilensky 1999) simulation tool.

For the A* search models, 4-directional search and 8 directional search have been used. The
search begins at the start location, i.e. near the bottom left corner in the Figure 5.15 (page 158),
and ends when any of the A* node reaches the goal location, i.e. the red box near the top right

corner in the Figure 5.15.

For RGT mbdels, agents with nonholonomic motion and having a 7 unit perspective range have
been used. The 7 unit perspective‘range seéms to be reasonable as the separations between.the
centre of agents is set to be.5. In the simulations, to avoid over'crowding in the arena, the
maximum nﬁmber of ageﬁts was set to 250. This figure is acceptable due to the size of the _
. arena being 200 by 200. At the beginning of the simulation, agents are placed randomly in the
arena. Agénts are then allowed to wander in the arena in search of the two locations (start and
goal) and wiil finally arrange into a férmation connecting the two locations by obeying the

rules of the RGT algorithm.

The following results are obtained using the same arena arrangements (open, cross and scatter)

175



as previously used. As before, 51 runs are made for each algotithm (4-directional A* search, 8-
directionat A* searclt and RGT) against each arena arrangement. In the A* search algorithms,
thé total number of agents that are needed to form the path along the route computed by the A*
algorithm ‘is defined by the route length divided by 5. "This is due to the fact that in thé
‘, evolutionarily L-Systems method, the symbol F represénts 5 units of displacement. Figure 5.27
and Figure 5.28 show the snapshots from one of the stmulation run fot‘ RGT, A* 4-directianal

and A* 8-directional methodologies.

Table 5.6 shows the tabulated data for average total number of agents that are needed to form
the arrangement between the start and goal locations, its 'standard deviations, medians and
minimums for RGT, 4—directional A* search and 8-directional A* search respectively. From the
data (Table 5.6), for overall performance which is based on the average total number of agents,
8-directional A* search outperform others in every arena arrangement. The number of agents in

the open arena is the smallest (for each method) compared to any other arena.

Table 5.5: Average, median and minimum total number of agents for Deterministic OL- and
Context-sensitive L-Systems after 51 simulation runs in each arena arrangement.

Open arena Scatter arena Cross arena
DOL CSL DOL ~.CSL DOL ~CSL
|Average 58.51 64.71  65.31 108.69 84.18 97.65
Std. Deviation 7.25 9.45 12.44 33.17 26.22 26.39
Median 56 63 60 109 72 90
Minimum 50 52 53 56 60 60 |

Table 5.6: Average, median and minimum total number of agents for Random Growing Tree
(RGT), A* search with 4 directions (A* (4)) and A* search with 8 directions (A* (8)) methods over
51 simulation runs in each arena arrangement.

Open arena Scatter arena - Cross arena
RGT |A*@4) | A*(8) | RGT | A*(4) | A*(8)| RGT | A*(4) | A*(8)
Average 69.45 68 48 80.1 72 535 7941 88 6l
Std. Deviation 8.6 0 0 | 17.09 0 0 1045 0 -0
Median 69 68 48 75 72 53 75 88 61
Minimum 54 68 48 59 72 53 66 88 61

"From Table 5.5 and Table 5.6, shows the overall performances over 51 simulation runs based
on the average number of agents. It shows that in the open arena the evolutionary L-Systems
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methods performs better than RGT and 4-directional A* search; in the scatter érena, the DOL-
Systems performs better than RGT and 4-directional A* search, whilst the CSL-Systems
performs the worst. Finally in the cross arena both DOL- and CSL-Systems perform worse than

other methods.

- Focus on the last row of Table 5.5 and Table 5.6, t'.e. the smallest number of agents or the best
result recorded over 51 simulation runs that is needed to form a connection between the start
and goal locations. The smallest number of agents is considere(i to be best as it contributes to
the‘ shortest formation between the two locations. From the results, it is shown that the
evolutionary L—S.ystems methods are able to perform- better than RGT and 4—directional A*
search techniques. With regards to the 8-directional A* search technique, there is little
difference between it and the best results from the evolutlonary L-Systems. For the open arena,
the DOL- and 'CSL-System needs 50 and 52 agents, while 8-directional A* search needs 48. For
the scatter arena, the DOL-Systems and 8-directional A* are on a par with 53 agents, whilst the
CSL-Systems needs 56. Finally for the cross arenti, DOL- and CSL-Systems perform better with
60 agents than the 8-directional A* search which needs 61 agents to connect between the start

and goal locations.

Figtlre 5.29(a)-(c) show the snapshots ofv the best result for the DOL- and Figure 5.29(d)-(f) for
CSL-Systems in the open, cross and scetter arena respectively. In this Chapter, what we define
as the best result is the bridging formation between start and goal location with the least »
number of agents required. For the best formation, it does not necessarily comes from one-piece
.or one-segment of the L-System. Figure 5.29(b),(c) and (f) show that the formed arrangements

are made up of two segments of the L- Systems
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Figure 5.27: Example of formed pattern using RGT method. Small coloured squares represent agents
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(a) A* 4-direction

ol
e

(c) A*4-direction (d) A* 8-direction

(e) A*8-direction _ (f) A* 8-direction

Figure 5.28: Formed pattern using (a)-(c) A* 4-direction and (d)-(e) 8-direction methods, in the
open (a)(d), scatter (b)(e), and cross (c)(f) arena respectively.
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Figure 5.29: Evolved L-Systems robot swarms formation. Each figure show the “best” generated
results for: DOL- Systems in(a) open, (b) cross, (c) scatter arena; and for CSL-Systems in (d) open,
( e) cross, (f) scatter arena, respectively.



5.5 Summary Remarks

Due to the limited amount of communication bandwidth in swarm systems, there is a need to
design algorithms that require minimum transfer of information. This Chapter has introduced a
new and original method for ofganised formation along a path in large scale multi-agent
systems which can also be used as a path planning algorithm. The method howéver, reéuiresA
the pre-evolution of patterns that are répresented by L-Systems. By developing this L-Systems
method, complex pattern formation information can be stored as short bitstrings that can be
communicated to neighbouring agenfs, thps A fulfilling the requirement forA minimum
communication. Through the use of L-S);stems, complex formations need not be explicitly
encoded. Instead, these formations caﬁ be evolved by specifying objectives in the form of

fitness functions that are fed into a evolutionary éngine.

From the tabulated data in Table 5.5 and Table 5.6 (page 176), the overall results based on the
average of the total number of agents that are needed to form the formation along the path, do
not'favour L-Systems. However, baséd on the least- number of agents needed to form the
arrangements, and by altering the stop condition of the evolutionary process of the L-Systems,
the overall results can be imprdved. The alteration in this case can be done by:

® increasing the maximum number of generations, and / or

® increasing the limit for stagnancy.

The aim of this Chapter was to investigate an alternative way for swarm agents to form an
arrangement along a path between two locations. In order to be able to form the formations,
agents are required to have the ability to interpret short stringé of the L-Systems that form the

~ basic DNA of the formation.

The goal in this Chapter was to achieve interesting and complex pattern formations of robot
swarms by evolving L-Systems. What makes the L-System attractive is the way the
representation of pattern takes place. Consider the formation of the evolved DOL-System in the

open arena as in Figure 5.29(a) (page 180). Such pattern formation can be presented in the
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Logo-style string format as follows:
. RRRFFLFFFRFFLFFFFFLFFFRFFLFFFRFFLFFFRRFFLFFFRFFLFFFFFLF

' FFRFFLFFFRFFLFFF

. However, the same pattern formation can be represented by the L-Systems with a shdrfer string
in the format of “axiom > successor > number of rewriting operation” as follows:

® RFF> RFFLFFF> 2 |
where the “>” symbol is use to seﬁarate between differeht paits of the L-Systems parameters.

Due to the Logo-style format, these movement can be fed directly to the robots.

The technique'in this Chapter was mainly developed for the use of forming a formation along
the path between locations. As already mentioned previously, L-Systems use Logo-style format
to represent the formation, thus the developed technique in this Chapter can also be used as a

new path planning algorithms.

Furthermore, the élbility to represént branching structure or. pattern makes L-Systems more
appealing. This ability is particularly uséful when formations of agents in connecting three or
more locations are needed. For example, the result in Figure 5.21(c) (page 166) which shows
thé- branching structure of the pattern. Assume that agents are needed to form a bridging
formation connecting three locations, and the three locatiqns are in fact at the edge of every
branch of Figure 5.21(c) formation. By using the proposed technique, the representation of the
-pattern (as in Figure 5.21(c)) which uses L-Systems and ngo;style format only takes minimal
string lvength, as follows: |

® LF[LLFJFL > RFRFFFLLF>?2

The results on the different arena arrangements provided the Basis for the étﬁdy of the formed
patterns by the evolutidnary L-Systems. From the two models (DOL- and CSL-Systems)
simulated, it was obvious that the DOL-Systems model produced better results with the least
number of "agents to_form ihe bridging formation between the start and the goal locations.

Furthermore, representing the DOL-Systems can be done by only using three sets of strings
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(axiom, successor, number of rewriting) compared to CSL-Systems which needed eight (axiom,
2 contexts, 4 successors and a number of rewriting). However, the patterns formed vby the DOL;
System models lacks what we shall term complexity compared to the CSL-Systems model. In
this cAase, the patterns from the DOL-Systems afe somewhat symmetrical. But in CSL-Systems
model, the patterns appear to be more random. For this reason, it is believed thaf to some extent
the evolutionary CSL-Systems model will outperform the DOL-Systems model given the right
'cénditions. However this could be conducted as fliture work, as this thesis is mainly aimed at

laying a new paradigm for the topic of formation.

183



Cha_pter 6  Conclusions and Future Work

6.1 Overview

The résearéh presénted in this thesis provides an important eérly contribution to researchers
currently working on various different themés that fali into the domain of applied swarming,
namely swarm engineering, swarm robotics, swarm intell.i'gence, multi-agent systems, and so on
and so forth. In géﬁeral, work in these ﬁelﬂs refers to approaches of developing swai*ms'of '
relativgly simple and independent agents which are capable of completing specific globél tasks,

either through task allocation or emergent behaviour.

Swarm robotics has a strong link with multi-agent (robotics) systems, where problem solving is
done at'a macroscdpic level. In one sense, designing miéfoScopic rule sets for homogéenous
agents to achieve rr;acroscopic goal(s) may seem to be a simple task, as all the agents will have
the same rules and conditions. One could strive to design .these rules and conditions by hand.
Moreover, the generation of an analytical solution to the problem might not be requiredz,
although‘in some cases analytical and exact solutions are a must. Any behaviour (of agents)

which satisfies the macroscopic goal can be thought of as a solution to the problem.

The field of multi-agent‘mobile systems is still young, hence the current lack of pﬁysical
swarms. Many current problems on swarming have been addressed by analysing and
understanding biolkogivcal swarms, aﬁd many problems on ‘s'warm robotics have been solved in
the wider context of artificial intelligence and robotics. In both respects, ideas are'borrowed and

adapted. However there remain many more issues-that are yet to be solved. Such issues include

2 This is based on the author's observation on many other works of research
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the issue of how to control agents which have very limited memory and ability to form
interesting patterns; the issue of bridging formation amongst agents connecting multiple

objects; and the issue of flocking behaviours with the existence of an attractor in the arena.

Ih this thesis, three differént pieces of research that are relatéd to centralised and decentralised
pattern formation have been studied. The three systems were different in the inherent nature of
the problem and in the type of solution. The ﬁrst~ piece of research is based on the state based
model (Chapter 3). In thié research, homogenous égents with very little memory, limited
" sensing capabilities and procéssing power were designed and modelled for two types of swarm
~ behaviours, i.e. line formation | and 'cluster‘ formation, using th;e well-knowﬁ Finite State

Machine approach.

The second piece of research addresses the problem of collective movement modelling
(Chapter 4). In this work, the macroscopic behaviour of swarm agents in the presence of an

attractant (artificial potential field) is studied. -

The third piece of researchv (Chapter 5) studies complex formation of agents in a task that
requires the bridging connection of two locations. In this work, it has been shown that
propagatable patterns can be represented by using L-Systems, provided each robot has the

ability to interpret short strings of L-Systems that form the basic DNA of the formation.

6.2 Original Contributions to Knowledge

The contributions to knowledge of the three pieces of research above is thus presented.

6.2.1 State based models
The goals of state based modefs (Chapter 3) were:
® to design relatively simple h'omogeﬁous swarm agents with very Alivttle memory and
limited sensing capabilities, and | |

® to devise algorithms for the agents so that agents will self-organise into patterns in a
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decentralised manner.

The tasks that hav.e been chosen_in this work are thatl the agents have to perform line and cluster
formation. As the agénts_have very little memory, limited éensing capabilifies and processing
power the agents themselves do not have any knowledge of the arena and how many other
agents are present in the environment. Due to the constraints, an FSM approach has been
chosen and applied. Using FSM as an approach is not a new idea, after all bcha-\/iour—based

systems have used FSM as their backbone.

There are many similar works have been reported on distributed pattern formation control
algorithms of robot swafms. However, these agents have capabilities that are vastly more
complex than the requirement of simple agents in swarm systems. For example, in Avrutin et
al. (2007), Payton et al. (2004), Nouyan et al. (2006), Freeman et al. (2006), Desai (2002),
Fierro & Das (2002), Kaminka & Glick (2006), Pavone & Frazzoli (2007), etc. agents require a
communication module; in Yang et al. (2007), Desai (2002), Takahashi (2004), Mastellone et
al. (2007), etc. agénts need a large amount of memory and processing power for complex

calculations; in Das et al. (2002) agents require vision based sensors.

In this work, each agent is fitted with a ring of eight equally spaced infrared transmitter-
receiver pairs. These infrared pairs are merely used for signalling and obstacle detection rather

than full-blown communication.

The main contributions of this research are:

e decentralised line fonﬁation algorithm and

® cluster formation aléorithm
This is achieved by alternaﬁvely switching on and off a combination of transmitters and sensors
of relatively simple agents which have very little memory, limited sensing capabilities and

processing power.
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. The line formation algorithm is one in which all agents possesses the same control algorithm.
In this algorithm, the agents wander randomly in the arena until it stumbles upon another agent
that it can follow. This process promotes autocatalytic behaviour, where in the end, agents

would likely end up forming a single long line.

In the cluster formation algorithm, there are two different agent control algorithms. One is for
the single attractor agent and another is for the searcher agents. In this algorithm, the attractor
agent will wander randomly in the arena, whilst the searchers will look for the attractor and

once found, the searchers will follow the attractor.

The control algbrithm for searcher agents (in cluster formation) and for agents in line formation
algorithm are very similar. They only differ in the on-off configuration of the infra-red

transmitters and the receivers.

6.2.2 Collective movements model
The aim of the research on collective movement models (Chapter 4) was to analyse the
aggregation behaviour of a large number of agents in a swarm that follows the swarm robotjcs

control paradigm, i.e. Reynolds" flocking rules (1987), in the existence of an attractor field.

Within this research, Wilensky's (1999) flocking algorithm has been exténded and 'several
individual be'haviours. have béen selected in terms of single-agent movemént models. Three
diffcrént microscopic behaviours have been modelled and a study of the system at a
- macroscopic level haye been conducted. The differén(ce between the microscopic behaviours is
tﬁe maximum tumiﬁg'angle of éach agent. Based on the observation of thé movement modgl,

the three behaviours have been labelled as fish-like, mosduito-like and ﬁréﬂy-like.

To summarise, the contributions of this research are:
e Exploration of how ﬂbcking agents behave in the existence of an APF.

e The analysis of each movement behaviour in the existence of an APF.
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Based on the performances and observation of the rhc‘)vefnent models, the followihg con¢lusion
is drawn:
.® Teams of gollective moving agents with a smaller maximum turning angle are more
effective in finding targets than the larger maximum turning angle. CollectiVely moving
agents with a larger maximum turning an'gie tend to stay close to each other regardless

of the APF.

623 ‘L-Systems for formation tasks
The main objectives of the evolutionary L-System models for formations tasks, as preseﬂted in
- Chapter 5, was t;o develop a novel theory to support swarm agents for comp]ex pattern

formation, where swarm agents are able to form complex patterns between two locations.

In this thesis it is proposed that for more cbmplex pattern formations of swarm agents, the level
of agent complexity should be marginally increased. 1t is thus proposed that to be able to form
complex patterns, L-Systems offer one solution, with the assumption that agents will be able to

interpret the short L-Systems bit strings.

The tasks that we have chosen are that the agents have to connects two locations in three
different arenas in an organised formation. The L-Systems are then generated and evolved by
an evolutionary engine that finds for a solution (which is the formation between the two

locations). This thesis claims first use of L-systems in the swarm robotics domain.

To sumrﬁarise, the contributions of this work are:
e the proposal of a pattern construction methodo_lbgy for swarm robots using L-Systems.
e the proposal of a representation methodology for swérm robot using L-Systems.
e the provision of an empirical study for thle’use of evolutioriary L-Systems for pattern
formation in swarm robots. | |

. @ the provision of a comparative study of evolutionary L-Systems with other methods
(RGT and A* search algorithm).

e explore the approach of a new path planning algorithm.
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6.3 Recommendation for Future Works

A number of avenues are available for extending the research in this thesis. They are as follows.

6.3.1 State based models

Currently, the élgorithms_ presented in the research of Chapter 3 are solely based on behaviour-
based systems which mimic the line.formed by ants. and does not deal with any specialised
“knowledge”. However, in order to deal with more complex behaviour, ie. cooperation
amongst agents, each agent has to be aware of its current situation. For that reason, some kind
of “knowledge” représentatiOn vsystem should bé added to each agent. Gershenson (2002)
shows how a behaviour-based system is able to abstract knowledge from its environment andv
exploit this knowledge for performing within its environment by introducing behaviour-based
knowledge systems (BBKS). .Qne approach is by using Hidden Markov‘ Models (HMM)

(Rabiner & Juang 1996).

In order for each Qf the agents to sense and understand the world around itself, another area
worth investigating is distributed path planning. With path planning, eac.h agent will have part
of a “wbrld map” which collectively represents the world. Algorithms need to be dé\}eloped to
acco‘unt for gaps in the representation by each agent, and to recover when thié information

becomes available.

6.3.2 Collective movements model
In the work of Chapter 4, there are many areas that can be inVestigated. These include:
® an investigation intd how the population density in the. arena affects the swarms'
performance and the éon\}ergence rate.
e scenarios with more than ohe attlraction field with~varying'$trengths and the effec;s this
will have on an agent's trajectories and the group behaviour of the swarm.
" the modelling of several types of obstacles and an investigation into the emergent
behayiour’s that obstructions may prbduc_:e. |

e the introduction of a moving attractor or several attractors to analyse their effects to
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the swarm.

6.3.3 L-Systems for formation tasks
Future directions of the L-Systems work in Chapter 5 may include:
e Improving the evolutionary engine} and the éystems. By improving the evolutionary
engine, more complex agent formations in a complex arena could be achieved.
. Exploring formation representation connec_:ting three or more locations.
° Evblving a more complex L-Systems modei, such as Parametric L-Systems. In a
paramétric L-Systems model, the ‘representation of the code is more compact than the

simple L-Systems.

6.4 Summary

Swarm robotics is a relatively new field which has been investigated in‘the last decade, having
been triggered by Reynolds' (1987) seminal paper on flocking of boids. There has not yet been
a single “réal world application” of the swarm égents with real physical embodied agents of
everyday tasks. This is due to the fact that the early groundwork is still being laid and mény
problefns and,tasks‘exist that will need to be addresséd. This thesis has providéd an early
example of a global approach to pattern formation of swarm agenté. The techniques discussed

in this thesis may be extended to a wide variety of possible future swarm applications.
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