41 research outputs found

    3G migration in Pakistan

    Get PDF
    The telecommunication industry in Pakistan has come a long way since the country\u27s independence in 1947. The initial era could be fairly termed as the PTCL (Pakistan Telecommunication Company Limited) monopoly, for it was the sole provider of all telecommunication services across the country. It was not until four decades later that the region embarked into the new world of wireless communication, hence ending the decades old PTCL monopoly. By the end of the late 1990\u27s, government support and international investment in the region opened new doors to innovation and better quality, low cost, healthy competition. Wireless licenses for the private sector in the telecommunication industry triggered a promising chain of events that resulted in a drastic change in the telecommunication infrastructure and service profile. The newly introduced wireless (GSM) technology received enormous support from all stakeholders (consumers, regulatory body, and market) and caused a vital boost in Pakistan\u27s economy. Numerous tangential elements had triggered this vital move in the history of telecommunications in Pakistan. Entrepreneurs intended to test the idea of global joint ventures in the East and hence the idea of international business became a reality. The technology had proven to be a great success in the West, while Pakistan\u27s telecom consumer had lived under the shadow of PTCL dominance for decades and needed more flexibility. At last the world was moving from wired to wireless! Analysts termed this move as the beginning of a new era. The investors, telecommunication businesses, and Pakistani treasury prospered. It was a win-win situation for all involved. The learning curve was steep for both operators and consumers but certainly improved over time. In essence, the principle of deploying the right technology in the right market at the right time led to this remarkable success. The industry today stands on the brink of a similar crossroads via transition from second generation to something beyond. With the partial success of 3G in Europe and the USA, the government has announced the release of three 3G licenses by mid 2009. This decision is not yet fully supported by all but still initiated parallel efforts by the operators and the vendors to integrate this next move into their existing infrastructure

    TCP Performance in Heterogeneous Wireless Networks

    Get PDF
    The TCP protocol is used by most Internet applications today, including the recent mobile wireless terminals that use TCP for their World-Wide Web, E-mail and other traffic. The recent wireless network technologies, such as GPRS, are known to cause delay spikes in packet transfer. This causes unnecessary TCP retransmission timeouts. This dissertation proposes a mechanism, Forward RTO-Recovery (F-RTO) for detecting the unnecessary TCP retransmission timeouts and thus allow TCP to take appropriate follow-up actions. We analyze a Linux F-RTO implementation in various network scenarios and investigate different alternatives to the basic algorithm. The second part of this dissertation is focused on quickly adapting the TCP's transmission rate when the underlying link characteristics change suddenly. This can happen, for example, due to vertical hand-offs between GPRS and WLAN wireless technologies. We investigate the Quick-Start algorithm that, in collaboration with the network routers, aims to quickly probe the available bandwidth on a network path, and allow TCP's congestion control algorithms to use that information. By extensive simulations we study the different router algorithms and parameters for Quick-Start, and discuss the challenges Quick-Start faces in the current Internet. We also study the performance of Quick-Start when applied to vertical hand-offs between different wireless link technologies.Suurin osa Internet-sovelluksista käyttää TCP-protokollaa turvatakseen luotettavan tiedonvaihdon. Tällaisia sovelluksia ovat esimerkiksi WWW, sähköposti, ja monet pikaviestiohjelmat. TCP-protokollan pääpiirteet on suunniteltu 1970- ja 1980-luvulla, jolloin päätelaitteita ja sovelluksia oli huomattavasti nykyistä vähemmän ja yhteydet pohjautuivat kiinteiden kommunikaatiolinkkien käyttöön. Langattomien päätelaitteiden yleistyessä on huomattu, että TCP-protokollan suorituskyky ei aina ole hyväksyttävällä tasolla, koska monet sen piirteistä on alunperin suunniteltu erilaisessa käyttöympäristössä. Väitöstyö perehtyy langattoman linkin aiheuttamien vaikeasti ennustettavien viiveiden vaikutukseen TCP:n suorituskyvylle. Tällainen käyttäytyminen on ominaista esimerkiksi nykyisin laajalti matkapuhelimissa käytetylle GPRS-teknologialle. Yllättävät viiveet datansiirrossa aiheuttavat TCP:n uudelleenlähetysajastimen tarpeettoman laukeamisen. Tämä aiheuttaa useiden pakettien turhan uudelleenlähetyksen ja vaikeuttaa TCP:n ruuhkanvalvonta-algoritmien toimintaa. Väitöstyössä ehdotetaan F-RTO -nimistä parannusta TCP:n uudelleenlähetysalgoritmeihin, joka pyrkii havaitsemaan turhat uudelleenlähetykset ja välttämään edellä mainitut ongelmat tällaisissa tilanteissa. Väitöstyö analysoi F-RTO:n suorituskykyä erilaisissa kommunikaatioskenaarioissa ja tutkii erilaisia variaatioita perusalgoritmiin. Lisäksi väitöskirjassa tutkitaan TCP:n lähetysnopeuden pikaista sopeuttamista vallitseville siirto-olosuhteille. Normaalisti TCP tarvitsee huomattavan ajan löytääkseen oikean siirtonopeuden yhteyden alussa, mikäli siirtolinkki on erityisen nopea ja siirtoviiveet verraten pitkiä. Tämä on tilanne uusimmissa langattomissa kommunikaatioteknologioissa. Samankaltainen ongelma esiintyy myös, mikäli TCP-yhteys vaihtaa käyttämäänsä siirtoteknologiaa kesken yhteyden esimerkiksi liikkuvuuden seurauksena. Tämä voi tapahtua uusimmissa päätelaitteissa, jotka tukevat useita erityyppisiä radioteknologioita, kuten WLAN ja GPRS. Väitöskirjassa tutkitaan Quick-Start - nimistä mekanismia, joka nopeuttaa huomattavasti TCP:n sopeutumisnopeutta edellä mainitun kaltaisissa tilanteissa. Työssä tarkastellaan erilaisia algoritmeja Quick-Startin käyttöön ja analysoidaan simulointien avulla algoritmien toimintaa erilaisissa ympäristöissä. Väitöstyössä esitetyillä tuloksilla Internet-kommunikaation suorituskykyä ja käytettävyyttä langattomilla laitteilla voidaan parantaa huomattavasti

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Femtocell deployment; next generation in cellular systems

    Get PDF
    The final Bachelor’s Thesis that is shown below has such a final purpose of giving an overview of the inclusion of the so-called Femtocells (or Home Node B) in the current cellular systems. The main objective is to give a clear but simple idea about the concepts of Femtocells, as well as to explain the benefits and disadvantages of the mass uses of these services both for consumers and associated companies with this phenomenon. In this text it is also possible to find a brief review of wireless technologies throughout the history of telecommunications, as well as an introduction to the more current wireless technologies, with a special interest in the concept of cellular systems. In the last chapter a simple mathematical explanation of the key issue of interference between Femtocells and macrocellular networks is presented, with a brief argument about possible solutions

    Coverage measurements of NB-IoT technology

    Get PDF
    Abstract. The narrowband internet of things (NB-IoT) is a cellular radio access technology that provides seamless connectivity to wireless IoT devices with low latency, low power consumption, and long-range coverage. For long-range coverage, NB-IoT offers a coverage enhancement (CE) mechanism that is achieved by repeating the transmission of signals. Good network coverage is essential to reduce the battery usage and power consumption of IoT devices, while poor network coverage increases the number of repetitions in transmission, which causes high power consumption of IoT devices. The primary objective of this work is to determine the network coverage of NB-IoT technology under the University of Oulu’s 5G test network (5GTN) base station. In this thesis work, measurement results on key performance indicators such as reference signal received power (RSRP), reference signal received quality (RSRQ), received signal strength indicator (RSSI), and signal to noise plus interference (SINR) have been reported. The goal of the measurement is to find out the NB-IoT signal strength at different locations, which are served by the 5GTN cells configured with different parameters, e.g., Tx power levels, antenna tilt angles. The signal strength of NB-IoT technology has been measured at different places under the 5GTN base station in Oulu, Finland. Drive tests have been conducted to measure the signal strength of NB-IoT technology by using the Quectel BG96 module, Qualcomm kDC-5737 dongle and Keysight Nemo Outdoor software. The results have shown the values of RSRP, RSRQ, RSSI, and SINR at different locations within several kilometres of the 5GTN base stations. These values indicate the performance of the network and are used to assess the performance of network services to the end-users. In this work, the overall performance of the network has been checked to verify if network performance meets good signal levels and good network coverage. Relevant details of the NB-IoT technology, the theory behind the signal coverage and comparisons with the measurement results have also been discussed to check the relevance of the measurement results

    Femtocell deployment; next generation in cellular systems

    Get PDF
    The final Bachelor’s Thesis that is shown below has such a final purpose of giving an overview of the inclusion of the so-called Femtocells (or Home Node B) in the current cellular systems. The main objective is to give a clear but simple idea about the concepts of Femtocells, as well as to explain the benefits and disadvantages of the mass uses of these services both for consumers and associated companies with this phenomenon. In this text it is also possible to find a brief review of wireless technologies throughout the history of telecommunications, as well as an introduction to the more current wireless technologies, with a special interest in the concept of cellular systems. In the last chapter a simple mathematical explanation of the key issue of interference between Femtocells and macrocellular networks is presented, with a brief argument about possible solutions

    Rural internet connectivity: a development in Dwesa-Cwebe, Eastern Cape, South Africa

    Get PDF
    This thesis presents aspects of Internet connectivity in rural South Africa. The work looks at government initiatives being undertaken to connect rural communities to up-to-date information networks. Various projects that seek to connect rural areas of South Africa, as well as other remote areas around the world, are discussed. These projects present many novel ideas that have been successfully used to link rural communities in remote areas with the information age. In particular, wired and wireless access technologies that can be implemented to connect remote communities to the Internet are discussed. A field test utilizing GPRS, VSAT and WiMAX was implemented in Dwesa-Cwebe, Eastern Cape Province, South Africa. VSAT proved to offer better Internet connectivity in terms of throughput and latency. WiMAX was then successfully implemented to relay the signal over the remote area of Dwesa-Cwebe, thus effectively providing Internet connectivity to an area with limited cell phone coverage and no telephone lines

    Femtocell Deployment; next generation in Cellular Systems

    Get PDF
    The final Bachelor's Thesis that is shown below has such a final purpose of giving an overview of the inclusion of the so-called Femtocells (or Home Node B) in the current cellular systems. The main objective is to give a clear but simple idea about the concepts of Femtocells, as well as to explain the benefits and disadvantages of the mass uses of these services both for consumers and associated companies with this phenomenon. In this text it is also possible to find a brief review of wireless technologies throughout the history of telecommunications, as well as an introduction to the more current wireless technologies, with a special interest in the concept of cellular systems. In the last chapter a simple mathematical explanation of the key issue of interference between Femtocells and macrocellular networks is presented, with a brief argument about possible solutions

    A survey on 5G networks for the Internet of Things : communication technologies and challenges

    Get PDF
    The Internet of Things (IoT) is a promising technology which tends to revolutionize and connect the global world via heterogeneous smart devices through seamless connectivity. The current demand for machine-type communications (MTC) has resulted in a variety of communication technologies with diverse service requirements to achieve the modern IoT vision. More recent cellular standards like long-term evolution (LTE) have been introduced for mobile devices but are not well suited for low-power and low data rate devices such as the IoT devices. To address this, there is a number of emerging IoT standards. Fifth generation (5G) mobile network, in particular, aims to address the limitations of previous cellular standards and be a potential key enabler for future IoT. In this paper, the state-of-the-art of the IoT application requirements along with their associated communication technologies are surveyed. In addition, the third generation partnership project cellular-based low-power wide area solutions to support and enable the new service requirements for Massive to Critical IoT use cases are discussed in detail, including extended coverage global system for mobile communications for the Internet of Things, enhanced machine-type communications, and narrowband-Internet of Things. Furthermore, 5G new radio enhancements for new service requirements and enabling technologies for the IoT are introduced. This paper presents a comprehensive review related to emerging and enabling technologies with main focus on 5G mobile networks that is envisaged to support the exponential traf c growth for enabling the IoT. The challenges and open research directions pertinent to the deployment of massive to critical IoT applications are also presented in coming up with an ef cient context-aware congestion control mechanism.In part by the Department of Research and International Support, University of Pretoria, South Africa, and in part by the Meraka Institute, Council for Scientific and Industrial Research, South Africa.http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639am2018Electrical, Electronic and Computer Engineerin
    corecore