View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

provided by Helsingin yliopiston digitaalinen arkisto

Department of Computer Science
Series of Publications A
Report A-2007-1

TCP Performance in Heterogeneous
Wireless Networks

Pasi Sarolahti

Academic Dissertation

To be presented, with the permission of the Faculty of
Science of the University of Helsinki, for public criticism
in Auditorium 6, Metatalo, Unioninkatu 40, on June 16th,
2007, at 10 o’clock.

University of Helsinki
Finland

https://core.ac.uk/display/14916933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright(©) 2007 Pasi Sarolahti

ISSN 1238-8645

ISBN 978-952-10-3973-7 (paperback)
ISBN 978-952-10-3974-4 (PDF)
http://ethesis.helsinki.fi/

Computing Reviews (1998) Classification: C.2.6, C.4

Helsinki University Printing House
Helsinki, June 2007 (171 pages)

TCP Performance in Heterogeneous Wireless
Networks

Pasi Sarolahti

Nokia Research Center

P.O. Box 407, FI-00045 Nokia Group, Finland
pasi.sarolahti@iki.fi
http://www.iki.fi/pasi.sarolahti/

Abstract

The TCP protocol is used by most Internet applications todaluding the recent
mobile wireless terminals that use TCP for their World-WMeb, E-mail and
other traffic. The recent wireless network technologieshsaas GPRS, are known
to cause delay spikes in packet transfer. This causes ussgyel CP retransmis-
sion timeouts.This dissertation proposes a mechanismward RTO-Recovery
(F-RTO)for detecting the unnecessary TCP retransmission timemdshus al-
low TCP to take appropriate follow-up actions. We analyzénaik F-RTO imple-
mentation in various network scenarios and investigaferdifit alternatives to the
basic algorithm. The second part of this dissertation isi$ed on quickly adapt-
ing the TCP’s transmission rate when the underlying linkrabieristics change
suddenly. This can happen, for example, due to vertical odiscbetween GPRS
and WLAN wireless technologies. We investigate @gick-Startalgorithm that,
in collaboration with the network routers, aims to quicklyope the available
bandwidth on a network path, and allow TCP’s congestionrobatgorithms to
use that information. By extensive simulations we studydifierent router al-
gorithms and parameters for Quick-Start, and discuss thbertges Quick-Start
faces in the current Internet. We also study the performaf€guick-Start when
applied to vertical hand-offs between different wirelda& technologies.

Computing Reviews (1998) Categories and Subject Descsiptor
C.26 COMPUTER-COMM.NETWORKS / Internetworking
C4 PERFORMANCE OF SYSTEMS

General TermsTCP performance, wireless links

Additional Key Words and Phrasedelay spikes, cross-layer protocol
interactions

Acknowledgements

I’'m in deep gratitude to a number of people that were esdéiotiahis work to
happen. Missing any single one of the following people théseftation would
not have been possible.

I’'m grateful to my advisor, Prof. Kimmo Raatikainen, whodhgh the past
years in a number of ways made it possible to conduct thengséar this disser-
tation. Markku Kojo has provided huge amounts of invaludbkxback for this
dissertation, and shown me the right direction startingnfthe early undergrad-
uate studies. By his inspiring and positive attitude Proind Alanko has had
an important role in guiding my studies at the University al$inki, helping to
select my focus area as a student and a researcher. | alsdonmtwaink Marina
Kurtén for advice on improving the English language in dligsertation.

Mika Liljeberg has educated me with a number of interesting tnoughtful
discussions at Nokia Research Center about TCP/IP pratom@éning my eyes to
see the relevance of problems in practical protocol engingdor small wireless
devices. Mika Forssell and Ismo Kangas have made it podsilslrange time to
work on this dissertation aside the other projects at NRC.

I’'m thankful to Dr. Sally Floyd for the support and valuabldvice | got during
and after my visit in the International Computer Sciencditute at Berkeley. In
particular, she introduced me to Quick-Start, that becamsevant part of this
dissertation. Without the collaboration with Sally FloyddaMark Allman this
part of the dissertation would not have been possible.

Too few times, and too late, have | expressed my gratitudeytonother and
father who took on the difficult task of giving me a good uphbiitg and support.

Finally, with my deepest gratitude and love | would like taik Jenni for the
patience and matchless support throughout the years itttofdkish this work.

Helsinki, May 2007
Pasi Sarolahti

Vi

Contents

1

Introduction

11
1.2
13
1.4

ScopeoftheWork.
Contributions
RelatedWork
Structure of the Dissertation

TCP and Wireless Networks

2.1

2.2

2.3
2.4

2.5

Evolution of Wireless Communication Systems
2.1.1 Wireless Local AreaNetworks
2.1.2 Wireless Wide Area Networks

2.1.3 Interaction of different wireless technologies

Transmission Control Protocol (TCP)
2.2.1 Evolutionof TCP
2.2.2 Enhancements for Wireless Links
Problems with TCP’s Retransmission Timer
Enhancing TCP with Explicit Cross-Layer Communication . .
2.4.1 Classification of explicit cross-layer mechanisms
2.4.2 Adjusting TCP sending rate using Quick-Start
sSummary ... e e

Congestion Control in Linux TCP

3.2
3.3

The Linux Approach
Featureso
3.3.1 Retransmission timer calculation
3.3.2 Undoing congestion window adjustments
3.3.3 Delayed acknowledgements
3.3.4 Congestion Window Validation

Vii

Viii Contents

3.3.5 Explicit Congestion Notification a7
3.4 Conformance to the IETF Specifications 7 4
3.5 Performancelssues L. 49
3.6 Summary e e 52
F-RTO: A Recovery Algorithm for TCP Retransmission Timeous 57
4.1 Spurious Retransmission Timeouts 7 5
4.2 F-RTOAlgorithm 59
4.3 Discussion of F-RTO Behavior in Specific Scenarios 63
43.1 Suddendelays 64
4.3.2 Lostretransmission 66
433 Burstlosses oo 68
4.3.4 Packetreordering 0 70
4.4 Performance Analysis oo 70
44.1 TestArrangements 70
442 Results 73
4.4.3 Fairness towards conventional TCP 79
4.5 SUMMary 80
Enhancements on F-RTO 83
5.1 Detecting Spurious RTO with TCP SACK Option 84
5.2 Respondingto SpuriousRTO 86
5.3 TestMethodology 88
54 TestResults 90
5.5 Additional Considerations 94
5.5.1 SACK-enhanced F-RTO and Fast Recovery 94
5.5.2 Discussion of Window-Limited Cases 94
55.3 UsingF-RTOwWithSCTP 95
56 Summary e 97
Evaluating Quick-Start for TCP 99
6.1 Overview 100
6.2 Quick-Start ProtocolDetails 110
6.2.1 PacketFormat 101
6.2.2 Quick-Start Processing atthe Sender. 2. 10
6.2.3 Quick-Start Processing atRouters 104
6.3 Challenges. 104
6.4 SimulationSetup o 106
6.5 Connection Performance 107

6.5.1 IdealBehavior 108

Contents iX

6.5.2 The Size of the Quick-Start Request 110
6.5.3 Lossof Quick-Start Packets 113
6.5.4 Aggregate Impact of Quick-Start 116
6.6 Router Algorithms oo 117
6.6.1 Basicrouteralgorithms 118
6.6.2 Extreme Quick-Startinrouters 124
6.7 Attackson Quick-Start 129
6.8 Summaryand Openlssues 132
7 Using Quick-Start to Improve TCP Performance with Vertical Hand-
offs 137
7.1 TCP Performance on Mobile Hand-offs 138
7.2 IPMobility 140
7.3 Applying Quick-Start for Wireless Links 141
7.4 SimulationResults, 143
7.4.1 Simulation Arrangements 143
7.4.2 ConnectionStartup 145
7.43 \erticalHand-off 145
7.5 Summary e e e 149
8 Conclusions and Future Work 153

References 157

Contents

CHAPTER 1

Introduction

Within the last 10-15 years Internet applications have bexpart of everyday
life in the developed parts of the world. Applications suchtle World Wide
Web, E-mail, Instant Messaging, or networked games are desygread use to-
day. Traditionally most people have used desktop compuiiteascess Internet
applications. However, portable laptop computers witheleiss Internet access
have become popular as home computers due to their smadlee spquirements.
Moreover, recent mobile phones have advanced networkipgbilities, and they
have become small computer platforms in terms of processapgcity and the
variety of third-party applications available for thesevides. It can be foreseen
that in the near future people will use their mobile terméri@r different Internet
applications as extensively as they do with their home cderpuoday.

Although the Internet seems a fairly new technology for agrage consumer,
it has existed and evolved for more than 30 years. The emghdodesign philos-
ophy of the Internet has proved to be robust enough to stamtiuge growth of
the number of Internet hosts from the 1960s until today [2@]important design
feature of the Internet are the congestion control algorittihat have protected
the Internet from collapsing under the vastly increased [@l]. These princi-
ples have guided the engineering work of the TCP/IP proteaite [152] that is
used in all modern operating systems of today, as well assimtbbile terminals
that provide World Wide Web or E-mail applications.

The Transmission Control Protocol (TCH)33] is used by most of the net-
working applications, for example the World Wide Web, imétanessengers, peer-
to-peer file sharing and E-mail. Probably because of its [avipyy TCP has also
inspired a large research base from the past decades watil.to

Using TCP over the wireless network access technologiespeagally chal-
lenging. The wireless networks have very different chamdstics compared to

1

2 1 Introduction

the networks where the TCP was originally designed, and ¢welve rapidly all
the time. New wireless technologies are being announcedahstant rate, and
the range of network characteristics is likely to grow in thture.

1.1 Scope of the Work

This dissertation investigates the TCP performance in osdsvthat suffer from
long or variable delays. While wireless technologies sucthaGeneral Packet
Radio Service (GRP$35, 29] andWireless LAN[62] are the primary topic of
interest, the research approach and solutions are alsicalplel to other fixed or
wireless networking technologies under TCP. Rather thanggmto details of
any particular layer 2 networking technology, the focusristlee TCP protocol:
we investigate the packet-level behavior of TCP, with theéastying path charac-
teristics motivated by the above-mentioned wireless neding technologies.

We focus on the following problems related to the interattdé TCP and chal-
lenging delay characteristics:

e Spurious retransmission timeouts caused by a delay spike retransmis-
sion timer is adjusted dynamically based on the recentlysorea round-
trip times. However, the TCP sender is unable to prepare feundien
unexpected delay spike that can occur, for example, duetaicevents in
GPRS networks [66]. Unexpected delay spike causes TCPRashission
timer to expire, which in turn causes a number of harmfuldiellup effects
sacrificing TCP performance.

¢ Slow connection start-up on high-delay pathECP’s congestion control
algorithms limit the utilization of a high-latency conniect path that could
consume several packets in one round-trip time. For exarnimewireless
link in GPRS and EGPRS has high latency, and in such envirotsTeCP’s
slow-start leads to underutilization of the wireless reses.

e Changes in path characteristics due to mobili§ecause mobility results
in change of the communication path, the end-to-end patractaistics,
such as bandwidth and round-trip delay can change as weR.i$&nown
to be slow in adapting to suddenly changing network conaitioBefore
the TCP sender has adjusted itself to the new path chastateyiseveral
packets may have been lost, or the communication path magimaimder-
utilized for a long period of time. Particularly dramaticastges can occur
with vertical hand-offs between different wireless acdesfinologies that

1.2 Contributions 3

mobile terminals use. For example, a GPRS link has bandvadthde-
lay characteristics that are several orders of magnitutfereint than the
characteristics of a Wireless LAN link.

Since all of the above-mentioned problems are typicallgtezl to the char-
acteristics of the GPRS networks or vertical hand-offs leetwGPRS and Wire-
less LAN links, the research parametrization is motivatgdhese technologies.
Two methods are used in research: first, parts of the reseaechonducted us-
ing real Linux implementation attached to an emulated ntwising Seawind
wireless network emulatdd 00], which allows various network parameters to be
controlled and configured. Second, the2 simulatof122] is used in tests that
involve a large number of network components, or require ifftadions in the
network components that are difficult and time-consumingrtplement in real
network stacks.

1.2 Contributions
This dissertation has the following contributions:

e We give a detailed description of the Linux TCP implemeptatihat has
been used in many of the experimentations in this dissenatThis part
of the dissertation is based on the experience gained wigeauthnor con-
tributed modifications and protocol enhancements to thexLiFCP imple-
mentation. Although there are several books about the Likeurel and its
networking stack in general, the author is not aware of aaywould give
a detailed description of the TCP behavior. A conferencespapitten by
the author and Alexey Kuznetsov, one of the key architectheflLinux
TCP/IP stack, gives a detailed description of the specatufes in Linux
TCP implementation [147]. The author has been the mainibomdr to the
paper, receiving some comments from Alexey Kuznetsov. Titleoa also
conducted all of the performance examples given in the paper

e We have developed a new algorithm for improving TCP perforoeaon
spurious retransmission timeouts, callmward RTO-Recovery (F-RTO)
The author was the original inventor of the idea of F-RTO, #reldesign
work was done in collaboration with Markku Kojo. The authdscaim-
plemented F-RTO in the Linux kernel and ns-2 network sinaulaBoth
implementations have been accepted and included in the codim distri-
butions of these systems. This work is discussed in a rds¢analication

4 1 Introduction

co-authored with Markku Kojo and Kimmo Raatikainen [145heTperfor-

mance experimentations and analysis presented in the pagéehis disser-
tation were conducted by the author. F-RTO has also beerispeall as an
RFC by the IETF [144], and it has been included in the protstatks of
several operating systems, such as different mobile phiati®pnms, Linux,

HP-UX, and recently also Windows Vista and the latest versicthe Win-

dows “Longhorn” server [120].

¢ We developed a SACK-based enhancement of F-RTO, and ardifierent
congestion control response variants to F-RTO. This isdagsea research
publication entirely written by the author [142]. The desand the analysis
in this publication were also conducted entirely by the auth

e We analyze the Quick-Start mechanism for setting the Ini@P conges-
tion window to a larger size on high-speed or high-delay pa#nd thus
significantly improve the TCP start-up performance. Thid p&the work
is based on a joint research paper with Sally Floyd and Mahkah [143].
Quick-Start was initially specified by Amit Jain and Sallyoill, and the
author has participated to the follow-up work with Floyd aktinan to de-
velop and analyze Quick-Start further. The author has dgesl the Quick-
Start ns-2 implementation, based on the initial code bya8ittk Sundarra-
jan [156], and conducted most of the simulation analysisemted in the
paper. The author also participated in the Quick-Startifipation work in
the IETF [54].

e Quick-Start can also be used in the middle of a TCP connediiomexam-
ple after a hand-off has occurred on a mobile host. We andheeise of
Quick-Start in wireless environments, especially in thatest of vertical
hand-offs between the GPRS and WLAN links, and show how QS8ielt
can be used to improve TCP performance in these cases. Thasés on
a research paper written with Jouni Korhonen, Laila Daniel 8arkku
Kojo [146]. The author has done a significant amount of théregivork
for the paper, implemented most of the applied ns-2 code,canducted
most of the simulations and analysis presented in the paper.

1.3 Related Work

Much research has been conducted on the general topic of V&Pwireless
links (e.g., [16, 13, 170, 165]). Most of the research hasi$ed on the problems
of treating wireless packet losses incorrectly as congesibtifications, and the

1.3 Related Work 5

issues related to variable delays have been under lesti@tteBelow we list past
research work that is most closely related to the work in thésertation. More
thorough discussion about the technical issues in usingdvePwireless links is
carried out in Chapter 2.

Spurious Retransmission Timeouts

The problem of spurious retransmission timeouts with weslcellular links was
identified in the 1990s [101]. Possible reasons for spurimosouts are persistent
link layer ARQ retransmissions, or events that sometimesiioduring cellular
hand-off [66]. While the problems related to long delaysamg wireless cellular
networking technologies were identified a long time agorehl®ve been only a
few earlier proposals for mechanisms to improve the TCPoperdnce on spuri-
ous retransmission timeouts caused by sudden delay si8kefsr the most thor-
ough discussion on this area has been presented by Ludwéd @tho proposed
and evaluated thEifel algorithm[111, 112, 64], and the different TCP response
variants after a detected spurious retransmission timgayt110]. Ludwig has
also investigated alternative TCP retransmission timestimators that improve
performance in variable delay environments [114]. Eifetlesigned to detect
all types of spurious retransmissions, and in addition tansmission caused by
spurious timeout, it should also alleviate the bad effeatsed by packet reorder-
ing [17]. However, Eifel requires the use of the TCP timegiamption that might
not be supported in all cases, for example with the TCP/IRIére@ompression
schemes [82, 42]. F-RTO solves the same problem withougueiry TCP op-
tions, just by proposing a slight change in the TCP retrassiom sequence. The
fact that F-RTO has been adopted by a number of operatingraystndors in less
than a year after becoming an IETF RFC hints that this is demsd a valuable
difference.

Some time after Eifel and F-RTO were published, other adtivas were also
proposed to improve TCP performance on spurious retrasgmnisimeouts De-
correlated Loss Recovery (DCLOR)B7] proposes an alternative SACK retrans-
mission sequence that performs better than the standar& $&¢@very algorithm
after a spurious retransmission timeout. However, theeppicDCLOR is that it
slightly reduces the performance on timeouts that have baased by genuine
packet lossesSTODER[159] proposes retransmitting a partial segment after a
retransmission timeout and using the resulting acknowtesig to determine if
the timeout was spurious. Therefore, on genuine timeou®CHR needs to
send one packet in two separate fragments, which can be dcngbromise to
performance.

6 1 Introduction

Using Explicit Communication to Find the Path Capacity

Another main theme in this dissertation is the use of expiidbrmation in set-
ting the TCP congestion window appropriately by using thecStart algo-
rithm. Quick-Start is an explicit mechanism for a TCP sertdequery in-band
the available bandwidth from the routers on the network pHtthe routers sup-
port Quick-Start, the TCP sender can use the result of theydqoeset the TCP
congestion window to a larger size than what TCP would ndsmede. This way
the TCP sender can transmit at a higher rate and utilize gitelatency network
path more efficientlyExplicit Congestion Notification (ECN}36] was the first
documented mechanism for using explicit information frdra hetwork to alter
the congestion control state. ECN allows a TCP sender toceeds transmis-
sion rate in response to a congestion that is reported us@g€N bits in the IP
header. ECN-capable routers along the connection pathetdanesECN bit when
they are under congestioixplicit Control Protocol (XCP]89] is a full-fledged
congestion control mechanism where the end-hosts andealigtwork routers co-
operatively determine the correct transmission rate fonwa 8t a given time. XCP
is based on continuous feedback about the current load ofettveork path being
used. In comparison, Quick-Start is a quick mechanism wveghe current path
capacity, after which the normal TCP mechanisms are useddiogestion con-
trol. VCP[163] and Anti-ECN [106] protocols show that TCP performarman
be improved by using just one bit in the IP header for the msue indicate that
they are underutilized, and the transmission rate can bredased at a faster rate
than normally. These mechanisms are missing the explictrimation about the
currently available bandwidth on the connection path. Nointe related works
have analyzed the mechanisms with wireless links.

In Chapter 6 we analyze different algorithms for networktevs to process
the incoming Quick-Start Requests and decide whether toogpphe request.
Measurement-based admission control research has iwesti various
algorithms at network nodes for admitting or rejecting flowdhen given some
Quiality-of-Service requirements (see for example [30])uidR-Start solves a
somewhat similar problem in terms of the router algorithmrsapproving Quick-
Start requests. However, while measurement-based admissntrol algorithms
are designed for implementing soft Quality-of-Servicedzhen some target pa-
rameters such as bandwidth or packet loss rate, Quick-Btatlight-weight
mechanism specifically intended for resolving the appaiprisending rate for
a best-effort flow on an underutilized path.

1.4 Structure of the Dissertation 7

1.4 Structure of the Dissertation

Chapter 2 describes the recent evolution of different wselnetworking tech-
nologies. It also gives an overview of the basics of TCP wghreécent enhance-
ments for wireless links. The problem of spurious retrassion timeouts is
described in detail. The chapter also discusses diffeggrgst of explicit com-
munication mechanisms between the end-hosts and the iketiaadr have been
proposed earlier. Chapter 3 describes the Linux TCP imphtatien with its spe-
cial features that are different from the TCP standardsfoPaance implications
of certain design choices in the Linux kernel are also sho@imapter 4 presents
and analyzes the F-RTO algorithm for improving TCP perfanoeon spurious
retransmission timeouts, and compares its performandeti Eifel algorithm.
Chapter 5 presents a SACK-based enhancement for the F-Rjtditlain, and
compares different congestion control responses to F-Rdl@pter 6 presents
the Quick-Start algorithm, discusses its benefits and ehgdls related to deploy-
ment and security, and compares different variants foremoalgorithms to process
the Quick-Start requests. Chapter 7 proposes an enhantém@nick-Start and
analyzes use of Quick-Start on wireless hosts in the coofextrtical hand-offs
between Wireless LAN and EGPRS links. Finally, Chapter &gjigoncluding
remarks and gives some ideas for follow-up work.

1 Introduction

CHAPTER 2

TCP and Wireless Networks

This chapter provides background to the work establishethig dissertation.

First, in section 2.1, a brief introduction to the evolutioiithe wireless communi-
cation systems is given from the 1960'’s to the present daivextige reader a short
overview on the versatility of different wireless commuation technologies that
have been designed in the past. The heterogeneity of newtanacteristics in

these systems is the main reason for the TCP/IP performagsges that are being
discussed in this dissertation. Section 2.2 discusses #ire TCP retransmission
and congestion control algorithms, and presents some conpidormance en-
hancements that have been proposed earlier. Sections @.3.4ufocus on the

two main issues discussed in this dissertation: the spsifietilansmission time-
outs caused by high and unpredictable delay variabilityorneslink technologies,

and the slow convergence time of TCP/IP congestion contmdrmeters on con-
nection paths with high and variable delay characteristics

2.1 Evolution of Wireless Communication Systems

One of the earlier wireless packet radio system referred the literature is the
ALOHAnNetwork [2, 96] developed at the University of Hawaii in tialg 1970’s.
ALOHA is a multiple access protocol for sharing a single Kigelink that has
yielded much follow-up work (e.g., [3]). The ALOHA grouncdasibns can broad-
cast packets at any time to the satellite channel that enlést to by the other sta-
tions. If the packet is delivered correctly and no collismecturred on the shared
channel, all ground stations (including the sender) geti@cbcopy of the packet.
If another station was transmitting at the same time, thikdowd) packets are cor-
rupted, and hence discarded. The characteristics of thanehallow the sender

9

10 2 TCP and Wireless Networks

to monitor whether the transmission was successful. If @ n@t, the sender waits
for a random time and retransmits the packet.

The pure ALOHA is not an optimal protocol, because the statiwan transmit
at any random time, and collision of even a small portion ofaket makes it
useless. Thereforslotted ALOHAwas proposed [137], which divides the time
into discrete time intervals. Each time interval is time &g transmitting one
packet. This way the partial overlapping of packet transiais from two ground
stations can be avoided, and the likelihood of collisiondgpacket is reduced.
Probability analysis shows that while the pure ALOHA carcreapproximately
18 % channel utilization at its best, the slotted ALOHA cahiege about 37 %
channel utilization [160, pp. 249-250]. The idea of spidtithe transmission
channel into discrete time intervals has been reused déwvees in the successive
network designs, some of which are discussed below.

2.1.1 Wireless Local Area Networks

An important step in the research on wireless networking thhasntroduction of
Wireless LAN (WaveLAN, WLAN) radios in the early 1990’s [1p2ZThese were
an ideal communication system for university campuseswatidthe widespread
use of the TCP/IP protocols in the university systems, aldity of WLAN
systems started up the research trend on the behavior oflF@Rér wireless
links [45, 34, 166]. The Wireless LAN system is based on a ngtvof WLAN
base stations, typically connected with each other andetsteof the network by a
fixed Ethernet cable. Each WLAN base station uses one chamttet assigned
radio spectrum, forming up a cell where all nodes can detextraffic sent by
others. The media access protocol in early WLAN systems sedbanCar-
rier Sense Multiple Access with Collision Avoidance (CSE&/protocol [62, p.
130]. Prior to sending in a CSMA/CA system, a host transmRegquest To Send
(RTS)message to the receiver that responds Wikar To Send (CTShessage if
the channel is not in use and the sender is free to transniaue also the other
hosts in the cell get these two messages, they know that tieéess channel will
be allocated for transmission and know not to transmit feralocated time pe-
riod. Multiple Access with Collision Avoidance (MACRY] is an enhancement
to CSMA/CA that does not perform the data carrier detectimn,instead the sta-
tions include the amount of data to be transmitted in the RIBGTS messages.
This simplifies the basic CSMA/CA protocol and relieves tralitional “hidden
terminal” [95] and “exposed terminal” problems [160, p. 2the CSMA/CD
system. MACA has been further enhanced specifically for \&&® LAN sys-
tems [19], for example by improving the channel allocatioactmanism for base
stations.

2.1 Evolution of Wireless Communication Systems 11

The first IEEE 802.11 standard on Wireless LAN was publismetig97, and
it was slightly revised a few times in the following years [49, 76]. |IEEE
802.11 supports transmission rates of 1 Mbps and 2 Mbps @& Bzfrequency.
The legacy 802.11 did not get deployed to a significant extefore thelEEE
802.11bspecification was released in 1999 [77]. The 802.11b statiam have
a transmission rate of 11 Mbps, though by changing the chame®ding they
can also transmit at 5.5 Mbps, 2 Mbps, and 1 Mbps when the timklitions are
not good enough for transmitting at the higher rates, fomgda because of the
distance between the mobile terminal and the base statiois. worthwhile to
note that despite the given theoretical transmission ratesactual throughput
for the upper layer protocols is often lower due to the use SM&/CA that
uses an additional wireless round-trip time to avoid cigllis of the data frames.
While the 802.11b deployment started in university and camypampuses, it is
nowadays in widespread use in various public locations amdds.

Recently the IEEE 802.11 family has been extended with tandsrds capa-
ble of transmitting at 54 Mbp802.11auses 5 GHz frequency band [78], whereas
802.11gis placed on the usual 2.4 GHz frequency band using advariathel
encoding mechanisms to gain the higher transmission raie The drawback of
802.11g is that the 2.4 GHz frequency band is used by num&kthusN-capable
laptops and other devices, and the communication can dtdf@rinterference in
crowded locations. The advantage of 802.11g is that therleguency helps in
providing somewhat larger coverage areas and better @tioetiof solid objects.
There is work ongoing in the IEEE on new standards providingeen higher
transmission rate for WLANSs [168]. There is also work ongpto enhance the
WLAN service capabilities in other ways, for example witle tippcoming 802.21
standard, which is intended to provide information andgeig from the wire-
less network for the upper layer protocols to be used forebetntrol in modern
heterogeneous networks [43].

2.1.2 Wireless Wide Area Networks

Roughly at the same time as the research on TCP/IP protowseisvareless
LANSs, research on using TCP/IP over cellular phones andratlieless wide
area networks (WWANS) began. We will skip the work on usinglag circuit-
switched technologies such as the retifordic Mobile Telephone (NMTgys-
tem [108], although some research on TCP/IP over thesersgsisas conducted
in the early 1990s [4], and focus on the more substantialarebethat started
with the introduction of digital cellular wireless techogies. We next discuss
the wireless wide area network technologies that are gaitg treferred to in the
rest of this dissertation. There are some technologiesatieatot described, since

12 2 TCP and Wireless Networks

they are considered less significant to an average (Eurppeahile terminal user,
such as PDC [70], IS-95, or CDMA2000 [97].

GSM (Global System for Mobile communicatiofs35] is the most widely
deployed system for digital wireless wide-area network&eh into use in the
early 1990s. GSM uses up to 124 frequency channels in eaetegdrcell, each
channel split into 26 time division multiplexed (TDM) timefmes. Transmission
of a TDM frame takes 4.615 milliseconds and it is shared betwsght users that
each have a dedicated time slot in the TDM frame. One GSM daaaan have
a data transmission rate of 9600 bps. Since GSM is a ciraditised system, the
transmitting host needs to establish a dial-up connectitthasmodem to transmit
TCP/IP data over the GSM channel. Lateligh-Speed Circuit Switched Data
(HSCSD)(see brief description for example in [104]) was introdutee&nhance
the GSM radio speeds by supporting a better channel enctltigs capable of
transmitting at 14.4 Kbps in a single GSM time slot, and wiitd possibility of
using up to four time slots for a single GSM connection. Femmore, HSCSD is
able to choose between the 9.6 Kbps and 14.4 Kbps encodipgsdiag on the
quality of the wireless link. As a result, transmission sjeef up to 57.6 Kbps
can be achieved in the GSM data transmission.

Figure 2.1 shows the main components of a GSM and GPRS systeMs-
bile Station (MSrommunicates over the radio link wiBase Transceiver Station
(BTS)that communicates with the mobile stations in its coveraga.&ase Sta-
tion Controller (BSC)controls the base stations, for example, by allocating the
radio frequencies and controlling the hand-offs from oneSBd another in cases
where both of the BTS nodes are controlled by the same B&ibile Switch-
ing Center (MSCronnects the GSM subsystem to the rest ofRbblic Switched
Telephone Network (PSTBEINd handles various tasks related to call control, roam-
ing, and so on. For TCP/IP trafficraodem pools needed to convert the circuit
switched traffic into IP packets that are sent to the Interéere are also some
other components in a GSM system that are not shown in theefiguch agilome
Location Register (HLR)ecause they are not considered relevant for the scope
of this work, analyzing TCP/IP communication performance.

In the late 1990s the GSM system was extended bysieeral Packet Radio
Service (GPRS[R9, 35] that adds packet-switching capabilities to thestxg
GSM architecture. GPRS uses a common radio access systéntheitircuit-
switched GSM, and can co-exist with the circuit-switchedvz8d HSCSD sys-
tems. Similarly to HSCSD, a GPRS terminal can use one to f@v Elots for
data transfer in one direction. However, being a packet datgice, a GPRS
terminal allocates the wireless channel only for the timieais packets to trans-
mit. Therefore GPRS can be expected to achieve better chatiliation than

2.1 Evolution of Wireless Communication Systems 13

Server

,,,

Figure 2.1: The main components of a GSM/GPRS system.

its circuit-switched predecessors. GPRS also has fowrdift channel encoding
classes for transmitting at 9.05 Kbps, 12.0 Kbps, 14.4 Kbpat 20.0 Kbps in a

single time slot. The closer the wireless terminal is to tagdbstation, and the bet-
ter the radio link quality is, the higher an encoding class loa used in the radio
communication. With these settings, a GPRS user can expggttihnsmission

rates of 30 - 80 Kbps.

The more substantial changes to the GSM system brought bySGIP&in
the core network. The packet-switched GPRS core network difierent com-
ponents than the traditional circuit-switched side. Thekpés from the Internet
first arrive atGateway GPRS Support Node (GG2i}he mobile user's home
network that encapsulates the arriving packets using the tafineling protocol.
The packets are tunneled &erving GPRS Support Node (SGahhe network
where the mobile terminal is currently located. SGSN dedtlsithe packets arriv-
ing from GGSN and sends them to the mobile station vidRdeket Control Unit
(PCU) that converts the data from the wireless link into packetiraffic. The
main difference between the circuit-switched GSM and GP&ms is that in
GSM the data goes in circuit-switched connection all the teahe modem pool
in the fixed network, whereas in GPRS the data traffic goes matikets through
the GPRS core network.

A few characteristics of the GPRS system specifications triéygered fruit-
ful research issues on TCP/IP performance, some of which haen described
in [66]. First, the GPRS mobile station needs to allocalemporal Block Flow
(TBF) state with the GPRBase Station Controller (BS@ging an ALOHA style
random access channel. To allocate the channel resourcesbite station first
has to wait for the control message channel to become idikthem send a Packet

14 2 TCP and Wireless Networks

Channel Request message to the BSC. The BSC responds tatinglithe allo-
cated channel and number of time slots allocated for the leolbhe allocation
of the TBF adds a delay of more than 100 ms to the uplink datestnégssion over
an idle channel [66]. Furthermore, the early GPRS spedificatrequire release
of the TBF state immediately after the data buffers are ezdptis a result, with
data patterns that occasionally send small pieces of dateotind-trip times are
generally higher than for bulk data transfer. The secondatteristic of GPRS
data transmission is occasional delay spikes in data tansfsually these are
caused by GPRS cell reselection: after a mobile station smamd makes a de-
cision to use a new cell, it needs to perform the channel aioe procedures
on the new BSC as described above. After the TBF is establighi the new
BSC, the mobile station needs to inform the current SGSN @fctiange, which
then tells the old BSC to release the resources allocatethéomobile host. It
has been reported that cell reselections suspend the datartission for 3 to 15
seconds [66]. Cell reselections can cause either delagsjkthe data transfer,
or loss of several packets, or both, depending on the directi the data transfer.
The cell reselection performance has been improved in thevarsions of GPRS
specifications, particularly in Enhanced GPRS discusskmivbe

In the beginning of the 2000s the GPRS system was enhanchdeuit fea-
tures, one of them being a more effici&ight Phase Shift keying (8PS&hannel
modulation scheme that triples the transmission ratesadolaiin a GPRS system.
The enhanced GPRS system is called EGPRERGE (Enhanced Data rates
for GSM Evolution)[150, 155]. The data propagation delays on the radio link
are similar to the traditional GPRS system, but the maximwansmission rate
increases to 384 Kbps, if all eight time slots are in use fangmission in one
direction. In practice, with four downlink time slots, theakimum transmission
rate is 236.8 Kbps.

Along with the EDGE specification, third-generation ceadlustandards have
been specified by two standardization bodies, 3GPP and 3GHB2 third-
generation system specified by 3GPP is calledversal Mobile Telecommuni-
cations System (UMT$36]. It is based on the use d&Yideband Code Division
Multiplexing (WCDMA)[73], which is capable of a maximum of 2 Mbps data
transfer rate. The radio link propagation delays are ala@idhan in the GPRS-
based radio links. Recently WCDMA systems have been fughbanced with
theHigh-Speed Downlink Packet Access (HSDt&hnology [109]. HSDPA can
improve the downlink data transfer rates by a factor of fivesfume traffic patterns
by utilizing technologies such as Adaptive Modulation aratlidg, fast schedul-
ing and Hybrid Automatic Repeat Request at the Node B, the btdion in the
UMTS system.

2.2 Transmission Control Protocol (TCP) 15

2.1.3 Interaction of different wireless technologies

The MosquitoNet was among the first projects to investigaibility between dif-
ferent network access technologies [12]. Utilizing theatality of using multiple
network interfaces, MosquitoNet was able to achieve sessiiand-offs.Wire-
less overlay networkvas introduced to refer to a network with heterogeneous
hierarchy of different wireless access technologies wittymg coverage ranges
and characteristics. The tewartical hand-offwas used in this context already in
1998 [151].

Many of the current handheld terminals support both WWANWAAJAN tech-
nologies. Typically a terminal has a GPRS and possibly WCD&dAnectivity,
and a 802.11-based wireless LAN radio, that are largelypgaddent with sepa-
rate radio hardware, and can be used in parallel. Becausmtleeage ranges of
WCDMA and WLAN technologies are smaller than in GSM/GPRSasdGPRS
is still the main technology used for data communicatioruikareas, but in ur-
ban areas it is possible that either WCDMA or WLAN access &lable. As a
result, the range of transmission speed and delays obsbw#te user is large,
varying from a few tens of kilobits per second to a few tens efjabits per second.
Furthermore, a TCP sender adjusts some of its parametezd bashe measured
performance in the recent past. The substantial varianpessible wireless link
characteristics therefore imposes a great challenge to@eperformance.

In today’s mobile terminals GPRS and WCDMA radios typicadlyare the
same layer two control functionality, and usually have tams Internet access
provider. Therefore the access provider can have a strolegimodetermining
which technology is being used at a given time. In additibe, IP layer typically
sees these technologies as a single logical access iteHagvever, the wireless
LAN access can be offered by a different provider, and itrofieses a different IP
address in a separate network interface of the TCP/IP stdwkefore IP mobility
technologies such as Mobile IP [129, 85] are needed for ldisdbetween these
interfaces. Although we discuss the different IP mobilitgahanisms more in
Chapter 7, we do not go into details of the IP mobility mechkard, but focus on
TCP algorithms and performance.

2.2 Transmission Control Protocol (TCP)

The Internet that has become a considerable part of life éopfe in developed
countries is a result of a development process that stantdbilate 1960s. While
the network has grown rapidly, and the number of hosts atthéb the Internet is
orders of magnitude larger than it was a couple of decadesitagas remained

16 2 TCP and Wireless Networks

operational with reasonably small modifications to theitiaal base protocols.
It could be argued that the successful growth would not haea ipossible without
following certain well-established design principles whaefining the TCP/IP
protocols [39]. This section summarizes the evolution oPTi€the past 30 years
and presents some of the performance enhancements prapdgeg for wireless

networking. Some of the performance enhancements foll@otiginal design

principles better than the others.

2.2.1 Evolution of TCP

A paper published in 1974 by Vint Cerf and Robert Kahn presgitteTransmis-
sion Control Prograr (TCP)[37]. The paper introduced several concepts that
are still important today, although many of the details helvanged. TCP was
designed to be a protocol by which two hosts in different stlvorks can have
reliable data transfer. The hosts were addressed by ideatifinat indicate the
network in which the host is located, as well as the uniguatifier within that
network. Networks are connected to each othe@ateways TCP used source
and destination port numbers by which several data flowsdcbal multiplexed
to the network, and sequence numbers were used for relialdered delivery
of data packets. TCP also had a retransmission mechanised basthe use of
positive acknowledgments andetransmission timerand a window-based flow
control mechanism to aid reliable transfer. These basicems are still in use
today, although some parts of the protocol design have edabver time.

The Internet protocols, including TCP, are specifieRequest For Comments
(RFC)documents. The first RFC was written in 1969 as part of the AREA
project, and as of August 2006, there are 4600 RFCs. The fgoan§ontrol Pro-
tocol specification, RFC 793 [133] was written by Jon Posiel981, based on
the design in the 1974 paper by Vint Cerf and Robert Kahn. RB& g still
in effect, and it defines the baseline TCP protocol, althosgleral RFCs have
been published since then to update some parts of TCP. Aathe §me, spec-
ifications of a couple of other important core Internet pools were released,
namely thenternet Protocol (IPY132], and thdnternet Control Message Proto-
col (ICMP)[131], are still in use today, although in somewhat evolveanf. The
User Datagram Protocol (UDP) [130], another importantgeot in the Internet,
saw birth as an RFC already earlier, in 1980.

The Internet Engineering Task Force (IETkas founded in 1986 to orga-
nize the specification of the Internet protocols and to civaite the authoring of

Yes, the original paper us@ogram notProtocol

2.2 Transmission Control Protocol (TCP) 17

RFCs. Among several other work topics, the IETF has takea chmaintaining
the TCP protocol, and proposed many new enhancements toar@hRf these is
the F-RTO algorithm based on the research conducted foddutoral disserta-
tion [144].

As the number of ARPANET network hosts and the amounts oftrarted
data expanded, some of the network paths were not capabkemup with the
amount of traffic, resulting in periods of collapsing transsion performance in
1986 in transmission between two sites that were geogralbphicist a few hun-
dred meters apart, the Lawrence Berkeley National Laboratod the University
of California at Berkeley campus. This inspired the welbkm congestion con-
trol paper by Van Jacobson [81] that has become the detergiactor in the TCP
performance research. Van Jacobson proposed that a TCé& stodild employ a
congestion control algorithm, starting up its transmissab a slow rate, and then
gradually increasing its transmission rate as the ackrmigweents of the pack-
ets arrive. Because congested routers drop packets tlyatdheot receive due to
lack of buffer space, it was proposed that a packet loss &ntak a sign of network
congestion, and the sender should reduce its transmissiernrresponse to con-
gestion. The way by which the arrival of acknowledgmenggers transmission
of new packets is calledcknowledgment (ACK) clockinghich is one of the im-
portant principles to guarantee the network stability tod& new variable to the
TCP sender’s connection control block, tengestion window (cwngyvas intro-
duced to determine TCP’s sending rate, i.e., how many TCRetmare allowed
to be outstanding in the network by a TCP connection. The estimn window is
maintained separately for each TCP connection betweeremt @pplication and
a server, separately for both directions of data commuioicat

TCP’s congestion window is adjusted in two phasesslow-start the con-
gestion window and TCP'’s transmission rate are roughly tbabbach round-trip
time?. The congestion window is initialized to allow transmissiof 1-4 seg-
ments, depending on the maximum segment size. Each incoming ad&dg-
ment for a successfully transmitted TCP segment incredmesdngestion win-
dow by the size of one full-sized segment. TCP sender alsotaias aslow-start
threshold (ssthreshthat determines when execution of the slow-start algorithm
is finished, and when execution of thengestion avoidancalgorithm is started.
The slow-start threshold is usually initialized to an awdoily large value, and it
is decreased at the same time with the congestion window \ahggcket loss

2If delayed acknowledgments [26, 11] are in use, the senditegis increased roughly by 50 %
each round-trip time. Also the use Appropriate Byte Countingf] affects the rate at which the
congestion window is increased.

3The TCP transmission unit carried in one IP packet is calkgient

18 2 TCP and Wireless Networks

occurs, to a value corresponding with half the amount oftantting data at the
time the packet loss was detected at the sender. The cuE@&ht $pecification
for TCP’s congestion control is RFC 2581 [11]. Congestioaidance is applied
when the congestion window size is larger than the curreny-sitart threshold.
In congestion avoidance TCP’s congestion window is ina@edy the size of one
full-sized segment once in a round-trip time. The congestimdow is decreased
to half of its previous size when a TCP sender detects caogesthis class of
congestion control algorithms are generally calfadtlitive Increase, Multiplica-
tive Decrease (AIMDgongestion control algorithms in the research literatarel
several alternative variants of AIMD congestion controldneen proposed to be
used with TCP in the past [55, 28, 164, 36]. A widely used diwdl model of
TCP throughput with the basic congestion control algoritergiven in [123].
Figure 2.2 is a traditional illustratidnof the behavior of the TCP congestion
control algorithms. The figure shows that in the beginnirg TP sender doubles
the congestion window size each round-trip time, until thvegestion window size
is larger than the slow-start threshold (ssthresh). Frahphint on the congestion
window increases by one segment size each round-trip tinteerMd congestion
notification, for example a packet loss, arrives at the serideeduces the slow-
start threshold and congestion window to half the size ottireent window, and
continues transmitting in congestion avoidance at theaeditransmission rate.
As TCP uses only positive cumulative acknowledgments, tilg lmss sig-
nal available in the early TCP implementations was the mstrassion timeout.
Because waiting for the expiry of the conservatively mairged retransmission
timer is a rather inefficient way of recovering from a loss afiagle packet in
most cases, an improved algorithm calfast retransmi{81, 26] was proposed at
the same time with slow-start and other congestion contgarighms in Van Ja-
cobson’s congestion control paper. Fast retransmit make®iithe fact that the
TCP receiver immediately sends a duplicate acknowledgment an acknowl-
edgment for the same segment as previously, when it recaivesut-of-order
segment. Because a likely reason for receiving out-oftosggments is a loss
of one or more earlier packets, a duplicate acknowledgmantbe taken as a
loss signal. However, because it is possible that packetseaordered in the net-
work, the sender waits for three consecutive duplicate asledgments before
retransmitting the first unacknowledged segment to be nudrgst against unnec-
essary retransmissions. When using the fast retransnaititdm, the TCP sender
is able to maintain a steady flow of packets to the networksgmeng the ACK

A similar figure is used widely in course literature on TCP#Rworking, for example in [160,
p. 539].

2.2 Transmission Control Protocol (TCP) 19

Congestion window size
x

Time

Figure 2.2: lllustration of TCP congestion window behavior

clocking of outgoing packets, and usually retransmit ptckgiicker than with
the timer-based retransmissions, that often cause a smadkepn TCP transmis-
sion. In addition, when a retransmission timeout occurs, 8P sender sets its
congestion window size to one segment, while after the tsamsmit the con-
gestion window is set to half of its earlier size (as showniguFe 2.2). If also
the retransmitted packet is lost in the network, the retrassion timeout length
is doubled, and a new retransmission is made. The expohéati&-off of the
retransmission timer continues until the retransmitteckpais acknowledged, or
when a user timeout expires after a few minutes, and the ctiones aborted.

The TCP sender tries to estimate a typical packet rounditrip (RTT), and
use it to determine an appropriate retransmission timeRUO) length. When an
acknowledgment to a segment arrives at the TCP sender, Tffe $gecification
require that the TCP sender adjusts the RTO estimate asv®[R7]:

RTTVAR <- (1— ()« RTTVAR + 3+ |SRTT — R|
SRTT <- 1—-a)«SRTT+axR
RTO <- maz(SRTT + 4+« RTTVAR,1s.)

where R is the measured round-trip time for the acknowledged setjimen
RTTVAR is variation of the recent round-trip times, aB&TT is the smoothed

20 2 TCP and Wireless Networks

mean round-trip time based on the recent measuremenéd 5 are constants
with recommended values of= £ andg = 1.

Later the fast retransmission algorithm was enhancedabl recovery first
implemented in 4.3 BSD Reno in 1990 [83, 11, 51]. Fast regofatows fast
retransmit and lasts until the retransmitted segment in@gledged. During fast
recovery the TCP sender preserves the number of outstasdgmgents after the
congestion window has been reduced to half of its earliex biz sending new
segments to the network as acknowledgements come in. Thisnis after the
number of outstanding segments has decreased to matchdieedecongestion
window size. The TCP congestion control specification teraily increases the
congestion window for each incoming duplicate ACK to alldustforward trans-
mission of a segment, and deflates it back to the originakvatuhe beginning of
the fast recovery when the fast recovery is over.

There are two variants of fast recovery: the original onecdbsed above, and
the NewRenalgorithm [71, 56]. The standard variant exits the fast recovery al-
gorithm when the first acknowledgment that advances the awnakrives at the
sender. If there is more than one segment dropped in the samlewy the stan-
dard fast retransmit does not perform efficiently, becahserést of the dropped
segments can only be retransmitted after a retransmissimotit that can take a
relatively long time to expire. NewReno TCP exits the fasbreery only after all
segments in the last window following the segment that &igd fast retransmit
have been successfully acknowledged.

TCP acknowledgments indicate the next segment the receimcts to re-
ceive in the byte stream. A basic TCP receiver is not abledizate lost segments
by other means than using the duplicate acknowledgmentadgetvhich indicates
that at least one of the segments is missing. Therefore,raftansmitting the first
unacknowledged segment by fast retransmit, the TCP semgeisrto await the
acknowledgment for the retransmitted segment in order twkifi other packets
were lost in the window of data that was outstanding whené¢heer detected the
first packet loss. In practice, a basic TCP implementationreaover from data
loss at a rate of at most one segment in a round-trip time lsecaiithe minimal
information in the acknowledgments.

A significant improvement to the TCP loss recovery perforoeaivas achieved
with the Selective Acknowledgment (SACKEP option [117, 51]. With the
SACK option, a receiver can acknowledge up to four non-setipleblocks of

Recently a Standards Track version of the NewReno algorttias been published by the
IETF [57]. However, since most of the analysis in this ditstén was conducted before the Stan-
dards Track document was published, we mostly refer to thigeeaxperimental version of the
NewReno specification. In practice the differences betviberwo versions are minimal.

2.2 Transmission Control Protocol (TCP) 21

data received beyond the first missing byte. With the exti@rination, the TCP
sender can employ retransmission algorithms that are albgransmit more than
one segment in a round-trip time, thus allowing faster TGfovery. Different
TCP sender implementations have applied slightly differenovery algorithms
in response to incoming SACK information. Two of the bestwnamnes are the
Forward Acknowledgment (FACKJlgorithm [116], and the IETF-standardized
conservative recovery algorithm [23]. The main differetetween these two al-
gorithms is in how quickly the TCP sender decides a packet l@s occurred
instead of waiting for a delayed packet to arrive. The FACHodathm assumes
that all segments transmitted before the most recentlyaeledged segment in
a SACK option have either reached the receiver or been lnghd conservative
algorithm the receiver assumes a segment is lost only ditee tis a gap of more
than three unacknowledged segments between the seleckmeveledgments,
thus aiming to preserve the robustness of the fast retraregorithm against
possible packet reordering. The practical difference & the FACK algorithm
recovers slightly faster in lossy situations, but is ledsust against unnecessary
retransmissions due to packet reordering.

Recently the use of SACK information has been extended tortreiuplicate
segments that arrive at the receiver by a mechanism cBI®ACK[61, 21, 20].
Because segments that arrive in the wrong order at the mcgenerate dupli-
cate acknowledgments, it is possible that the sender uasaGly starts retrans-
missions, despite requiring three consecutive duplicai&#before starting the
retransmissions. It has been reported that such packetesiog occurs in the
Internet [17]. A DSACK receiver generates SACK acknowledgis also for
incoming packets that have already been acknowledged bysTaORulative ac-
knowledgment. Use of DSACK allows the sender to act appatglsi on seg-
ments that are either duplicated at the network, or have beeecessarily re-
transmitted by the sender, and undo the apparent false stimgeontrol response
made due to receiving three consecutive duplicate ackmigments that have
falsely indicated a packet loss.

TheTCP Timestamp optiof25] was suggested to allow more accurate round-
trip time measurements for some implementations with esgrained round-trip
time measurement algorithms, especially on network pattishigh bandwidth-
delay product. A 32-bit timestamp is attached to each TCisegtransmitted
by the sender, which is then echoed back in the acknowledginetihe segment.
From the echoed timestamp the TCP sender can measure eMadttrgp times
for the segments and use the measurement for deriving tlesetission timeout
estimator. Particular benefits of the TCP Timestamp optrentfaat it allows mea-
suring round-trip times from TCP retransmissions, whichdspossible without it

22 2 TCP and Wireless Networks

Table 2.1: TCP congestion control related IETF specificatio

| RFC | Description |
RFC 793 | TCP base specification

RFC 1122| Requirements for hosts

RFC 1323| Performance extensions

RFC 2018| SACK

RFC 2581| Congestion control

RFC 2883| DSACK

RFC 2988| Retransmission timer

RFC 3042| Limited transmit

RFC 3168| Explicit Congestion Notification
RFC 3390| Increasing initial window

RFC 3517| SACK Recovery Algorithm
RFC 3782| NewReno

due to a problem callegttransmission ambiguit}88]; and that it allows protect-
ing against wrapped sequence numbers on paths with verydaigtwidth delay
product.

To give TCP senders additional means of detecting congegiixplicit Con-
gestion Notification (ECN)136] was suggested for routers to explicitly mark
packets when they arrive to a congested point in the netwdiken a TCP sender
receives an echoed ECN notification from the receiver, itices its transmission
rate in the same way as it does when responding to a packet l§3Nl allows
the TCP senders to reduce the transmission rate in resporsadestion without
having to suffer from packet losses. Explicit cross-lay@mmunication mecha-
nisms are discussed more in Section 2.4.

As discussed above, the TCP algorithms are specified in a @uoflifferent
RFCs, which can make it difficult to analyze and implementadesof-the-art
TCP behavior. Table 2.1 summarizes the most important Stdedlrack RFCs
that affect the TCP performance. In addition, there are abmirof experimental
and informational RFCs related to TCP. The IETF has publish@&CP roadmap
that shortly describes all the current TCP-related RFC§ [46

2.2.2 Enhancements for Wireless Links

The emerging of WLAN networks and IP mobility support [80$pired various
research activities on improving TCP’s performance oveeless links. The key
problem in the early research was the TCP congestion cdakinlg packet losses

2.2 Transmission Control Protocol (TCP) 23

as an indication of congestion, which is a false assumptibenaa packet loss is
caused by data corruption in wireless transfer [33, 169].

Many of the early solutions relied on having an active congarat the wire-
less base station or wireless access router. A few solytguth adndirect TCP
(I-TCP)[13] or theMowgli communication architecture [101] split the TCP con-
nection into two separate connections at the wireless acoater, using a regular
TCP connection between the fixed server and the wirelessscoater, and an-
other TCP connection or a protocol specifically tailoredvidgreless links in the
communication between the wireless access router and thdlemtmst. With
the split connection approach, the sender at the fixed letexan speed up the
startup of the connection during slow-start because oftibetsr round-trip times
of packets that are being acknowledged at the wireless siwcoeter. Split connec-
tion also helps to avoid TCP congestion control responsetaudreless packet
losses, because the wireless access router hides the pzsdext on the wireless
link from the fixed server. A separate protocol aware of theeless link charac-
teristics can be used to recover efficiently from wirelesskpalosses.

The Snoopapproach [16] also uses an intermediate component at tiedeasr
access router, but it does not split the TCP connection. Tle®®module mon-
itors the TCP duplicate acknowledgments and uses the adkdgaments or a
local timer to determine if a packet is lost on the wirelesg.lilf the Snoop mod-
ule determines that a packet is lost on the wireless linketiansmits the packet
locally and hides the packet loss from the fixed end sendeobjonwarding the
duplicate acknowledgments to it. This way the Snoop modubs g0 make quick
retransmissions of the lost data on the wireless link, araidathe congestion
control actions at the fixed sender due to data loss on théesgdink.

The main disadvantage of the split connection approach amy wf the other
types of transport-layer proxies is that they violate thd-tsend principle that
is one of the key design principles of the Internet proto¢d#©, 49]. A wireless
access router may falsely acknowledge packets even if tredess host has dis-
connected from the network for some reason, or has had aaeftiailure that
has resulted in loss of the TCP state. In addition, soluttbatrequire access to
the transport protocol headers in the middle of the conoegiath cannot be used
with IPsec [93]. Because of these reasons, splitting the@ction or using other
types of performance enhancing proxies are generally disged. The IETF has
given recommendations regarding hosts that either sgitctinnection or have
some other TCP-aware heuristics near the wireless accesq 4.

The IETF has made recommendations on TCP behavior over n8G3a@
links [79]. The document discusses the appropriate windiaessfor TCP in
these environments, and proposes to use certain TCP emhants such as the

24 2 TCP and Wireless Networks

selective acknowledgments and limited transmit descrimatler. Furthermore,
the document recommends to use TCP timestamps to improvep@&@dmance.
This dissertation challenges some of the recommendatiotisei document, for
example by showing that some of the benefits of using TCP Tangss can also
be acquired without using them.

Wireless hosts may also suffer from longer periods of diseation. If such
a disconnection takes more than a few minutes, the TCP useptit expires
and the connection is aborted. Because some applicationlsl Wwenefit from the
connection state being maintained over longer periods sifatinection, a new
TCP option has been proposed to extend the user timeoubhlengter-connection
basis [149]. When connectivity is regained, the TCP sersi&figgered to make
a quick retransmission, as the next retransmission timeauit take a long time
due to a backed-off retransmission timer.

2.3 Problems with TCP’s Retransmission Timer

When using TCP in GPRS networks, new kinds of problems erderginlike
in the traditional research on TCP over wireless, TCP is soilly affected by
packet losses due to data corruption on the wireless lirdalse the lower proto-
col layers provide reliable delivery service for upperdayrotocol data. Instead,
the additional delays due to the actions related to chadloelation as explained
in Section 2.1 can cause the TCP retransmission timeoutiveeKL19]. Be-
cause it is possible that no data has been lost, the TCP satission timeout is
spurious, followed by unnecessary slow-start retransomssby the TCP sender.
The spurious retransmission timeout also violates the giacinservation rule.
The packet conservation rule requires that the number cftanting segments
are maintained at a steady level, apart from the adjustmeatie to the conges-
tion window. However, after a spurious timeout the TCP sentlkes two useless
slow-start retransmissions for each packet that leavesdtveork. In addition, the
TCP’s congestion window is reset unnecessarily after tiramemission timeout,
which further damages the TCP performance.

Figure 2.3 shows a time-sequence diagram of a TCP transfen w!3-second
delay occurs on the link. The retransmission timer expiresalnse of the de-
lay, spuriously triggering the RTO recovery and unnecegsegtransmission of all
unacknowledged segments. This happens because afterléyetitie ACKs for
the original segments arrive at the sender one at a time buate, because the
TCP sender has already entered the RTO recovery. Therefach, of the ACKs
trigger the retransmission of segments for which the oabsCKs will arrive
after a while. This continues until the whole window of segitseis eventually

2.3 Problems with TCP’s Retransmission Timer 25

unnecessarily retransmitted. Furthermore, because avindow of retransmit-
ted segments arrive unnecessarily at the receiver, it gegswduplicate ACKs for
these out-of-order segments. Later on, the duplicate AQK®cessarily trig-
ger fast retransmit at the sender, which causes furthecteauof the congestion
window.

3.8} unnecessary
fast retransmi

DUPACKS caused
by out-of-order

segments

RTO expires -- delay
pkt loss
—=— data sent

—— ack revd
1 1 1 1 1 H

16 16.5 17 175 18 185 19 195 20 20.5 21
Time, s

37

w
o

Sequence number, bytes
w
wn

w
>

33

3.2

Figure 2.3: A delay triggers spurious retransmission.

The possible solutions for improving TCP performance affrrrious RTO can
roughly be divided into two categories. One alternativeoigvoid the RTOs in
the first place by changing the algorithm used for the RTOutation. Different
constants and granularities applied to the standard &gorocumented in [127]
have been studied [10]. In addition, totally new algorithfoissetting the RTO
timer have been suggested (e.g. [114]). However, we believerery difficult to
come up with an algorithm that results in a good performanc&rious different
network environments. Another way to mitigate the perfanoepenalty due to
spurious retransmission timeouts is to change the TCP sdxadavior after a
timeout. Chapter 4 presents an algorithm for improving ti&PE performance
in the face of spurious retransmission timeouts, cabedvard RTO Recovery
(F-RTO)[145].

There is no known way to prevent the retransmission timemarh fexpiring
because of a sudden delay. However, by having additionatrrdtion in the
TCP segments, the unnecessary retransmissions follolwagpurious RTO can

26 2 TCP and Wireless Networks

be avoided. Thekifel algorithm [111] suggests that the TCP sender indicates
whether a segment is transmitted for the first time, or wheithis a retransmis-
sion. When this information is echoed back in the acknowdedgnt, the sender
can determine whether the original segment arrived at tbeiver and declare
the retransmission either correct or spurious action. Basethis knowledge, the
sender either retransmits the unacknowledged segmertig iconventional way,
assuming the RTO was triggered by a segment loss, or rebertetent changes
on the congestion control parameters and continues witlstnéting new data.
The latter alternative is likely to be the correct action a&& when the original
segment was acknowledged after the RTO, indicating thaRi@ was spurious.

The Eifel algorithm suggests using either the TCP timestaoqiion [25] or
two of the reserved bits in the TCP header for distinguishhmgy original trans-
missions from retransmissions. Using the reserved bithénTtCP header re-
quires modification to TCP at both ends. The TCP timestamperojs deployed
on some Internet ho$tsbut in order to take advantage of Eifel, the timestamps
option would need to be deployed at both ends of the TCP ctionecGiven
that the sudden delays are often a problem on wireless lintksleww bandwidth,
including timestamps in each TCP segment increases the Ea@éeh overhead
and makes the communication inefficient. Moreover, the Ti@Regtamps are
not supported in the current TCP/IP header compressionfiadions [82, 42].
The main difference between Eifel and the F-RTO algorithrinéd F-RTO does
not require additional TCP options, but it works with basiCH, just by slightly
modifying the sender’s TCP retransmission algorithm.

Instead of distinguishing the ACKs of the original transsioes from the
ACKs of the retransmissions at the TCP sender, the receareindicate whether
it received a segment that had arrived earlier. Tbheplicate SACK
(DSACK)enhancement [61] suggests to use the first SACK block toatelidu-
plicate segments arriving at the receiver. This altereatias its benefits over the
Eifel algorithm presented above, because the SACK optitweiisg more widely
deployed than the TCP timestamps [5], and the SACK blockappended to the
TCP headers only when necessary. However, if the unnegesteansmissions
occurred due to spurious RTO caused by a sudden delay, thewlgddgements
with the DSACK information arrive at the sender only aftex ttknowledgements
of the original segments. Therefore, the unnecessarynstissions following
the spurious RTO cannot be avoided by using DSACK. Instéadstiggested re-
covery algorithm using DSACK can only revert the congestiontrol parameters

®A study on use of the different TCP options indicates that 1&f %he WWW clients connected
to a WWW server on the Internet used TCP timestamps in thg 28€0s [5].

2.3 Problems with TCP’s Retransmission Timer 27

to the state preceding the spurious retransmission [2Gh Bads of the TCP con-
nection need to be aware of the DSACK extension in order te talvantage of
it.

Recently other algorithms to avoid harmful effects of spus retransmission
timeouts have also been proposed. Like F-REDODER159] does not require
any TCP options but it just applies a small modification atT@® sender. The
idea of STODER is to split the retransmitted segment intosmaller pieces after
an RTO, and retransmit just the first, smaller piece. By thiktthe sender can
separate the acknowledgment of the original segment arattmeowledgment of
the retransmission, and is able to take the appropriaterectin spurious retrans-
mission. A slight problem with STODER is that on genuine tmts the sender
needs to transmit one segment more than normally, whichiviesoa bit more
packet overhead in the network, and takes one more roundiftre to recover.

TheCorrelated Loss Recovery (DCLOR) algorithid 7] is an alternative TCP
retransmission algorithm based on the use of TCP SACK adugments in de-
termining whether the sender is required to retransmit aftetransmission time-
out, or whether it can send new data. Immediately after amstmission timeout
the sender transmits new data, and if the incoming SACK lslau#ticate that the
recently transmitted segment arrived before the origiaatjier transmitted seg-
ments, it is likely that the retransmission timeout was raatsed by a delay spike,
but is a genuine RTO. A slight drawback of the DCLOR algoritiznthat it fol-
lows RTO by immediately transmitting new data, which del#ys recovery by
one round-trip time on genuine timeouts.

The IETF has organized the work on spurious retransmissioaaduts into
detection algorithmsndresponse algorithmsA detection algorithm is used to
determine whether an RTO is genuine or spurious, and themsspalgorithm
is activated if an RTO is determined to be spurious. A respaigorithm de-
fines how congestion control parameters, the congestiodomirand slow-start
threshold size, are adjusted after a spurious timeoutevalithe retransmission
timer, and the sequence of segments to transmit. Curremtisetare RFCs for
DSACK [21], Eifel detection algorithm [112] and F-RTO [144hat is modeled
as a detection algorithm, and two active documents forradtere response algo-
rithms, namely the Eifel response algorithm [110] and DCLIQE7]. Chapter 5
discusses the response algorithms in more detail.

28 2 TCP and Wireless Networks

2.4 Enhancing TCP with Explicit Cross-Layer
Communication

Section 2.2 discussed different approaches to improve T&@mance. Some
of the mechanisms were based on placing an intelligent pnaxie on the con-
nection path that can hinder the negative effects of thel@gsdink from the fixed
end of the TCP connection. Other mechanisms modify the T@#titims at the
end hosts to perform better on a challenging network enuiemt. We now take
a look at another kind of approach to improve the transmisp&rformance at the
end hosts: giving tools for the network to tell more aboutharacteristics to the
end hosts.

The normal congestion control mechanisms of TCP usuallyjkwagll when
the network environment is reasonably stable and the emahdodelay is rea-
sonably short so that the congestion control parameterdeaadjusted timely.
However, when the delay of an end-to-end path is long, thaydalgetting TCP
feedback starts to affect the communication performancst, fn TCP slow-start
it takes several round-trip-times to increase the congestindow size to be large
enough to efficiently utilize the capacity of the end-to-gradh. Second, propa-
gation of the loss or congestion notifications takes timeinduwhich the TCP
continues increasing its sending rate [41], even thoughatikl reduce it. This
has a substantial effect especially in slow-start, when @Qibles the congestion
window size during the round-trip it takes to get the losdfiuattion back to the
sender.

Another problematic environment for TCP is that where thd-emend path
can have sudden significant changes in its characterisiibs can happen, for
example, due to mobility, especially in vertical hand-¢1$5] where two network
access technologies are drastically different. A commahwerld example is
hand-offs between a GRPS access link, which can providevidtits of about
tens of kilobits per second, and a WLAN link, which can previtandwidths of
about several megabits per second. However, TCP adapt3 @seRtimate and
congestion control parameters to the changed path chestice very slowly,
because the congestion window can only be reduced by half@afpacket loss
and in congestion avoidance the congestion window can lbedsed only by one
segment in a round-trip time. When the sudden changes tathecharacteristics
are measured on the orders of magnitude, it is apparenthtbal€P adaption is
distressingly slow in these situations.

’0Or, explicit congestion notification, if that happens to bpported

2.4 Enhancing TCP with Explicit Cross-Layer Communication 29

With a little additional intelligence in the network, or dtet different proto-
col layers of a mobile end host, it is possible to deliver ficdtions to the TCP
sender about the changed path characteristics, to allowadapt more timely
to the characteristics of a new path. The notification messaglld contain in-
formation about the new path characteristics, or if rekadValuation of the new
characteristics is not possible, the sender could reaiizé its congestion control
state and round-trip time measurements on getting the catiiin.

2.4.1 Classification of explicit cross-layer mechanisms

Based on the past work on explicit notification and commuigoamechanisms,
we propose a taxonomy of the mechanisms between the endamakstise network
can be identified [105]. Signaling or notification mecharsésoan be split into
in-band and out-of-band mechanisms, based on whetherftreniation is piggy-
backed along with the transport protocol traffic, or whettier signaling is done
by the means of separate control packets, respectively.

The benefit of using in-band signaling is that the signaling be better as-
sumed to take the same network path as the protocol dataoféhatrd mecha-
nisms could take a different path due to different policyiatt: an IPsec policy
might not aggregate the signaling protocol to the same gg@ssociation as the
data protocol, or a policy-based routing system could seledifferent path for
the out-of-band signaling than for the protocol data. Simes a packet with
unrecognized content can cause the whole IP packet to bpeftap the network
due to NAT or firewall policy, or because of a defective routéthen the mes-
sage is transferred in-band, the loss notification usualiyes naturally with the
protocol’s own acknowledgment mechanisms. For out-ofdbarechanism there
might not be any direct mechanisms to inform about the logse drawback of
an in-band mechanism is that a loss due to additional packgtit also hurts
the data transfer. Out-of-band messages can also be maepsibte to security
problems caused by a third party generating malicious ngessa

The following list discusses three types of in-band notif@a mechanisms
that have been proposed in the past, and two types of outwad-bignaling mech-
anisms.

¢ In-band message processed by end host¥/hen a message is attached
to the transport protocol header, only the communicaticsh lewsts can be
assumed to see the message. IPv6 also has extension héatlare tonly
processed by the end hosts. The routers along the netwohnkagpatnot
typically capable of processing this kind of message, aribafpacket is
encrypted with IPsec, it is impossible for other nodes tlenend hosts to

30 2 TCP and Wireless Networks

read the message. The benefit of using transport headet is ¢ha be ex-
pected that the legacy routers and different flavor of netvmiddle boxes
are not likely to take unexpected actions on the packet, asatiropping
a packet with an unknown option. An example of this kind ofificztion

type is LMDR [158] that uses a TCP option to allow a mobile epdtho
notify the other end that it has moved.

In-band message processed by some routerd.a message uses some of
the reserved bits in the IP header, or is an IP hop-by-homwoptouters
along the network path are able to process it and take apptegactions.
There can be two types of messages: those that are only readduyer,
and those that can also be altered by the router. The opfiatste to be
altered by the router should not be covered by IPsec autaiuh [92].
In case of IPv4 this means that such an option should be ékplicarked
as a mutable field for IPsec. An IPv6 option includes a bit thisg IPsec
whether the option is mutable or non-mutable. IPsec doesower the
reserved bits in the IP header, either. The problem with ffeeafi IP options
is that the network is known to drop the majority of packetthwinknown
IP options [118]. Some explicit notification types are suchttthey are
of benefit even if a single router along the network path stspihem.
Explicit Congestion Notification [136] is one such mechamis

In-band message processed by all routersSome message types need
to be processed by all routers in order to have effect. Thastisugh re-
quirement for any mechanism to be used in the Internet, aisckihd of
schemes are likely to remain in limited controlled porti@ighe network.
These messages would also utilize reserved bits in IP headBroptions,
with the same challenges as listed above. Additionallyoime cases the
sender must be able to verify that all routers have procesedessage.
One way to do this is by the means of a separate TTL field in thesage
that is compared to the IPv4 TTL or IPv6 hop count. If the twddBedo
not give matching information about the number of hops ingéath, it can
be concluded that there were routers that did not processdtification
message. IP tunnels are also a considerable challenges tirtiof mech-
anisms, as they can hide the inner IP header with the in-bassage from
the routers. Sometimes the TTL field comparison does nottatie pres-
ence of such tunnels on the path. This work presents a merhdhat falls
into this category.

Out-of-band message processed by end hostSending ICMP messages
from the receiver to the sender of a packet has been a tnaditivay of

2.4 Enhancing TCP with Explicit Cross-Layer Communication 31

reporting, for example, some error condition in the datadfar. Usually
the transport header, or a part of it, is included in the nggsda help the
receiver of the ICMP message identify the transport conmedhe ICMP
message concerns, and do some primitive security screening

e Out-of-band message processed by routerdfkesource ReserVation Pro-
tocol (RSVP) [27] uses a specific protocol type for QoS simgabetween
the sender and the receiver. RSVP requires that every rpueesses the
messages, so it includes a similar kind of TTL-based hogkimgcmecha-
nism as mentioned above. In order to have out-of-band messagcessed
at routers, they need to be set to monitor the given protgqm tnside the
IP packets, or the IP packets need to use a router alert of@irii25] to
trigger further processing at the router. As with the inthanessages, IP
tunnels and layer 2 switching systems such as MPLS [138] meyept
the signaling from working, or cause the signaling to workedévely. An
out-of-band message could also be sent from one of the soateng the
network path, of which some of the ICMP error messages arararm
example. Taking strong actions based on such signaling ealaibgerous,
though, because there would be many security issues in tidtywand
authenticity of such messages.

To summarize, when analyzing cross-layer notification raa@ms, a number
of issues should be considered based on the experiencepé&sinproposals. To
mention two of the more important issues, it should be datecthwhether some
or all nodes along the path are required to process the mesaad it should be
evaluated whether it is feasible to embed the signalingtimtgorotocol data traf-
fic, or whether a separate signaling flow is more approprigtaer as embedded
to some existing signaling such as Mobile IP binding upd§&&$ or using an
entirely new protocol. It is also possible that a combinati different mecha-
nisms is used: for example, a mobile host could use an eeddanethod to tell
the corresponding node about change in its status. In respancorresponding
node could trigger a hop-by-hop QoS request in the changétbement.

2.4.2 Adjusting TCP sending rate using Quick-Start

As discussed in Section 2.2, the TCP senders are requireglect & low initial
sending rate to follow the congestion control principless @knowledgments
start arriving, the TCP sender then increases its sendiegurdil it gets an indi-
cation of congestion. The appropriate sending rate depamdise bandwidth and
propagation delay of the network path between the senderemeiler, as well as
the amount of load being placed on the network by others ajittes time.

32 2 TCP and Wireless Networks

This dissertation investigates the use of an in-band mésmacalled Quick-
Start to quickly find out the correct initial sending rateddo quickly adapt the
sending rate to the new path characteristics after a handwhen used with
TCP, Quick-Start is used to quickly set the TCP congestiamdeiv size. Quick-
Start is expected to be useful on clearly under-utilizedvoek paths that would
require several round-trip times from the TCP slow-staffole being properly
utilized. Even with an initial window of four packets, slastart takegogo N — 2
round-trip times to reach a congestion window sizeNopackets. When using
Quick-Start over an under-utilized path, it is possiblet tharansfer that would
otherwise take several round-trip times, could be finistred single round-trip
time, i.e., the potential performance improvements coeldhbge. Since GPRS is
a network technology with particularly high round-trip &, it can be expected
that Quick-Start is useful when used over GPRS links. Bex#us Quick-Start
is intended to deliver information about the bottleneck lo& ¢connection path, it
needs to be processed by every router. The related chaflémgach mechanisms
are extensively discussed in Chapter 6.

In addition to Quick-Start and other explicit mechanismsesolve the path
capacity mentioned in Section 1.3, there are mechanismsito & higher ini-
tial sending rate without requiring specific support fronuters. For example,
SwiftStart [126] would use the first packets sent during skvart to estimate the
bottleneck bandwidth, and then use that estimate as the foas rapid increase
of the congestion window. There are also proposals for shanformation about
network conditions between connections, ranging from T@Bt Btart [124] to
the Congestion Manager [15], which would allow a new conpastto start with
a larger congestion window, based on the assessment of tverkepath con-
ducted by previous connections. Receng-Feedbackias been proposed as a
mechanism to control congestion response using expligtaction with the net-
work [31]. Re-Feedback can be applied, for example, by etgnthe use of the
Explicit Congestion Notification bits.

2.5 Summary

This chapter outlined the problem area we are focusing ohigwtork. We dis-
cussed the recent evolution of the wireless communicagistems. Within a little
more than a decade the variety of different wireless compatiain technologies
has increased tremendously, and the range of possibleeagréihk bandwidths
used by a single device can vary from few tens of kilobits geoad to few tens
of megabits per second. Also the other link characterissiash as the propagation
delay vary significantly between different link technolegji The large variance in

2.5 Summary 33

network characteristics makes efficient networking at upgger protocols diffi-
cult, especially with TCP that is based on measurementgbagaluation of the
communication path characteristics.

We discussed the basic TCP algorithms and a number of peafarenenhance-
ments made on TCP during its lifetime to fix the performanaebfams it was
known to have under certain link behavior, and discusseceaifsp problem we
are addressing in our work: spurious retransmission tirtseecaused by an unex-
pected delay spike in link behavior, that are known to ocauBPRS networks.
We showed that the delay spikes have a severe effect on T@®mance, they
cause unnecessary retransmissions of several TCP segamahtzamper the TCP
congestion control behavior. Finally we discussed angihaslem related to TCP
congestion control behavior, the slow startup of a conoaabdn high delay links,
and slow convergence times to sudden changes in link cleaistats and discuss
the different types of explicit communication mechanisimet tcould be used to
enhance the congestion control performance with bettewlguge of the com-
munication path characteristics. Later in this thesis westigate one such mech-
anism, Quick-Start, in more detail.

34

2 TCP and Wireless Networks

CHAPTER 3

Congestion Control in Linux TCP

This chapter describes the Linux TCP implementation useddny of the ex-
periments conducted in this dissertation. Linux is a fremhgilable Unix-like
operating system that has gained popularity in the lastsye@he Linux source
code is publicly availabfe which makes Linux an attractive tool for the com-
puter scientists in various research areas. Thereforerga lsumber of people
have contributed to Linux development during its lifetinhe this chapter we de-
scribe the design solutions selected in the TCP implemientat the Linux kernel
version 2.4. Linux TCP implements many of the RFC specificetiin a single
congestion control engine, using common code for supmptiisth SACK TCP
and NewReno TCP. The Linux implementation also containaifea that differ
from the RFCs or other TCP implementations used today, anthelieve that
the protocol designers working with TCP find this informatigseful considering
their work.

Building up a single consistent protocol implementatioat ttonforms to the
different RFCs is not a straightforward task. For exampbe, TCP congestion
control specification [11] gives a detailed descriptionha basic congestion con-
trol algorithm, making it easier for the implementer to gppl However, if the
TCP implementation supports SACK TCP [117], it needs toofelicongestion
control specifications that use a partially different setofhcepts and variables
than those given in the standard congestion control RFC 28], Therefore,
strictly following the algorithms used in the specificasomakes an implementa-
tion unnecessarily complicated, as usually several RFEsngplemented at the
same time.

This chapter is organized as follows. In Section 3.1 we dis@dme aspects in

The Linux kernel source can be obtained frbtnt p: / / www. ker nel . or g/ .

35

36 3 Congestion Control in Linux TCP

the IETF specifications that were considered unsatisfyinghb Linux commu-
nity and implemented differently. In Section 3.2 we introduthe main concepts
of the Linux TCP congestion control engine and describe th@mlgorithms
governing the packet retransmission logic. In Section 3e3describe a num-
ber of Linux-specific features, for example concerning tbeansmission timer
calculation. In Section 3.4 we discuss how Linux TCP con®nm the IETF
specifications related to TCP congestion control, and ini@e8.5 we illustrate
the performance effects of selected Linux-specific desajutions. Section 3.6
summarizes this chapter.

3.1 Why Linux differs from standards?

Some details in the IETF specifications are problematic acfice. Although
many of the RFCs suggest a general algorithm that could bkedp an im-
plementation, combining the algorithms from several RF@y e inconvenient.
For example, combining the congestion control requiresémt SACK TCP and
NewReno TCP can be problematic due to different variablesadgorithms used
in the specifications.

The TCP congestion control specification artificially irecses the congestion
window during the fast recovery in order to let out forwardrismissions that
maintain a steady packet flow to the network and keep the AG&kabperational.
Therefore, during fast recovery the congestion window dizes not actually re-
flect the number of segments allowed to be outstanding in #teark. When
fast recovery is over, the congestion window is deflated dach proper size.
This procedure is needed because the congestion windoadiionally evalu-
ated against the difference of the highest data segmergntigied SND. NXT)
and the first unacknowledged segme8ND. UNA). By taking a more flexible
method for evaluating the number of outstanding segmeméscongestion win-
dow size can be constantly maintained at an appropriaté tleatecorresponds to
the network capacity.

Adjusting the congestion window consistently becomes &b when SACK
information is used by the TCP sender. By using the seleattk@owledgements,
the sender can determine the number of outstanding packéte network with
a better accuracy than by just using the cumulative ackrdyements. In order
to make a coherent implementation of the congestion comig@rithms, it is
desirable to have common variables and routines both forkSACP and for the
TCP variant that is used when the other end does not supp@KSA

Finally, the details of the retransmission timeout (RTOekation algorithm
described in Chapter 2 have been questioned [114]. Becaasg metworks have

3.2 The Linux Approach 37

round-trip delays of a few tens of milliseconds or less, th®Rigorithm details
may not have a significant effect on TCP performance, sineertimimum RTO
value is limited to one second [127]. However, for high-get@twork environ-
ments, such as GPRS, the effectiveness of the RTO calaulistionportant. It
has been pointed out that the RTO estimator results in olendye values due to
the weight given to variance of the round-trip time in thecaidhm [114]. This
may cause problems when the round-trip time suddenly dropsdme reason.
On the other hand, when the congestion window size incregtsasteady pace
during the slow start, it is possible that the RTO estimasonadt increased fast
enough due to small variance in the round-trip times. Thig reault in spurious
retransmission timeouts. Alternative RTO estimatorshsag theEifel Retrans-
mission Timef114], have been suggested to overcome the potential pnshile
the standard RTO algorithm. Although the Eifel Retransmis3imer is efficient
in avoiding the problems of the standard RTO algorithm, itaduces a rather
complex set of equations compared to the standard RTO eéiloul Therefore,
evaluating the possible side effects of different netwarrarios on Eifel RTT
behavior is difficult.

3.2 The Linux Approach

Although Linux conforms to the TCP congestion control pifihes, it takes a
different approach in carrying out the congestion conttaktead of comparing
the congestion window to the difference SIND. NXT and SND. UNA, the Linux
TCP sender determines the number of TCP segments currensifanding in the
network. When making decisions on how many segments tontranthe Linux
TCP sender compares the current number of outstanding segrtethe con-
gestion window that gives the maximum number of packets dhatallowed to
be in the network at a time. Unlike the Linux implementatitme TCP specifi-
cations and some implementations compawed to the number of transmitted
octets. This results in different behavior if segments analker than allowed by
the Maximum Segment Size (MSiB}he implementation uses a byte-based con-
gestion window, it allows several small segments to be taginto the network
for each MSS-sized segment in the congestion window. Linoxhe other hand,
allows only a given number of packets to be in the network, atten how small
they are. Therefore, the Linux congestion control is moneseovative compared
to the byte-based approach when the TCP payload consistsatif segments.
The Linux TCP sender uses the same set of variables and daacior de-
termining the number of outstanding packets with the NewRetovery and

38 3 Congestion Control in Linux TCP

with the two flavors of SACK recovery supported. When the SAGforma-
tion is available, the sender can either follow therward Acknowledgements
(FACK) [116] approach, or a more conservative approach that betteforms
to the principles of the SACK recovery algorithm specifiedhia IETF standards
track documentation [23]. As a basis for all recovery meghtite Linux TCP
sender uses the following equations in defining the numbsegfents outstand-
ing in the network:

| eft out <- sacked.out + | ost_out
inflight <- packets.out - left_out + retrans_out

In the equation abovggacket s_out is the number of originally transmit-
ted segments abovBND. UNA, sacked_out is the number of segments ac-
knowledged by SACK blockd,ost _out is an estimation of the number of seg-
ments lost in the network, andet r ans_out is the number of retransmitted
segments. Determining theost _out variable depends on the selected recovery
method. For example, when FACK is in use, all unacknowledggggiments be-
tween the highest SACK block and the cumulative acknowletge are counted
in | ost _out. The selected approach makes it easy to add new heuristics fo
evaluating which segments are lost.

If the SACK option is not available, the Linux TCP sender eases
sacked_out by one for each incoming duplicate acknowledgement. This is
in conformance with the TCP congestion control specificatemd the resulting
behavior is similar to th&lewRenalgorithm with its forward transmissions. The
design chosen in Linux does not require artificial inflatidrihee congestion win-
dow, butcwnd holds the valid number of segments allowed to be outstaniding
the network throughout the fast recovery.

The counters used for tracking the number of outstandirkn@eledged, lost,
or retransmitted packets require additional data strestio support them. The
Linux sender maintains the state of each outstanding segimenscoreboard,
where it marks the known state of the segment. The segmerttecamarked as
outstanding, acknowledged, retransmitted, or lost. Coatins of these bits are
also possible. For example, a segment can be declared kbsemansmitted, in
which case the sender is expecting to get an acknowledgdoraht retransmis-
sion. Using this information the Linux sender knows whicgreents need to be
retransmitted, and how to adjust the counters used forméatergi n_f | i ght
when a new acknowledgement arrives. The scoreboard alge plaimportant
role when determining whether a segment has been incorrassumed lost, for
example due to packet reordering.

The scoreboard markings and the counters used for detewnitie
i n_f1i ght variable should be in consistent state at all times. Maxkiiog out-

3.2 The Linux Approach 39

standing, acknowledged and retransmitted segments aigtgforward to main-
tain, but the decision to placela@st mark depends on the recovery method used.
With the NewReno recovery, the first unacknowledged packeizgirked lost when
the sender enters the fast recovery. In practice, this spords to the fast retrans-
mit of the IETF congestion control specifications [11]. Fermore, when a par-
tial ACK not acknowledging all the data outstanding at thgitneing of the fast
recovery arrives, the first unacknowledged segment is ndddsd. This results in
retransmission of the next unacknowledged segment, asdhdrEno specifica-
tion requires [57].

When SACK is used, more than one segment can be marked Ia#tat aVith
the conservative approach, the TCP sender does not couholb® between the
acknowledged blocks inost _out , but when FACK is enabled, the sender marks
the holes between the SACK blocks lost as soon as they appiear.ost _out
counter is adjusted appropriately.

The Linux TCP sender is governed by a state machine thatrdieies the
sender actions when acknowledgements arrive. The statesdollows:

e Open. This is the normal state in which the TCP sender follows st f
path of execution optimized for the common case, when psitgghe in-
coming acknowledgements. When an acknowledgement grthesender
increases the congestion window following either slowtsta congestion
avoidance algorithms, depending on whether the congestiodow is
smaller or larger than the slow-start threshold, respeltiv

e Disorder. When the sender detects duplicate acknowledgementsear-sel
tive acknowledgements, it moves to tBesorder state. In this state the
congestion window is not adjusted, but each incoming péadkgefers trans-
mission of a new segment. Therefore, the TCP sender follberpacket
conservation principle [81], which requires that a new ek not sent out
until an old packet has left the network. In practice the badran this state
is similar to thelimited transmitspecification by the IETF [7], which was
suggested to allow more efficient recovery when the congestindow is
small, or when a large number of segments are lost in the lastomw of
transmission. Limited transmit allows fast retransmit iege situations,
avoiding retransmission timeout that might be needed iftéichtransmit
was not in use.

e CWR. The TCP sender may receive congestion notifications elitph&x-
plicit Congestion Notification [136]ICMP source quenchiLl31], or from
a local device. When receiving a congestion notificatios, lthnux sender
does not reduce the congestion window at once, but by oneesddior

40 3 Congestion Control in Linux TCP

every second incoming ACK until the window size is halved. aivhihe
sender is in the process of reducing the congestion windosvasid it does
not have outstanding retransmissions, it i€EWR (Congestion Window Re-
duced)state. CWR state can be interrupted by Rexoveryor Lossstates
described below.

e Recovery After a sufficient number of successive duplicate ACK svarsit
the sender, it retransmits the first unacknowledged segarahenters the
Recoverystate. By default, the threshold for entering RRecoverystate is
three successive duplicate ACKs, a value recommended ByGReonges-
tion control specification. During thRecoverystate, the congestion win-
dow size is reduced by one segment for every second incontikigomvl-
edgement, similarly to th€WRstate. The window reduction ends when
the congestion window size is equal to ssthresh, i.e. halfeWvindow size
when entering th&®ecoverystate. The congestion window is not increased
during the recovery state, and the sender either retragdimt segments
marked lost, or makes forward transmissions on new datardiogpto the
packet conservation principle. The sender stays irRbeoverystate until
all of the segments outstanding when fRecoverystate was entered are
successfully acknowledged. After this the sender goes batke Open
state. A retransmission timeout can also interruptRleeoverystate.

e Loss When an RTO expires, the sender enterd.ibesstate. All outstand-
ing segments are marked lost, and the congestion window ie see seg-
ment. Therefore the sender starts increasing the congestimlow using
the slow start algorithm. A major difference between tlessand Recov-
ery states is that in theossstate the congestion window can be increased
according to the congestion control rules after the sendsrréset it to one
segment, but in thRecoverystate the congestion window size can only be
reduced. The.ossstate cannot be interrupted by any other state, and the
sender exits to th®penstate only after all data outstanding when thuess
state began have successfully been acknowledged. For &xafagt re-
transmit cannot be triggered during thessstate, which is in conformance
with the NewReno specification.

Linux TCP avoids explicit calls to transmit a packet in anytoé above-
mentioned states, for example, regarding the fast retran3ime current conges-
tion control state determines how the congestion windowdjssted, and whether
the sender considers the unacknowledged segments lost.tAétTCP sender has
processed an incoming acknowledgement according to itemustate, it trans-
mits a maximum of(cwnd — in_flight) segments to the network. The sender

3.3 Features 41

first retransmits earlier segments marked lost and not yedrmemitted, or new
data segments if there are no lost segments waiting fomstmission.

There are occasions where the number of outstanding seguecrteases sud-
denly by several segments in the TCP bookkeeping. For exanafter a loss
or reordering of TCP acknowledgments, the next incomingnastedgment may
cover several segments. These situations would causes mirdata to be trans-
mitted into the network, unless they are taken into acconrthé TCP sender
implementation. The prevalence and impactraé¢ro-burstsi.e. bursts caused by
a single event such as ACK losses, are evaluated in [22]. TheTCP sender
avoids the micro-bursts by limiting the congestion windovatiow at most three
segments to be transmitted for an incoming ACK. This is gintib theUse It or
Lose Italgorithm described in [8]. Since burst avoidance may caadection
of the congestion window size below the slow start threshiblid possible that
the sender enters slow start after several segments hameabkeowledged by a
single ACK.

When a TCP connection is established, many of the TCP vasaféed to
be initialized with some fixed values. In order to improve tt@mmmunication
efficiency at the beginning of the connection, after eachnection the Linux
TCP sender stores in its destination cache the slow stashbid, the variables
used for the RTO estimation, and a variable that tracks teembd magnitude of
packet reordering on the connection path. If another cdioreés established to
the same destination, the cached values can be used totg@tvalues that are
more likely to be adequate for the new TCP connectio@P Control Block In-
terdependencfl61] and theCongestion Manageil4, 15] are other mechanisms
that have been proposed for reusing the past congestiorotdata in new TCP
connections. A possible disadvantage in this scheme isfttiegt network condi-
tions between the sender and the receiver change for sorseniehe values in
the destination cache might get outdated.

3.3 Features

We now list the most important Linux TCP features that majedifrom a typ-

ical TCP implementation. Linux implements a number of TCRastements
proposed recently by IETF, such &xplicit Congestion Notificatiofil36] and

DSACK]|61]. To our knowledge, Linux was among the first systems tplé@ment

these features.

42 3 Congestion Control in Linux TCP

3.3.1 Retransmission timer calculation

Some TCP implementations use a coarse-grained retrangmigser, having
granularities up to 500 ms. The round-trip time samples &#mnoneasured once
in a round-trip time. In addition, the present retransnaisgimer specification re-
quires that the RTO timer should not be less than one sec&@¥].[Considering
that most of the present networks provide round-trip timekess than 500 ms,
studying the feasibility of the traditional retransmigsiimer algorithm standard-
ized by the IETF has not excited much interest.

Linux TCP has a retransmission timer granularity of 10 mstaedender takes
a round-trip time sample for each segnferitherefore it is capable of achieving
more accurate estimations for the retransmission timeheifassumptions in the
timer algorithm are correct. Like many other implementasioLinux TCP devi-
ates from the IETF specification by allowing a minimum limitzZ00 ms for the
RTO. Because of the finer timer granularity and the smallerirmim limit for
the RTO timer, the correctness of the algorithm for detemngjrthe RTO is more
important than with a coarse-grain timer. The traditiorigbéathm for retransmis-
sion timeout computation has been found to be problematioime networking
environments [114]. This is especially true if a fine-grairiener is used and the
round-trip time samples are taken for each segment.

In Section 3.1 we described two problems regarding the st@nBTO algo-
rithm. First, when the round-trip time decreases sudddilyf variance increases
momentarily and causes the RTO value to be overestimatedon8ethe RTT
variance can decay to a small value when RTT samples are fakewery seg-
ment while the window is large. This increases the risk farrgus RTOs that
result in unnecessary retransmissions.

The Linux RTO estimator attacks the first problem by givingsleveight for
the mean deviancd/DEV) when the measured RTT decreases significantly below
the smoothed average. A separMeEV variable is used to calculate the final
RTTVAR of the original algorithm as described below. The reducemegiven
for the MDEV sample is based on the multipliers used in the standard RI® al
rithm. First, thelVDEV sample is weighed bg, corresponding to the multiplier
used for the recent RTT measurement in8R8 T equation given in Section 2.2.1.
SecondMDEV is further multiplied by% corresponding to the weight of 4 given
for the RTTVARin the standard RTO algorithm. Therefore, choosing the kateig
of 3% for the currentVDEV neutralizes the effect of the sudden change of the mea-
sured RTT on the RTO estimator, and assures that RTO holéadysvalue when

2Due to retransmission ambiguity, RTTs for retransmissiaresnot measured unless the TCP
timestamps option is in use.

3.3 Features 43

the measured RTT drops suddenly. This avoids the unwantddipehe RTO es-
timator value, while maintaining a conservative behavibthe round-trip times
stay at the reduced level for the next measurements, the Rii@ator starts to
decrease slowly to a lower value. In summary, the equatiorcdtculating the
IVDEV is the following:

if (R< SRTT and |SRTT - R > MDEV) {
MDEV <- 31« MDEV + 35« |SRTT — R|
} else {
MDEV <- 3« MDEV + § «|SRTT — R|

}

whereRis the recent round-trip time measurement, 8RI T is the smoothed
average round-trip time. Linux does not directly modify tRETVAR variable,
but makes the adjustments first on MBEV variable which is used in adjusting
theRTTVARthat determines the RTO. TI®RTT andRTOestimator variables are
set according to the standard specification.

A separatd/DEV variable is needed, because the Linux TCP sender allows de-
creasing thékrTTVARvariable only once in a round-trip time. HowevB&T TVAR
is increased immediately whéYDEV gives a higher estimate, thB8 TVARIs the
maximum of theVDEV estimates during the last round-trip time. The purpose of
this solution is to avoid the problem of underestimated Ral@esto low round-trip
time variance, which was the second of the problems destabédier.

Linux TCP supports th&€ CP Timestamp optidi25] that allows accurate round-
trip time measurement also for retransmitted segments;wikinot possible with-
out using timestamps. Having a proper algorithm for RTO walion is even
more important with the timestamp option. According to owpe&riments, the
algorithm proposed above gives reasonable RTO estimatesndth TCP times-
tamps, and avoids the pitfalls of the standard algorithm.

Figure 3.1 illustrates the above-mentioned differenceshefstandard RTO
calculation and the Linux algorithm. The figure shows antealily generated
sequence of round-trip time measurementsti), simulated results of the output
of the standard algorithm (RFC 2988) with the given roung-times, and the
corresponding output of the Linux algorithm. It is worth imgf that, to illustrate
the differences of the two algorithms, in this graph no mimimlimit is applied to
the retransmission timeout length. Neither is the timenglarity limited in this
simulated scenario in any way. The figure shows how the Limmert estimate
decays slower than the standard algorithm. Furthermor, small variation in
round-trip times the standard algorithm causes the RT@asti to approach very
close to the round-trip times, which increases the risk ofispis retransmission

44 3 Congestion Control in Linux TCP

timeouts. The figure also shows how a sudden reduction of #esured round-
trip times causes a momentary increase of the RTO in the atdradgorithm, but
not in the Linux variant, while Linux RTO estimator valuegiease as quickly
as with the standard estimator, when round-trip times emeeagain. While the
sequence of round-trip times may seem arbitrary (which #wey in this case),
for example in the context of vertical hand-offs discussemtarin Chapter 7, this
kind of sudden changes in round-trip times are possible.

140 T T

T
APON mrtt
SR —— RFC 2988
i —— Linux

time (* 10 ms)

0 10 20 30 40 50 60 70 80 90 100
sample count

Figure 3.1: Comparison of standard RTO calculation and thaxalgorithm.

The retransmission timer is reset every time an acknowleege advancing
the window arrives at the sender. The retransmission timatsio reset when the
sender enters tHeecovenstate and retransmits the first segment. During the rest
of the Recovery state the retransmission timer is not réseta packet is marked
lost, if more than an RTO’s worth of time has passed from tret firensmission
of the same segment. This allows more efficient retransorissi packets during
the Recoverystate even though the information from acknowledgementsis
sufficient enough to declare the packet lost. However, thethod can only be
used for segments not yet retransmitted.

3.3.2 Undoing congestion window adjustments

Because the currently used mechanisms in the Internet dproeide explicit
loss information to the TCP sender, it needs to speculatanwbeping track of

3.3 Features 45

which packets are lost in the network. For example, reongeis often a problem
for the TCP sender because it cannot distinguish whethemthsing ACKs are
caused by a packet loss or by a delayed packet that will dladee. The Linux
TCP sender can, however, detect unnecessary congestiaiowiadjustments
afterwards, and do the necessary corrections in the cangesintrol parameters.
For this purpose, when entering tRecovenor Lossstates, the Linux TCP sender
stores the olg st hr esh value prior to adjusting it.

A delayed segment can trigger an unnecessary retransmisstber by caus-
ing a spurious retransmission timeout or by causing pa@atering. The Linux
TCP sender has mainly two methods for detecting afterwdralsit unnecessar-
ily retransmitted the segment. First, the receiver canrmfby aDuplicate-SACK
(DSACK)that the incoming segment was already received. If all seggnmetrans-
mitted during the last recovery period are acknowledged BAOK, the sender
knows that the recovery period was unnecessarily triggef®cond, the Linux
TCP sender can detect unnecessary retransmissions bythsif@P timestamp
option [25] attached to each TCP header. When this option isse, the TCP
receiver echoes the timestamp of the segment that triggbeeécknowledge-
ment back to the sender, allowing the TCP sender to concluaghsr the ACK
was triggered by the original or by the retransmitted segmédine Eifel algo-
rithm [111] uses a similar method for detecting spuriousargtmissions.

When an unnecessary retransmission is detected by usingifi€stamps, the
logic for undoing the congestion window adjustments is $&&nif the sender is
in theLossstate, i.e., it is retransmitting after an RTO which wasgered unnec-
essarily, thdost mark is removed from all segments in the scoreboard, causing
the sender to continue with transmitting new data insteagtwnsmissions. In
addition,cwnd is set to the maximum of its present value ast hr esh * 2,
and thesst hr esh is set to its prior value stored earlier. Sinest hr esh was
set to half of the number of outstanding segments when theephass is detected,
the effect is to continue in congestion avoidance at a simmake as when theoss
state was entered.

Unnecessary retransmission can also be detected by theam€&s while
the sender is in thRecovenstate. In this case the Recovery state is finished nor-
mally, with the exception that the congestion window is@aged to the maximum
of its present value anslst hr esh * 2, andsst hr esh is set to its prior value.

In addition, when a partial ACK for the unnecessary retrassion arrives, the
sender does not mark the next unacknowledged segment lastpbtinues ac-
cording to present scoreboard markings, possibly tratisiginew data.

In order to use DSACK for undoing the congestion control peters, the
TCP sender tracks the number of retransmissions that hdseedeclared unneces-

46 3 Congestion Control in Linux TCP

sary before reverting the congestion control parametettseWhe sender detects
a DSACK block, it reduces the number of revertable outstagdétransmissions
by one. If the DSACK blocks eventually acknowledge everyaregmission in the
last window as unnecessarily made, and the retransmissionter falls to zero
due to DSACKSs, the sender increases the congestion winddwearrts the last
modification tosst hr esh similarly to what was described above.

While handling the unnecessary retransmissions, the LifCR sender main-
tains a metric measuring the observed reordering in the ork&twn variable
reorderi ng. This variable is also stored in the destination cache dfter
connection is finished.r eor deri ng is updated when the Linux sender de-
tects unnecessary retransmission duringRbeeovernstate by TCP timestamps or
DSACK, or when an incoming acknowledgement is for an unasieged hole
in the sequence number space below selectively acknowdesigguence num-
bers. In these case®or deri ng is set to the number of segments between the
highest segment acknowledged and the currently acknoetegggment, in other
words, it corresponds to the maximum distance of reordensggments detected
in the network. Additionally, if FACK was in use when reorohgr was detected,
the sender switches to use the conservative variant of SA@Hh is not too
aggressive in a network involving reordering.

3.3.3 Delayed acknowledgements

The TCP specifications state that the TCP receiver shousy deé acknowledge-
ments for a maximum time of 500 ms in order to reduce the nurabacknow!-
edgements generated by the receiver. The specificationstdnandate any spe-
cific delay time, but many implementations use a static defa800 ms for this
purpose. However, a fixed delay time may not be adequate ireddlorking en-
vironments with different properties. Thus, the Linux TGReiver adjusts the
timer for delaying acknowledgements dynamically accaydimthe packet inter-
arrival time, trying to estimate the time it takes to receive next two segments,
while sending acknowledgements for at least every secamaiing segment. A
similar approach was also suggested in an early RFC by Ci&lk However, the
maximum delay for sending an acknowledgement is limitedO@ 2s.

Using delayed ACKs slows down the TCP sender, because é#dres the con-
gestion window size based on the rate of incoming acknoveledgnts. In order
to speed up the transmission in the beginning of the slow, stee Linux TCP
receiver refrains from delaying the acknowledgementsHerfirst incoming seg-
ments at the beginning of the connection. This is caljeitk acknowledgements

The number of quick acknowledgements sent by the Linux TCEBiver is at
most half of the number of segments required to reach thevexteadvertised

3.4 Conformance to the IETF Specifications 47

window limit. Therefore, using quick acknowledgements sloet open the op-
portunity for the Silly Window Syndrome [38] to occur. In dtidn, the Linux

receiver monitors whether the traffic appears to be bidwealt, in which case it
disables the quick acknowledgements mechanism. This s tioavoid transmit-
ting pure acknowledgements unnecessarily when they canglghacked with
data segments.

3.3.4 Congestion Window Validation

The Linux sender reduces the congestion window size if iteadeen fully used
for one RTO estimate’s worth of time. This scheme is simitathte Congestion
Window Validationdocumented in an Experimental RFC 2861 [67]. The moti-
vation for Congestion Window Validation is that if the costjen window is not
fully used, the TCP sender may have an invalid estimate opthsent network
conditions. Therefore, a network-friendly sender showduce the congestion
window as a precaution.

When the Congestion Window Validation is triggered, the T€&der de-
creases the congestion window to halfway between the &cusdd window and
the present congestion window. Before doing thist hr esh is set to the max-
imum of its current value an§ of the congestion window, as suggested in RFC
2861.

3.3.5 Explicit Congestion Notification

Linux implements€Explicit Congestion Notification (ECN)36] to allow the ECN-
capable congested routers to report congestion beforguhgmpackets. A con-
gested router can mark a bit in the IP header, which is thepeztho the TCP
sender by an ECN-capable TCP receiver. When the TCP sentdethgeconges-
tion signal, it enters th€WRstate, in which it gradually decreases the congestion
window to half of its current size at the rate of one segmenttia incoming
acknowledgements. Besides making it possible for the T@Bese0 avoid some

of the congestion losses, ECN is expected to improve theanktperformance
when it is more widely deployed to the Internet routers.

3.4 Conformance to the IETF Specifications

Since Linux combines the features specified in differentHEpecifications fol-
lowing certain design principles described earlier, soBEH specifications are
not fully implemented according to the algorithms givenhie RFCs. Table 3.1

48 3 Congestion Control in Linux TCP

Table 3.1: TCP congestion control related IETF specificetionplemented in
Linux. + = implemented, * = implemented, but details diffevrh specification.

| Specification | Status |
RFC 1323 (Perf. Extensions) | +
RFC 2018 (SACK) +

RFC 2140 (Ctrl block sharing)| +
RFC 2581 (Congestion control) *
RFC 2582 (NewReno) *
RFC 2861 (Cwnd validation) | +

RFC 2883 (DSACK) +
RFC 2988 (RTO) *
RFC 3042 (Lim. xmit) +

RFC 3168 (ECN)

shows which RFC specifications related to TCP congestiotraoare imple-
mented in LinuX. Some of the features shown in the table can be found in Linux,
but they do not fully follow the given specification in all dds. These features are
marked with an asterisk in the table, and we will explain thieences between
Linux and the corresponding RFC in more detail below.

Linux fast recovery does not fully follow the behavior givenRFC 2582.
First, the sender dynamically adjusts the threshold fgggting fast retransmit,
based on the observed reordering in the network. Thereftdsspossible that the
third duplicate ACK does not trigger a fast retransmit insidlations. Second,
the Linux sender does not artificially adjust the congestiondow during fast
recovery, but maintains its size while adjusting thef | i ght estimator based
on incoming acknowledgements. The different approachealgould not cause
a significant effect on TCP performance, but when enteriedgdist recovery, the
Linux sender does not reduce the congestion window sizec, @s RFC 2582
suggests. Instead, the sender decreases the congestidovwwdize gradually,
by one segment per two incoming acknowledgements, untictimgestion win-
dow meets half of its original value. This approach was oadliy suggested by
Hoe [71], and later it was namdgate-halvingby an expired Internet Draft by
Mathis, et. al. Rate-halving avoids pauses in transmissiohis slightly too ag-

3After this analysis was conducted some new RFCs have bedistper for features imple-
mented in Linux. Also the Linux TCP behavior might have cteth@n the latest versions. These
are not shown in the table. For example RFC 4138 specifyiegrfRTO algorithm is one such
RFC.

3.5 Performance Issues 49

gressive after the congestion notification, until the catige window has reached
a proper size.

As described in Section 3.3, the round-trip time estimataf RTO calculation
in Linux differs from the Proposed Standard specificationtly IETF. Linux
follows the basic patterns given in RFC 2988, but the impiaiatgon differs
from the specification in adjusting ti&I' TVAR. A significant difference between
RFC 2988 and Linux implementation is that Linux uses the mum RTO limit
of 200 ms instead of 1000 ms given in RFC 2988.

RFC 2018 defines the format and basic usage of the SACK blbakdpes not
give detailed specification of the congestion control atgor that should be used
with SACK. FACK is the default congestion control algorittapplied when the
SACK option is in use. However, since FACK results in ovedgeessive behav-
ior when packets have been reordered in the network, thexLseader changes
from FACK to a more conservative congestion control algponitwhen it detects
reordering. The SACK recovery algorithm specified by the FHZ3] is similar
to the conservative SACK alternative in Linux. Furthermdraux follows the
DSACK basics given in RFC 2883.

Linux implements RFC 1323, which defines the TCP timestant \aim-
dow scaling options, and the limited transmit enhancemefibed in RFC 3042,
which is taken care of by thBisorder state of the Linux TCP state machine.
However, if ther eor der i ng estimator has been increased from the default of
three segments, the Linux TCP sender transmits a new sedoneatch incoming
acknowledgement, not only for the two first ACKs. Finallye thinux destination
cache provides functionality similar to the RFC 2140 thaigmses Control Block
Interdependence between the TCP connections.

3.5 Performance Issues

We now illustrate the behavior of the selected Linux TCPuess by a few simple
test cases, and discuss the potential performance effebesé features. We il-
lustrate the implications of using quick acknowledgemeratie-halving, and con-
gestion window reversion. We do this by disabling theseuiest and comparing
the time-sequence diagrams of a pure Linux TCP implememtatind an imple-
mentation with the corresponding feature disabled. We usax_hosts as con-
nection endpoints communicating over a 256 Kbps link withWdf 1500 bytes.

Between the sender and the 256 Kbps link there is a tail-dvager with buffer

space for seven packets, connected to the sender with dhigwidth link with

small latency. We have chosen a simple experimentatiorp getillustrate the
functionality of the TCP enhancements, without trying tdda detailed model

50 3 Congestion Control in Linux TCP

of any real network setup. However, our parameter setupuighly similar to the

characteristics of a modern wireless link technology, withuffer size chosen to
match the link’s bandwidth-delay product, to keep the batkk link utilized also
on periods of disruption in data transfer. The test setulpuistrated in Figure 3.2.
In addition to the low bandwidth, the link between the rowdad TCP receiver
has a fairly high propagation delay of 200 ms. The slow link #me router are
emulated using the Seawind real-time network emulator][100th the network

emulator we can control the link and the network parametedscallect statistics
and log about the network behavior to help the analysis.

TCP sink Router TCP sender
256 Kbps 100 Mbps
PS I P
200 ms 1ms

Figure 3.2: Test setup.

We first illustrate the effect of quick acknowledgements d@PTthroughput.
Figure 3.3(a) on page 53 shows the slow start performancarmbdified Linux
implementing quick acknowledgements, and Figure 3.3(byvstthe performance
of an implementation with the quick acknowledgements meisinadisabled. The
latter implementation applies a static delay of 200 ms fergacknowledgement,
but transmits an acknowledgement immediately if more tha foll-sized seg-
ment’'s worth of unacknowledged data has arrived. One canhegenvhen the
link has a high bandwidth-delay product like in our case,librefit of quick ac-
knowledgements is noticeable. The unmaodified Linux sendsrttansmitted 50
KB in 2 seconds, but when the quick acknowledgments are léidaib takes 2.5
seconds for the sender to transmit 50 KB. In our example, timeadlified Linux
receiver with quick acknowledgements enabled sent 109 A@¢kgts, and the
implementation without quick acknowledgements sent 95 Asakkets. Because
quick acknowledgements cause more ACKs to be generatee inettavork than
when using the conventional delayed ACKs, the sender’sestign window in-
creases slightly faster. Although this improves the TCRgoerance, it makes the
network slightly more prone to congestion.

Rate-halving is expected to result in a similar averagestrassion rate as
the conventional TCP fast recovery, but it paces the tragsion of segments
smoothly by making the TCP sender reduce its congestion amingteadily in-
stead of making a sudden adjustment. Figure 3.4(a) illiestrhe performance of
an unmodified Linux TCP implementing rate-halving, and Fégi4(b) illustrates
the performance of an implementation with the conventidasti recovery behav-
ior. These figures also illustrate the receiver’s advettisndow (the uppermost

3.5 Performance Issues 51

line), since it limits the fast recovery in our example.

The scenario is the same in both figures: the router buffeprines full during
TCP slow-start, and several packets are dropped due to stmgedefore the
feedback of the first packet loss arrives at the sender. Thkepdosses at the
bottleneck link due to initial slow start is called slow stavershoot [41]. The
figures show that after 12 seconds both TCP variants havenitted 160 KB.
However, the behavior of the unmodified Linux TCP is diffdrénom the TCP
with rate-halving disabled. With the conventional fastawary, the TCP sender
stops sending new data until the number of outstanding setgnhas dropped to
half of the original amount, but the sender with the rateAmg algorithm lets
the number of outstanding segments reduce steadily, wathatfe of one segment
for two incoming acknowledgements. Both variants suffenfrthe advertised
window limitation, which does not allow the sender to traftsnew data, even
though the congestion window would.

Finally, we show how the timestamp-based undoing similah&Eifel algo-
rithm [111] affects TCP performance. We generated a thesersd delay, which
is long enough to trigger a retransmission timeout at the $€&#eler. Figure 3.5(a)
shows a TCP implementation with the TCP timestamp optiotbleda and Fig-
ure 3.5(b) shows the same scenario with timestamps disablelacknowledge-
ments arrive at the sender in a burst, because during the patikets queue up in
the emulated link receive buffers and are all released whemnl¢lay is over.

The use of timestamps improves the TCP performance comasilyebecause
the TCP sender detects that the acknowledgement followiagdtransmission
was for the original transmission of the segment. Therefloeesender can revert
thesst hr esh to its previous value and increase the congestion windoweMo
over, the Linux TCP sender avoids unnecessary retransmgsif the segments
in the last window. The ACK burst injected by the receiveeathe delay causes
19 new segments to be transmitted by the sender within a shoetinterval.
However, the sender follows the slow start correctly asledcby the incoming
acknowledgements, and none of the segments are transmitteztessarily. A
potential drawback of fully reverting the congestion cohfrarameters is that it
may create congestion at the bottleneck router. This eiféeftirther emphasized
in our scenario due to the burst of acknowledgments thateaat the sender after
the spurious timeout.

A conventional TCP sender not implementing the Eifel-sgdegestion win-
dow reversion retransmits the last window following thetfidglayed segment

“The delay stands for emulated events on the link layer, famgpte representing persistent re-
transmissions of erroneous link layer frames. The linkisexbuffer holds the successfully received
packets until the period of retransmissions is over to be abteliver them in order to the receiver.

52 3 Congestion Control in Linux TCP

unnecessarily. Not only does this waste the available batbwbut the retrans-
mitted segments appearing as out-of-order data at thevexdeigger several du-
plicate acknowledgments. However, since the TCP sendéll is $he Lossstate,
the duplicate ACKs do not cause further retransmissSioi®ne can see that the
conventional TCP sender without timestamps has receiMatbadedgements for
165 KB of data in the 10 seconds after the transmission beghite the Linux
sender implementing TCP timestamps and congestion windgerting has re-
ceived acknowledgements for 175 KB of data. The Linux TCRisemaving
TCP timestamps enabled retransmitted 22.6 KB in 16 padietshe Linux TCP
sender without timestamps retransmitted 37.1 KB in 26 pacikethe test case
transmitting a total of 200 KB. The link scenario was the samigoth test runs,
having a 3-second delay in the middle of transmission. WheMCP timestamps
were not used, the TCP sender retransmitted 11 packets esszedy.

3.6 Summary

This chapter presented the basic ideas of the Linux TCP mmgheation, and
gave a description of the details that differ from a typic&F implementation.
Linux implements many of the recent TCP enhancements stegibyg the IETF.
Therefore Linux provides a platform for testing the intezggility of the recent
enhancements in an actual network. The current design add@snit easy to
implement and study alternative congestion control pedici

The Linux TCP behavior is strongly governed by the packetseoration prin-
ciple and the sender’s estimate of which packets are stthénnetwork, which
are acknowledged, and which are declared lost. Whethetremsamit or transmit
new data depends on the markings made in the TCP scorebeamdost of the
cases none of the requirements given by the IETF are viglatétugh in some
situations the detailed behavior may be different from whagiven in the IETF
specifications. However, the TCP essentials, in partidhi@rcongestion control
principles and the conservation of packets, are maintamed cases.

The Linux TCP implementation has been under much discussidncontro-
versy for example in the IETF because of the certain spetiatacteristics de-
scribed in this chapter. Therefore we hope that this chapgrs in removing
some of the uncertainty people have about the Linux impleatem. We also
hope that the information in this chapter is useful in resleahat analyzes the
TCP performance using the Linux implementation.

®The behavior is similar to the NewReno “bugfix” [56]

3.6 Summary 53

Sequence number, bytes

—=— data sent
—— ack revd
Y

|
0 0.5 1 15 2 25 3
Time, s

(a) Quick acknowledgements enabled.

Sequence number, bytes

—s— data sent
—— ack rcvd
|
0 0.5 1 15 2 25 3
Time, s

(b) Quick acknowledgements disabled.

Figure 3.3: Effect of quick acknowledgements on slow starfggmance.

54

3 Congestion Control in Linux TCP

x 10°
2
15
Q
=
Qo
1]
=}
€
3
=
@
o
e
@
=1
o
&
1
—=— data sent
—— ack revd
H —— win
0.5 I 1 I I I 1 1 i T
2 3 4 5 6 7 8 9 10 11 12
Time, s
(a) Rate-halving enabled.
x 10°
2
w15
Q
=
Qo
1]
=}
£
3
=
@
o
e
@
=1
o
Ji3
»
1
—=— data sent
—— ack revd
P —— win
0.5 | L L L L L L L T g
2 3 4 5 6 7 8 9 10 11 12
Time, s

(b) Rate-halving disabled.

Figure 3.4: Effect of Rate-halving on TCP performance.

3.6 Summary 55

x10°

Sequence number, bytes

e
w
T

—=— data sent
—— ackrevd
Ik 1 1 I H
5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
Time, s

11r

(a) TCP timestamps enabled.

1.8F T T =

17

16

Sequence number, bytes
= -
> &

=
w

12

11 =
—— ack revd
1h [L 1 i 1 1 1 I
5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
Time, s

(b) TCP timestamps disabled.

Figure 3.5: Effect of congestion window undoing on TCP perfance.

56

3 Congestion Control in Linux TCP

CHAPTER 4

F-RTO: A Recovery Algorithm for
TCP Retransmission Timeouts

In this chapter we focus on attacking the TCP performancélenas resulting
from unnecessary retransmissions that originate fromigpsirRTOs. A new
RTO recovery algorithm was developed as part of this worked&orward RTO-
Recovery (F-RTQ}o improve the TCP performance after a spurious retransmis
sion timeout. The F-RTO algorithm uses a set of simple rwdeayoiding unnec-
essary retransmissions after a spurious RTO. The F-RTQeegalgorithm does
not require use of any TCP options or additional bits in thePTi@ader, unlike
the Eifel algorithm [111], for example.

The rest of the chapter is organized as follows. In Sectidnve discuss the
TCP behavior after spurious retransmission timeouts, amat v8 the general idea
of our approach to improve TCP’s behavior on these occasiarSection 4.2 we
give a detailed definition of the F-RTO algorithm for makimapard transmis-
sions after RTO. We continue by giving some examples of tiTB-algorithm
behavior in different situations involving RTOs in Sectis3. In Section 4.4 we
describe the experiments made with F-RTO in different neétwavironments and
the results of the experiments. Finally, we wrap up the maseovations made in
this chapter in Section 4.5.

4.1 Spurious Retransmission Timeouts

Because wireless networks are often subject to a high psmsetate due to cor-
ruption or hand-offs, reliable link-layer protocols aredely employed with wire-
less links [113, 50], and some wireless links may be unusatiteout some link
ARQ mechanism. The link-layer receiver often aims to delthe packets to the

57

58 4 F-RTO: A Recovery Algorithm for TCP Retransmission Timeouts

upper protocol layers in order, which implies that the laeiving packets are
blocked until the head of the queue arrives successfullye ©uthe strict link-

layer ordering, the communication end points observe agaupacket delivery
that can cause a spurious TCP RTO instead of getting outeafrgackets that
could result in a false fast retransmit instead. Either wagraction between TCP
retransmission mechanisms and link-layer recovery casecpoor performance.

Wireless links may also suffer from link outages that catesiptent data loss
for a period of time. If the link outage lasts long enough,rigders the TCP
RTO at the sender which then retransmits the unacknowled@el segments.
However, if the link layer protocol is highly persistent its iretransmissions, it
is able to deliver the original packets to the TCP receiveseothe link outage
is finished. In this case the TCP RTO may also be triggeredimsly. Other
potential reasons for sudden delays that have been repirteger spurious
RTOs include a delay due to tedious actions required to cetm@ hand-off or
re-routing of packets to the new serving access point afeehaind-off, arrival of
competing traffic on a shared link with low bandwidth, and ddan bandwidth
degradation due to reduced resources on a wireless chat¥ied4]. In recent
multi-access wireless terminals the hand-offs from lovesay WLAN link to
high-latency GPRS link can also cause a spurious timeout.

As described in Chapter 2, TCP uses thst retransmitg11] as the main
mechanism to timely trigger retransmissions after reogjthree successive du-
plicate acknowledgements (ACKs). If for a certain time pérthe TCP sender
does not receive ACKs that acknowledge new data, the TCéhsetiission timer
expires as a backoff retransmission mechanism. More sgaitjfia RTO-triggered
retransmission is needed when a retransmission is losthenwmearly a whole
window of data is lost, thus making it impossible for the eeeto generate
enough duplicate ACKs for triggering TCP fast retransmihder these assump-
tions, retransmitting the unacknowledged segments in-skant after the RTO is
likely to be the most efficient way of recovering.

In the normal RTO recovery the TCP sender retransmits thieuiracknowl-
edged segment, sets the congestion window to one segmenhastbw-start
threshold (ssthrestid half of the number of currently outstanding segments,rwhe
the RTO expires. After this the sender continues in slowtstacreasing the
congestion window by one segment on each ACK that advaneesittdow and
retransmitting the next unacknowledged segments allowetécongestion win-
dow. However, if no segments were lost but the retransmistsioer expires spu-
riously, the segments retransmitted in the slow-start arg annecessarily. The
cumulative acknowledgements for the original transmissiappear at the TCP
sender one at a time, triggering further unnecessary IEmesions. In particular,

4.2 F-RTO Algorithm 59

this is very costly for slow links. Because there still argreents outstanding in
the network, a false slow start is harmful for the potenfialbngested network as
it injects extra segments into the network at increasing. raarticularly, this phe-
nomenon is very possible with the various wireless accetgank technologies
that are prone to sudden delay spikes. Additionally, the $&Rier unnecessarily
reduces the TCP congestion window to one segment and retheeastow-start
threshold to half of the currently used TCP window. This,umt is costly for
high-bandwidth links as it takes a long time for the sendeetpen the window.

4.2 F-RTO Algorithm

The F-RTO algorithm affects the TCP sender behavior ongratretransmission
timeout, otherwise the behavior is similar to the convardiol CP. Although the
main motivation of the F-RTO algorithm is to recover effidigrfrom a spurious

RTO, we require it to achieve similar performance with thenamtional RTO

recovery in other situations where RTO may occur. Our apgraaquires mod-
ification only at the TCP sender, while adhering to the TCPgestion control

principles [52, 11]. When the first acknowledgements arafter retransmitting

the segment for which the RTO expired, the F-RTO sender doesmmediately

continue with retransmissions like the conventional RTCowery does, but it
first checks if the acknowledgements advance the windowttréne whether it
needs to retransmit, or whether it can continue sending raa. d--RTO can be
considered somewhat similar to thémited Transmitalgorithm [7], but applied
to the RTO recovery.

The guideline behind F-RTO is that an RTO either indicateess,lor it is
caused by an excessive delay in packet delivery while théfeue outstanding
segments in flight. If the RTO was due to delay, that is, the RE&ES spurious,
acknowledgements for non-retransmitted segments seatebdie RTO should
arrive at the sender after the RTO occurred. If no such setgvarive, the RTO
is concluded to be non-spurious and the conventional RT@vezg with go-back-
N retransmissions should take place at the TCP sender.

To implement the principle described above, an F-RTO seacksras follows:
if the first ACK arriving after a RTO-triggered retransmissiadvances the win-
dow, transmit two new segments instead of continuing rstrassions. |If the
second incoming acknowledgement also advances the wirlRd®@, is likely to
be spurious, because the second ACK is triggered by an aligitransmitted
segment that has not been retransmitted after the RTO. IRT@ was genuine
and caused by packet loss, the two new segments transnfitethe RTO would

60 4 F-RTO: A Recovery Algorithm for TCP Retransmission Timeouts

appear as out-of-order segments at the receiver and triygicate acknowl-
edgements. Therefore, if either one of the two acknowledgesafter RTO is a
duplicate ACK, the sender continues retransmissions ailyito the conventional
RTO recovery algorithm.

When the retransmission timer expires, the F-RTO algorithikes the follow-
ing steps at the TCP sender. In the algorithm descriptioovbale useSND. UNA
to indicate the first unacknowledged segment.

1. When the retransmission timer expires, retransmit the segrhat trig-
gered the timeout As required by the TCP congestion control specifica-
tions, thessthreshis adjusted to half of the number of currently outstanding
segments. However, the congestion window is not yet set éosegment,
but the sender waits for the next two acknowledgements éefeciding on
what to do with the congestion window.

2. When the first acknowledgement after RTO arrives at thdesethe sender
chooses the following actions depending on whether the A@kamaces the
window or whether it is a duplicate ACK.

(@) If the acknowledgement advancesD. UNA, transmit up to two new
(previously unsent) segmentghis is the main point in which the F-
RTO algorithm differs from the conventional way of recoveyifrom
RTO. After transmitting the two new segments, the congasiin-
dow size is set to have the same valuesas hr esh. In effect this
reduces the transmission rate of the sender to half of timerasion
rate before the RTO. At this point the TCP sender has tratethi
total of three segments after the RTO, similarly to the cotieaal
recovery algorithm. If transmitting two new segments is pasgsible
due to advertised window limitation, or because there is poendata
to send, the sender may transmit only one segment. If no néav da
can be transmitted, the TCP sender follows the conventigmé re-
covery algorithm and starts retransmitting the unackndgésl data
using slow start.

(b) If the acknowledgement is duplicate ACK, set the congestindow
to one segment and proceed with the conventional RTO recolweoy
new segments are not transmitted in this case, because nlenzo
tional RTO recovery algorithm would not transmit anythingtlais
point either. Instead, the F-RTO sender continues with siast and
performs similarly to the conventional TCP sender in retraitting
the unacknowledged segments. Step 3 of the F-RTO algorghmoti

4.2 F-RTO Algorithm 61

entered in this case. A common reason for executing thischraathe
loss of a segment, in which case the segments injected byetites
before the RTO may still trigger duplicate ACKs that arrivetize
sender after the RTO.

3. When the second acknowledgement after the RTO arrivibgraiontinue
transmitting new data, or start retransmitting with theaskiart algorithm,
depending on whether new data was acknowledged.

(a) If the acknowledgement advanc8BID. UNA, continue transmitting
new data following the congestion avoidance algoritiBecause the
TCP sender has retransmitted only one segment after the Ri%O,
acknowledgement indicates that an originally transmisteginent has
arrived at the receiver. This is regarded as a strong indicaif a
spurious RTO. However, since the TCP sender cannot surely kah
this point whether the segment that triggered the RTO wasalgt
lost, adjusting the congestion control parameters afeiRNO is the
conservative action. From this point on, the TCP senderimoes as
in the normal congestion avoidance.

If this algorithm branch is taken, the TCP sender ignores the
send_hi gh variable that indicates the highest sequence number trans-
mitted so far [56}. The send_hi gh variable was proposed as a
“bugfix” for avoiding unnecessary multiple fast retransmits whe@RT
expires during fast recovery with NewReno TCP. The probldm o
multiple fast retransmits can occur when the TCP senderagssar-

ily retransmits segments that have already been receivatdeoy CP
receiver. This can happen, for example, when retransnnistine-

out occurs during fast recovery. In this case the senderradive
duplicate acknowledgements that are not caused by packst bot
the out-of-order segments that were unnecessarily tratesmi The
NewReno “bugfix” says that when receiving such duplicatenaok-
edgements below theend_hi gh variable that set after each retrans-
mission timeout to indicate the highest sequence numbesrrited

so far, the sender should not enter fast retransmit or fasiveyy.
However, when applying the F-RTO, the sender has not retriéns
ted other segments but the one that triggered RTO at thig, pbie

The Standards Track revision of NewReno [57] uses variabimar ecover instead of
send_hi gh, and has included the “bugfix” as part of the standard algoritHowever, we will use
send_hi gh in this dissertation.

62 4 F-RTO: A Recovery Algorithm for TCP Retransmission Timeouts

problem addressed by theigfixcannot occur. Therefore, if there are
duplicate ACKs arriving at the sender after the RTO, theyliedy to
indicate a packet loss, hence fast retransmit should betasgidw ef-
ficient recovery. Alternatively, if there are not enough licgee ACKs
arriving at the sender after a packet loss, the retransomdgner ex-
pires another time and the sender enters step 1 of this tdgoto
detect whether the new RTO is spurious.

(b) If the acknowledgement is a duplicate ACK, set the congestindow
to three segments, continue with the slow start algorithtraresmit-
ting unacknowledged segmeniBhe duplicate ACK indicates that at
least one segment other than the segment that triggered R163ti
in the last window of data. There is no sufficient evidence Hry
of the segments was delayed. Therefore, the sender procébde-
transmissions similarly to the conventional RTO recovdgosthm,
with the send_hi gh variable stored when the retransmission timer
expired to avoid unnecessary fast retransmits.

If either one of the two acknowledgements arriving after®i®© is a duplicate
ACK, the algorithm is safe, because it reverts back to theeatonal retransmis-
sions and adjusts the congestion window appropriately. é¥ew the validity of
the algorithm when the two first acknowledgements advéide. UNA is worth
discussing. As described above, this indicates that at tgassegment was de-
layed. If the next segments in the window were also delayadeXample being
blocked by the first delayed segment, the algorithm perfammmtended, as we
will show in Section 4.3. If the next segments would not hagerbdelayed, they
would have arrived before the delayed segment and triggeupticate ACKSs.
We will discuss the F-RTO behavior under packet reorderimgnbre detail in
Section 4.3.

When algorithm branch (3a) is taken, the sender does noteetihe conges-
tion window to one segment, but halves it to the leveket hr esh. Because
the sender does not enter slow start, it increases the dimg&sndow only once
in a round-trip time after RTO, and therefore is slightly maonservative than
the conventional recovery algorithm. In fact, if the seginiat triggered RTO
was not lost, the correct behavior would have been to noedserthe congestion
window at all. If the DSACK option is in use, the sender caredetvhether the
retransmission was unnecessary, and revert the last adjost on the conges-
tion control parameters in such a case. The benefits of usB®dK to detect
unnecessary retransmissions are analyzed in [20]. In gkriigs possible to sep-
arate the detection of a spurious RTO from the actions tag@omagestion control
response, and employ a different response alternative wheat was described

4.3 Discussion of F-RTO Behavior in Specific Scenarios 63

above. We will discuss some of the suggested responseatites that could be
applied with F-RTO-based detection in Chapter 5.

An additional condition to the second step of the abovegmmesl algorithm
is thatif an ACK acknowledges the whole outstanding window up tdnitjleest
transmitted segment at algorithm branch (2a), the TCP seslgleuld not declare
the RTO spurious, but follow the conventional TCP behaviocommon case of
this is that the RTO was caused due to lost retransmissiahtherest of the win-
dow was successfully delivered to the receiver before th® Rtcurred. In this
case the ACK following the RTO acknowledges all of the ougiiag window,
and the F-RTO algorithm as described above could end up oritdgh branch
(3a) that is meant to be applied in the case of a spurious RT{3.cbndition was
left out from the above algorithm, because we apply a coasige/response after
a spurious retransmission timeout, and becausé&Jeelt or Lose It- type burst
avoidance in Linux ensures that the TCP sender is never nggnessive than it
is in slow-start. Therefore in this case there is no risk afgastion control viola-
tion or performance penalty. However, considering the $eRTO as a generic
detection mechanism for spurious RTOs the additional ¢mmdgiven above is
recommended. The algorithm in the IETF specification of FOR&quires apply-
ing the above condition [144].

Branch (3a) can also be taken in a special case when the Ri@Ds#atission
is lost after a spurious retransmission timeout. Becausetknowledgements
of the original transmissions arrive at the sender, it cartinoe transmitting new
data without noticing the loss of RTO retransmission. Beeany packet loss can
be a sign of congestion, fully undoing the congestion cém@sameters would be
a violation of the congestion control principles. The sagweue also for the Eifel
algorithm, but with DSACK it is possible to notice that the ®Tetransmission
did not reach the receiver. Therefore, we consider thataieduthe congestion
window to half of its previous size is an adequate action iatpoint, because a
similar action is taken when the TCP sender enters fast ezgov

4.3 Discussion of F-RTO Behavior in Specific
Scenarios

In this section we discuss the different reasons that magecthe RTO to expire
and study the different scenarios after a retransmissioedut has expired due
to these reasons. We compare the packet traces produceptiusinonventional

RTO recovery and using F-RTO, and discuss the differencéisedtiwo recovery

methods Selective Acknowledgements (SAQIK)/] andlimited transmitf7] TCP

64 4 F-RTO: A Recovery Algorithm for TCP Retransmission Timeouts

enhancements are used in the examples presented in thisiseotce SACK can

be considered rather widely deployed today, and limiteddmnzit is a sender-side
modification that can be implemented with F-RTO to furthepiove the TCP

performance. However, the F-RTO algorithm does not reqeitieer of these

enhancements to be present.

4.3.1 Sudden delays

Recovering efficiently from spurious retransmission timmsds the main motiva-
tion of the F-RTO algorithm. Figure 4.1 compares the pacdiates of the con-
ventional RTO recovery and F-RTO. Figure 4.1(a) shows thatdonventional
recovery method eventually retransmits the whole windowegfments unneces-
sarily, since the acknowledgements of the originally traitted segments arrive
at the sender after the RTO. When the retransmissions atitlee receiver, it
generates a duplicate ACK for each arriving retransmisdioms causing an un-
necessary fast retransmit at the TCP sender.

Figure 4.1(b) shows that F-RTO avoids the unnecessarynstrigzsions fol-
lowing the spurious RTO. The first acknowledgement arriviighe sender af-
ter the RTO advanceSND. UNA, and the sender transmits two previously unsent
segments. The second ACK arriving after the RTO acknowledge originally
transmitted delayed segments, hence the sender contiamssnitting new data.
However, since the congestion window was reduced after @, Rhe sender
waits for a few acknowledgements without sending new seggrterbalance the
number of packets in flight towards the present congestioow size.

4.3 Discussion of F-RTO Behavior in Specific Scenarios 65

Sequence number, bytes

Sequence number, bytes

Figure 4.1:
delay.

3.8

37

w
~

3.3

DUPACKS caused
by out-of-order
segments

RTO expires

-- delay
pkt loss

—=— data sent

—— ack rcvd
3.2 | | 1 1 1 ! 1 1 | H
16 165 17 175 18 185 19 195 20 205 21
Time, s
(a) Conventional RTO recovery.
x 10
F-RTO continues b
381 sending new data
3.7+
F-RTO transmits
two new segments— .
36 on first ACK 1
35 —
Next ACKs
34 advance ||
’ A | SND.UNA
pkt loss
—— ack revd
3.2 I I I | | | | 1 | iul
16 165 17 175 18 185 19 195 20 205 21
Time, s
(b) F-RTO recovery.
Comparison of the conventional RTO and F-RT@rafh excessive

66 4 F-RTO: A Recovery Algorithm for TCP Retransmission Timeouts

4.3.2 Lost retransmission

A common reason for triggering TCP RTO is the loss of a retrd@tisd segment.
Once a segment has been retransmitted, it can only be netitse$ again after
the RTO expires. Figure 4.2 compares the packet traces abtineentional RTO
recovery with the traces of the F-RTO recovery when a retraibed segment is
lost and it is retransmitted again as triggered by RTO. Oneragtice that the
behavior of the conventional RTO recovery and the F-RTOvegpois similar. In
the scenario shown, both variants get to transmit two newsegs after the RTO,
and then proceed with transmitting new data.

Figure 4.2(a) shows that when the RTO retransmission aravehe receiver,
it acknowledges the whole window, and the conventional T&fler can proceed
with sending new data in slow start. In the presented cas&+4R&O recovery
shown in Figure 4.2(b) differs from the conventional reagvenly by not enter-
ing slow start after the RT®O Because the next ACK arriving at the sender after
the RTO acknowledges all outstanding packets, that is,rexd&SND. UNA, the
F-RTO sender transmits new segments using congestionaaaad Instead of
setting the congestion window to one segment, F-RTO deeseigo half of its
previous size. As one can see, the practical differencedmithe recovery alter-
natives is negligible because the number of outstandinggtaevas rather small
when the first packet loss occurred in the presented scenario

Using congestion avoidance instead of slow start after #T© recovery
does not limit the TCP performance in cases where the numbeuatstanding
segments is larger than in the example above. However, bedalRTO sets the
congestion window to half of its previous size when the nekihawledgements
advanceSND. UNA, and on the other hand, because we require using burst avoid-
ance with F-RTO, the conventional RTO recovery algorithrd BFRTO result in
similar performance. In our implementation the burst asoitk method decreases
the congestion window to allow transmitting at most thregnsents for the first
incoming ACK. If the congestion window size is reduced beltw slow start
threshold, the sender uses slow start in adjusting the stiogevindow when the
next acknowledgements arrive, like the conventional RT€dvery does.

2This is the scenario targeted at by the additional condigiwan in the end of Section 4.2.

4.3 Discussion of F-RTO Behavior in Specific Scenarios

Figure 4.2: Comparison of the conventional RTO and F-RT@raftlost retrans-

mission.

Sequence number, bytes

Sequence number, bytes

12000

11000

10000

9000

8000

7000

12000

11000

10000

9000

8000

7000

(b) F-RTO recovery.

F T T 1/ A
]
L B // -
7/
/
/
\ /
\ /
\ /
L \ / g
\ /
\ /
\ /
\ /
\ /
\ /-
7?*
fast retransmi RTO expireé = delay
S dropped pkt loss
—=— data sent
—— ack revd
1 1 1 1 1 1 1 1
55 6.5 7 75 8 85 9 9.5 10
Time, s
(a) Conventional RTO recovery.
Fr T T T T — =)
F-RTO continues by —
sending new data I
\ -
F-RTO transmits - //I
two new segments —
on first ACK /I
/
Y]
/ \
/ Next ACKs
/ advance
L \ / SND.UNA
\ /
N
RTO expires
-- delay
[: pkt loss
—=— data sent
—— ack revd
1 1 1 1 1 1 1 1
55 6.5 7 75 8 85 9 95 10
Time, s

67

68 4 F-RTO: A Recovery Algorithm for TCP Retransmission Timeouts

4.3.3 Burst losses

Because losses of several successive packets can resutitrargsmission time-
out, it is interesting to compare the F-RTO behavior with tbeventional RTO
recovery in such a case. Figure 4.3 compares the packetdfaloe conventional
recovery after a RTO caused by a window of lost segments Wwélptacket trace
of the F-RTO recovery. One can see from Figure 4.3(a) thaséigenent retrans-
mitted after the second RTO is successfully acknowledgiel, which the TCP
sender retransmits the rest of the lost segments in slow star

Figure 4.3(b) shows a similar scenario with a F-RTO senddreithe segment
retransmitted due to RTO is acknowledged, the F-RTO semndesrits two new
segments. Because several other segments were droppedlastiwindow, the
two new segments trigger duplicate ACKs. As given by the ORilgorithm, the
arrival of the duplicate ACK as the second acknowledgemaiaviing the RTO
makes the sender retransmit unacknowledged segmentsirstsld like the con-
ventional RTO recovery would do. When the second acknoveedmt after the
RTO arrives, the sender has a congestion window of three esgigmsimilarly to
the conventional RTO recovery after two round-trip timesorf this point on the
congestion window is increased according to the standafd d&dgestion control
specifications. More generally, if there are any packetsitothe last window of
data, the F-RTO sender enters slow start and retransmitsydeknowledged seg-
ments similarly to the conventional RTO recovery, becabsdwo new segments
transmitted after the RTO would trigger duplicate ACKs at thceiver.

In a scenario where all segments of the original window haenbost, as pre-
sented here, F-RTO has a side-effect of triggering an acletmement for every
incoming retransmission at the TCP receiver, because tiever is required to
send an immediate ACK when it has out-of-order segmentssibuftfers [11].
However, we believe this detail does not increase the stnreshe network sig-
nificantly, since it only affects the TCP sender’s transioissate during the slow
start.

3In this scenario also the first RTO retransmission happehs tost, but the second retransmis-
sion succeeds. However, the behavior of the algorithms dvbalthe same also in the case with a
successful first RTO retransmission.

4.3 Discussion of F-RTO Behavior in Specific Scenarios 69

x 10
351 =
341
3.3
unacknowledge
segments are
3.2r retransmitted

Sequence number, bytes
w
T

2.9 B
281 B
RTO expireg
2.7 B
-- delay
2.6 pkt loss
—=— data sent
251 . . ; ; ; ; ‘ L= ack revd
11 12 13 14 15 16 17 18 19 20
Time, s
(a) Conventional RTO recovery.
x 10*
350 T T T T *
F-RTO retransmits ~ /
unacknowledged 7
3.4F ! E
segments [
{
3.3 | 4

F-RTO transmits
two new segment] :
on first ACK) ;/

Sequence number, bytes

RTO expireg Second ACK B
is duplicate ACK

First ACK : 7
advances T delay
26 SND.UNA pkt loss
—=— data sent
—— ackrevd
25 L I I I 1 1 1 i
10 11 12 13 14 15 16 17 18 19 20

Time, s

(b) F-RTO recovery.

Figure 4.3: Comparison of the conventional RTO and F-RT@raftburst loss.

70 4 F-RTO: A Recovery Algorithm for TCP Retransmission Timeouts

4.3.4 Packet reordering

Packet reordering is a scenario worth discussing when atiatuthe F-RTO be-
havior, although packet reordering does not usually cehesectransmission timer
to expire. A more detailed study on the effect of packet reorgd) on TCP perfor-
mance can be found in [20], hence we only discuss here howRiEG-algorithm
relates to packet reordering.

A delayed segment that arrives at the TCP receiver out-adtoappears as a
hole in the sequence number space of incoming packets, #virsghlargely sim-
ilar effects on the TCP behavior to a dropped packet, as batewr segments
trigger duplicate acknowledgements. Packet reordering caaise fast retrans-
mit, but if there are no retransmission timeouts involvdwe E-RTO algorithm
does not change the TCP behavior from the conventional ezgo more inter-
esting scenario arises if the RTO timer expires while packetve at the receiver
out of order. If the out-of-order segments cause duplical& s to arrive at the
sender after the RTO, the F-RTO sender reverts to conveaitidmO recovery
and retransmits the unacknowledged segments. If the dkf@aekets trigger new
acknowledgements that arrive at the sender just after ti@, R¥e F-RTO sender
proceeds with sending new data. This is likely to be the cbraetion, because
the acknowledgements were triggered by a segment tramshhittfore the retrans-
mission timeout.

4.4 Performance Analysis

In order to validate the discussion in Section 4.3, we mag®e@xents in net-
works with characteristics similar to those that could bpested when commu-
nicating over a bottleneck wireless link to a fixed server imearby network. This
is a typical environment where scenarios presented in &edt3 may occur. We
compared the F-RTO performance to the performance achigitadhe conven-
tional RTO recovery, both with SACK TCP and with NewReno T®Raddition,
we conducted experiments with the Eifel algorithm [111].

4.4.1 Test Arrangements

The general test setup is illustrated in Figure 4.4. We etaulze wireless link
and the last-hop router by using a real-time wireless ndtwanulator [100]. The
end hosts are Linux systems, in which we implemented the B-BRIGorithm.
The fixed link is an isolated LAN that is connected to the resrtoist and to the
network emulator.

4.4 Performance Analysis 71

Mobile Host Last-hop Router Remote Host

router buffer
TCP sink LB | 288kbpg LB 111 100 Mbps () TCP source
[)EE wireless link m]{ } fixed link | _)

LB = link buffers

Figure 4.4: Test setup.

We selected the link parameters to approximate the prasedf a typical
wireless wide-area networking system, such asGemeral Packet Radio Ser-
vice (GPRS)35]. The emulated wireless link has a bandwidth of 28,808 domd
a propagation delay of 200 ms. The last-hop router has arrbuftier for holding
seven packets, which is sufficient for storing the output’sirbandwidth-delay
product’s worth of data, to be able to keep the wireless litilkzad on short pe-
riods of disruption in data transfer, for example after Hakel retransmissiofis
In addition to the router buffer, the emulated wireless lirses a link send buffer
and a link receive buffer for both uplink and downlink traffi&ny link that pro-
vides a retransmission mechanism needs to have a certainnarabbuffering
capacity. The link send buffer holds frames that have nobgen acknowledged
as received, and the link receive buffer collects out-afeorframes for delivering
them to the upper layer receiver in the correct order. THe linffers have a size
of 1776 bytes, which is large enough to cover the bandwidiaydproduct of the
link.

We use three different experimentation setups that coorebpo the scenarios
presented in Section 4.3. We made one set of experimentsawitiieless link
that does not drop packets, but randomly inflicts sudderyddta some packets.
Another set of experiments was made using an unreliablettiakdrops random
packets with given packet drop probabilities. Finally, esments were conducted
by having periods of persistent packet loss on the link. Tritedcenarios are listed
below:

e Sudden delays Since the primary motivation of the F-RTO algorithm is to
improve the TCP performance when sudden delays cause spugtrans-
mission timeouts, we start by a scenario that involves sudiééays on the
link. We explained the possible reasons for a sudden deldhewireless
access network in the introduction. Such a delay can ocouexXample,
due to loss burst with a link layer protocol providing highgersistent re-

“We applied a MTU size of 296 bytes in these tests due to the stitheneck link used in our
setup. This is in accordance with the IETF recommendatidip [4

72 4 F-RTO: A Recovery Algorithm for TCP Retransmission Timeouts

liability. During the delay the wireless link receiver doest deliver any
packets forward. In this scenario a packet is delayed wittohgbility of
0.02. The random delay lengths are exponentially distthwith a mean
delay length of 3.5 seconds. Exponential distribution heanlreported to
characterize the length of the loss periods on a wirelegsridasonably
well [102]. Even though the link is reliable in this scenaniacket losses
may occur due to congestion at the last-hop router.

e Packet losses In this scenario a packet is randomly dropped by the link
with given probability. This scenario models the case of areliable link
layer over a lossy link. Therefore the packet delays on thie dire fairly
constant. We tested packet loss probabilities of 2 %, 5 %,18n%. The
packet losses are uniformly distributed. The main purpdsbese scenar-
ios is to test that F-RTO does not cause harmful effects onsporious
RTOs when the retransmission timeouts occur due to lost setgmThese
timeouts occur mainly when retransmissions are lost, slastoriginal
packets are usually recovered by fast retransmit.

e Bursty losses This scenario is to model the effect of link outages when
the link layer is not reliable and drops several successagkgts. The link
conditions are split into two distinct states. In a goodestat packets are
dropped at the link. When the link is in bad state, all packetsoth direc-
tions are lost. The link layer does not retransmit any packehe two states
alternate randomly. The good state length is uniformlyritisted between
0.1 seconds and 20 seconds. The bad state duration is exiadipentis-
tributed with a mean of 3.5 seconds. This is a common losenpaitt some
scenarios with wireless hosts, and often results in a retnigsion timeout.

In each of the scenarios presented above we test five TChhitgbased on
the TCP implementation of Linux kernel version 2.4.7 [14Fpr the purposes
of the experiments, we disabled the ratehalving algorittseduby default in the
Linux TCP implementation, and made small modifications tplement the Eifel
algorithm as it has been defined by its authors [211h addition, we modified
the SACK loss recovery to behave similarly to the consereaigorithm recently
published by the IETF [23]. Firstly, we test a SACK TCP [117iwthe conven-
tional RTO recovery, and with the F-RTO recovery. Secondly,do experiments
with a NewReno TCP [56] with both conventional and F-RTO ety algo-
rithms. Finally, we test a TCP variant using the TCP timegtaption both with

The recent Linux kernels implement a timestamp-based tietealgorithm similar to Eifel,
but there are a couple of minor differences to the algoritescdbed in the original article.

4.4 Performance Analysis 73

the SACK TCP and with the NewReno TCP. This variant impleméné Eifel
algorithm based on the use of TCP timestamps. Our Eifel semg#ementation
continues transmitting new data and reverts the changes wrathe congestion
window andsst hr esh when it detects a spurious timeout from the timestamps.
The limited transmit algorithm [7] is used with all TCP altatives.

We use unidirectional 100 KB bulk transfers from the fixed sodrce to the
mobile end sink as the workload. The data is transmittedguairsingle TCP
connection using a maximum segment size of 256 bytes. A smagthent size
is recommended for slow links in order to achieve betterrattve response
times [121], although this is a factor not significant in oests. For each sce-
nario and TCP variant the experiment is repeated 30 times.

4.4.2 Results

We present the results of the experiments by using box-pégrdms. The dia-
grams compare the throughput of each TCP variant evaluatéekiexperimen-
tation. The box-plot diagram shows the median throughputife 30 repetitions
with a horizontal line splitting the filled box. The lower andper edge of the box
represent the 1st and 3rd quartiles of the test resultseotisply. The whiskers
are drawn at the minimum and the maximum throughput measwuitadhe TCP

variant. On rare occasions some test runs were involved avitiotably differ-

ent number of RTOs than the majority of the tests due to ram#ss of the link

events. Because the RTOs typically have a strong effectom@P performance,
the minimum or maximum throughput values may appear to dd@msiderably

from the results within the upper and lower quartiles in sarases.

In addition to the box-plot diagrams we show with each sderatable pre-
senting the median values for connection elapsed time feordiag the first SYN
packet to receiving the last FIN acknowledgement at the exertide number of
packet losses, and the number of retransmitted segmen&cbfleCP variant. If
the number of retransmissions is higher than the numbersbfdackets, at least
some of the retransmissions are made unnecessarily. Othierand, the num-
ber of lost packets can be higher than the number of retraassomis, because lost
acknowledgements do not necessarily trigger retransomssi

Sudden delays

Figure 4.5 shows the box-plot diagrams of the throughputsunesl with different
TCP variants. Additionally, Table 4.1 shows the median &slior the connection
statistics described above. The results show that using®-Rproves perfor-
mance over the conventional RTO recovery both with the SACQKTand with

74 4 F-RTO: A Recovery Algorithm for TCP Retransmission Timeouts

the NewReno TCP. The number of unnecessary retransmissitimshe F-RTO
algorithm is considerably smaller than with the converdidRTO recovery algo-
rithm, resulting in improved throughput with the F-RTO aigom. Apart from

small random variance, there is no significant differenagvben the SACK TCP
and the NewReno TCP, when RTOs are triggered by excessiagslel

1600 1800 2000 2200
1 1
4
4

throughput (bytes/s)
1400
!
C— 11

1200

8
S - "
-

l il l !
S | " ' : : +
«© s 4

T T T ‘ T T T

Eifel F-RTO Regular | Regular F-RTO Eifel
SACK : NewReno

Figure 4.5: TCP performance with different variants witltessive delays on the
link.

The Eifel TCP avoids most of the unnecessary retransmissionilarly to the
F-RTO algorithm. However, the Eifel sender reverts the estign control pa-
rameters back to the values preceding the spurious RTO, @mihaes sending
at the previous rate although the last-hop router could raihdhe queue dur-
ing the delay. Hence, Eifel typically has more packet loshgs to congestion
than F-RTO, resulting in a slightly lower throughput tharRFO. This suggests
that responding to the spurious RTO by directly reverting ¢bngestion control
parameters may be too aggressive an action to take.

4.4 Performance Analysis 75

Table 4.1: Results of the tests with sudden delays. The megihies of 30
repetitions.

TCP Variant Time (s) | Pkts | Nr. of
/100KB | Lost | Rexmits
Eifel w/ SACK 77.94 11 16
F-RTO w/ SACK 76.23 4 12
Regular SACK 94.13 9 57
Regular NewReno | 90.72 10 60
F-RTO w/ NewReno| 75.18 6 13
Eifel w/ NewReno | 79.21 11 19

Table 4.2: Results of the tests with packet errors. The meditues of 30 repeti-
tions.

TCP Variant Time (s) | Pkts | Nr. of
/100KB | Lost | Rexmits
Eifel w/ SACK 80.68 39 26
F-RTO w/ SACK 75.69 36 24
Regular SACK 76.18 36 22

Regular NewReno | 82.38 36 26
F-RTO w/ NewReno| 81.67 36 26
Eifel w/ NewReno | 89.64 38 27

Packet losses

Figure 4.6 illustrates the throughput distribution witffelient TCP variants when
the wireless link has a packet loss rate of 5 %. The trend \Wwafpacket loss rates
of 2 % and 10 % is similar: the performance of F-RTO is not dédfe from the
performance achieved with the conventional RTO recovegardless of whether
SACK or NewReno TCP is used. In these tests the retransmisisieeouts are
usually due to lost retransmissions. After the TCP sendsrdugcessfully re-
transmitted the segment that triggered the RTO, it can lyspadceed with trans-
mitting new data. Table 4.2 shows that the number of retréssans are similar
with all TCP variants tested. As expected, the SACK TCP imgsahe perfor-
mance over the NewReno TCP, since there are often multiglegp#osses in one
round-trip time, and SACK recovers more efficiently in suateae.
Eifel TCP using SACK and TCP timestamps has a lower througkipan

SACK TCP without timestamps. However, a closer examinatibrthe TCP

76 4 F-RTO: A Recovery Algorithm for TCP Retransmission Timeouts

1800
!
B

1600
-4

throughput (bytes/s)
1400
!
T3}

1200
|

+

1000
1

'
4

T T T : T T T
Eifel F-RTO Regular | Regular F-RTO Eifel

SACK : NewReno

Figure 4.6: TCP performance with different variants witttlet drop probability
of 0.05.

packet traces does not show any problems related to the &geltithm. The

difference is explained due to use of the TCP timestampsctwhdds 12 bytes
of overhead to each packet transmitted, resulting in apprately a 4 % increase
in the number of packets to send with the small segment sizeave using. By

using a larger segment size the additional packet overheadivihave had less
effect on the results.

Bursty losses

Figure 4.7 shows that the TCP performance with F-RTO doedliffer signifi-
cantly from the performance with the conventional RTO rexgwhen there are
link outages. As described in Section 4.3.3, the F-RTO samngiesmits segments
at a similar rate as the conventional RTO recovery, althaugansmits two new
segments before continuing retransmissions. The difterarf whether to trans-
mit the two new segments before or after the retransmissitwes not affect the
throughput. Use of the SACK TCP does not notably improve tdopmance

4.4 Performance Analysis 77

with bursty losses, especially if the losses trigger a retmaission timeout. After
the RTO the TCP sender retransmits the unacknowledged segineslow start,
regardless of whether SACK TCP or NewReno TCP is used. TaBlshbws the
median connection times and the retransmission statifsticthe different TCP
variants.

throughput (bytes/s)
1500 2000
!

1000

500

1
+

'
.

T T T : T T T
Eifel F-RTO Regular | Regular F-RTO Eifel

SACK : NewReno

Figure 4.7: TCP performance with different variants withrdiy losses on the
link.

The test results show that Eifel TCP gives a clearly worseugjinput than the
conventional TCP when SACK TCP is used. Our experimentsatedea signifi-
cant problem when using TCP timestamps for detecting urssacg retransmis-
sions in Eifel TCP. We will describe the problem below.

When the link is in the bad state as in our link outage scenatigpackets
are dropped for a period of time. Therefore, the latest catiud acknowledge-
ments generated by the receiver are also dropped by theTinis. usually leads
to a retransmission timeout and an unnecessary retrarismisa segment that
had already arrived at the receiver, but for which the ackeadgement was lost.
When this unnecessary retransmission arrives at the escéiappears as an out-
of-order segment and generates a duplicate ACK carryingestiamp of an ear-

78 4 F-RTO: A Recovery Algorithm for TCP Retransmission Timeouts

Table 4.3: Results of the tests with bursty losses on the [iiiie median values
of 30 repetitions.

TCP Variant Time (s) | Pkts | Nr. of
/100KB | Lost | Rexmits
Eifel w/ SACK 123.89 | 50 45
F-RTO w/ SACK 64.94 42 40
Regular SACK 71.23 42 39
Regular NewReno | 74.48 42 43
F-RTO w/ NewReno| 67.80 39 43
Eifel w/ NewReno | 80.03 42 42

lier data segmefit Furthermore, because the earlier acknowledgements wstre |
during the link outage, the duplicate ACK appears as an aclentyement for
new data to the TCP sender. Therefore, the Eifel decisiagsrdéclare that the
retransmission was spurious, although a number of dataerggrwere lost in the
last window.

The Eifel sender responds to the spurious retransmissitination by send-
ing new data and reverting the congestion control variabiesvever, in the case
described above the sender gets back duplicate ACKs betlaersewere data
segments missing. The sender enters fast recovery due doptieate ACKs and
reduces the congestion window. At this point the sendersssgmding data for
a while to balance the number of outstanding packets to thgestion window
size. Because the sender needs to wait for the halved camyeshdow’s worth
of acknowledgements to arrive before it can continue rstratiing, and on the
other hand, many of the packets were dropped due to link euthg pipe runs out
of packets while the sender is waiting for incoming acknalglements. There-
fore, the Eifel sender has to wait for another RTO to contitigeretransmissions
for the rest of the lost segments. This leads to a significegtatlation of through-
put. Unlike SACK, the NewReno TCP ensures that a retrangmniss made for
each partial ACK. Therefore the Eifel sender often avoidsgbcond RTO with
NewReno.

The events presented above showed up very frequently inkperienents with
bursty losses, which explains the poor throughput of EifeéPTin these tests. The
reported behavior is specific to TCP timestamps used as #@atiah of spurious

®The specification for TCP round-trip time measurements [2gjires that the echoed time-
stamp should correspond to the most recent data segmeiatoveiced the window

4.4 Performance Analysis 79

retransmissions, and we do not believe it to show up, if soimeranechanism was
used for indicating spurious retransmissions instead ¢ Ti@estamps Further-
more, our preliminary tests show that if F-RTO recovery imbined with Eifel,
the problem described above does not appear.

4.4.3 Fairness towards conventional TCP

We expect the connections using the F-RTO algorithm to lendfy towards
the TCP connections with conventional RTO recovery, bez&uRTO is ACK-
clocked and it transmits data at an equal rate as the coowahil CP. We back up
this reasoning by conducting experiments that use six lehtailk TCP connec-
tions as a workload over the bottleneck wireless link. Theklead is separated
in two connection sets having three connections each. The CP connections
in connection set 1 are started at the same time, and thetbileer TCP connec-
tions in connection set 2 are started three seconds aftdirthe&onnection set.
The purpose of this study is to measure how much the conmecittoconnection
set 2 interfere with the data transfer in connection set heEislly, the effect of
the new F-RTO connections on the ongoing TCP transmissiomsid not differ
from the effect of conventional TCP connections.

The test setup with multiple TCP connections is similar ®dbtup presented
earlier in Figure 4.4, with the exception that it consistssiof TCP connections
separated in two connection sets. Connection set 1 congigteee TCP connec-
tions that use the conventional RTO recovery. Connectit2 sas another three
TCP connections that use F-RTO in test A, and the conventi®h@ recovery in
test B. All connections transfer 50 KB of bulk data from theno¢e host to the
mobile host. This experiment was made both with and withdditeonal sudden
delays on the link. As with the experiments described eathe bottleneck link
bandwidth is 28,800 bps and the input queue length is 7 paickgécting packets
from six bulk TCP connections on this kind of network resitsevere conges-
tion that causes a number of packet losses and RTOs triggeted TCP sender.
We repeated the experimentation 20 times.

For each connection set we measured the throughput of thecb@iection
that was the last to finish its data transfer, i.e. the sloweshection of its con-
nection set. This metric gives a coarse understanding aheutirness between
the TCP connections, because a low throughput of the sloveestection often

’Some TCP implementations do not strictly follow RFC 1323 bhaing the timestamp of
a retransmitted segment arriving out-of-order at the regei Such implementation would have
avoided the problem described here, but may have otherimegdatplications to round-trip time
measurement.

80 4 F-RTO: A Recovery Algorithm for TCP Retransmission Timeouts

indicates that the other connections have used a largez shtte common band-
width. Correspondingly, a high throughput of the slowestreection indicates
that the equality between the parallel connections is bétt@addition, we present
the throughput distribution of the fastest connectiond@donnection sets.

Figure 4.8 on page 82 shows the results of tests with additidelays. Fig-
ure 4.8(a) shows the throughput distribution of the fastestnection for both
connection sets in test A using F-RTO connections in commedet 2, and in
test B using the conventional RTO recovery in all TCP corinest Figure 4.8(b)
gives the throughput of the slowest connections in the occtioresets. The box-
plot diagrams show that the connection sets between testiAeahB give similar
performance. This indicates that the influence of the thee R-RTO connec-
tions on the existing TCP connections on the link is not déife from the effect
of starting three new conventional TCP connections. Shigjléhe results of the
experiments without random additional delays do not shgmiicant difference
between the test runs involving F-RTO connections and ttertigs having only
TCP connections with the conventional RTO recovery. Theltesupport our
reasoning of F-RTO being friendly towards the TCP connestiwith the conven-
tional RTO recovery.

4.5 Summary

In this chapter we have shown that it is possible to avoid mabte unnecessary
retransmissions following the spurious TCP retransmis$iimeouts without any
additional information in the TCP packet headers. We pitesetihe F-RTO algo-
rithm that avoids the unnecessary retransmissions fafigwhe spurious RTO by
determining based on the incoming acknowledgements whaihetransmit or
continue sending new data. In addition, because the use ¢f-RTO algorithm
effectively avoids unnecessary retransmits, it obvidtedNewReno “bugfix” rule
that disables fast retransmit during an RTO recovery. Thisva more efficient
recovery from packet losses in some scenarios. An F-RTOesdotlows the
conventional TCP congestion control principles by beingckéd by incoming
acknowledgements and by sending data at an equal rate asnventional TCP.
We showed by experiments that F-RTO improves the TCP pedoo@ when
there are sudden delays on the link, and it yields competjirformance if the
RTOs are caused because of other reasons than delays.

We compared F-RTO with the Eifel algorithm and concluded their perfor-
mance is similar in the majority of cases. The Eifel algaritban perform better
than F-RTO, if packet reordering or packet losses are ptésethe two next seg-
ments following the RTO. Eifel makes the detection of spusi®TO already on

4.5 Summary 81

the first incoming ACK after RTO, whereas F-RTO is able to ditiee spurious
RTO after two acknowledgements have arrived. However, istrodthe cases
F-RTO avoids unnecessary retransmissions as successfuliyfel does, and af-
ter one window has been transmitted, it has delivered thee samount of data
as Eifel. On the other hand, while making the detection afiteeincoming ac-
knowledgement, the Eifel algorithm can end up at a falsetipestonclusion, if
the outstanding acknowledgements and data segments hawvdosein the same
window due to a loss burst. The DSACK-based algorithms atelinectly com-
parable with F-RTO, since they are not able to detect spsrietransmissions
until one window of data has been transmitted and therefarmat be used for
avoiding unnecessary retransmissions.

In addition to the experimentation setup chosen for thigtdrawe have con-
ducted less systematic tests on F-RTO during its developamehtesting process
in a variety of different network characteristics to verifyat it does not harm
the TCP behavior under different circumstances. There laretasts conducted
by some commercial vendors who have decided to adopt F-RTO.DbCoMo
has published their results [167, 72], and we are also awfaserme unpublished
positive results. For example Microsoft discussed thesitpe experiences with
F-RTO in an IETF meetiriy

We have verified the F-RTO algorithm by implementing it in thiaux OS
and running experiments by emulating the expected behafibie wireless link.
Taking this approach makes it possible to study the F-RT@paeance in a real
network environment when the TCP traffic is generated by tiramonly used
network applications. We have also contributed our impletai@on to the Linux
kernel development, and F-RTO is included in the Linux kerrstarting from
version 2.4.21, and in all Linux 2.6 kernels. Therefores possible for the reader
using Linux to try out the F-RTO algorithm by getting a receptsion of the
Linux kernel.

8Presentation slides from Microsoft are available at the AE®nline proceedings at
http://ww3.ietf.org/proceedi ngs/07mar/slides/tsvarea-3/sld9. htm

82 4 F-RTO: A Recovery Algorithm for TCP Retransmission Timeouts

-
3 .
3)
)
|
o)
8 ,
3 '
|
’V} '
2 '
£ g '
5 9 1 T
=3 ! \ - -
= ' ' '
=) ! ')
=3 ! ' '
I} ! '
c 8 Q Q E
o
K Q
‘ ; 1 ;
-~ ! ' '
o ') .
& < x
=}
o
—
T T T T
test A/set 1 test Afset 2 test B/set 1 test B/set 2
(a) Fastest connections.
3 \
8
© !
o '
8 4
wn '
’V} '
o I
£ g !
- Q
s 3 i
Qo '
= 1
[=2]
=3
I} - . -
- : T ; T
®) ! i '
' ' ' '
. ' '
. H H H H
S 0 !
« o o ' .
.
[=]
8 4
S i
T T T T
test A/set 1 test Afset 2 test B/set 1 test B/set 2

(b) Slowest connections.

Figure 4.8: Effect of parallel connections on TCP perforoeanTest A includes
three F-RTO connections, test B uses only conventional RETOvery.

CHAPTER 5

Enhancements on F-RTO

Two problem cases were identified concerning the F-RTO #hgorin Chapter 4,
although they did not have a meaningful effect on perforreancthe presented
experiments. First, the presence of packet reordering aasecthe F-RTO sender
to enter the conventional RTO recovery with go-back-N retraissions even if
the RTO was spurious. Similarly, duplicate ACKs during T@Btfrecovery often
prevent the F-RTO algorithm from working. Second, if thed®mdoes not have
new data to transmit, or the receiver’s advertised windoasdwt allow the sender
to transmit new data in F-RTO algorithm step 2, the sender nodyproceed to
detect whether the RTO was spurious. We discuss both of dasss and possible
solutions for them in this chapter.

In this chapter we present an enhancement of the F-RTO lbgicuses the
information in the TCPSelective acknowledgments (SA®)ion [117], if avail-
able. By using SACK, the F-RTO algorithm may detect spuriBi©s that oc-
cur during loss recovery, which is not possible with the b&siRTO algorithm.
Because packet losses may occur frequently on a congestedrkethis is a
considerable benefit.

Another topic investigated in this chapter are actionsrake congestion con-
trol after a spurious retransmission timeout. In our measents in Chapter 4 we
reduced the congestion window and slow start threshold Hfoaffier a spurious
RTO was detected. We considered this conservative enougaribus possible
scenarios. However, reducing the congestion control pat@rs may not be the
best alternative in all situations, especially when theneation path has a high
bandwidth-delay product. In the research and standardizérums there have
been different suggestions from entering slow start aftgpuious RTO [157] to
fully reverting the congestion control parameters to tladespreceding the spuri-
ous RTO [110].

83

84 5 Enhancements on F-RTO

The rest of this chapter is organized as follows. Sectiondedcribes the
SACK-enhanced version of the F-RTO algorithm. Section s2u$ses the dif-
ferent response alternatives to a spurious RTO that wilktbeied in this chapter.
Section 5.3 describes the measurement environment weiagetagest the differ-
ent response alternatives. Section 5.4 describes thdgedithe measurements.
Section 5.5 discusses some additional considerations @KS#ased F-RTO, and
Section 5.6 gives a brief summary of this chapter.

5.1 Detecting Spurious RTO with TCP SACK
Option

Although we use the F-RTO algorithm for detecting spuriod$R, most of the
congestion control related considerations in this studyukhbe applicable to
other detection methods, such as the Eifel detection ahgori The idea of the
F-RTO algorithm is that, if the sender gets an acknowleddraftaer an RTO for a
segment that was not yet retransmitted due to the RTO, thaesgtgor the corre-
sponding acknowledgment must have been outstanding inetfveork while the
RTO occurs, and the RTO has likely been spurious. If no sudltations ap-
pear within two round-trip times after the RTO, it is not deeld spurious. As
described in Chapter 4, the F-RTO algorithm is also robuatires packet losses.

If the RTO is not spurious, but caused by data loss, a suedd3$D retrans-
mission results in advancement of the cumulative ACK painthie first non-
received segment. Because the F-RTO sender continues rigmitéing previ-
ously unsent data, a duplicate ACK follows, since the segsnappear at the
receiver as out-of-order segments. This causes the F-Rideséo retransmit the
unacknowledged segments in the conventional way.

As discussed in the beginning of this chapter, the dupliaekmowledgements
from packets that have been reordered in the network butosbthn prevent the
F-RTO algorithm from working. A potential solution for ent@ng F-RTO in the
face of reordering comes with the availability of the TCP Aa@ption. By using
the information in the SACK blocks after an RTO, the TCP semd@ recognize
acknowledgments for segments transmitted before the Rt@as detect a spu-
rious RTO according to the principles given in Section 4.8reif there were du-
plicate ACKs arriving. Furthermore, availability of the SK information makes
it possible to better utilize the F-RTO algorithm duringtfescovery periods. In
this chapter we study the performance benefits of applyiads#CK information
in the F-RTO algorithm.

If the TCP endpoints have the SACK option available, manyhef E-RTO

5.1 Detecting Spurious RTO with TCP SACK Option 85

problem cases related to duplicate ACKs can be avoided. R@KSnhanced
F-RTO algorithm is implemented at the sender as follows.

1. When the RTO expires, retransmit the first unacknowledgehesgg Set
variable send_hi gh to indicate the highest segment transmitted so far.
Following the recommendation in SACK specification [11@ket the SACK
scoreboard.

2. Wait until the acknowledgment of the data retransmitted @uthe time-
out arrives at the sendeif duplicate ACKs arrive before the cumulative
acknowledgment for retransmitted data, adjust the scareband the es-
timate of the number of outstanding segments accordingeadntoming
SACK information. Stay in step 2 and wait for the next new awkiedg-
ment. If RTO expires again, go to step 1 of the algorithm.

(a) if a cumulative ACK acknowledges a sequence number (snthhn

(b)

sendhigh, but larger than SND.UNA) transmit up to two new (previ-
ously unsent) segments and proceed to step 3. If the TCPrsisnde
not able to transmit any previously unsent data — either duedeiver
window limitation, or because it does not have any new datetal

— it is possible to apply some of the alternatives for harmgiinndow-
limited cases discussed in Section 5.5.2. The sender carsiatply
refrain from entering step 3 of this algorithm, and continuéh slow
start retransmissions following the conventional RTO vwery algo-
rithm. However, in the latter case the spurious retrangonistmeout
remains undetected.

else, if a cumulative ACK acknowledges a sequence nuetdpgal to
send_hi gh, revert to the conventional RTO recovery and set the con-
gestion window to no more than 2 * MSS, like a regular TCP would
do. Do not enter step 3 of this algorithm, but apply normal R€©
covery.

3. The next acknowledgment arrives at the sender. Eitheplocdte ACK or
a new cumulative ACK (advancing the window) applies in thégps

(@) if the ACK does not acknowledge sequence numbers above

send_hi gh AND it acknowledges data that was not acknowledged
earlier (either with cumulative acknowledgment or usingzk2blocks),
declare the timeout spurious and continue transmitting deta. The
retransmission timeout can be declared spurious, bechesegment
acknowledged with this ACK was transmitted before the tioieo

86 5 Enhancements on F-RTO

(b) if the ACK acknowledges a sequence number atmead_hi gh,
either in SACK blocks or as a cumulative ACK, set the congesti
window to no more than 3 * MSS and proceed with the conventiona
RTO recovery, retransmitting unacknowledged segmentke Tlais
branch also when the acknowledgment is a duplicate ACK aghakis
not acknowledge any new, previously unacknowledged da@anbe
send_hi gh in the SACK blocks. Apply normal TCP recovery.

If the retransmission timeout is declared spurious, the E€Rder continues
by sending new previously unsent data, and applies one ofahgestion con-
trol alternatives described in Section 5.2. If during thexalsmentioned steps
after the retransmission timeout there are unacknowletgées between the re-
ceived SACK blocks, those segments are retransmittedasisnilo the conven-
tional SACK recovery algorithm [23]. Similarly to the bagtecRTO algorithm,
if the SACK-based algorithm declares the RTO spuriasnd_hi gh is set to
SND.UNA, thus allowing fast recovery on incoming duplicatknowledgments.
This is possible because the problem of multiple fast retrdts cannot occur
in this case, as discussed in Section 4.2. The SACK-basedagcalgorithm
specified by the IETF uses tiigecoveryPoinvariable for this purpose [23]. The
Linux implementation of this algorithm applies thise It or Lose lttype burst
avoidance similarly to the basic F-RTO algorithm.

The SACK-based algorithm allows declaring an RTO spuridee when a
duplicate ACK arrives, if the SACK blocks indicate that sonmm-retransmitted
data segments have arrived at the receiver. Therefore ildglgmhance TCP per-
formance in cases where there was packet reordering or phkodsein addition
to the delay spike that caused the spurious timeout. Edpyetiee SACK-based
algorithm allows detecting a spurious RTO also during thePTI@ss recovery
phase.

5.2 Responding to Spurious RTO

Once a spurious RTO is detected, the TCP sender should detidetions fol-
lowing the spurious RTO. Obviously, no packets should berassl lost, but
the sender should continue transmission as if the RTO nes@rred. A more
challenging consideration is, how the TCP sender shouldsadls congestion
control parameters and retransmission timer estimateadtideen suggested that
the congestion control parameters are reverted to the mtateding the spurious
RTO [111].

5.2 Responding to Spurious RTO 87

Even though a related study shows that fully reverting thagestion control
state after a spurious RTO is the most efficient alternativani environment with
relatively high bandwidth and delay [65], we are interestedtudying what are
the performance effects of doing so when the wireless linkdladth is lower
and the wireless access network is subject to competinictcaisisting of mul-
tiple parallel TCP transfers. Therefore, we evaluate thiopmance effects with
a more careful alternative of reducing the congestion winddter a spurious
RTO. Additionally, we study resetting the congestion wiwdo one segment and
continuing with slow start after a spurious RTO that has beeposed in the
TCP-related discussion forums.

We are studying three alternatives for handling congestanirol after detect-
ing a spurious RTO. The congestion window and slow-staestiold are adjusted
according to the descriptions below, if the F-RTO algoritdeclares the RTO
spurious in step (3a) of the algorithm presented above. |&iradjustments can
also be made in the basic F-RTO algorithm.

A related paper [65] has also selected similar congestiaonrabalternatives
under study in a simulation environment with consideralghkbr bandwidth and
router capacity. We believe none of the alternatives belmlates the TCP con-
gestion control principles, and all of them are less agiresbhan a conventional
TCP sender that does not detect a spurious RTO, and thusassaeity retrans-
mits segments in slow start after the spurious RTO.

e CC 1: Reduce congestion window and slow start threshold to Hfa This
is similar to what is done when a packet is lost, or when an iExglon-
gestion Notification [136] arrives at the sender. When impating this
alternative, a spurious RTO is taken as one kind of congestaification,
and the TCP sender reduces its transmission rate. It costdba thought
that a spurious timeout caused by an unexpected delay spiitelites to
a minor transient congestion peak at the router before thekbt link, be-
cause the incoming acknowledgments of the outstanding esignirigger
transmission of new packets at the sender.

e CC 2: Revert congestion contral This response alternative does not take
the spurious RTO as a congestion notification, but restdredransmis-
sion rate to the state preceding the spurious RTO. Afteictiatpa spurious
RTO, TCP slow start threshold and congestion window areodbiet earlier
values stored when the RTO occurred. However, the sendetsasending
bursts of packets due to increasing the congestion windolinfiting the
congestion window to be no more than three segments ovemntloerat of
outstanding data. We are interested in finding out how muishatterna-

88 5 Enhancements on F-RTO

tive increases the number of congestion losses in the nkehaod on the
other hand, whether this response alternative improve$ @t throughput
regardless of the increased level of congestion.

e CC 3: Reset congestion window to one segment but set slow dttrresh-
old to the value before RTO, if larger. This is similar to the traditional
way of adjusting the congestion window after an RTO, with ¢lkeeption
that the TCP sender does not retransmit segments aftertidgtec spu-
rious RTO. The TCP sender awaits acknowledgments for afitantling
segments before it continues transmission in slow staris iBhexpected
to be a useful action in cases where the spurious RTO is assdaoivith a
change in the network conditions, such as when a wirelesd-btiriakes
place.

5.3 Test Methodology

When inspecting the differences between different comgesontrol alternatives,
we are primarily interested in the following performancetrius.

e Throughput of the TCP connectionsis often the most important perfor-
mance metric for the end-user. Because we use several centliCP con-
nections in our performance tests, we report the lowest &kt through-
put measured from parallel TCP connections. Throughpuhefsiowest
TCP connection is often the most interesting, because Wwslibe nega-
tive effects of congestion and indicates the time takenawstmit all of the
data. Additionally, distance between the slowest and thbdst through-
put gives some understanding about the fairness betwegqratadel TCP
connections.

e Number of packet lossesSince in this study we assume the wireless link-
layer protocol to be reliable, all packet losses are due tgestion. There-
fore the number of packet losses indicates the level of csliggein the
network.

e Number of retransmissionsoften depends on the number of packet losses,
but because the link is prone to spurious retransmissioadits, there may
be substantial differences between the number of retrassonis and the
number of actual packet losses. The number of retransmsssanterest-
ing for the end-user not only because the retransmissiogiade the data
throughput, but because the wireless data user is oftegethdnased on the

5.3 Test Methodology 89
TCP Senders

TCP Layer 2 Layer 2 Wireless
Receiver proioco Wireless Link Protocol Access RO“tei/-
=

oo} = =22 o [T] & G

LL data & ACKs \-

Figure 5.1: Model of the simulation environment.

amount of bytes transmitted, regardless of whether theiddt@P retrans-
missions or original transmissions. The packet losseafisinissions ratio
tells how much there have been unnecessary retransmissidme lower
the ratio, the more inefficient the TCP sender is in terms ofegessary
retransmissions.

The performance measurements are conducted using Linwkhaestid. The
wireless environment is simulated using tBeawindreal-time emulator [100].
Seawind captures the IP packets transferred between thieosteland simulates
the wireless network characteristics according to giverapeters by delaying,
queueing and dropping packets in a real-time fashion. We balected network
characteristics that roughly resemble the expected ctaaistics of the 2.5G and
3G networks, but since the detailed behavior of those né&isvdepend on various
configuration parameters, we have our model at a rather igdegel.

Figure 5.1 illustrates the network setup we have in our parémce tests.
There are 1-3 TCP senders in the fixed network that transrtat @ancurrently.
Each TCP sender transmits a 200 KB-sized file to the wirelessiver using
packet MTU of 1500 bytds We model different wireless link bandwidths be-
tween 28 Kbps and 384 Kbps, whereas the fixed network betweerGP senders
and the wireless access router is a 100 Mbps LAN. The wirdildstas one-way
propagation delay of 200 ms. In total, packet round-tripetirare usually between
500 ms and 2000 ms, depending on the packet queue length atdbss router
and the available wireless bandwidth.

There are two types of buffering in the access network netttaavireless link.
First, there are IP-level router buffers that are configuedthold 7-30 packets,
depending on the bandwidth-delay product in the test seiraquestion. The
router buffer capacity is limited by the packet count, religss of the size of
the packets. Second, there are layer 2 buffers that are sizeatding to the

We assume a larger packet MTU than that used in Chapter 4useeee use larger link band-
widths in the experiments conducted in this chapter. 15@8sig a common value for MTU used
in various link technologies, including those based on Ei&e

90 5 Enhancements on F-RTO

bandwidth-delay product of the wireless link. Thus, theldiuffer capacity in
front of the wireless link is between 18-80 KB, dependinghmntest scenario.

We model two kinds of delay sources on the wireless link tiaaetbeen under
discussion in the TCP research community. Delayypk |is to model a mo-
mentary outage on the wireless link with a link level ARQ. Dgrthis period the
packets on the wireless link are lost. The link layer sendansmits the packets
until they are successfully transmitted. The probabilita delay event is 1 % per
packet, and the length of a link outage is exponentiallyritsted with a mean
length of 3500 ms.

Delay oftype Il stands for a wireless handover and the related events in the
wireless access network. After a handover and the related delay the link
bandwidth is randomly selected to either 28.8 Kbps, 64 Kbp4,28 Kbps, re-
flecting the different conditions in different wirelesslselin these tests the delay
spike of random length may occur with a change in the avalabhdwidth. There
are no losses on the wireless link in addition to those thataused by conges-
tion. The delay length is exponentially distributed with aan length of 3500 ms.
We have a simple model of rather quick random movement of @l@ss host. The
host remains in one simulated cell for a random time; in a@sé period there is
a 30 % probability that the host moves to another cell and amellvidth changes.

In our tests we primarily use a modified version of the Linurned that imple-
ments the standard retransmission timer algorithm [1273.discussed in Chap-
ter 3, the retransmission timer in the unmodified Linux kéinglementation
contains a few enhancements that are expected to improyetf@mance when
the packet round-trip times are highly variable. Accordiagur initial tests this
indeed appears to be the case, but a more detailed study diffiérent retrans-
mission timer estimators remains future work.

5.4 Test Results

We evaluated the regular SACK TCP and the SACK-enhanced®Hih three
different congestion control variants (CC 1, CC 2, and CCs3)escribed in Sec-
tion 5.2. This section describes the most interesting figslin various tests made
with different network parameters. Mean values of 30 repians are shown in
the tables below. The tables show the throughput of the slbasmed the fastest
TCP connection in bytes per second, the number of packetdassthe wireless
access router, and the number of retransmitted segments.

Table 5.1 shows results of two parallel TCP connectionsstratted over a
128 Kbps link that occasionally has delay spikes of delag tygescribed in Sec-
tion 5.3. In this test, the IP router buffer size was 7 packets expected, the

5.4 Test Results 91

regular TCP suffers from a substantially larger number afegessary retrans-
missions and thus results in lower throughput. F-RTO hetpavbid most of
the unnecessary retransmissions, although some arerssibipt, because the first
retransmission triggered by the RTO is often unnecessanyvaith F-RTO.

Table 5.1: Two TCP connections over 128 Kbps link, 7 IP bsffer

TCP Tput Tput Losses | Rxmits | Losses /
variant | low high Rxmits

(B/s) (B/s)
Regular | 4067 4891 25.3 50.1 0.50
CCi1 4602 5293 18.6 25.2 0.74
CC2 4480 5103 26.6 31.7 0.84
CC3 4427 5052 25.2 32.6 0.77

CC 1 halves the congestion window and the slow start thrdshibér a spuri-
ous RTO, and thus results in least congestion losses. C©® hadsthe best overall
throughput, indicating that saving in the number of pac&ssés is more useful in
terms of throughput than reverting the congestion windowstéull size. In these
tests the pipe capacity available per connection was rathal, so the advantage
gained by reverting the congestion window was not meaningfu

With the workload of one TCP connection over the 128 Kbps @& 2 and
CC 3yield better performance than CC 1, although they cause packet losses.
With only one TCP connection the congestion losses are nuaésa problem for
the performance as the underutilization of the link whendbegestion window
is reduced after a spurious RTO.

Table 5.2 presents the results with similar link setup td thaable 5.1, but
with an IP router buffer size of 30 packets, that is, largemthwvhat it recom-
mended for the wireless link in our model, considering itadwaidth-delay prod-
uct. With larger router buffer the packet round-trip times generally higher due
toincreased queueing delays. This makes the retransmigsior more conserva-
tive and causes less spurious RTOs due to delay spikes.da tbsts, CC 3 results
in the best performance and least packet losses. With arauger buffer, the TCP
sender can carry on with slow start after the spurious RTGéweral round-trip
times before suffering from packet losses due to congest@mthe other hand,
the narrow link between the sender and the receiver can he (tilized by a
congestion window of 6 segments that can be achieved in adendrtrip times
during slow start.

Table 5.3 shows the results with a link bandwidth of 384 Kbpsater buffer

92 5 Enhancements on F-RTO

Table 5.2: Two TCP connections over 128 Kbps link, 30 IP baffe

TCP Tput Tput Losses | Rxmits | Losses /
variant | low high Rxmits
(B/s) (B/s)

Regular | 4600 5358 22.0 47.3 0.47
CC1 4864 5485 235 27.6 0.85
CC2 4885 5409 28.6 33.1 0.86
CC3 5256 5847 22.9 28.5 0.80

of 30 packets, and three parallel TCP connections. The latkdelays of type
I, modeling sudden link outages. Again, the regular SACK T€Rery ineffi-
cient due to a large number of unnecessary retransmissio@sl has the least
packet losses, but even though CC 2 has almost twice as mekgtpasses, it can
achieve slightly better throughput than CC 1 both for théefstsand the slowest
connection. With CC 2 the difference between the fastestthedlowest con-
nection is larger than with CC 1, which suggests that CC 2 eaise unfairness
between the different TCP connections. With CC 1 the fuk lgapacity is not
efficiently used after a spurious RTO, because the sendacesdhe congestion
window. Using slow start after a spurious RTO gives the wogstilts, because
in that case the large link capacity is used rather ineffttjerurthermore, CC 3
has more congestion losses than CC 1 due to slow start owrdi#d, p. 11].

Table 5.3: Three TCP connections over 384 Kbps link, 30 |Rebsif

TCP Tput Tput Losses | Rxmits | Losses /
variant | low high Rxmits
(B/s) (B/s)

Regular | 4939 6131 29.5 104.2 0.28
CC1 5622 7073 22.7 37.0 0.61
CC2 5767 7512 40.0 55.4 0.72
CC3 5223 7082 30.7 46.5 0.66

Table 5.4 shows the performance metrics when transmittimgptarallel TCP
connections over a bottleneck link with variable bandwioftB8.8 Kbps, 64 Kbps,
or 128 Kbps. In this scenario we had type Il delays, i.e. wheelay spike oc-
curs, the link bandwidth may change at the same time. In tteste CC 3 that
does slow start after a spurious RTO is the most efficientradtere. CC 1 that

5.4 Test Results 93

decreases the congestion window and slow start threshtdd aaspurious RTO
has the least congestion losses, but it uses the link cgpaefticiently, especially
when the bottleneck link bandwidth increases after a depélyes CC 2 that re-
verts the congestion control parameters to the earlieregalilizes the link more
efficiently, but causes most congestion losses.

Table 5.4; Two TCP connections over link with bandwidth ttlsnges between
28.8 Kbps, 64 Kbps, and 128 Kbps.

TCP Tput Tput Losses | Rxmits | Losses /
variant | low high Rxmits
(B/s) (B/s)

Regular | 2660 3305 22.6 38.1 0.59
CC1 2587 3535 19.0 22.5 0.84
CC2 2654 3590 21.5 254 0.85
CC3 2878 3789 20.6 24.5 0.84

We made a set of tests with the basic F-RTO with three parediehections
to compare its performance with the SACK-enhanced F-RT®IeTa.5 shows
that the basic variant results in slightly reduced perfaroga when compared to
results in Table 5.3 made with the same network parametdrsiding SACK.
Because of the undetected spurious RTOs that occur durindods recovery
phase, the basic F-RTO has about 20 % more unnecessarysreitsaions than
the SACK-enhanced F-RTO. Otherwise the conclusions ardesito those made
for Table 5.5.

Table 5.5: Basic F-RTO over 384 Kbps link.

TCP Tput Tput Losses | Rxmits | Losses /
variant | low high Rxmits
(B/s) (B/s)

Regular | 4939 6131 29.5 104.2 0.28
CC1 5514 7086 31.2 52.1 0.60
CcC2 5899 7420 31.5 48.8 0.65
CC3 5359 6466 23.9 43.9 0.54

94 5 Enhancements on F-RTO

5.5 Additional Considerations

F-RTO can also be used with th8tream Control Transmission Protocol
(SCTP)[153] that uses a SACK-based retransmission mechanisns sEuaition
discusses the related issues on applying F-RTO on SCTP. &alacuss some
details that need to be considered when spurious timeouwr®during fast re-
covery, and possible alternatives a TCP sender can trycédnnot transmit new
segments in F-RTO algorithm step 2 when being limited by dueiver's adver-
tised window, or when the sender does not have new data to send

5.5.1 SACK-enhanced F-RTO and Fast Recovery

As discussed earlier in this section, SACK-enhanced F-RIBOrithm can be
used to detect spurious timeouts also when RTO expires vamilearlier loss
recovery is underway. However, there are issues that nebg twonsidered if
F-RTO is applied in this case.

In step 3, the original SACK-based F-RTO algorithm requileg an ACK ac-
knowledges previously unacknowledged non-retransmittgata between
SND.UNA andsend_hi gh. If RTO expires during earlier (SACK-based) loss re-
covery, the F-RTO sender must use only acknowledgmentsoioiretransmitted
segments transmitted before the SACK-based loss recotemgd. This means
that in order to declare timeout spurious, the TCP sendet raasive an acknowl-
edgment for a non-retransmitted segment between SND.UNAand_hi ghin
algorithm step 3. In other words, if the TCP sender receivés@avledgment for
a segment that was transmitted more than one RTO ago, it ctareléhe timeout
spurious. Defining an efficient algorithm for checking thesaditions remains
an object of future work.

When a spurious timeout is detected according to the rulengibove, it may
be possible that the response algorithm needs to considecdbe separately,
for example, in terms of which segments to retransmit afteRaO expires, and
whether it is safe to revert the congestion control parareefhis is also consid-
ered a topic for future research.

5.5.2 Discussion of Window-Limited Cases

When the advertised window limits the transmission of twav qEeeviously un-
sent segments, or there are no new data to send, the defaigih ap F-RTO
algorithm step (2a) is that the TCP sender continues witlctémeentional RTO
recovery algorithm. The disadvantage is that the sendercguatinue unneces-
sary retransmissions due to possible spurious timeouts 3égtion briefly dis-

5.5 Additional Considerations 95

cusses the options that can potentially improve performamicen transmitting
previously unsent data is not possible.

e The TCP sender could reserve an unused space of a size of dn® or
segments in the advertised window to ensure the use of #igwisuch as
F-RTO or Limited Transmit [7] in window-limited situation®©n the other
hand, while doing this, the TCP sender should ensure thaviheéow of
outstanding segments is large enough for proper utilinaticthe available
pipe.

e The TCP sender can use additional information if availafde ,example
TCP timestamps with the Eifel Detection algorithm, for d¢iteg a spurious
timeout. However, Eifel detection may yield different reksdrom F-RTO
when ACK losses and an RTO occur within the same round-tnie tias
discussed in Chapter 4.

e Retransmit data from the tail of the retransmission queuwecantinue with
step 3 of the F-RTO algorithm. It is possible that the retnaission will be
made unnecessarily. Thus, this option is not encouragespésfor hosts
that are known to operate in an environment that is proneudays time-
outs. On the other hand, with this method it is possible tdtlimnecessary
retransmissions due to spurious timeout to one retrangmniss

e Send a zero-sized segment below SND.UNA, similar to TCP Kde
probe, and continue with step 3 of the F-RTO algorithm. Beedhe re-
ceiver replies with a duplicate ACK, the sender is able tecdewhether the
timeout was spurious from the incoming acknowledgment. s Thethod
does not send data unnecessarily, but it delays the recbyeoye round-
trip time in cases where the timeout was not spurious. Thesefthis
method is not encouraged.

¢ In receiver-limited cases, send one octet of new data, déggs of the ad-
vertised window limit, and continue with step 3 of the F-RTI@agithm. It
is possible that the receiver will have free buffer spaceet®ive the data
by the time the segment has propagated through the netwonkjich case
no harm is done. If the receiver is not capable of receivirgsbgment, it
rejects the segment and sends a duplicate ACK.

5.5.3 Using F-RTO with SCTP

SCTP is a reliable transport protocol that has some advafeatdres compared
to TCP. With a modular packet format, SCTP is easier to exteitld new fea-

96 5 Enhancements on F-RTO

tures than TCP, which is limited by the 40 bytes of TCP optipace. SCTP
preserves the upper layer message boundaries insteadisfeméng a continuous
byte stream, and it can support multi-homing of an end holsighvimproves the
robustness of connections. SCTP also supports a partiabitély mode, which
is more suitable for data streams with real-time requiresersCTP’s charac-
teristics are ideal for signaling protocols, and it has betially used for SS7
telephony signaling transport [44, Chapter 14]. Theress ahuch signaling that
needs to be taken care of by the protocol layers above trangpoexample re-
lated to instant messaging and voice-over-1P telephongrdfbre, in these cases
SCTP could also be used in mobile terminals that nowadays matiple radio
access interfaces, for example, for SIP signaling [139]thbse cases the prob-
lems with using TCP over wireless links are also relevanSiGiT P.

SCTP has similar retransmission algorithms and congestimtrol to TCP.
However, some of the terminology and details are slightijegnt. A single
upper-layer message is transmittecata chunk One SCTP packet can include
several data chunks among other SCTP control informatiatctn be included in
chunks of other types. SCTP’s retransmission timer is dairtx timer. The se-
guence numbers in SCTP are callB@énsmission Sequence Number (T.SD)e
TSN per data chunk is assigned, which differs from TCP thaigagd one se-
quence number per byte of transmitted data. SCTP uses aiaelacknowledg-
ment mechanism, and the SCTP receiver is also able to regumiving duplicate
TSNs with a mechanism similar to DSACK in TCP [61].

The SCTP T3-rtx timer for one destination address is maietiin the same
way as the TCP retransmission timer, and after a T3-rtx ezpian SCTP sender
retransmits unacknowledged data chunks in slow start [{&® Toes. Therefore,
SCTP is vulnerable to the negative effects of the spuriotransmission timeouts
similarly to TCP. Due to similar RTO recovery algorithmsRH-O algorithm logic
can be applied also to SCTP. Since SCTP uses selective aedgments, the
SACK-based variant of the algorithm is recommended, affhdhe basic version
can also be applied to SCTP. However, SCTP contains feghatare not present
with TCP that need to be discussed when applying the F-RT@itigh. A recent
paper evaluates the effects of spurious retransmissio&CarP [107].

SCTP associations can be multi-homed. The current retigsgm policy
states that retransmissions should go to alternative agelse This means that
the retransmission may follow a significantly lower latepath than the original
transmissions. If the retransmission was due to spuriousdut caused by a delay
spike, it is possible that the acknowledgment for the resin@insion arrives back
at the sender before the acknowledgments of the originaktnéssions arrive.
If this happens, a possible loss of the original transmissibthe data chunk

5.6 Summary 97

that was retransmitted due to the spurious timeout may rennadetected when
applying the F-RTO algorithm. If the timeout was caused bykayl spike, and
it was spurious in that respect, a suitable response is ttincenby sending new
data. However, if the original transmission was lost, fulyerting the congestion
control parameters is too aggressive. Therefore, takingp@wative actions on
congestion control is recommended, if the SCTP associaiamulti-homed and
retransmissions go to alternative addre$sékhe information in duplicate TSN
notifications can then be used for reverting congestionrobnif desired [21].
Note that the forward transmissions made after RTO in F-RIgOrihm step (2a)
should be destined to the primary address, since they aremahsmissions.

When making a retransmission, an SCTP sender can bundle benwhun-
acknowledged data chunks and include them in the same pathet needs to
be considered when implementing F-RTO for SCTP. The basicipte of F-
RTO still holds: in order to declare the timeout spurioug sender must get an
acknowledgment for a data chunk that was not retransmifted the retransmis-
sion timeout. In other words, acknowledgments of data chuhé&t were bundled
in RTO retransmission must not be used for declaring theduhspurious.

5.6 Summary

We presented a SACK-based enhancement to the F-RTO algoaitid evalu-
ated its use with three different alternatives for congestontrol after a spuri-
ous retransmission timeout. Our results show that evengtindlie basic F-RTO
performs rather well under delay spikes, the SACK-enhamcegrimproves the
performance when spurious RTOs occur during TCP fast regove

The general trend between the three congestion controhattees evaluated
was that when using a narrow link with appropriate bufferesjzreducing the
congestion window and the slow start threshold lowers theber of congestion-
related packet losses and improves the overall performaReverting the con-
gestion control parameters improves the performance dbetter link utilization
only at the highest link bandwidths tested. Going into sltavtsafter a spurious
RTO gives good results when the link bandwidth varies dufi@P connection
or when there are large buffers available to handle themtigtincreasing queue
length caused by slow start.

2The same scenario is also possible in principle with TCPnwheertical hand-off is done to a
low-latency link. If the original segments are sent to a Higiency path, and the RTO retransmis-
sion is sent to a path with significantly lower latency, it aspible that the acknowledgment of the
RTO retransmission arrives before the acknowledgmentiseobtiginal segments.

98 5 Enhancements on F-RTO

Our test results show that selecting the most efficient respto spurious RTO
is not an easy task when the real network characteristicardaeown to the TCP
sender. However, our results support taking conservattierss after a spurious
RTO when the wireless link bandwidth is not very high, beeaas the slower
links reverting the congestion control state does not im@ithe TCP throughput
significantly. It is possible, that a hybrid solution betwee different conges-
tion control alternatives presented in this chapter woekllt in acceptable per-
formance in different scenarios. One such alternative tghto slightly reduce
the congestion window while keeping the slow start thredfatlthe level it was
when the spurious RTO occurred.

Finally, we discussed the applicability of F-RTO in a coupfespecial cases:
when RTO occurs during SACK-based fast recovery, and whendhmal F-RTO
algorithm is prevented by the TCP receiver window. We alszutsed how F-
RTO could be applied with the SCTP protocol. Because SCTP sisdlar con-
gestion control and retransmission algorithms than TCPbeal&ve our results
would apply also with it. In addition, while most of the exmeents have been
run in a setup modeled to be similar to the GPRS or EGPRS wsgdiek char-
acteristics, we believe that F-RTO is useful also in othéwng environments
that might suffer from spurious timeouts. Because F-RTCaseld on the use of
the existing TCP mechanisms, and it does not depend on anifispharacteris-
tics of the lower protocol layers, we believe that if F-RTOswesed in links with
higher bandwidths, such as satellite links or fixed netwarkirenments, similar
trends in results could be found on F-RTO’s performance tirasented in this
chapter. Chapter 4 discussed why we believe F-RTO does nottha sender or
the network in any scenario, but at worst performs similagythe normal TCP
would do.

CHAPTER 6

Evaluating Quick-Start for TCP

As discussed in Sections 2.2 and 2.4, TCP is rather cong@niatselecting its
initial sending rate, and increasing it using the slowtstacongestion avoidance
algorithms. This can be problematic on paths with high leies) such as GPRS.
We now take a look at a mechanism that allows TCP to expliqitigry for a larger
initial sending rate from the routers along the path, caedck-Start. Although
Quick-Start could be used with a number of transport prdgeach asStream
Control Transmission Protocol (SCTP)53] or Datagram Congestion Control
Protocol (DCCP)[99], we mainly consider its use with TCP.

In this chapter we describe the basic protocol and algostbimQuick-Start,
and evaluate a number of design alternatives on a high-speebrk with high
degree of multiplexing. In Chapter 7 we evaluate Quick{Stawireless networks
with lower bandwidths and host mobility.

The rest of this chapter is organized as follows. Sectiongbsés a general
overview of Quick-Start and motivates its need for path$wkigh bandwidth or
high latency. Section 6.2 details the Quick-Start mecmargind discusses design
issues. Section 6.3 discusses the potential costs andtsesfefsing Quick-Start.
Section 6.4 describes the simulation setup used in our st8dgtion 6.5 illus-
trates the potential advantages and disadvantages of @téckand shows its
performance in specific situations. Section 6.6 discugsehandling of Quick-
Start Requests in the routers and evaluates several lgsrithat could be em-
ployed by routers. Section 6.7 outlines the possible valoiéties of Quick-Start
to denial-of-service attacks and potential coping teahesdq Finally, Section 6.8
offers conclusions and future work.

99

100 6 Evaluating Quick-Start for TCP

6.1 Overview

Quick-Start is described in detail in Section 6.2, but thecpss is generally that
a TCP connection sends a packet that includes a Quick-Seayud®t in an IP
option containing the requested sending rate. Each roltegdahe path either
agrees with the request, lowers the requested sendingarateplicitly signals
that the Quick-Start option was not approved or processelde data receiver
reports the information received in the Quick-Start Regirexk to the sender
using a Quick-Start Response in a TCP option, and the datiesdetermines if
all of the routers along the path have agreed to the requelssets the sending
rate appropriately.

The assumption behind Quick-Start is that routers will oapprove Quick-
Start requests when they are under-utilized. Thus, QutektShould be generally
safe to deploy in general purpose networks, with a neghgilsk of causing net-
work congestion. However, because Quick-Start requirppat from all routers
along the path, this could present a high bar to deploymetitdrgeneral Inter-
net. Possible deployment of Quick-Start could happen)ithpse Intranets and
operator networks with large amounts of under-utilizeddweidth and ¢:) cellu-
lar wireless networks (such as GPRS/EDGE [150]) with longndbtrip delays,
as discussed in Chapter 2. Based on the investigation peesanthis chapter,
Quick-Start is expected to be of benefit in both these cases.

As noted above, Quick-Start is, broadly speaking, usefykiame a connection
is significantly under-utilizing the network path and has tlata required to con-
siderably increase the transmission rate. There are a fearet® cases where the
connection is likely to be significantly under-utilizingetmetwork path capacity
and could benefit from Quick-Start:

e Typically in the beginning of a connection a TCP sender hde lif any
knowledge of the network path characteristics. Therefbeesender has to
probe the path capacity by using slow-start. By applyingdii8tart the
slow-start phase could be significantly shortened.

e After the path characteristics are known to have changedfiigntly, for
example due to wireless hand-off. TCP could have a notitinagither
locally, or by using a mechanism such laghtweight Mobility Detection
and Response (LMDR}58] for a mobile end to notify its peer about the
link change. After such notification a Quick-Start Request be sent to
resolve the new path capacity.

e After an idle period. It is recommended that TCP Congestiond®iv Val-
idation [67] is applied after an idle period in transfer tanservatively re-

6.2 Quick-Start Protocol Details 101

duce the congestion window. The thinking behind this is thajpath status
could have changed during the idle period, and since TCP tiaaatively
probed the path capacity, it needs to re-establish the jagidoity by apply-
ing slow-start again with reduced congestion window size.

While Quick-Start is a component of congestion control, dRtfstart is not a
complete congestion control mechanism, and it is not irddrak a replacement
for TCP’s standard congestion control. Quick-Start is alsba Quality of Service
(QoS) or resource reservation mechanism. Quick-Startfisdnmost effective in
those under-utilized environments where congestion obigmot the overriding
issue, and where QoS mechanisms are needed the least. UibHeggent sections
we show this via simulation.

6.2 Quick-Start Protocol Details

Quick-Start is a collaborative effort between end hosts randers. This section
describes the details of Quick-Start, and discusses thekc@tart requirements.
Quick-Start has also been specified in the IETF [54].

6.2.1 Packet Format

Quick-Start Requess an IP option intended to be processed by each router along
the connection path. When the receiver gets the Quick-Banuest option, it
responds with @uick-Start ResponseCP option. Figure 6.1 shows the format
of Quick-Start option for IPv4 packet. IPv6 uses a similactked format as hop-
by-hop option.

Quick-Start Rate Request (Rate), uses four bits in the @biekt Request
header, and four bits are reserved for future use. To allovaflarger range of
possible rate values, Quick-Start Rate Request is expafigrencoded ta 2V
bits per second, wher& is selected to be 40 Kbps, aidis the value in the rate
request field. Thus, with N=1 the minimum rate to request iK8ps and the
maximum rate to request is 1,310,720 Kbps, with N=15. Altfothis seems
a coarse-grained range, we believe it to be sufficient, spoiek-Start is not
intended to be a replacement for the normal congestion@ang&chanisms, but to
make a quick rough check if there is a considerable amounte$ed bandwidth
on the path.

Recently the Quick-Start specification [54] has extendexd ghacket format
with a 32-bit nonce, and a function field that allows the serndeaeport the fi-
nal rate that was approved for the TCP connection. The eutlser to the

102 6 Evaluating Quick-Start for TCP

Quick-Start Request for IPv4
0 8 16 24 32

Option Length Resv | Rate QS TTL

Quick-Start Response for TCP
0 8 16 24 32

Kind Length Resv | Rate TTL Diff

Figure 6.1: Quick-Start packet format.

sender may benefit from this information, since they cannotkif a downstream
router has reduced the rate request, and thus make incassoimptions on the
available bandwidth when making decisions on subsequeitkédiart requests.
These fields were not used in the simulations presented snctiapter, and we
will not discuss them any further. However, the problem ohegessarily high
rate requests is discussed shortly.

6.2.2 Quick-Start Processing at the Sender

The Quick-StariRate Requess initialized by the sender to the desired sending
rate in bytes per second (Bps). The sender also initializ€uiak-Start TTL

to a random value and saves the difference between thed Qitikk-Start TTL
and the initial IP TTL asT'TLDif f. As discussed in the next subsection, the
routers along the network path between the sender and ezcaiter the Rate
Request, as appropriate. When the Quick-Start Requesesgrait the transport
receiver, the receiver echoes the rate request back to titesalong with the
difference between the Quick-Start TTL and the IP TTIZ;LDif f’, in an option

in the transport header. Upon reception of an echoed Quiak-Rate Request
the sender verifies that all routers along the path have apgrthe Quick-Start
Request by comparingT LDif f andTTLDif f'. If these two values are not
the same then the request was not approved by all routers imetivork path and
data transmission will continue using TCP’s standard &gws.

When theT'TLDif f andTTLDif f’ match, the TCP sender then calculates
the appropriate congestion window (cwnd) based on the a&pgdresending rate

6.2 Quick-Start Protocol Details 103

and measured round-trip time as follows:

Rate x RTT
cwnd = = ree 6.1

whereRateis the approved rate request in bytes per sec®dl is the recently
measured round-trip time in secondi$SSis the maximum segment size for the
TCP connection anti is the estimated header overhead for the packets in the
connection in bytes. The TCP sender paces out the Quick{sakets at the
approved sending rate over the next RTWpon receipt of an acknowledgment for
the first Quick-Start packet, the TCP sender returns to AGKked transmission.

Knowing the Rate to Request

One of the problems of Quick-Start is that unnecessary oecessarily-large
Quick-Start Requests can “waste” potential Quick-Stamdvédth. Because
routers must keep track of the aggregate bandwidth repiedday recently ap-
proved Quick-Start requests (so that the router does natsuescribe the avail-
able capacity), each approved request reduces the chaheeproval for sub-

sequent requests. Ideally, a sender should not use Quick{St data streams
that are not expected to benefit from it, such as those that bialy a few pack-

ets of data to send. The TCP sender should, in theory, aldd saguesting an
unnecessarily high sending rate. However, it can be difficulthe TCP sender
to determine how much data will ultimately be transmitted #émerefore to form

a reasonable rate request. For example, in request-resgmogocols such as
HTTP [18], the server does not know the size of the requedbgetbduring the

TCP handshake, because it has not received the data reqiesdnce the web
server does know the requested object, the applicationdvoegd to determine
the size of the object and then inform TCP as to how many byiébevsent, be-

cause the objects are rarely written to TCP socket buffeessimgle atomic call.

Even if the web server was able to determine the size of thectd)jthere may
still be more data that the web server does not yet know alsdnelly, sometimes
the application cannot even obtain the size of an objectusectine object is being
read from a pipe or some live source. In Section 6.5.2 wetiits the problems
of not making a reasonably accurate rate request and offae sdrategies for
coping.

'Note that TCPs are required to implement an additional tifoepaced transmission when
using Quick-Start.

104 6 Evaluating Quick-Start for TCP

6.2.3 Quick-Start Processing at Routers

A router that receives a packet with a Quick-Start Rate Retgas several op-
tions. Routers that do not understand the Quick-Start Reaquetion simply leave
the option untouched, ultimately causing the Quick-Statjlest to be rejected
becaus& T'LDif f’ will not matchT T LDif f. Routers that do not approve the
request can either leave the Quick-Start Request optiauohed, zero the Rate
Request, or delete the option from the IP header. Routetsapiove the rate
in the request decrement the Quick-Start TTL and forwardptheket. Finally, a
router can approve a rate that is less than the rate in theesédpy reducing the
rate, as well as decrementing the Quick-Start TTL.

Routers should only approve a Quick-Start Request whenutmublink has
been underutilized over some recent time period. In ordepjorove a Quick-
Start rate request, a router generally should know the battbwf the outgoing
link and the utilization of the link over a recent period ahg&. At a minimum,
the router must also keep track of the aggregate bandwidtmtly approved for
Quick-Start Requests, to avoid approving too many requelen many Quick-
Start Requests arrive within a small window of time. Secto@ discusses in
more detail the range of algorithms that could be used byersih approving or
denying a Quick-Start request.

Later this chapter speaks of “allocating” capacity, businbted that Quick-
Start routers do not in fact reserve capacity for a particfiav and then police
the usage to ensure that the given flow is able to use the graapacity. Rather,
the router simply tracks the aggregate amount of promispddaty (in the recent
past) in an effort not to promise more than the output link&bsorb. If, however,
a burst of unexpected traffic arrives the Quick-Start “adkd@ns” may prove to
be empty promises when the end hosts attempt to use the gytaamelwidth and
detect congestion.

6.3 Challenges

Practical deployment of Quick-Start would face some reatldvchallenges. The
most significant identified challenges are discussed below.

¢ Increased Periods of CongestionQuick-Start should be approved only in
situations where the network path is under-utilized, tHlosvéng a connec-
tion to quickly use spare capacity. Therefore, the correetaf Quick-Start
should not result in increased packet drop rates in the m&twim other
words, Quick-Start should not cause congestion, but ratheuld allow

6.3 Challenges 105

a connection to quickly use the spare capacity in the pattSeletion 6.5
we show that proper use of Quick-Start does not increasegtpegate drop
rate in a network. However, misconfiguration at Quick-Stawters or some
other bug in Quick-Start could introduce inappropriatdfictao congested
situations. To mitigate this, such a situation causes adglkt to standard
slow start.

e Misbehaving Nodes and RoutersQuick-Start may provide new ways for
two types of misbehavior. First, misbehaving receivers arters could
try to lead Quick-Start to benefit the connections using Q@&tart. Non-
conformant routers or hosts might try to modify the QuickiSmessages
to benefit particular connections. For instance, a recenay increase the
rate given in an arriving Quick-Start Request before edpdimack to the
sender in an effort to increase the connection’s performar&milarly, a
router close to the sender and acting on the sender’s betal increase
the approved sending rate and/or adjust the repdft€d D: f ' from the
receiver to match the origindl'T' L Di f f in an effort to mask the network’s
lack of Quick-Start support. While it is possible to attertgpiisuse Quick-
Start, it is not without risk of lower performance since th€H sender is
required to go back to slow-start if the inappropriately thigending rate
causes packet losses in the Quick-Start window. In additecently ad-
ditional mechanisms have been added to Quick-Start IETEifggaion to
make misuse more difficult [54]. A second type of misbehagmmes from
attackers attempting to prevent legitimate use of Qui@aiStThis aspect
of Quick-Start is further discussed in Section 6.7.

e Added complexity at routers and end-nodes.One of the main costs of
Quick-Start is that the required changes to both end-hagtg@uters may
moderately increase implementation complexity. For eost$ the addi-
tional complexity may be justified by)(the possible benefits of Quick-Start
and ¢7) that end hosts often have spare processing capabilityo{adh this
is not universally true — especially for busy servers). Hogrethe addi-
tional complexity at routers can be a difficult issue, sineggrmance and
scalability requirements in routers have to be carefulllabeed. Packets
containing a Quick-Start Request represent an extra bfateouters and
could result in extra delay for end-hosts. Of course, alkpgwould not
contain Quick-Start Requests. Additionally, Quick-Strpuld only be ap-
proved in times of under-utilization and therefore the essitmay be able to
perform an efficient quick check of the utilization and onbt an requests
when the router is under-utilized (and can likely betterombshe additional

106 6 Evaluating Quick-Start for TCP

processing requirement).

¢ Interactions with Middleboxes. It is known that there are middleboxes

in the current network that drop packets containing knowanrdmown IP
options [118]. This could result in significant delay for oections using
Quick-Start requests, as packets using Quick-Start résjuesuld have to
be retransmitted without the Quick-Start Request Optionl (&the option
is transmitted on a SYN segment the initial retransmissimedout of 3 sec-
onds [127] makes this a lengthy process). One consequetkat imitial
deployments of Quick-Start may be in controlled environtagwhere it is
known that packets with Quick-Start options would be forteat.

e |IP Tunnels. Some IP tunneling mechanisms encapsulate the IP packets
without decrementing the IP TTL of the IP header. Therefoig possible
that an IP tunnel that is not aware of Quick-Start encapssiltite packet so
that the Quick-StarT TL Diff does not change. As a result, the Quick-Start
request can pass the tunnel without being processed by thersoalong
the tunnel path, while to the sender it seems that all rodtave approved
the request. There is no known way to reliably handle QuitdttRequests
on paths with such transparent tunnels. Some common tygesméls are
those used by IPsec [93] and IP in IP encapsulation [128].

e Deployment. An additional downside of the Quick-Start approach is that
the scheme is not conducive to incremental deployment. eSiath end
systems and all the routers along some path have to suppok-Qtart
for the mechanism to work there is quite a high barrier to galngse. We
expect that initial deployments of Quick-Start would happéthin closed
networks whereby hosts and routers both have an interesdimygperfor-
mance.

6.4 Simulation Setup

In the following sections we use the ns-2 simulator to expharious aspects of
Quick-Start. We use a network comprised of three routBis;R3, arranged in a
chain. The two links between the routers have a bandwidily,gfand a one-way
link delay of L,;. Unless otherwise noted,,,,=10 Mbps andl.;=20 msec. The
routers employ drop-tail queuifgvith a maximum queue size of 150 packets.

2\We believe that drop-tail queueing is used in the majoritshefnetwork routers because of its
simple and efficient characteristics.

6.5 Connection Performance 107

For most simulations, web clients and servers are conndotdélde ends of
the network (toR; and R3) with dedicated 1000 Mbps links with a mean one-
way link delay of 12 msec and a maximum delay of 110 msec. Thehlink
delays are chosen to give a range of round-trip times thathmeatthose from
measurements, using the process from [58]. A varying nurobereb servers,
N, are connected t®; with a corresponding number of web clients connected
to R3. The measurements presented in the subsequent sectiaesealto the
traffic from the web servers connected &3. We also attach(zK web clients to
R, and % web servers taR3 to provide background traffic on the return path.
When Quick-Start is enabled, all web servers attempt to usieksbtart. The
standard web traffic generator included with ns-2 is useduimsomulations, with
the following parameter settings: an average of 30 web ppgesession, an
inter-page parameter of 0.8, an average page size of 10tepgaraverage object
size of 400 packets and a Paretoll shape parameter of 1.0021s&VHTTP/1.0-
like transactions, with one web object per TCP connectiohesE parameters
are not picked to match any particular network’s traffic iigttion, but rather to
explore Quick-Start’s impact on a wide range of connectiaass Our web traffic
simulations are run for 150 seconds.

In addition, a few simulations make use of a single transfer @me. These
simulations use FTP to transfer a file of given size over thevokk given above
with no reverse traffic present.

Finally, all TCP connections use ns-8ack1TCP variant with an initiatwnd
of 3 segments (per [9]), an MSS of 1460 bytes, an advertisadaw of 10,000 seg-
ments, and the receiver acknowledging each segment. All sinaratiare re-
peated 12 times, with averages and standard deviationsnsihaive graphs.

All simulations presented in the remainder of the chaptertbis setup unless
otherwise noted.

6.5 Connection Performance

In this section we explore when Quick-Start is and is not odie. In addition, we
consider how to choose the Quick-Start request size, thédatipns of Quick-
Start on aggregate network traffic and the implications oicistart failures.

3This is high enough to make the advertised window a non-issoar simulations.

6 Evaluating Quick-Start for TCP

108

6.5.1 Ideal Behavior
In an ideal Quick-Start scenario over an under-utilizedmvoek path, the TCP

sender would be able to transmit as much of its data in thialimibngestion win-
dow as the spare network capacity can absorb. Figure 62rdlies an example
of the ideal Quick-Start behavior by displaying time-satgeeplots of two con-
nection§. The first connection is a standard TCP connection that ueesssart

to begin transmission (with an initimwnd of 3 segments, per [9]). The second
connection on the plot shows a case where an approved QtackF&quest al-

lows the sender to transmit 25 of its 30 packet transfer irfiteeround-trip time.
When the first acknowledgment for data arrives at the TCP esertle sender
continues in slow-start, sending two packets for each agledgment. The con-

nection using Quick-Start completes in just over half theetirequired by the

non-Quick-Start connection.

o
= o o
® i § & § 4
Data Q o S o
o 4 8 g § g
N ---8 Acks 8 g 8 g
8 § .8 § 8
o— "~ o S o
E R 0 g S 5
3 8 g 8 g
z 3 g 8 g
Q ﬂ — [} =] (o] o
o o [=) [¢]]
c o o o [u]
o o o] o o}
S 9 §. .8 § g
o < o— %g---°°% o} g
b} o] s] S o
[} o o o
n o] o o [u]
0 1 g 8§ g f
o— ©o--"~~ o o}
§ .8 g 8§
o4 o—8---- o—8.---
T T T T T
0 2 4 6 8 10
Time (s)

Figure 6.2: Normal TCP Slow-Start (left) vs. Quick-Staigft).

Equation (6.3) gives the number of round-trip tim&gjmRtts required for
transmittingN packets of data in TCP slow-start assuming an ACK for each seg

ment transmittet] in addition to the initial SYN exchange, given an initialneo
gestion window oMW packets (and, wher® andW are both at least 1 segment).

“In this scenario the link bandwidth was 384 Kbps and the reripdielay one second, roughly
motivated by a GPRS/EDGE wireless scenario [150].
This assumes that there is no congestion in either direatidrthe receiver’s advertised window

does not constrain the congestion window.

6.5 Connection Performance 109

NumRtts = ’71092 (% + 1)—‘ (6.2)

From this equation we note the clear attraction to maxingiZzii as much as is
appropriate over a given network path.

Next we use the ns-2 simulator to investigate the ideal impaQuick-Start.
We use a simple scenario with link capacity set at either 38gs<or 100 Mbps,
various link delays, routers with unlimited buffers, rowtevilling to allocate 90%
of their capacity to Quick-Start requests and TCP makingck@itart Requests
of 20 MB/sec. Figure 6.3 shows the results of the simulatiédthough the sim-
ulation scenario is not necessarily realistic, it illugtsathe potential impact of
using Quick-Start. The results confirm the theoretical wsialabove, showing
that increasing the initiatiwndaids performance — especially for medium-sized
transfers that are close to the delay-bandwidth produchefrietwork path. In
addition, the plots show that Quick-Start is less beneffoiaéxcessively short or
long transfers. Short transfers leave little room for im@nment since they take
little time. The performance of the long transfers in theiseutations is dictated
by the bottleneck link rate. Therefore, the longer the catina lasts the less im-
pact the startup scheme has on overall performance sinc®timections perform
identically after the startup phase. These results ardasinu those presented in
a study of an initial implementation of Quick-Start [156].

Figure 6.4 shows a similar graph, but with an analyticalneste of the per-
formance improvement provided by Quick-Start. The numlieoond-trip times
R required to transmitV packets of data is approximated using equation 6.3,
wherelV is the size of the initial congestion window (from either GkiStart or
from the default initial window), and/ is the delay-bandwidth product of the
path. The number of round-tripB includes one round-trip for the initial TCP
SYN/SYN-ACK handshake. For Equation 6.3, we assume thataheection is
the only traffic, and that the routers each include a delaydtédth product of
buffering. As a result, once the congestion window reachegltlay-bandwidth
product, the TCP connection continues to keep the pipetfalisferring a delay-
bandwidth product of data for each time unit equal to theéahibund-trip time.

M = bandwidth « RTT /packet_size
R = logs (maq: (w +1, 2)) + [%W (6.3)

Figure 6.4 assumes a packet size of 1500 bytes, an initiglestion window
W of three segments without Quick-Start, and an approved KXbiart request
of 1.3 Gbps, the maximum request size allowed by the spetific§b4]. Thus,
Figure 6.4 illustrates an upper bound on possible improveméth Quick-Start

110 6 Evaluating Quick-Start for TCP

384 Kbps
—_ o
SN
< | --A 2000ms
S ¢ 1000ms
E 8 --9 400ms
s - B —o 200ms
o i A A
Q. . \A
£ o | o o A
g © . o
§ 1 5 o N
I o------ B-- Oo A
5 © e N
E 3 O\O\O\D‘D‘D 7<>‘ o i
o oA 0—0-00"B:gz==. il B b
T T T T T T T T
5 10 50 100 500 5000
Transfer Length (KB)
100 Mbps
S
= & 4| —%4 1000 msRTT
S © 500 ms RTT b,
£ o --8 100 ms RTT BT e T,
2 &7 —° 20msRTT o
s PR
£ o L o.
° S E o ¢
o bed o
S ,—L”'é,/o/oﬂm\ o
g § - /{_e-:’/o O\o "
£ 0/ \0\ o
= o
& o o o
T T T T
10K 100K 1M 10M

Transfer Length (KB)

Figure 6.3: Relative improvement with Quick-Start, for a438bps link and a
100 Mbps link with a range of round-trip times.

— it is not recommended that routers approve Quick-Stamiests equal to the
entire link bandwidth.

6.5.2 The Size of the Quick-Start Request

We next consider how the sender chooses the Quick-Staresegize, and how
the size of Quick-Start requests affects the aggregatellnest of Quick-Start.
As discussed in Section 6.2.2, an ideal Quick-Start requestd contain the pre-
cise sending rate the connection would like to use. Howewmwing such a
sending rate is non-trivial and depends on a number of fact@rsimple Quick-

Start implementation for TCP could send a fixed Quick-Staguest each time

6.5 Connection Performance 111

S o —o 100 ms RTT
> S 4
- © ---8 50msRTT
S ¢ 10 msRTT o,
£ o --A 1msRTT e N
> O - N
o < o °
E. o/ o o N \
1S 0/ B e
= o - o AN \o
°>J o /8\ o o B
s N o A o - o
s g A o >
[5] -~ A o,
x °/° Beall a oy ‘o
o D-ppapalRug
T T T T T T
10K 100K 1M 10M 100M 1G

Transfer Length (bytes)

Figure 6.4: Upper bound for relative improvement with Quigtart, for a single
flow over a 10 Gbps link, with a range of round-trip times.

a request is transmitted. This would not be unreasonabl@ifial Quick-Start
requests, since in many cases, the TCP sender has no knevebdgt the appli-
cation or the network path when the TCP SYN segment is semtQEk-Start
requests sent in the middle of a connection, e.g., after lanpigriod, the sender
may be able to make a more informed Quick-Start Request.

To illustrate the problem with overly large Quick-Start vegts we simulate
two scenarios involving web traffic that uses one TCP conmedbr each web
object transferred. Figure 6.5 shows the results. Eaclcattine on the plots
represents a separate TCP connection’s length, and eatdinilicates the quan-
tity of Quick-Start data transmitted over the given coniwect In the first case
(top plot), TCP connections use a static Quick-Start retqpie? MB/sec for each
connection. In the second scenario (bottom plot) the raguee ideal (even if
unrealistic) for the amount of data the given connection wiimately transmit.
In addition, Quick-Start is not used if the connection iseatul send all data in
3 segments (per the initimhwndallowed by [9]). This example uses an average
web object size of 60 packets.

As shown in the top plot, Quick-Start requests are genegabiyted for only
the first connection in each group. The router is generalgblento approve re-
quests of later connections in each group, because thedinsection is granted
all of the available Quick-Start bandwidth even though th&t fionnection can-
not use such a large allocation. As a result, the extra dllmtas “wasted”, in
that subsequent Quick-Start requests are denied unnebes$ae bottom plot

112 6 Evaluating Quick-Start for TCP

40 60 80 100
| | I

Connection size (KB)

20
|

(ﬁuu\“\ ol ‘\ ‘H
T T T T T T T
95 100 105 110 115 120 125

o | Jm JM %M“m d

Starting Time(s)

80 100

60
1

Connection size (KB)
40

20
1

oglzs b M o L ?Q‘D

T

T T T T
100 105 110 115 120
Starting Time(s)

Figure 6.5: TCP connection lengths and starting times. €cdtions with Quick-
Start packets are marked with a circle.

shows that when making ideal Quick-Start requests the @Biakt requests are
approved more often because there are fewer wasted apgroval

While the ideal case above is preferable, TCP connectionsotian general,
have enough information to make ideal requests. Howevere tare several ways
systems can cope. First, if an end-host is configured to statedt the maxi-
mum capacity of its last-mile hop, bytes/sec, requests could be chosen to be
no larger thanC'. Going even further, a policy decision could be made to disal
low any one TCP connection from using more than some fraaifdhe capacity
and that could be used as an upper bound on the Quick-Starese¢e.g., on
a large web server). In addition, a sender could leveragssittes of the local
socket send buffel§ bytes, and the receiver’s advertised winddw,bytes, when

6.5 Connection Performance 113

choosing a request sizeGiven an RTT ofR sed TCP can send no faster than
min (S, W) / R bytes/sec (assumirl§ is non-zero and usin§ if the advertised
window is not yet known). Finally, and more speculativefyam application in-
formed the sender of the size of a particular object (whemknpsayO bytes, the
sender could request precisely the rate required to trarthmniobject in a single
RTT as(O + (O/MSS) « H)/R bytes/sec for a given MSS size and estimated
header size off bytes. While these techniques do not necessarily providarfo
ideal Quick-Start request they could well provide a moresosable request than
simple picking a static rate for all cases.

6.5.3 Loss of Quick-Start Packets

We now consider the response of a TCP sender to the loss otck-Qtart packet,
that is, a packet sent in the RTT after a Quick-Start Respwigggers an increased
sending rate.

Routers should only approve a Quick-Start Request whenutpaiblink is sig-
nificantly underutilized and therefore there should be fengestion losses due
to transmitting at the rate determined by Quick-Start. Heeveit is possible for
there to be losses of Quick-Start packets because the tidiosare not reserva-
tions. If a Quick-Start packet is lost after an approved @8tart Request, we
call this aQuick-Start failure This situation can arise for a number of reasons, for
instance because a burst of traffic arrives at a router imatelgti after the router
approves a Quick-Start Request or because a buggy or brokeer Isimply ap-
proves all Quick-Start requests or mis-calculates thethateshould be approved.
An explicit congestion notification [136] for a Quick-Stacket is also a Quick-
Start failure, and the TCP sender should revert to defaul T@nhgestion control
if it gets such a congestion notification.

Generally, after detecting a lost packet from three consexwduplicate ac-
knowledgements, the TCP sender halves its congestion wiadd transmission
continues using the congestion avoidance algorithm [8],,iddreasing the con-
gestion window by roughly one segment each round-trip titHewever, when
a Quick-Start failure occurs, the sender cannot make stemsgmptions about
the current path capacity; in particular, the sender cafabtback of the fact
that a congestion window of half the current size was sufglyssransmitted in
the previous round-trip time, as is the case during slowt:stas a result, halv-
ing the congestion window would not necessarily be an apjatpresponse to

SWhen sending a request in the initial SYN segment of a coiorethe sender will not know
the peer’s advertised window.
"0r, an approximation if the connection has not yet taken afi R€asurement.

114 6 Evaluating Quick-Start for TCP

a Quick-Start failure. Instead, as specified in [54], aft€yuack-Start failure the
TCP sender returns to slow-start, using the default initialdow, as it would have
done if Quick-Start had not been approved.

Figure 6.6 shows time-sequence plots of several differ&@® Variants to il-
lustrate TCP’s response to a loss of a Quick-Start packet tdplot in the figure
shows a Quick-Start failure followed by fast retransmit &ast recovery (i.e., a
simple halving of the congestion window). The second fighms a Quick-Start
failure followed by the proposed response of a slow starhftbe standard initial
congestion window. Finally, the bottom plot shows a conibectising standard
slow start without Quick-Start. Because after fast recp#ee congestion window
increases in a linear fashion while Slow-Start increasgesd exponentially, the
Slow-Start response may find the appropriate sending raterfthan congestion
avoidance, and hence offer better performance (as isréiiest in the figure). In
addition, depending on the size of the congestion windowvd UiseQuick-Start,
a simple halving may not be enough to alleviate congestidhinvthe network
and so several multiplicative decreases could be requiegald TCP finds an ap-
propriate value forwnd With a Slow-Start response to a Quick-Start failure,
the sender loses roughly two round-trip times because othiek-Start failuré,
compared to a transfer without Quick-Start (shown in thedsotgraph of Fig-
ure 6.6). While a Quick-Start failure should be a rare evEigure 6.6 shows that
standard slow start without Quick-Start can be a betteraghover a path with a
badly behaving or buggy router.

Finally, we note that ECN [136] can be used with Quick-Stés. is always
the case with ECN, the sender’s congestion control resplanaa ECN-marked
Quick-Start packet is the same as the response to a droppel-&art packet,
thus reverting to slow start in the case of Quick-Start pteckearked as experi-
encing congestion.

8This assumes SACK-based loss recovery that can detect paid neultiple losses within one
RTT [23]. More generally, the connection is lengthened bg Quick-Start RTT and the time
required by the loss recovery operation when compared talatd TCP.

6.5 Connection Performance

115

o
S A
—o Data ~§ i
---8 Acks f f
o | _&,. -
° s
" _&. -
g o | £ F
g~ A
_& &
. \/ﬁﬁ
o] /f&imm
T T T T T T
0 2 4 6 8 10
Time (s)
o]
[ee]
—o Data
---8 Acks
o _|
o
i}
g o
Q <
©
o
“] ﬁ T
o 4 o— “,,lgnﬁmmmn’u
T T T T T T
0 2 4 6 8 10
Time (s)
o]
[¢°)
—=o Data
---8 Acks
o |
o
2]
g o
g ¥
o
o |
) g
o o/_g,igu_
T T T T T T
0 2 4 6 8 10
Time (s)

Figure 6.6: The TCP Response to a Quick-Start Failure. Tapvirg the window
after a loss. Middle: Slow-Start after a loss. Bottom: SiBtart without Quick-

Start, without losses.

116 6 Evaluating Quick-Start for TCP

6.5.4 Aggregate Impact of Quick-Start

Because Quick-Start requests are only approved when thpeitolirtk is signif-
icantly underutilized, Quick-Start should have little exff on the long-term ag-
gregate utilization and drop rates on a link. In particuanen link utilization is
high, routers should not approve Quick-Start requestss, twick-Start is not a
mechanism designed to help a router maintain a high-thqouiglow-delay state
on the output link. In Section 6.6 we study various methodsdaters to use to
choose whether to approve Quick-Start requests and how cajrTity to grant
each request. In addition, we illustrate the implicatiohgsing Quick-Start when
the router is not significantly under-utilized.

For the traffic models used in this chapter, the amount of daqaested by a
user is independent of whether Quick-Start is used, anggenttent of the the fate
of the Quick-Start requests. While the use of Quick-Stafanticular allocations
from the routers will have an impact on the time required fartigular transfers,
the aggregate amount of data requested is not affectedn @iigmodel, although
the use of Quick-Start might be of great benefit to the indigicuser, Quick-Start
should have little effect on the long-term aggregate lirikaattion or packet drop
rates.

Figure 6.7 shows the overall utilization and aggregate datgs with and with-
out Quick-Start, for a simulation scenario with web traffittwan average object
size of 400 packets (as described in Section 6.4) on a 10 Mimed link as a
function of the number of web sessions. As shown in the figtlme,utilization
and drop rates are largely independent of whether or notksiart is employed.
The line labeled “QS Bandwidth” in the top graph of Figure ghows the relative
bandwidth used by Quick-Start packets in the simulatiomsguQuick-Start — in-
dicating that Quick-Start is being put to use at the begipmihtransmission. We
also conducted simulations with smaller average web oljees (of 60 packets)
and obtained similar results.

Figure 6.8 shows per-connection performance of all traffioived in a sim-
ulation of 3 web servers. Each point on the plot represemgitiration of a sin-
gle connection, with the point type indicating whether Qutart is used. The
top plot shows the results from a simulation run over 10 Mbyslevthe bot-
tom plot uses a 100 Mbps bottleneck. For medium to large feesmishe plots
show Quick-Start improves performance — by a factor of 2—3niany cases,
with larger savings over the higher bandwidth path. Thesésghow that even
though the overall bandwidth usage and drop rates are simith and without
Quick-Start, per-connection performance is increasedwising Quick-Start.

6.6 Router Algorithms

S
-
—=o Regular TCP
g 4 ---8 Quick-Start
¢ QS Bandwidth
S o | /_~E,>—<f,/jg
§ o ER D”-_E/
=R o
o O .
o//g\o/
N
o o /D/
o_/\ca -
oS | 8860 © © S © o o o
© T T T T T T
0 10 20 30 40 50
Web nodes
—=o Regular TCP
g1 | ---9 Quick-Start
(=]
L
E N o
Q o o —8=T
S & AN — |
e s QPN Lo O~ o
o SD----g--~
Ayael
0
o o
O_ -
o T T T T T T

0 10

20

30 40 50

Web sessions

Figure 6.7: Comparison of utilization and drop rates wittDaMbps shared link.

6.6 Router Algorithms

This section discusses several possible Quick-Startithgas for routers to use
to choose when to approve Quick-Start requests and how naysettity should be
allocated when approving requests. We start with a basmarighgn that requires
minimal state, and proceed to an extreme Quick-Start dlgarthat keeps per-
flow state for approved Quick-Start requests. It is desirdbi routers to be able
to process Quick-Start requests efficiently. At the same tifme Extreme Quick-
Start algorithm explores the ability of the router to seledy approve Quick-Start
requests in order to maximize the use of Quick-Start banthgt the end-nodes.
A final consideration is attackers that wish to leverage @dtart in denial-of-

service attacks, which we investigate in the next section.

117

118 6 Evaluating Quick-Start for TCP

10 Mbps
S+ | o Regular TCP
X Quick-Start
@ o
@ ° o
c © axo
S o 7| 0 w owoX
© 3 X
S < | o X x ®w@ossomd « x .
e e i1 R R R0tk ek Bx X0
~ b 03
S A
o |
© T T T T T T T
2000 5000 10000 20000 50000 100000 200000
File size (Bytes)
100 Mbps
© | | © Regular TCP ®
o X Quick-Start
. 00 O o
w
E’ Q‘ i 1)lcre Telo]
2 © 000000000D
g B © 00000
0O « XX X X X X XXXXXXXXO0000000KX KK XX X X XK
S1® w O
o |
(=]

T T T T T T T
2000 5000 10000 20000 50000 100000 200000

File size (Bytes)

Figure 6.8: Per-connection performance. 10 Mbps and 100sMhared link with
3 web sessions.

6.6.1 Basic router algorithms

Quick-Start requests represent an increased packet gingdsurden for routers
that may also result in an increased end-to-end delay fdetaaevith Quick-Start
requests. Therefore, it is important that the algorithmgacessing the Quick-
Start requests at routers be as efficient as possible, wittall memory footprint.
To know if there is sufficient bandwidth available on the atink to approve
a Quick-Start request, the router needs to know the raw baltidvand have an
estimate of the current utilization of the link. The routésahas to remember
the aggregate bandwidth approved for use by end hosts irteat past to avoid
approving too many requests and over-subscribing theablailcapacity. In this

6.6 Router Algorithms 119

section we consider the algorithms used by routers to psoQesck-Start requests
for point-to-point links; algorithms for multi-access kis are left as future work.

The first router design choice concerns the router's metbo@gtimating the
recent link utilization. There are a range of measuremedtestimation algo-
rithms from which to choose, including alternatives for feagth of the mea-
surement period. We discuss two methods for estimatingikeutilization, the
moving average and measuring the peak utilization. We ab$e that assessing
alternate algorithms is an area for future work.

The moving average estimation technique uses a standard exponentially
weighted moving average to assess the utilization over ¢cent past. This
scheme was originally used for Quick-Start in [156]. We defif(t) as the uti-
lization at timet, M (¢) as the link utilization measurement at timed as the
interval between utilization measurements anas the weight for the moving
average. The utilization is defined as:

Ult+0) —wxM(t+0)+ (1 —w)=xU(t) (6.4)

We note that the weight should depend on the interv@l so that the utilization
is estimated over the desired interval of time.

The peak utilization estimation technique records the link utilization mea-
surements over the most rece¥ittime intervals. Thus, if each time interval 4s
seconds, then the peak utilization method takes the peaicond link utilization
over the most recenV x s seconds. The peak utilization method reacts quickly
to a sudden increase of link utilization, but also rememiagpgriod of high uti-
lization in the recent past. Unless otherwise noted, weNise 5 intervals of
150 msec each.

In addition to the two methods for estimating link utilizati we consider
two different algorithms for deciding whether to approveigeg Quick-Start re-
guest and how much capacity to grant in an approval. Botreth&prithms rely
on knowingrecentqs approvals the aggregate bandwidth promised in recently-
approved Quick-Start requests — ideally over a time inteatdeast as long as
the typical round-trip times for the traffic on the link. Ifglime interval for this
assessment is too small, then the router forgets recenk@iart approvals too
quickly, and could approve too many requests, thus ovesesiliing the available
bandwidth. On the other hand, if the time interval is too éartipe router errs on
the conservative side and remembers recent Quick-Starbwdp for too long.

In this case the router counts some of the Quick-Start badttivtivice, in the re-
membered request and also in the measured utilization, @adesult may deny
subsequent Quick-Start requests unnecessarily. Unlbsswose noted, we use
150 ms as the length oécentqs.approvals

120 6 Evaluating Quick-Start for TCP

The Share algorithm is introduced in [156] and given in Figure 6.9. Tdle
gorithm uses the output link’'s raw bandwidth and the recdifization estimate
to allocate up to a pre-set fraction ALLORATE of the unused bandwidth for
each arriving request. Thate requestvariable represents the incoming request
andapprovedrepresents the approved rate request that will be forwandtdthe
packet. TheSharealgorithm does not follow the design criteria we have sketch
thus far in this chapter that Quick-Start requests should be approved when a
given link is significantly under-utilized; th8harealgorithm approves a request
for up to a fixed fraction of the available bandwidth, regasdl of the levels of uti-
lization. We include an assessment of 8tearealgorithm in this chapter in order
to (z) compare the router algorithms we introduce with previowsknand ¢:) to
validate our design criteria that Quick-Start should int facly be used when all
routers along a path are significantly under-utilized.

The Target algorithm, given in Figure 6.10, approves Quick-Start exis
only when the link utilization, including the potential whmidth of recently-
granted Quick-Start requests, is less than some configemegmage of the link's
bandwidth, denoteds.thresh This gives a router direct control over the notion
of “significantly under-utilized”. When a Quick-Start reggt is approved, the ap-
proved rate is reduced, if necessary, so that the total gtexjdink utilization does
not exceedys thresh

Figures 6.11 and 6.12 show simulations with the Share angeTatgorithms,
respectively. The simulations use a range of values for the@QC_RATE pa-
rameter in theSharealgorithm and a range of values for thethreshparameter
in the Targetalgorithm. Both the Share and the Target algorithms use ¢ad p
utilization method for estimating link utilization.

The top graph in Figures 6.11 and 6.12 shows the overall ltilization for
each simulation. The middle graph shows the fraction of Rdtart Requests
approved. Finally, the bottom plot shows the fraction of €efbtart failures. The
main difference between the two algorithms is that the Shkgyerithm approves
more Quick-Start requests and experiences a larger nurierick-Start failures
than theTargetalgorithm as the network becomes more congested. We ndte tha
the ALLOC_RATE parameter does not controhetherthe Share router approves
a Quick-Start request; it only controls tezeof the approved request. The Share
algorithm approves Quick-Start Requests even at highzatibin levels. Even
though the approved requests are for progressively smadlitions of the band-
width the rate of failure increases. Finally, we note that ffaction of failure
for both algorithms is relatively small. However, given thath algorithms have
roughly the same complexity, thkargetalgorithm would be preferred given the
results in Figures 6.11 and 6.12.

6.6 Router Algorithms 121

avail _bw = bandwidth = (1 - utilization);
avail _bw = avail _bw - recent_qgs_approval s;
approved = avail _bw * ALLOC RATE
if (rate_request < approved) {

approved = rate_request;

}

recent _qs_approval s += approved;

Figure 6.9: The Share algorithm for processing Quick-Stqtiests.

util _bw = bandwidth = utilization
util_bw = util_bw + recent_qs_approval s;
if (util_bw < gs_thresh bandw dth) {
/1 Approve Quick-Start Request
approved =
gs_thresh = bandwidth - util _bw;
if (rate_request < approved) {
approved = rate_request;

}

recent _qs_approval s += approved;

Figure 6.10: The Target algorithm for processing QuickdStquests.

122

Utilization
00 02 04 06 08 10

QS Requests Approved (fraction)

QS Failures (fraction)

00 02 04 06 08 10

0.010 0.020 0.030

0.000

6 Evaluating Quick-Start for TCP

m ;;;,;;Qg%e
0’7""5?//
| 7.
i e —=o ALLOC: 0.95
,/.2” ---8 ALLOC: 0.75
A ¢ © ALLOC: 0.65
1 & --A ALLOC: 0.50
@ --< NoQs
L T T T T T T T
0 20 40 60 80 100 120
Web nodes
% —o ALLOC: 0.95
4 Baa ---8 ALLOC: 0.75
\&. ¢ ALLOC: 0.65
| 036, --4 ALLOC: 0.50
N
gt
- 0394
‘B::\
i e -
gt Simeen
E == e%é s
T T T T T T T
0 20 40 60 80 100 120
Web sessions
—o ALLOC: 0.95
4] ---8 ALLOC:0.75
¢ ALLOC: 0.65
1| --A ALLOC: 0.50 A

‘?\,;zg’/\:é\\'/

Lo : AN
1 /8 R N
—_’:A/‘ [REI, I \D
: o

208
g8
V%
ge?“g

T T T T T T T
0 20 40 60

Web sessions

Figure 6.11: Performance &harealgorithm.

6.6 Router Algorithms

Utilization
00 02 04 06 08 10

QS Requests Approved (fraction)

QS Failures (fraction)

00 02 04 06 08 10

0.010 0.020 0.030

0.000

123

D/,%/’g ‘ ---8 TARGET: 0.90

D

e 4 —o TARGET: 0.95

<& TARGET: 0.85
----A TARGET: 0.65
--<v NoQS

T T T T T T

20 40 60 80 100 120
Web nodes

—© TARGET: 0.95
---a TARGET: 0.90

a0\ © TARGET: 0.85
2% --& TARGET: 0.65
N
E\\?
. @%8\‘
A T8
&N
a8
- Sl BT
AT O] [
T T T T T T
20 40 60 80 100 120
Web sessions
——o TARGET: 0.95
---8 TARGET: 0.90
¢ TARGET: 0.85
--A TARGET: 0.65
—0 [}
0 2 e ; TR
8 g,g\g,a i ca U R
T T T T T T
20 40 60 80 100 120

Web sessions

Figure 6.12: Performance dargetalgorithm.

124 6 Evaluating Quick-Start for TCP

Figures 6.13 and 6.14 compare the moving average and pédiaktidth meth-
ods for estimating link utilization. The simulations use Wargetalgorithm with
a 10 Mbps shared link and a target level of 90 %. The top grapbw she frac-
tion of Quick-Start requests approved, and the bottom graplbw the fraction of
approved Quick-Start requests with dropped packets. Thengaverage simu-
lations were run with a range of values for the weightand the peak utilization
simulations were run with a range of values for the number5i-thsec inter-
vals over which the peak utilization was chosen. As the figisteow, the method
for estimating the link utilization does not significantlffect the approval rate of
Quick-Start requests, but it does affect the failure rataptations using the mov-
ing average link utilization have a higher fraction of Quistart failures. The
legend in each figure shows the overall time interval for tengation; for the
moving average graph, this is estimated as the time needed fén (1 —w) mea-
surements, where a measurement is taken for each depadnréhie queue [171].

Figure 6.13 shows that the selection of the weighin the moving average
equation does not have a strong effect on the number of Ctiakt-failures. The
weight controls the time interval over which the link utdtzon is estimated, but
the moving average method still estimatesalerageutilization; it does not take
into account the variance of traffic intensity that can beseng, particularly on
links with low to moderate levels of link utilization. For (@k-Start, where the
router does not want to approve Quick-Start requests thaldasult in even
transient congestion, tracking the average link util@atcan result in unwanted
Quick-Start failures.

For the simulations with the peak utilization method, thadStart failure
ratio is generally lower than with the moving average meth@éen there are
more than 50 web servers, using only three recent measuterieempeak utiliza-
tion causes more Quick-Start failures than when a largerbeuraf intervals are
used. With twenty intervals there are hardly any Quick+{Saitures. However,
when ten or more intervals are used, the approval algorighalso significantly
more conservative, with fewer Quick-Start requests bepraved.

6.6.2 Extreme Quick-Start in routers

We use the ternkExtreme Quick-Starfior a Quick-Start router that maintains per-
flow state about Quick-Start requests. With Extreme QuitktSve can analyze
how much Quick-Start performance could be improved if ro@ticiency was
not a limiting factor. For example, an Extreme Quick-Staater could perform
the following actions:

e A router could keep track of individual approved Quick-$taquests, and

6.6 Router Algorithms 125

£ 2
Z —o w: 0.05 (~40 ms)
g © | Y ---8 w: 0.005 (~400 ms)
- ° \\\8 © w: 0.002 (~1000 ms)
g o ANa --A w: 0.001 (~2000 ms)
2 o op
g N
< < g‘?g
& oS SN
Do
o NaN
& S S,
2 B_@,g
0 <9 |
o o T T T T T T T
0 20 40 60 80 100 120

Web sessions

[{e}

O_ -

© | | —e w:0.05(-40 ms) .
T 1| ---9 w:0.005(~400 ms)
5 X < w: 0.002 (~1000 ms)
€ 27| -4 w:0.001(~2000 ms)
0 —
o
2 o
c O
=
[%2]
o -

o

o

S

Web sessions

Figure 6.13: Performance of moving average utilizationrioet

note when the Quick-Start bandwidth resulting from thatuesq begins
to arrive at the router (if in fact it does). This allows theuter to more
accurately estimate the potential Quick-Start bandwidbimf Quick-Start
requests that have been approved but not yet used at the dag.no

e Arouter could keep track of the fairness of Quick-Start esjiapprovals. If
it appears that there are a number of requests that are naivegolbecause
earlier requests have allocated all of the available Q@itdt bandwidth,
the router could reduce the rate approved for individualiests in order to
achieve better fairness between flows.

Our Extreme Quick-Start implementation tracks the QuitkrSRequests made
for each traffic flow, and for each arriving packet it calcealmhow much data for
a flow has been transmitted after a Quick-Start Request. &atr #ow the router

126 6 Evaluating Quick-Start for TCP

T °]
o -
3 —=o 3 slots (450 ms)
g < % ---8 5 slots (750 ms)
- 2@\ © 10 slots (1500 ms)
g o v o & 20 slots (3000 ms)
e s 4 \
§ B3 -
< o)
o o A\ o m\\\o
g 4 'D>o
3 o RN
o o A o. Vo
& BALBTO—
n o | A"g‘:::_::ng’fii'::'_’:§>::’_’::'§
o o T T T T T T T
0 20 40 60 80 100 120
Web sessions
Qg | —=o 3 slots (450 ms)
’g‘ = ---8 5slots (750 ms)
= i ¢ 10 slots (1500 ms)
S g A 20 slots (3000 ms)
o oS |
E
5 A
T N
L o 4
3 o
. \ 0 e
S I S S ety SR b
O | mmn-8-8 : R
o T T T T T T T
0 20 40 60 80 100 120

Web sessions

Figure 6.14: Performance of peak utilization metric.

updates a variablgsr _used that tracks how much the flow has used from the
allocated rate. In order to know how much data is expectedrigeaafter the in-
coming rate request the router needs to have an estimaten flaund-trip time,
because the senders are in the Quick-Start state for théiauaf one round-
trip time during which they are assumed to have used the bidtiivthey have
requested. For each incoming Quick-Start Request, therages the current
gsr _used values from all open flows and compares them to the curreqino
Quick-Start requests for each flow to get an exact estimateosnmuch of the
requested bandwidth has already arrived, and is theretmauated for in the cur-
rent utilization calculation at the router. This way thetenucan more accurately
estimate the currently available bandwidth instead ofgistugh aggregate esti-
mate of the outstanding Quick-Start approvals, as donecitbéisic Quick-Start.

6.6 Router Algorithms 127

Using the above described information for each flow, our &xie Quick-Start
implementation calculates a simple score for each sendedban the fraction of
Quick-Start Requests made by the sender and the actualtiyhaselwidth dur-
ing the first round-time. This score can be used to identifydses that have a
tendency to request more bandwidth that they are going tp arsk adjust the
approved rate in future requests from those senders aogydiSection 6.7 de-
scribes the use of this algorithm in more detail.

As mentioned above, itis useful for an Extreme Quick-Stauter to know the
RTTs of flows, in order to set the length of the interval for mging the arrival
rate of packets from a flow after an approved Quick-Start esju There are a
number of techniques for routers to estimate flows’ RTTs.[84}he analysis be-
low, we assume that the Extreme Quick-Start router implémameliable method
for evaluating RTTs.

Figure 6.15 compares the basic Quick-Start algorithm aadetireme Quick-
Start algorithm for scenarios with a small range of RTTs. Whiee RTTs are
known (or easily guessed) by the router, and the router caorately set the
length ofrecentgs.approvalsstate to roughly match the round-trip time. In these
simulations, the basic Quick-Start variant usesTargetalgorithm with the peak
utilization method. The Extreme Quick-Start variant usesuder that keeps track
of approved Quick-Start requests separately for each flpdating its state dur-
ing the transmission of the Quick-Start window as the pachketve, and achiev-
ing a more accurate estimate of the overall amount of Quiekt$raffic that is
still expected to arrive. Figure 6.15 shows a scenario witarge of round-trip
times from 80 to 120 msec, and with the lengthedentgs.approvalsset to 100
msec for basic Quick-Start. From the top plot we see that titization is nearly
the same regardless of whether basic Quick-Start or Ext@umiek-Start is em-
ployed. However, the bottom figure shows that the fractiobytés transmitted
using Quick-Start is greater when Extreme Quick-Start isdulsy the router to
track each allocation in detail. This illustrates ExtremeicR-Start’'s power in
terms of more closely tracking resources such that moreestguare approved
than when using basic Quick-Start. This kind of scenarieisainly not typical,
but there could be some initial Quick-Start deployment ades, such as in lim-
ited intranets, where there is a limited range of RTTs, asd athere the traffic
and network characteristics could be accurately estimated

As a point of contrast we changed the lengthmemfentqs approvalsto 1.5 sec-
onds to investigate Extreme Quick-Start in the context ofaaid Quick-Start
router that does not have a “typical” RTT and therefore cksos conservative
setting (i.e., this setting results in few Quick-Start dieds, but also fewer Quick-
Start request approvals). Figure 6.16 shows Quick-Stafftdras a fraction of the

128 6 Evaluating Quick-Start for TCP

o
S A
@ |
o
-8
s © | R
7 ° —
N 6—""
= X e o
o o Q/: [a]
o o
o a@/ —g gxstremeQS
Q 998
© T T T T T T
0 10 20 30 40 50
Web nodes
v
o
8 ——o Extreme QS
g 34 | e s
5
= @4 oo
e T
1% o fio—0
; o
‘GSJ, g .y Ohg---- BN
) UO—
N o o-.__ 6— o
O o 7 o i T——
eTTTe—
o IR o
© T T T T T T
0 10 20 30 40 50
Web nodes

Figure 6.15: Extreme Quick-Start and Basic Quick-Starhwhitghly tuned pa-
rameters.

total amount of data transmitted. In this simulation we &s&md the utilization of
basic Quick-Start and Extreme Quick-Start to be nearlytidah The plot shows
that the fraction of bytes sent during the Quick-Start phafsthe connections is
greater when using Extreme Quick-Start. The reason forishisat the Extreme
Quick-Start router is able to keep track of the unused alionaseparately for
each flow as the packets arrive. Therefore, less wasted ibafmallocated by
Quick-Start which allows more connections to be approveds® Quick-Start.
The difference between basic Quick-Start and Extreme Q8tekt in this figure
is larger than the difference shown in Figure 6.15 due to tleenconservative
setting for the length afecentgs.approvals

While the basic Quick-Start is relatively light-weight atithm at routers with
only a few bytes of additional aggregate state to maintaktrehe Quick-Start

6.7 Attacks on Quick-Start 129

0 —
o
——o Extreme QS

w < ---8 QS

) [=]

2

= ® 9

< o] D\ o/ \

[%2] 7 ¢

o N

=1 9 TN

D« | Qog----8_ i \

O o o \\\\ \O\
5 B----g o- e O-----mm-- g
=] T T T ! ‘ ‘

0 10 20 30 40 %0
Web nodes

Figure 6.16: Basic Quick-Start and Extreme Quick-Starhvagbnservative pa-
rameters.

needs to maintain some state separately for each flow pagsnguter. This
likely makes Extreme Quick-Start an infeasible algorittorbe implemented at
all routers, although we have not analyzed the actual psingsequirements of
Extreme Quick-Start in detail. However, it is possible fdfatent routers to use
different algorithms to evaluate the Quick-Start Reques$teerefore it would be
possible to implement Extreme Quick-Start at selectedtpaimthe network, for
example close to the wireless link with possibly less trdfied, to gain some of
its advantages while using the basic Quick-Start elsewindfee network.

6.7 Attacks on Quick-Start

Quick-Start is vulnerable to denial-of-service attacksngl two vectors: #) in-
creasing the routers processing and state load ahadusing temporary false
allocations of Quick-Start capacity that will never be ubet may prevent legit-
imate flows from having their Quick-Start requests approv8ihce Quick-Start
requests represent a processing burden on the routersaava storm of requests
may cause a router’s load to increase to the point of impgdégitimate traffic.
Given the processing burden imposed by Quick-Start thisdcaell be worse
than a simple packet-flooding attack. A simple limit on th& rQuick-Start re-
quests could be considered (with a policy of ignoring retgieent in excess of
this rate) to mitigate the attack on the router itself. In¢hse of Extreme Quick-
Start another problematic aspect of a storm of packets isy#raory requirement

130 6 Evaluating Quick-Start for TCP

to track false “connections”.

The second type of attack is more difficult to defend agaimstthis attack
arbitrarily large Quick-Start requests are sent by theckttathrough the network
without any further data transmission. With a relativelwloate stream of pack-
ets, this can cause a router to allocate capacity to thekattaconnections and
thus temporarily reduce the amount of capacity that canlbeaikd to legitimate
Quick-Start users. Note that the attack does not actualhgwwme the requested
bandwidth and therefore the performance of connectionspeting with attacks
is no worse than connections that simply do not make use afkJsiart. These
attacks are particularly difficult to defend against for treasons. First, the at-
tack packets do not have to belong to an existing conneatigio tdamage. And,
second, since the attack just involves a Quick-Start redtagersing the network
path in one direction only to trigger bogus allocations, sponse is not required.
Therefore, spoofed source addresses are a possible agggdeator for both hid-
ing the location the attack is originating from and causingimaple blacklisting
defense to fail.

An additional problematic aspect of Quick-Start is thatitietpte requests
could well cause the same impact as attack packets. CorssiQeick-Start re-
quest that is approved by the first router for some given @teyhich the router
then marks as “allocated” for some period of time. Now assthreesame request
hits a downstream router that either does not understanckeBtart requests, re-
duces the rate to less th&hor decides it cannot approve any Quick-Start request.
In this case, the first router has allocated some amount afoigpthat will not
be used because of the conditions elsewhere in the netwarkn fhe perspective
of the first router this is similar to the attack described\aholn other words,
capacity allocated for Quick-Start goes unused and thexeaduces the router’s
ability to approve further Quick-Start requests

Since Quick-Start is a loosely-connected distributed aeggh, routers have
few options to deal with allocations that are never usedr(ar fully used). One
approach is to use the notions of Extreme Quick-Start takteatost's use of
Quick-Start and to disallow Quick-Start for hosts that haveviously used less
than their previous allocations. This approach is barebfuldf an attacker can
spoof source addresses because each attack packet coplgl ese a random
source address. Further, it opens the door for anotherkatype — namely, that
an attacker can prevent a particular host from ever usingl@8tart by making a

°Atfirst glance, allowing the router to watch the Quick-Staegponses offers more information.
However, due to asymmetric routing we cannot assume thatiterravill see the Quick-Start re-
sponses. In addition, an arbitrary router has no idea howelitd the TT LDif f' in the response is
valid and therefore whether the sender will ultimately make of the response.

6.7 Attacks on Quick-Start 131

bogus request on the victim’s behalf, thereby getting ticémiblacklisted. In ad-
dition, using a blacklist approach seems heavy-handeckindghtext of legitimate
traffic that does not fully use their Quick-Start allocati@s sketched above).

Another approach is for Extreme Quick-Start routers tokrtee fraction of
Quick-Start allocations hosts use and then make this arfactihe approval of
subsequent requests. For instance, if some host requests aftX bytes/sec
but uses onlyX /2 bytes/sec because of a downstream limitation, a router may
decide to halve future rate requests from that host. An Extr®uick-Start router
has the required information to identify hosts that fredlyemake Quick-Start
requests for more bandwidth than is actually consumed. €fbe, the Extreme
Quick-Start router can reduce subsequent rate requestsvagjfor these hosts.

Furthermore, an extension to the Quick-Start protocolfitses been proposed
to mitigate the effect of false Quick-Start Requests by iagldi third pass to the
protocol to follow the Quick-Start response [54]. In thigpamach, after getting the
Quick-Start response, the TCP sender sends a third messaggtt the approved
rate to all routers along the path.

We implemented the following algorithm in the Extreme Quffart router.
The router stores both the Quick-Start allocatidriF'), and the amount of band-
width used,B(F'), during the Quick-Start phase for each fld, After the mon-
itoring period has elapsed, the router calculates theifraaf the allocation ac-
tually consumed a€' = B(F')/A(F), limiting the maximumC' to 1. The router
maintains a scoré(H) for each sending hogi as follows:

S(H) «— w+max(C,S(H)) + (1 —w) * min(C, S(H)) (6.5)

In our simulations we set the gain to 0.2 and used a measurement interval of
1.5 seconds. Instead of a pure moving average, we selectettiioh that reacts
quickly to hosts that often make larger requests than theyugnusing. When a
new request arrives, the router decreases the incomingeqtest by the factor
S(H) for the given host.

Figure 6.17 compares the performance of basic Quick-Stattlze variant of
Extreme Quick-Start sketched above. The web servers makie Quick-Start
requests of 2 Mbps for all TCP connections, regardless obliject size. As the
figure shows, when adjusting the allocation approved baseprevious usage,
Extreme Quick Start is able to allow a greater fraction officao utilize Quick-
Start compared to the case when the router does not tradatitta usage.

Tracking per-host and per-connection state to mitigate phoblem may be a
high barrier. However, we note thaf) developing schemes based on aggregate
traffic that do not require fine-grained tracking may be gassand i) even if
fine-grained tracking is required a router that is able taayg Quick-Start should

132 6 Evaluating Quick-Start for TCP

© ——o Extreme QS
o
0 o | ---a QS
%. o 'o/
o o
= - o
<\E o o
831 o2 .
> o o
& : o o
(04 7 o ‘o \g;
o So--77 \uﬂ{fg
0.4
o T T T T T T
0 10 20 30 40 50

Web nodes

Figure 6.17: Impact of large Quick-Start requests for allPT€nnections when
accounting for abuse.

be under-utilized and therefore may have some cycles tegpad could simply
turn off all Quick-Start activity when busy). We defer an in-depth stofiguch
schemes to future work.

6.8 Summary and Open Issues

In this chapter we have described the Quick-Start protondl discussed some
of the design alternatives in the protocol. We also presestane alternatives
for algorithms to be implemented at end hosts and routerpratiocol process-
ing, and evaluated the performance and relative differericke Quick-Start al-
gorithms. We have discussed the potential costs and bepéf@siick-Start on
performance in an uncongested environment, the apprepeaponse to the loss
or ECN-marking of a Quick-Start packet, and the range ofritlgms for routers
for processing Quick-Start requests. However, there amgynsasues we could not
thoroughly study in this work, and we list some of the morendigant below as
pointers for future research topics.

¢ How effective would Quick-Start be in practice in realissicenarios of five
or ten years from now? Would Quick-Start be of great benefitisers
who could send an entire large transfer in a single rourpdtinne over an
under-utilized path? Or would most of the potential QuitkfSbandwidth

6.8 Summary and Open Issues 133

be “wasted” by legitimate requests denied by downstreantersuby re-
guests from aggressive senders sending a request eachtriputiche, and
by malicious requests whose sole purpose is to deny Quiak+sindwidth
for other users? Recently the Quick-Start algorithm wasaanbd with a
Quick-Start Rate Report, that aims to improve the effeatss of Quick-
Start by adding a third phase to the protocol to inform theéesuwhat was
the actual rate that was approved [54]. However, we havetndiesl the
possibilities or requirements the Rate Report could intoedto Quick-Start
processing at routers, for example with the Extreme Quit&lgorithm.

e Would routers have sufficient incentives to implement Qftart, consid-
ering the potential benefits, but also the additional prsicgscosts and
possible security concerns Quick-Start may introduce? cdment belief
is that Quick-Start could be first deployed in networks whbeerouters and
the end-hosts have clear mutual interest in speeding upection startup.
The initial customer demand for the router and end host venclould be-
come, for example, from a wireless operator that could de@loick-Start
in its own network to enhance the download times of the cdrdad ser-
vices provided by the operator itself. Similarly, an orgation could take
Quick-Start into use in its intranet to be able to use thellooatent and
services efficiently. A possible further research item wiobé to investi-
gate what are the typical capacities and utilizations ifedét parts of the
network: would a wireless UMTS operator be able to use Q@itdet, or
even Extreme Quick-Start with the current equipment atdteas routers,
or would Quick-Start require additional hardware cap&ityould the sit-
uation be more difficult in the UMTS core network? Would it leas$ible,
within some years of time, to deploy Quick-Start in the bamkd network
with highly optimized router implementations?

e What would be the minimal sufficient implementation at thatess and
would there be sufficient benefit in deploying more compleyogthms in
routers?

e Would it be possible to implement faster congestion corgtaftup with a
smaller amount of information in packets, such as propas#ue AntiECN
or VCP mechanisms? There are 16 bits in the Quick-Start othiat comes
as an overhead from the generic option processing, and 4®fitata spe-
cific to Quick-Start. The 8-bit TTL field is needed for chedkithat all
network hops have processed the Quick-Start request ahd aatne time,
used as one kind of nonce to give some protection against lzehasing
receiver that tries to forge the Quick-Start responses.s@ening the large

134 6 Evaluating Quick-Start for TCP

space of different kinds of links that may reside on the saomnection
path, it is also useful to have more than one bit to indicageapproved
sending rate. We believe that the current option formatdsesto the mini-
mum possible to make Quick-Start useful.

e Would we still need an explicit congestion control protoaaich as XCP, if
Quick-Start gets adopted by a significant portion of netwuarkts? Quick-
Start has most use for medium-sized connections, and foremtions with
long lifetime an advanced mechanism would provide finer r@rthan
Quick-Start does. However, Quick-Start could be invokethenmiddle of a
connection, and in combination of explicit congestion ficdtion the trans-
port protocol could be able to speed up and slow down thertress$on rate
dynamically without having to suffer from packet lossesthi path char-
acteristics changed frequently during a transport commectve expect a
fine-grained explicit congestion control method to adaphé&present con-
ditions more efficiently than the standard TCP congestiaorirobenhanced
with Quick-Start and ECN.

e How severe are the additional security issues due to QuiakSWhat are
the policing mechanisms that could be deployed in end-nadésn routers
to address these security issues?

e A router should not approve Quick-Start requests if it camabiably deter-
mine the link utilization all the way to the next hop. What Wathis mean,
in practice, when there is an Ethernet switch, an ATM cloudsame other
non-IP queue between the router and the next-hop IP routegfated prob-
lem arises with the IP tunnels such as those used in VirtizdterNetwork
(VPN) solutions. Currently it is unknown if we can ensuregeptreatment
of Quick-Start in such cases: Quick-Start Request shoulprbeessed in
every router, but an IP tunnel hides the Quick-Start Requegte an outer
IP header, possible encrypting the inner packet headeznpally causing
misbehavior of Quick-Start. The tunnel ingress and egredes should be
enhanced to process Quick-Start Requests appropriatelyhdt would be
a further deployment challenge.

While there are a number of open issues and challenges inrdotigal de-
ployment of Quick-Start, we believe that the analysis is thapter helps in fur-
ther evaluation of the possible usefulness of Quick-S@une environment where
Quick-Start can be expected to be useful, are high-speezless links: in many
cases the wireless channel is shared by a small number o, aset is therefore
underutilized for most of the time. On these links it takestireely long time

6.8 Summary and Open Issues 135

for TCP’s congestion window to reach a size that allows ¢iffecchannel uti-
lization. Therefore Quick-Start could significantly impeothe communication
performance in such setup.

It is probably unrealistic to expect that Quick-Start woblel deployed in the
world-wide Internet, but it seems possible to see Quickt$igployments in lim-
ited and better controlled environments, as discussedealogploying protocol
changes or enhancements in the Internet is a difficult tdpcause looking at
the past experience, a reasonable belief is that the pistogo in the Internet
core routers are not going to be changed more than once inaaj&m, if even
then. It remains for future research to show whether Quit3s the right and
sufficient change to make in that case, or whether it woulddigebto use the
rare opportunity of change somehow differently, maybe kintr to roll in more
fundamental changes, such as XCP, to the congestion cérmanoéwork.

136 6 Evaluating Quick-Start for TCP

CHAPTER 7

Using Quick-Start to Improve TCP
Performance with Vertical Hand-offs

Public mobile network access is gaining increased diwemiterms of the types
of access technologies and scattered deployments witldraocess technology.
This access network diversity combined with an increasungloer of multi-radio
mobile nodes (MNs) that are equipped with multiple integfacepresenting both
short range radio (such as Wireless LAN - WLAN) and WirelesSN\(WWAN)
access technologies creates an environment, where rgdiBlitveen access tech-
nologies becomes justifiable. Mobility between access osvmay involve both
horizontal and vertical hand-offs, that is, hand-offs witthe same access tech-
nology and between different access technologies, ragphbct

In this chapter we investigate the use of the Quick-Staxrélgn in wireless
network environments. Although initially Quick-Start wpsoposed to start up
the TCP connections rapidly, we apply it to quickly probe ¢hpacity of the new
network path after a wireless vertical hand-off. We emploeaplicit notification
that is delivered to TCP to inform it about the hand-off evantl to trigger the
Quick-Start. Quick-Start is expected to be useful in thisecdbecause the delay
and bandwidth characteristics of the different wirelesk technologies are often
substantially different, and the traditional TCP is knowrtbnverge slowly to the
new network conditions after a vertical hand-off [48].

Quick-Start allows the TCP sender to find an appropriate esiign window
size quickly without having to rely fully on the regular TCBngestion control
algorithms that react slowly in high-latency environmen®e also propose an
enhancement to the Quick-Start algorithm that sets the 3 €l8W-start threshold
(ssthresh in addition to the congestion window. We study by simulasidiow
TCP performance is affected on vertical hand-offs betwediAWand EGPRS

137

7 Using Quick-Start to Improve TCP Performance with Vettica
138 Hand-offs

and how TCP performance can be improved with Quick-Startarslternative
to Quick-Start, we apply TCP slow-start on the explicit gég.

The rest of this chapter is structured as follows. Sectidngizes some back-
ground about vertical hand-offs and past related work. i&ect.2 shortly dis-
cusses the IP mobility mechanisms. Section 7.3 describee s the design
issues with explicit notification mechanisms used to helP T6ngestion control,
and Section 7.4 presents results of our simulation studiaducted with Quick-
Start. Finally, Section 7.5 wraps up our investigation.

7.1 TCP Performance on Mobile Hand-offs

Depending on the network environment, a mobile node maydehable through
multiple network interfaces simultaneously or throughregi interface at a time,
changing the active interface every once in a while. It is aismmon that one of
the network interfaces maintains stable connectivity esame point of attach-
ment in the Internet (for example, WWAN systems like GPRSAEH]29, 150]),
while the other network interfaces may change their poirdttdchment (and the
IP address) quite frequently (for example, short rangeesystlike WLAN).

Generally there are two types of hand-offtake-before-breakwhere new IP
connectivity is established before the old one is brokelowaihg simultaneous
communication over the old and new link during the hand-axfici break-before-
make where the IP connectivity over the old link is lost before tiew one be-
comes operable, often resulting in packet losses due toahedoof disconnec-
tion. In a multi-access environment the make-before-beggsroach is an inher-
ent choice, provided that the applied mobility solution gaips using multiple
link interfaces simultaneously and the link-level connetst can be maintained
during the hand-off.

Different access networks often represent disparity ik dharacteristics. For
example, link bandwidth, latency, bit-error rate and thgrde of bandwidth asym-
metry may differ considerably. Therefore, sudden changdsd access link char-
acteristics due to vertical or even horizontal hand-offy mgerfere with the trans-
port layer protocols and with the applications that base firetocol behavior on
the measured end-to-end path conditions.

Because the TCP congestion window starts from a small lirstize and the
detection of the correct network capacity is based on pdokstevents, adjusting
the congestion window is sometimes slow and inefficient & ldtk of explicit
congestion signals. The ineffectiveness of congestiottralois a particular prob-
lem in high-latency environments with relatively slow Ig)ksuch as GPRS/EDGE

7.1 TCP Performance on Mobile Hand-offs 139

(EGPRS). Furthermore, when an MN moves during a TCP cororeetind exe-
cutes a vertical hand-off, a typical TCP implementatiomiaware of the hand-off
event and the potential change in the end-to-end path greper his causes fur-
ther challenges to TCP that converges relatively slowlmetimes after several
packet losses, to the correct network capacity.

While there are a number of papers that discuss the interacti TCP and
hand-offs in general (for example [13, 16, 32, 33]), there k@ss papers that
specifically focus on TCP and vertical hand-offs betweefediht access tech-
nologies. A thorough discussion on the effect of hand-offT@P performance
is given in [68]. This paper mainly discusses the problemt wacket reorder-
ing due to the decrease in the propagation delay and congesiated packet
losses due to the decrease in the bandwidth-delay produ@P)BIt proposes
two schemes, namelgongestion window reductioand nodupackschemes to
improve TCP performance during make-before-break hafsl-@¥hen the hand-
off occurs from a high BDP to low BDP network, the remote TCRdsx gets
an explicit congestion window reduction trigger from the MiINd reduces the
congestion window. Thaodupackscheme limits the transmission of duplicate
ACKs during the hand-off to avoid unnecessary retransmisscaused by packet
reordering. The hand-off is detected either by the TCP veceioticing that pack-
ets arrive through a new network interface or by an expliaifger from the MN,
but the paper does not mention how the trigger is commurdcttehe remote
end.

A comparative study on the effect of vertical hand-off omggort protocols
such as TCP and TCP-friendly rate control (TFRC) is presemd63]. This
paper proposes over-buffering to reduce the problem dubdalange in BDP
to enable smooth changeover between links with differenPB® drawback of
this scheme is that it is difficult to know in advance how muehrebuffering is
needed.

Huang and Cai [74] propose three schemes to mitigate thet efféncreased
RTT in make-before-break hand-offs from a fast link to a sliok. These schemes
are aimed to soften the dramatic increase in RTT betweenlthint and new
link. First, the fast response scheme requires sending @ksfover the old link
for a short period after the hand-off. In the second schemidslow response, a
few ACKs are sent over the new link just prior to the hand-dfiese two schemes
may have practical problems if the old link is not availabieathe hand-off or if
the new link cannot be used prior to the hand-off. The thittesee, called ACK
delaying, softens the RTT change by delaying the few firshaakedgments over
the new fast link.

The Lightweight Mobility Detection and Response algoritfitb8] has been

7 Using Quick-Start to Improve TCP Performance with Vettica
140 Hand-offs

proposed for making TCP aware of the path change during &aktand-off.

It is assumed that the MN notices the subnet changes and tligyinformation

to the TCP sender through a TCP option. It recommends thett thfé hand-off
the TCP connection should be treated as a new connectiorhantiGP sender
should reset the congestion control state and the RTO timgbsatssthresho a

large value.

7.2 IP Mobility

IP Mobility support is becoming an integral part of the wirs$ IP data commu-
nication [1]. In a multi-access networking environment Wbl often needs to
reconfigure its IP addresses after changing the point aftattant to the network,
or when performing an IP-level hand-off between IP subneta:oThere are sev-
eral IP Mobility solutions and protocols. Some of them addrthe IP Mobility
problem at the network layer (e.g., Mobile IPv4 [129], M&hiiPv6 [85]), some at
the transport layer (e.g., SCTP with dynamic address regoraiion [154]), and
some solutions virtualize remote networks or separate dbation and identity
transparently from the rest of the system (e.g., MOBIKE [4i{l Host Identity
Protocol [134]).

Among the IP Mobility solutions and protocols listed eartieere are different
approaches to handle mobility. It is possilji¢ to have a topologically stable
anchor node, like a Mobile IP Home Agent, that the MN reggster The anchor
node represents the mobile terminal while the terminal isida its home net-
work. Packets are tunneled between the MN and the anchorwbee needed.
This kind of solution requires deployment of anchor nodes generally causes
inefficient routing of packets. The communicating protscchn(ii) handle mo-
bility directly between the communicating end nodes, andnéver the other end
moves the required IP-level information is signaled with pieer. DCCP with mo-
bility extension is an example of such a solution at transpatocol level [98].
The positive sides are the lack of mandatory infrastrucauré no need for tun-
neling, but on the other hand, the lack of a stable anchor woderendezvous
point complicates locating the moving MN. Finally;:) localized mobility man-
agement (LMM) [91] handles mobility locally and as much asgille on the
access network side without MN'’s active participationngsiunnels between the
access network routers and the anchor nodes. This appreagipéaling because
it allows terminal mobility also for IP-Mobility-unawaretminals. However, the
downside is the new required support and intelligence omticess network.

One of the problems with most existing IP Mobility protocaésthat they
mainly concentrate on fixing the IP routing and reachabilititere are protocols

7.3 Applying Quick-Start for Wireless Links 141

for reducing the number of packet losses during a hand-affh s Mobile IP
utilizing simultaneous bindings and bi-casting featurej protocols for enabling
low latency hand-offs [103]. However, these solutiond stiglect the transport
and application layer needs during hand-offs.

7.3 Applying Quick-Start for Wireless Links

When a vertical hand-off occurs, the path characteristush as bandwidth and
propagation delay, may change dramatically. This causasigms to TCP that
typically needs several round-trip times to adapt its tnaission rate if the change
is significant enough. Also in the connection startup it akeveral round-trip
times from a TCP’s slow-start algorithm to reach an appedpriransmission rate
on a high-latency wireless link. The TCP adaptation speacdedmproved by an
explicit indication from the network that the path charaistécs have changed, to
indicate that the earlier congestion control state may ha&eme invalid.

The explicit notification mechanisms can be categorizea imiband and out-
of-band signaling. Out-of-band signaling could be carrfed example, in ICMP
or RSVP packets, whereas in-band notifications are piggigsh for example, as
IP options, along with the data traffic. We consider in-barethanisms to have
better characteristics for our needs.

Out-of-band mechanisms would have various kinds of diffieslin bearing
the explicit information in a hop-by-hop manner. To mentafew, out-of-band
signaling would contribute to the overhead in the netwodgeeially since the
packets would also need to carry parts of the transport mdadeake it possible
for the end-hosts to identify the correct transport protsmssion. In addition,
ICMP or RSVP packets might be blocked by some middle-boxésametwork
and they would be hidden by IP tunnels, especially with IP&bile the latter
can also be a problem with IP options, we believe that impfeing proper ways
of handling the notifications in these cases would be somesdsier with in-band
signaling. The in-band versus out-of-band issues are sstlimore thoroughly
for example in [54].

We assume that the TCP sender gets information about thedfbadent by
some way. A mobile host usually is aware of the mobility thgiouts own mo-
bility mechanisms. Instead of hiding the mobility infornwet from the upper
layers, the mobile host would need to support internal ABkllow the mobility
management protocol notify the TCP implementation aboeitntiobility events.
Often the majority of data is sent by a fixed server in the ndtwdn this case
the mobility event would need to be signaled across the n&twidhere have been

7 Using Quick-Start to Improve TCP Performance with Vettica
142 Hand-offs

some proposals how this could be done [48, 148, 105]. Onehilitysis to de-
liver information of changed last-hop link characteristio-band as part of the
normal IP-mobility-related signaling. Other option woldd to use a TCP option
to indicate that one end of a connection has moved.

After TCP has received a mobility indication, another forhexplicit commu-
nication is needed to resolve the new path characterigtitefthan TCP normally
would do. Some of the earlier research based on the oldelesgdéechnologies
has assumed that the wireless link is the bottleneck on themmication path
(for example [4]). This assumption does not necessarilg taray, as the wireless
networking technologies have become significantly faecause TCP needs to
conform to the congestion control principles, and it must erdanger causing
severe congestion on the communication path, the infoomabout the last-hop
wireless link is not always enough, but the state of the wipalh needs to be
known in order to determine the appropriate sending rate.

We described the Quick-Start protocol in Chapter 6 and edatlia number of
algorithms that could be applied with Quick-Start at rositend the TCP sender.
We now turn to evaluate Quick-Start in wireless networks reheand-offs can
cause sudden path changes in the middle of connection. @&k can also
be applied in the middle of a connection upon some specialteyvand we are
investigating one such event, namely vertical hand-ofiveen two paths with
radically different properties. Quick-Start can potelyiamprove the communi-
cation performance in these environments that are knowretohallenging for
TCP, as described above.

Because it has been observed that slow-start overshootégaus problem
with high-latency links [41], we propose an enhancementu@k)Start that sets
the ssthreshin addition to the congestion window. We apply a simple logiere
the ssthresh is set based on the Quick-Start Response bisisgrne equation as
for setting the congestion window, so that after an appraedtk-Start request
the congestion window and ssthresh are equally sized. Wfhigeis a simple
approach, we believe it is an appropriate heuristic oveeless links that do not
typically have large amounts of background load. Therdiforiting the TCP con-
gestion window’s growth rate based on approved Quick-$¢taptiest is expected
to prevent congestion losses without significantly lingtthe performance. How-
ever, if Quick-Start Request temporarily returns a lowés than what the full link
capacity is, it is possible that our approach leads to simapuse of the wireless
link capacity. Therefore, in future we intend to study moteanced mechanisms
for setting the slow-start threshold, for example by apudythe Limited Slow-
Start[53].

The main challenge with Quick-Start is that all routers oa wWhole network

7.4 Simulation Results 143

path need to support it. As discussed above, in order to leeclitkly increase
the transmission rate, this requirement follows from thimgiple that conges-
tion can happen on any router or any link from the connectiattn pHowever, it
would be safe to limit the slow-start threshold without kriogvthe capacity of the
whole connection path. For example, there has been somw/pdsproposing to
avoid slow-start overshoot by limiting the TCP’s advettisgindow at the wire-
less receiver [141]. We discuss more about the generalcatyility and possible
incentives to deploy Quick-Start mobile networks in Setfcb.

7.4 Simulation Results

This section shows simulation results acquired with nsi#vae simulator. We
first discuss the connection startup performance on wisdieks, and then move
on to investigating different types of vertical hand-offs.

7.4.1 Simulation Arrangements

We are assuming a network topology where the MN is capablesioiguboth

Wireless LAN and EGPRS wireless access technologies. ThaN\ind EGPRS
links both have dedicated base stations that are connezi@ddmmon wireless
access router with a 100 Mbps link. The router has a 100 Mbpaexdion to a
server in the fixed network. The one-way propagation delayr each link in the
fixed network is 2 ms. The WLAN link has a bandwidth of 5 Mbpstwohe-way

propagation delay of 10 ms. The IP packet send queue at theNVibR has room

for 30 packets. The EGPRS link is capable of transmitting RBPs with 300 ms
propagation delay. The EGPRS packet queue is capable ahgd@ packets.
We believe these parameters approximate fairly well theadatharacteristics of
EGPRS and WLAN link technologies in a detail that is suffitifem the analysis
in this chapter.

Although our simulation model can be considered to be a $iicgtion of
a corresponding real-world setup, we think it has the relew@mmponents for
evaluating the effect of the vertical hand-offs between twoess technologies
on TCP performance. We believe that additional complexityiee network side
does not have significant effect on the simulation resulisaie dominated by the
wireless link characteristics.

We analyze the behavior of a single TCP connection over thelegs link.
Although this might seem a simple setup, it is rather comnia the mobile
terminals with a limited processing capacity and user fater have only one or
few applications and TCP connections active at a time. litiadd the case with

7 Using Quick-Start to Improve TCP Performance with Vettica
144 Hand-offs

a single TCP connection is most interesting for Quick-S@stit is intended for
under-utilized network paths. With several parallel TCRrections the utiliza-
tion of the wireless link would often be too high for the QuiSkart requests being
approved at the wireless access router, and therefore €aiark is not expected
to be as useful in such scenarios with wireless links. Howesemobile devices
become more efficient and richer in features, the expectatbeu of active TCP
connections in a mobile host is expected to increase. Torverah important topic
of future research is to investigate the TCP behavior witic&tart and several
simultaneous flows on the wireless network. An interestipgctl use case dis-
cussed recently is to use the mobile device as a wirelessrrolt this case not
only the degree of multiplexing on the wireless link is highsut the mobility
of the wireless router is hidden from the hosts behind theil@abuter. With
mobile router some different form of explicit signaling wduibe needed from the
router to inform the TCP end hosts about mobility. Howeves, will defer this
discussion to future work.

SACK TCP is used in the simulations. When Quick-Start is rmiva, the
TCP initial window selection follows RFC 3390, using anialitvindow of three
1460-byte segments. In these tests the TCP advertised wirsd28 packets,
assuming the use of TCP’s window scale option [25].

We model the explicit trigger sent by the MN to the server atftked network
during the hand-off procedure when the server starts tohsadéw path. When
the trigger arrives the Quick-Start sender makes a rateesgdor 2 MB/sec that
covers the whole path capacity in all cases. The routers mjpsoge the request
with the requested or a smaller rate, or reject the requebe rduters use the
Targetalgorithm at routers with 95% target utilization, and theak utilization
measurement method for three recent time intervals of 250The routers also
remember the recent Quick-Start requests from the past 25@mapter 6 gives
a detailed description of the Quick-Start algorithms arelahove-mentioned pa-
rameters.

We primarily test the following four different variants ofCP:

e none The standard ns-2 Sackl TCP that does not use any expfimitria-
tion about hand-offs.

e slowstart: The TCP sender gets a notification of vertical hand-off aatd s
congestion window to one MSS after vertical hand-off, aftbich it con-
tinues in slow-start.

e (s. The TCP sender gets a notification of a vertical hand-off mwa¢kes a
new Quick-Start request in response. The TCP sender alsesw@a®uick-
Start request at the beginning of the connection in thisaveri

7.4 Simulation Results 145

e gsthresh Like gs but the TCP sender sets a slow-start threshold to the
value received in the Quick-Start response. After an amafdyuick-Start
response the congestion window and slow-start threshold ti@e same
size.

7.4.2 Connection Startup

Figure 7.1 shows the connection startup throughput with ESBnd WLAN link.
The horizontal axis shows the length of a TCP connection ¢fde) and vertical
axis the TCP throughput for the given amount of data. In tihess only a single
TCP connection is used and no vertical hand-off betweendbess technologies
occurs.

A couple of observations can be made from the graphs. Histhasic Quick-
Start appears to slightly improve the connection start-eggomance. Second,
the graphs show the devastating effect of slow-start owatshn performance,
especially for moderate-sized transfers (file size rou@iliQKB) on a Wireless
LAN link. The graphs also show that setting the slow-stareshold based on
the Quick-Start response effectively avoids the perforreatiegradation caused
by the slow-start overshoot.

Figure 7.2 shows the time-sequence diagrams for one of gesdéa Figure 7.1
(file size = 188KB), where the WLAN throughput is at its woestel. The figure
shows why the normal TCP performs badly: the TCP sender #taslew-start,
shooting the bottleneck queue full of packets, until it gbtee duplicate ACKs
as an indication of the first packet loss due to overflow of tbitldneck queue.
The sender makes one retransmission, but it is not able id av@transmission
timeout because a significant number of packets have beedudag the slow-
start overshoot and the small file size prevents the recéigar getting enough
data to trigger the duplicate acknowledgments requiredloaveéSACK recovery
to proceed. Retransmission timeout is an expensive opardtie to the minimum
RTO value of one second, causing serious performance degrad

The gsthreshvariant, on the other hand, avoids the slow-start oversheet
cause it moves to congestion avoidance immediately afteQihick-Start phase.
One can see that there are no packet losses, and the TCP ttomiefinished in
520 ms, versus the 1600 ms in the normal TCP case.

7.4.3 Vertical Hand-off

Figure 7.3 illustrates TCP hand-off performance from EGRRELAN link with
the make-before-break hand-off. The x-axis indicates itne bf the hand-off,
measured from the beginning of the connection. The top figlustrates the

7 Using Quick-Start to Improve TCP Performance with Vettica

§ Hand-offs
. EGPRS
f"‘"ﬂlﬁf—"‘ h ————— et ettt
2 8- g
@ e P
< o o,
:_!_,’ E 1 {/,’O/ \ /
3 e
E- 2 4 7 /)
o Yo
3 o
Je: Fb/ -© none
£ g =r
o gsthresh
o - : I | I
0 o 400 600
_ WLAN
o
: _ e
8 % "“"'e""" BM
2 ._,-,---8;;,_-f B
fia]] g
~ o o
32 & A
=) o
E g —© none
F 84 ¢ y — =
: o gsthresh
o - : ‘ | ‘
O > s 600
File size (KB)

Figure 7.1: Throughput without hand-offs with differenefgizes.

total long-term throughput of the TCP connections. The meididjure illustrates
the number of packet losses in a 13-second test run, and ttwrbfigure shows
the amount of data transmitted in a 3-second period follgwire hand-off, thus
showing the TCP efficiency immediately after the hand-oéfrav

In these simulations the regular TCP suffers from packetdexing: pack-
ets traveling through a WLAN link arrive to the receiver befdhe packets sent
earlier to the much slower EGPRS link, appearing as outrdéiosegments that
trigger duplicate acknowledgments at the receiver. Dapiacknowledgments,
in turn, trigger unnecessary fast retransmissions at thdese

A few observations can be made from the figures. First, thie lisick-Start
suffers from bad performance when the connection has lasted than 7 seconds
before the hand-off occurs. This happens because the EGRR8ueue has
become full, and a slow-start overshoot follows, causirgs lof tens of packets.
The TCP sender with the basic Quick-Start yields poor hdhgerformance as

7.4 Simulation Results 147

9 none 08"
a o
@ 0
3 o
£ @7
o |
q-
S o Data
O Acks
0o - o
T T T I
0.0 1.0 1.5
9 gsthresh
n oo
v O
$ o
g ©
o |
o)
e ¢ Data
O Acks
o 44 o
I 1 1 I
0.0 05 1.0 1.5
Time (s)

Figure 7.2: Slow-start overshoot with standard TCP andcetiégsthresh.

it further worsens the severity of the slow-start overshmptontinuing in slow-
start after the hand-off, forcing the TCP sender to wait foostly retransmission
timeout to recover. In many other cases the use of the basick€art also
results in several packet losses, even though the path wa#ized when the
Quick-Start request was made. Té¢lewstartvariant performs slightly worse than
the regular TCP, because the wireless link is utilized |d&stvely when slow-
start is employed after the hand-off.

A second observation can be made gsthresh Most packet losses due to
buffer overflow can be avoided wittpsthresh because the TCP sender is in con-
gestion avoidance for most of the time after the initial ranp time, and in
particular after the hand-off. Therefore, the problemsardag hand-off perfor-
mance and throughput can be avoided.

148

500

7 Using Quick-Start to Improve TCP Performance with Vettica

Throughput (KB/sec)
300

0 100

40 60 80

Packet losses

20

1000 1500 2000

Data xmitted after handoff (KB / 3 sec)
500

gxgke‘ —o none
\g)g\ ---8 slowstart
’SEQEQB ¢ qgs
°“§38>8 ---A gsthresh
P
,8\8\‘.g\g\
'g\‘u\>§\‘a\a
~ D\ \é
o
OO0 o
\O
T T J !
2 4 6 8
Hand-off time (sec)
—© none
---8 slowstart
o gs
---A gsthresh
0—0--0--0--0 00000 C o0
. : O
S e ~8
A-A-Bb-6-Bb-bbb b po TR A

T T T T
2 4 6 8

—o none ;
---8 slowstart |
o gs
A gsthresh g O
T T T T
2 4 6 8

Hand-off time (sec)

Figure 7.3: Make-before-break hand-off from EGPRS to WLAN.

7.5 Summary 149

Figure 7.4 illustrates the throughput of the whole datadfamn the number of
packet losses during the transfer, and the amount of datsriéted in a 3-second
period following the hand-off in case a break-before-makadioff occurs from
a WLAN link to a EGPRS link. The connection from the WLAN link lost
500 milliseconds before the EGPRS link is up for transmissidll data sent
from the wireless access router is lost during that timeqokriThe figure shows
that although the long-term throughput is roughly similathwdifferent variants,
bothgsandgsthreshsubstantially improve the transmission performance affter
hand-off. Thegsthreshvariant also has two to three times less packet losses than
the other variants.

In the break-before-make hand-off scenario the slow-stegtshoot after the
hand-off is not a problem, because roughly one window’s lvoftsegments is
lost in any case due to the period of disconnection befordémel-off completes,
and there is nothing the TCP sender can do to prevent this.

We also conducted simulations on WLAN to EGPRS make-bdfoeak hand-
offs. On some of the hand-off scenarios we observed packsefothat were
caused due to inappropriately large congestion windowckvkias valid on the
WLAN link, but too large for the EGPRS link. Other phenomerars in these
simulations were spurious TCP retransmission timeoutsezlby a sudden in-
crease of round-trip time after the hand-off.

7.5 Summary

In this chapter we investigated the possible benefits ofgu€nick-Start after a
vertical hand-off that can occur with mobile multi-radiartenals. Quick-Start

significantly improves the start-up performance of a cotinac and it can be

used to quickly resolve the correct path capacity after thetical hand-off by

using an explicit cross-layer notification to trigger thei€uStart. However, we

observed that packet losses due to the slow-start overbageta significant effect
on connection performance on high-latency links such asfE&RVe proposed an
enhanced response to Quick-Start that also sets the stotwfateshold based on
the approved Quick-Start request, thus extending the us&aick-Start response
to limit the growth of the sending rate beyond the path capa€his enhancement
resulted in excellent results in our network environmemishiould be noted that
limiting the slow-start threshold may also have a negatedgumance effect, for
example if the approved Quick-Start request does not cdweifull bottleneck

link capacity. Therefore, an interesting future reseaogic would be to explore
alternative mechanisms, such as Limited Slow-Start [53].

7 Using Quick-Start to Improve TCP Performance with Vettica

150 Hand-offs

o

8

—

—o none e
o Q| | ---8 slowstart oLl
Q © 8-
0 ¢ Qs _§-
g o --A gsthresh ggef
< © _8~
5 =87
g 478
o < 7| 82@?
] -8
e ,vg,/‘r@’
c o | LA
- 8 Y
g-
o 4
T T T T T
1.0 1.5 2.0 2.5 3.0

Hand-off time (sec)

3
=] —o none
---8 slowstart
g P
» 8 4 --A gsthresh
8 —
= o o—0=9, a—0—-0
< \ o_0-0-0-0-0"
% /\ / o=o=?
g B o ~°
o
CAA-A-B-D-AA -4
B
p-ncBh
8 a-ob”
o 4
T T T T T
1.0 15 2.0 25 3.0
Hand-off time (sec)
Fl
o
™ -
~ —© none
g 7 ---8 slowstart
<
£ o | ¢ Qs
8 ® ---A gsthresh
C
8 o | o
- © QB8 f ARS8 0B R B 0708088
Q
£ 9
g
E=1 8 - O-o-O/S\o—o-o,o,o-o—o—o-o,o,o-o—o—o
£ 8<D< 0- g- Y- 0-0-g-.g- p-0-0-0-g-g-pg-0-0-20
x
g O
© T T T T T
[a)

0.0 0.5 1.0 15 2.0

Hand-off time (sec)

Figure 7.4. Break-before-make hand-off from WLAN to EGPRS.

7.5 Summary 151

While Quick-Start has a lot of potential, there are many lelmgles for its de-
ployment in the Internet, such as various types of IP tunmmelsisbehaving hosts
trying to exploit Quick-Start [54]. Therefore, we believad likely that for now
Quick-Start would be useful in short-range network commation such as in
enterprise intranets, or in wireless operator networkseneththe challenges can
be more easily controlled and dealt with. Considering thanhynof the wire-
less operator services, including Web proxies, are locatede operator’s local
network domain, there are benefits in introducing Quick4Stecally in these en-
vironments.

Because it is quite uncertain whether Quick-Start will dverdeployed in the
worldwide Internet, its usefulness may seem limited alswireless networks,
since most services are provided outside the local opedaimain. As discussed
in Section 7.3, the same limitation applies to any other sehthat aims to speed
up the TCP congestion control and therefore needs a peonifsim all routers
on the network path. As we have shown that Quick-Start carglsignificant per-
formance advantages to TCP over wireless links, it seerassisting to find ways
to go around this limitation. An inappropriate option woddd to try to directly
“cheat” the Quick-Start mechanism, for example by havingi@dhebox close to
the egress of the operator network that modifies the contdritse Quick-Start
Response option to make it seem that Quick-Start Requesbgeahe wireless
host was approved in a case where some of the routers did ouxgs the option.
This would be a congestion control violation and therefdrergly discouraged.

A second possibility would be to place a split-connectiooxgrto process all
TCP traffic at the wireless operator egress. The proxy woplid an end-to-end
connection into a part between the wireless host and theypemd to the part
between the proxy to the other host in the Internet, in a similay done, for
example, in I-TCP [13]. If the communication path betweea pihoxy and the
fixed host would have relatively short round-trip delays gamed to the delays
on the wireless part of the connection, applying QuickiStarthe wireless part
would help to improve the TCP performance. Having a QuickASiroxy in the
operator network would seem a relatively straight-forweegployment path, but
also problematic, because the split-connection proxiekaown to have several
problems involved with them [24].

Even if the incorrect TTL Diff indicated that there were retd that did not pro-
cess the Quick-Start Request, the incoming rate informatauld still be useful
in avoiding the slow-start overshoot. From the reducede/aluthe Quick-Start
Request option the sender knows that one of the routers ocoitm@ection path
has indicated that it has a preferred upper bound on theniae®n rate, so there
is no reason to continue in slow-start beyond that limitnef¢he TTL Diff value

7 Using Quick-Start to Improve TCP Performance with Vettica

152 Hand-offs

was incorrect. If slow-start overshoot can be avoided, abemof packet losses
can be prevented, which might be a good enough incentivehéoend hosts and
key routers to implement the Quick-Start option. On the otfand, while in this

chapter we applied a single evaluation algorithm at theemutt might be more

efficient to have separate evaluation algorithms for intstaavailable bandwidth

that can be admitted for Quick-Start, and for the recommeéng®er bound for

slow-start. Therefore it might be justifiable to have sefmoption values for the
two uses. We leave these considerations to be investiggtedure work.

CHAPTER 8

Conclusions and Future Work

This dissertation has proposed and thoroughly investigatechanisms for im-
proving TCP performance in network environments with aadling transmission
delay behavior, such as the GPRS networks. We have prinfadlysed on three
problems in TCP performance in these environmefisspurious retransmission
timeouts caused by the sudden delay spikes in lower laydepaiansmission,
(#4) improving the slow-start, that utilizes the link capacitefficiently in the be-
ginning of connections on high delay-bandwidth paths, @i quickly finding
an appropriate sending rate after a vertical hand-off betwsvo different link
technologies. We supplemented our analysis with a thoralegcription of the
Linux TCP implementation that was used in many of the expenit:i conducted
for this work.

This dissertation described and analyzedRbevard RTO-Recovery (F-RTO)
algorithm that can be applied at the TCP sender to detecioguretransmission
timeouts and thus avoid unnecessary retransmissions anggstion control ac-
tions that a spurious retransmission timeout would cause.awalyzed F-RTO
in different network scenarios to validate its robustnesdifferent kinds of net-
works and evaluated different alternatives for respondingpurious retransmis-
sion timeout, and showed that F-RTO is effective in avoiding negative effects
of spurious retransmission timeouts. We also discussedGKSased enhance-
ment of F-RTO and a few limitations F-RTO has.

As with many other TCP problems, it is difficult to quantifyvia@evere prob-
lem spurious retransmission timeouts are in live wirelessvorks. We have
referred to earlier research that analyzed link behaviaa BPRS network and
observed spurious timeouts in the measurements, but thddéihavior depends
on many factors that are unknown or difficult model, such a&srtatwork con-
figuration used by the operator, or the movement patterneefriobile device.

153

154 8 Conclusions and Future Work

However, several network device vendors have had intaresilving the problem

of spurious timeouts in some way, which indicates that theyelobserved simi-
lar behavior also in their networks using GPRS and otherlagsetechnologies.
Although there are alternative ways to improve performameeapurious retrans-
mission timeouts, it appears that many of the big operatystesn vendors have
chosen F-RTO as their solution. In addition to the Linux iempéntation made
by the author, there already are several commercial impiatiens of F-RTO.

Some companies have also requested F-RTO to be made a Ri¢ptaselard in

the IETF. Finally, we note that it is important that F-RTOelets spurious timeouts
using TCP’s own mechanisms, and can therefore be usefulratstber contexts

than wireless networks. Equally important is that we baievRTO to not harm

TCP performance in any case, even in networks where spuraitsnsmission

timeouts are a rare phenomenon.

The second part of this dissertation evaluated the Quiekt&tgorithm, a co-
operative effort between the TCP end-hosts and the routegsiitkly establish
the available bandwidth on the network path and thus ingtdimid appropriate
values for TCP’s congestion control parameters. We evadliafirious different
router algorithms and settings, and discussed the posipleyment and security
threats such a scheme may have.

While we acknowledge that deployment of Quick-Start in regivorks is very
challenging, we believe this work is a useful contributionthie ongoing discus-
sion on the next generation of network resource and corgestintrol. There
have been increasing number of proposals in the EU and USak&dctions on
revising the Internet architecture to better accommodadeyt's needs that were
not envisioned when the core protocols were designed. Otigedieatures that
are under pressure to be changed is the current congestitrolcmodel that is
based on the use of minimal information, being slow to reacapid changes in
the path characteristics and relying on the honesty of tiddests that might have
conflicting interests to send faster than what the congestimtrol rules allow. If
a change becomes possible, it needs to be carefully desibeeduse the core
Internet protocols have had tendency to last at least foration of one human
generation. We believe that the lessons learned duringwbik, for example
related to deployability and trustworthiness of the explietwork congestion in-
formation, are helpful when considering the future netwodngestion control
algorithms.

The third part of this dissertation applied the Quick-Stadorithm in the
context of vertical hand-offs between wireless techn@sgiuch as GPRS and
WLAN. These environments are challenging for TCP, becabsg have very
different bandwidth and delay characteristics, causing®EGlowly converging

155

congestion control parameters to have inappropriate safter a vertical hand-
off. With the Quick-Start algorithm applied after the vedi hand-off, significant
performance improvements were achieved.

Because wireless networks often have specific problemss Hre benefits to
have such enhancements and mitigations that could be inepkeh on the wire-
less host or at the wireless network. While we showed Quickt® be effective,
it is a demanding mechanism due to the requirement of beippasted by ev-
ery router on the connection path. On the other hand, in dalérstantly start
sending at a high rate there needs to be some procedure tedhatithe flow
does not cause severe network congestion. We believe thist igossible with-
out having some information from all of the routers on thergextion path that
have the potential to get congested. We briefly discussedtdhe possibility to
use a Quick-Start proxy close to the wireless link, and ferrihvestigation of the
benefits and costs of such arrangement could be an usefaldbfiture work.

While the above-mentioned technologies have been evdlirathe context of
TCP, the same principles can be applied to other transpotbqols. For example,
F-RTO can be applied t8tream Control Transmission Protocol (SCTB»3],
which is a new transport protocol with similar algorithmsnGP. Quick-Start can
also be used with SCTP, and to establish a correct sendiegn®titagram Con-
gestion Control Protocol (DCCP[P9] with its two congestion control profiles,
window-based congestion control [59], and TCP-friendlg reontrol [60, 55].

The research presented in this dissertation could be felibup by different
research topics:

e Revising TCP’s retransmission algorithm. F-RTO and the many other
proposals to improve TCP’s performance are incrementalifications to
TCP’s base algorithms. After being appended with a numbsuoli algo-
rithms in the past decades, one could claim that today’s Taeimenta-
tions and specifications are patchy chunks of code, and ihintig useful
to try to invent a completely new retransmission algorithrattworks bet-
ter in today’s heterogeneous network environment, with@awing to carry
the legacy of TCP. An interesting question is, would this rmégorithm be
totally different from the current TCP algorithms, or wouletnd up rather
similar.

e Investigating the range of explicit congestion control meganisms.
Quick-Start is a small modification to TCP to employ explimibss-layer
communication between the TCP end-hosts and the networlcerflg
there have been other related proposals from just slighigreling ECN
to deploying a full-fledged explicit congestion control farool. A compar-

156 8 Conclusions and Future Work

ative analysis of the powerfulness of different mechanisrosld be useful
to gain knowledge about the possibilities of different aygmhes and the
challenges such mechanisms have to face.

e Investigating a common framework for future cross-layer canmunica-
tion mechanisms. When investigating Quick-Start, we identified certain
deployment and security challenges involved with it, asuised in Chap-
ter 6. It seems possible that many of these challenges ammoario a wider
range of similar explicit mechanisms. Therefore a possilslgful exercise
would be to seek for a common framework for in-band expligitt-weight
signaling, to be used as a basis in specifying the futuresimvé of the
Internet protocols, for example related to IP tunneling.

A bigger issue behind the individual topics discussed in thgsertation and
the future work items listed above is how strictly futuredmtet design should
still stick to the traditional end-to-end principle and emost-based congestion
control that has been applied in TCP and the other transpotogols. In this
dissertation we investigated one mechanism that is purd{CB-sender-based
solution, and another mechanism that requires collalwratiom the network
routers. There are many recent research ideas that reauive garticipation by
the network to support efficient data transfer, but a carefumsideration should
be taken regarding the compromises it might cause to netacalability and
robustness.

The possibilities to improve TCP and other transport prok®an the current
Internet architecture just by making end-host modificatiare limited. Therefore
the author would like to encourage the future research torid@taous in challeng-
ing the current assumptions in the Internet design, andefesly exploit radical
ideas in the search of substantial advances to Internet cmication technologies
for the future generations.

References

[1]

[2]

[3]

3GPP. System Architecture Evolution (Release 7). 3GHPZB.882
V1.2.3, June 2006.

N. Abramson. The ALOHA System — Another Alternative foo@puter
Communications. 1M970 Fall Joint Computer Conferencgolume 37
of AFIPS Conference Proceedingsages 281-285, Houston, TX, USA,
November 1970.

N. Abramson. Development of the ALOHANETEEEE Transactions on
Information Theory31(2):119-123, March 1985.

[4] T. Alanko, M. Kojo, H. Laamanen, M. Liljeberg, M. Moilane and

[5]

[6]

[7]

[8]

[9]

K. Raatikainen. Measured Performance of Data TransmiQimr Cel-
lular Telephone Networks. ACM SIGCOMM Computer Communication
Review 24(5):24—-44, 1994.

M. Allman. A Web Server’s View of the Transport LayekCM SIGCOMM
Computer Communication Revig80(5), October 2000.

M. Allman. TCP Congestion Control with Appropriate By@ounting
(ABC). RFC 3465, February 2003.

M. Allman, H. Balakrishnan, and S. Floyd. Enhancing TE€Pbss Recov-
ery Using Limited Transmit. RFC 3042, January 2001.

M. Allman and E. Blanton. Notes on Burst Mitigation forarsport Pro-
tocols. ACM SIGCOMM Computer Communication Revi8®(2):53-60,
April 2005.

M. Allman, S. Floyd, and C. Partridge. Increasing TCRidial Window.
RFC 3390, October 2002.

157

158 References

[10] M. Allman and V. Paxson. On Estimating End-to-End NetwBath Prop-
erties. InProceedings of ACM SIGCOMM '9Bages 263—-274, Cambridge,
MA, USA, September 1999.

[11] M. Allman, V. Paxson, and W. Stevens. TCP Congestiont@bn RFC
2581, April 1999.

[12] M. Baker, X. Zhao, S. Cheshire, and J. Stone. Suppotiitadility in
MosquitoNet. InProceedings of the USENIX 1996 confereri8an Diego,
CA, USA, January 1996.

[13] A. Bakre and B. R. Badrinath. I-TCP: Indirect TCP for MigbHosts. In
Proceedings of the 15th International Conference on Distied Comput-
ing Systemspages 136-143. IEEE, May 1995.

[14] H. Balakrishnan, H.S. Rahul, and S. Seshan. An Integr&ongestion
Management Architecture for Internet Hosts.Hroceedings of ACM SIG-
COMM 99, pages 175-187, Cambridge, MA, USA, September 1999.

[15] H. Balakrishnan and S. Seshan. The Congestion Man&j§et.3124, June
2001.

[16] H. Balakrishnan, S. Seshan, and R. H. Katz. ImprovinjiaRle Trans-
port and Handoff Performance in Cellular Wireless Networkireless
Networks (Springer)1(4):469-481, December 1995.

[17] J.C.R. Bennett, C. Partridge, and N. Shectman. PacketdRring Is Not
Pathological Network BehaviolEEE/ACM Transactions on Networking
7(6):789-798, December 1999.

[18] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertéxansfer Protocol
—HTTP/1.0. IETF RFC 1945, May 1996.

[19] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang. MACA Media
Access Protocol for Wireless LAN's. IRroceedings of ACM SIGCOMM
'94, pages 212-225, London, UK, August 1994.

[20] E. Blanton and M. Allman. On Making TCP More Robust to RadRe-
ordering. ACM SIGCOMM Computer Communication Revi@&(1):20—
30, January 2002.

[21] E. Blanton and M. Allman. Using TCP Duplicate Selectieknowledge-
ment (DSACKSs) and Stream Control Transmission ProtocolSDupli-
cate Transmission Sequence Numbers (TSNs) to Detect SiguURetrans-
missions. RFC 3708, February 2004.

References 159

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

E. Blanton and M. Allman. On the Impact of Bursting on T@erfor-
mance. InProceedings of the Workshop for Passive and Active Measure-
ment March 2005.

E. Blanton, M. Allman, K. Fall, and L. Wang. A ConservatiSelective
Acknowledgment (SACK)-based Loss Recovery Algorithm f@F. RFC
3517, April 2003.

J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. ®lgelPerformance
Enhancing Proxies Intended to Mitigate Link-Related Ddgtimns. RFC
3135, June 2001.

D. Borman, R. Braden, and V. Jacobson. TCP Extensiondifgh Perfor-
mance. RFC 1323, May 1992.

R. Braden. Requirements for Internet Hosts — Commtioicd_ayers. RFC
1122, October 1989.

R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jarmesoice ReSer-
Vation Protocol (RSVP) — Version 1 Functional SpecificatiGtFC 2205,
September 1997.

L. S. Brakmo and L. L. Peterson. TCP Vegas: End to End Estign
Avoidance on a Global InternetEEE Journal on Selected areas in Com-
munications 13(8):1465-1480, October 1995.

G. Brasche and B. Walke. Concepts, services and pristarfothe new
GSM phase 2+ general packet radio serviégeEE Communications Mag-
azine 35(8):94-104, August 1997.

L. Breslau, S. Jamin, and S. Shenker. Comments on thrRemce
of Measurement-Based Admission Control Algorithms.IBEE Infocom
200Q volume 3, pages 1233-1242, Anaheim, CA, USA, March 2000.

B. Briscoe, A. Jacquet, C. Di Cairano-Gilfedder, A.\&dbri, A. Soppera,
and M. Koyabe. Policing Congestion Response in an Inter&tWwsing
Re-Feedback. IfProceedings of ACM SIGCOMM 200pages 277-288,
Philadelphia, PA, USA, August 2005.

K. Brown and S. Singh. M-TCP: TCP for Mobile Cellular Metrks.
ACM SIGCOMM Computer Communication Revi@w(5):19-43, Octo-
ber 1997.

160 References

[33] R. Caceres and L. Iftode. The Effects of Mobility on Rélie Transport
Protocols. Inl4th International Conference on Distributed Computer-Sys
tems pages 12-20, Poznan, Poland, June 1994. IEEE.

[34] R. Caceres and L. Iftode. Improving the Performanceelfdable Transport
Protocols in Mobile Computing EnvironmentEEE Journal on Selected
Areas in Communicationd.3(5):850-857, June 1995.

[35] J. Cai and D. J. Goodman. General packet radio serviceSM. IEEE
Communications Magazin85(10):122-131, October 1997.

[36] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and Rariy; TCP
Westwood: Bandwidth Estimation for Enhanced Transport Weeless
Links. In Proceedings of ACM Mobicom 200pages 287-297, Rome,
Italy, July 2001.

[37] V.G. Cerf and R.E. Kahn. A Protocol for Packet Networkeltommuni-
cation. IEEE Transactions of Communicatiqr2(5):637—-648, May 1974.

[38] D. D. Clark. Window and Acknowledgement Strategy in TG®C 813,
July 1982.

[39] D. D. Clark. The Design Philosophy of the DARPA Interiiebtocols. In
Proceedings of ACM SIGCOMM '8Pages 106—-114, Stanford, CA, USA,
August 1988.

[40] B.P. Crow, I. Widjaja, J.G. Kim, and P.T. Sakai. IEEE 80P Wireless
Local Area Networks.IEEE Communications Magazing5(9):116-126,
September 1997.

[41] S. Dawkins, G. Montenegro, M. Kojo, and V. Magret. Endeind Perfor-
mance Implications of Slow Links. RFC 3150, July 2001.

[42] M. Degermark, B. Nordgren, and S. Pink. IP Header Cosgion. RFC
2507, February 1999.

[43] L. Dimopoulou, G. Leoleis, and I. Venieris. Fast Handosupport in
a WLAN Environment: Challenges and PerspectivelcEE Network
19(3):14-20, May 2005.

[44] L. Dryburgh and J. HewettSignaling System No. 7 (SS7/C7). protocol,
architecture, and service<Cisco Press, 2005.

References 161

[45] D. Duchamp and N. Reynolds. Measured Performance ofral¥gis LAN.
In Proceedings of the 17th Conference on Local Computer N&syozages
494-499. IEEE, September 1992.

[46] M. Duke, R. Braden, W. Eddy, and E. Blanton. A RoadmapTi@nsmis-
sion Control Protocol (TCP) Specification Documents. RFC4&eptem-
ber 2006.

[47] P. Eronen (ed.). IKEv2 Mobility and Multihoming Protmc(MOBIKE).
RFC 4555, June 2006.

[48] W. Eddy and Y. Swami. Adapting End Host Congestion Calrfior Mo-
bility. Technical Report CR-2005-213838, NASA Glenn ReskaCenter,
September 2005.

[49] B. Carpenter (editor). Architectural Principles oktimternet. RFC 1958,
June 1996.

[50] G. Fairhurst and L. Wood. Advice to link designers orkliAutomatic
Repeat reQuest (ARQ). RFC 3366, August 2002.

[51] K. Fall and S. Floyd. Simulation-based Comparisonsaiide, Reno, and
SACK TCP.ACM SIGCOMM Computer Communication Revia®(3):5—
21, July 1996.

[52] S. Floyd. Congestion Control Principles. RFC 2914, t8eyber 2000.

[53] S. Floyd. Limited Slow-Start for TCP with Large Congest Windows.
RFC 3742, March 2004.

[54] S. Floyd, M. Allman, A. Jain, and P. Sarolahti. Quicla&tfor TCP and
IP. RFC 4782, January 2007.

[55] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equaased Conges-
tion Control for Unicast Applications. IRroceedings of ACM SIGCOMM
200Q pages 43-56, Stockholm, Sweden, August 2000.

[56] S. Floyd and T. Henderson. The NewReno Modification tdPBOrast
Recovery Algorithm. RFC 2582, April 1999. Experimental.

[57] S. Floyd, T. Henderson, and A. Gurtov. The NewReno Modifon to
TCP’s Fast Recovery Algorithm. RFC 3782, April 2004. Standalrack.

[58] S.Floyd and E. Kohler. Internet Research Needs Bettmtds. ACM SIG-
COMM Computer Communication Revie®8(1):29—-34, January 2003.

162 References

[59] S. Floyd and E. Kohler. Profile for Datagram CongestiamntZol Protocol
(DCCP) Congestion Control ID 2: TCP-like Congestion Contr&FC
4341, March 2006.

[60] S. Floyd, E. Kohler, and J. Padhye. Profile for Datagramngestion Con-
trol Protocol (DCCP) Congestion Control ID 3: TCP-FrienBlgte Control
(TFRC). RFC 4342, March 2006.

[61] S.Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An Ehg®n to the Se-
lective Acknowledgment (SACK) Option for TCP. RFC 2883 ,yJ2000.

[62] J. Geier.Wireless LANs — Implementing Interoperable NetwoMacmil-
lan Technical Publishing, first edition, 1999.

[63] A. Gurtov and J. Korhonen. Effect of Vertical Handovers Performance
of TCP-Friendly Rate ControlACM Mobile Computing and Communica-
tions Review8(3):73-87, July 2004.

[64] A. Gurtov and R. Ludwig. Evaluating the Eifel Algorithfior TCP in a
GPRS Network. IrfProceedings of European Wireless ,Gz2bruary 2002.

[65] A. Gurtov and R. Ludwig. Response to Spurious Retraasion Timeouts.
In Proceedings of IEEE Infocom 2002lume 3, pages 2312-2322, San
Francisco, CA, USA, March 2003.

[66] A. Gurtov, M. Passoja, O. Aalto, and M. Raitola. Multayer Protocol
Tracing in a GPRS Network. IRroceedings of IEEE Vehicular Technology

Conferencevolume 3, pages 1612-1616, Vancouver, Canada, September

2002.

[67] M. Handley, J. Padhye, and S. Floyd. TCP Congestion &indalidation.
RFC 2861, June 2000.

[68] W. Hansmann and M. Frank. On Things to happen during a HaR-
dover. InProceedings of the 28th Annual Conference on Local Computer
Networks, LCN'03)pages 109-118, Bonn, Germany, October 2003.

[69] R. Hermann. IEEE 802.11 Wireless LAN Standard: A Techhilrutorial.
Technical Report RZ 3186, IBM Research, November 1999.

[70] S. Hirata, A. Nakajima, and H. Uesaka. PDC Mobile Paéksth Commu-
nication Network. InProceedings of 4th IEEE International Conference
on Universal Personal Communicatignsages 644—648, November 1995.

References 163

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

J. Hoe. Start-up Dynamics of TCP’s Congestion Contral Avoidance
Schemes. Master’s thesis, Massachusetts Institute omdéady, June
1995.

A. Hokamura, et. al. Performance Evaluation of F-RT@ &ifel Response
Algorithms over W-CDMA packet network. Wireless Personal Multime-
dia Communications(WPMC)'05%eptember 2005.

H. Honkasalo, K. Pehkonen, M. Niemi, and A. Leino. WCDM#d
WLAN for 3G and Beyond.I[EEE Wireless Communication8(2):14-18,
April 2002.

H. Huang and J. Cai. Improving TCP Performance durinft Sertical
Handoff. In Proceedings of the 19th International Conference on Ad-
vanced In formation Networking and Applications (AINA’0&lume 2,
pages 329-332, March 2005.

IEEE Computer Society. |IEEE Standard for Informati@thnology —
Telecommunications and information exchange betweers\st Local
and metropolitan area networks — Specific requirementstiRaWireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) sifiea-

tions: Amendment 4: Further Higher Data Rate Extension én2l4 GHz
Band. IEEE Std 802.11g-2003, June 2003.

IEEE-SA Standards Board. Information technology -e€eimmunications
and information exchange between systems — Local and nuditaoparea
networks — Specific requirements — Part 11: Wireless LAN MedAccess
Control (MAC) and Physical Layer (PHY) Specifications. ANEEE Std

802.11, 1999 Edition (R2003), March 1999.

IEEE-SA Standards Board. Supplement to IEEE Standardnfforma-

tion technology — Telecommunications and information exgje between
systems — Local and metropolitan area networks — Specifigirggents
— Part 11: Wireless LAN Medium Access Control (MAC) and Phgki
Layer (PHY) Specifications: Higher-Speed Physical LayeteRsion in

the 2.4 GHz Band. |EEE Std 802.11b-1999 (R2003), Septentg9.1

IEEE-SA Standards Board. Supplement to IEEE Standardnfforma-

tion technology — Telecommunications and information exgje between
systems — Local and metropolitan area networks — SpecifginEgents
— Part 11: Wireless LAN Medium Access Control (MAC) and Phgki
Layer (PHY) Specifications: High-speed Physical Layer ia 1 GHz

Band. IEEE Std 802.11a-1999 (R2003), September 1999.

164 References

[79] H. Inamura, G. Montenegro, R. Ludwig, A. Gurtov, and fafizov. TCP
over Second (2.5G) and Third (3G) Generation Wireless NetsvoRFC
3481, February 2003.

[80] J. loannidis, D. Duchamp, and G. Q. Maguire, Jr. IP-baBeotocols for
Mobile Internetworking. InProceedings of ACM SIGCOMM ’'9pages
235-243, Zirich, Switzerland, September 1991.

[81] V. Jacobson. Congestion Avoidance and ControlPioceedings of ACM
SIGCOMM 88 pages 314-329, August 1988.

[82] V. Jacobson. Compressing TCP/IP headers for low-spegdl links. RFC
1144, February 1990.

[83] V. Jacobson. Modified TCP Congestion Avoidance Aldorit E-mail to
the end-to-end interest mailing list, 30th April 1990, A{r990.

[84] H. Jiang and C. Dovrolis. Passive Estimation of TCP Rbuirip Times.
ACM SIGCOMM Computer Communication Revied2(3):75-88, July
2002.

[85] D. Johnson, C. Perkins, and J. Arkko. Mobility SuppartliPv6. RFC
3775, June 2004.

[86] H. Kaaranen, A. Ahtiainen, L. Laitinen, S. Naghian, ahdNiemi. UMTS
Networks — Architecture, Mobility and Servica#iley, 2001.

[87] P. Karn. MACA - A New Channel Access Method for Packet Radn
Proceedings of the 9th ARRL Computer Networking Conferdraredon,
Ontario, Canada, 1990.

[88] P. Karn and C. Partridge. Improving Round-Trip Estiegatn Reliable
Transport Protocols. IRroceedings of ACM SIGCOMM ’8pages 2-7,
New York, NY, USA, August 1987.

[89] D. Katabi, M. Handley, and C. Rohrs. Congestion Confal High
Bandwidth-Delay Product Networks. Froceedings of ACM SIGCOMM
2002 pages 89-102, Pittsburgh, PA, USA, August 2002.

[90] D. Katz. IP Router Alert Option. RFC 2113, February 1997

[91] J. Kempf, et. al. Problem Statement for Network-Baseddlized Mobility
Management (NETLMM). RFC 4830, April 2007.

References 165

[92] S. Kentand R. Atkinson. IP Authentication Header. RBO2 November
1998.

[93] S. Kent and R. Atkinson. Security Architecture for thedrnet Protocol.
RFC 2401, November 1998.

[94] F. Khafizov and M. Yavuz. Running TCP over 1S-2000.Pirmceedings of
IEEE ICC 2002 volume 5, pages 3444-3448, April 2002.

[95] S. Khurana, A. Kahol, and A.P. Jayasumana. Effect ofdeidTerminals
on the Performance of IEEE 802.11 MAC Protocol. IlnProceedings of
23rd Annual Conference on Local Computer Networks (LCN, 'p8pes
12-20, October 1998.

[96] L. Kleinrock and S. Lam. Packet Switching in a SlottedeBiiie Channel.
In AFIPS Conference Proceedingsmlume 42, pages 703710, National
Computer Conference, New York, NY, June 1973.

[97] D. Knisely, S. Kumar, S. Laha, and S. Nanda. EvolutionWifeless
Data Services: 1S-95 to cdma2000EEE Communications Magazine
36(10):140-149, October 1998.

[98] E. Kohler. Generalized Connections in the Datagramgestion Control
Protocol. Internet draft “draft-kohler-dccp-mobility20 June 2006. Ex-
pired.

[99] E. Kohler, M. Handley, and S. Floyd. Datagram Conges@Gontrol Proto-
col (DCCP). RFC 4340, March 2006.

[100] M. Kojo, A. Gurtov, J. Manner, P. Sarolahti, T. Alankmd K. Raatikainen.
Seawind: a Wireless Network Emulator. Rroceedings of 11th GI/ITG
Conference on Measuring, Modelling and Evaluation of Cammpand
Communication Systempages 151-166, Aachen, Germany, September
2001. VDE Verlag.

[101] M. Kojo, K. Raatikainen, M. Liljeberg, J. Kiiskinennd T. Alanko. An
Efficient Transport Service for Slow Wireless LinkEEE Journal on Se-
lected Areas In Communicatignk5(7):1337-1348, September 1997.

[102] A. Konrad, B.Y. Zhao, A. Joseph, and R. Ludwig. A MarkBased Chan-
nel Model Algorithm for Wireless Networks. liProceedings of ACM
MSWiM 2001 pages 28-36, Rome, Italy, July 2001.

[103] R. Koodli. Fast Handovers for Mobile IPv6. RFC 4068y R005.

166 References

[104] J. Korhonen, O. Aalto, A. Gurtov, and H. Laamanen. Meeg Perfor-
mance of GSM HSCSD and GPRS. Rroceedings of the IEEE Inter-
national Conference on Communicatipnglume 5, pages 1330-1334,
Helsinki, Finland, June 2001.

[105] J. Korhonen, S. Park, J. Zhang, C. Hwang, and P. Sarolaimk Char-
acteristic Information for IP Mobility Problem Statemeninternet-Draft
“draft-korhonen-mobopts-link-characteristics-pst@t’, June 2006. Ex-
pired.

[106] S. Kunniyur. AntiECN Marking: A Marking Scheme for HigBandwidth
Delay Connections. IfProceedings of IEEE ICC 'Q3volume 1, pages
647-651, Anchorage, Alaska, May 2003.

[107] S.Ladha, S. Baucke, R. Ludwig, and P.D. Amer. On Mal8@y P Robust
to Spurious Retransmission8CM SIGCOMM Computer Communication
Review 34(2):123-135, April 2004.

[108] J.Lehenkari and R. Miettinen. Standardisation indbiestruction of a large
technological system — the case of the Nordic mobile telephgystem.
Telecommunications Policy (Elsevig26(3—4):109-127, April 2002.

[109] R. Love, A. Ghosh, W. Xiao, and R. Ratasuk. Performarfc@GPP High
Speed Downlink Packet Access (HSDPA). Rroceedings of IEEE 60th
Vehicular Technology Conferenosmlume 5, pages 3359-3363, September
2004.

[110] R. Ludwig and A. Gurtov. The Eifel Response Algorithor TCP. RFC
4015, February 2005.

[111] R. Ludwig and R. H. Katz. The Eifel Algorithm: Making TFCRobust
Against Spurious RetransmissioCM SIGCOMM Computer Communi-
cation Review30(1):30-36, January 2000.

[112] R. Ludwig and M. Meyer. The Eifel Detection AlgorithrorfTCP. RFC
3522, April 2003.

[113] R. Ludwig, B. Rathonyi, A. Konrad, K. Oden, and A. Jaseplulti-Layer
Tracing of TCP over a Reliable Wireless Link. Rroceedings of the ACM
SIGMETRICS International Conference on Measurement anceMuayplof
Computing Systems (SIGMETRICS;9®)lume 27, pages 144-154, New
York, May 1999.

References 167

[114] R. Ludwig and K. Sklower. The Eifel Retransmission €&imACM SIG-
COMM Computer Communication Revie®9(3):17-27, July 2000.

[115] J. Manner and M. Kojo. Mobility Related Terminology FR 3753, June
2004.

[116] M. Mathis and J. Mahdavi. Forward Acknowledgement:filleg TCP
Congestion Control. IfProceedings of ACM SIGCOMM '9pages 281—
291, Palo Alto, CA, USA, October 1996.

[117] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCPe8tle Ac-
knowledgement Options. RFC 2018, October 1996.

[118] A. Medina, M. Allman, and S. Floyd. Measuring Inteiaos Between
Transport Protocols and Middleboxes.ACM SIGCOMM/USENIX Inter-
net Measurement Conferendeaormina, Sicily, Italy, October 2004.

[119] M. Meyer. TCP Performance over GPRS.IHEE Wireless Communica-
tions and Networking Conference (WCN@)lume 3, pages 1248-1252,
September 1999.

[120] Microsoft. Performance Enhancements in the Next Gene
tion TCP/IP Stack. Microsoft TechNet article, available: at
http://www.microsoft.com/technet/community/coluncedileguy/cg1105.mspx,
November 2005.

[121] G. Montenegro, S. Dawkins, M. Kojo, V. Magret, and N.id{a. Long
Thin Networks. RFC 2757, January 2000.

[122] NS Simulator. URL http://www.isi.edu/nsnam/ns/.

[123] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Mauglif CP Through-
put: A Simple Model and its Empirical Validation. Proceedings of ACM
SIGCOMM 1998pages 303—-314, Vancouver, Canada, September 1998.

[124] V. Padmanabhan and R. Katz. TCP Fast Start: A Techritgu&peeding
Up Web Transfers. I"EEE Globecom Internet Mini-conferencgydney,
Australia, November 1998.

[125] C. Partridge and A. Jackson. IPv6 Router Alert OptiRRC 2711, October
1999.

[126] C. Partridge, D. Rockwell, M. Allman, R. Krishnan, addSterbenz. A
Swifter Start for TCP. Technical Report 8339, BBN Technaésg2002.

168 References

[127] V. Paxson and M. Allman. Computing TCP’s Retransnoissiimer. RFC
2988, November 2000.

[128] C. Perkins. IP Encapsulation within IP. RFC 2003, ®etcl996.

[129] C. Perkins (ed.). IP Mobility Support for IPv4. RFC 334August 2002.
[130] J. Postel. User Datagram Protocol. IETF RFC 768, Au880.

[131] J. Postel. Internet Control Message Protocol. RFG 3gptember 1981.
[132] J. Postel. Internet Protocol. IETF RFC 791, Septerdb&i.

[133] J. Postel. Transmission Control Protocol. RFC 793t&aber 1981.

[134] P. Nikander R. Moskowitz. Host Identity Protocol (HIRrchitecture.
IETF RFC 4423, May 2006.

[135] M. Rahnema. Overview of the GSM system and protocohitecture.
IEEE Communications Magazingl:92—-100, April 1993.

[136] K. Ramakrishnan, S. Floyd, and D. Black. The AdditidrEaplicit Con-
gestion Notification (ECN) to IP. RFC 3168, September 2001.

[137] L. Roberts. Extensions of Packet Communication Tetdgy to a Hand
Held Personal Terminal. 10972 Spring Joint Computer Conferene®l-
ume 40 of AFIPS Conference Proceedingsages 295-298, Atlantic City,
NJ, USA, May 1972.

[138] E. Rosen, A. Viswanathan, and R. Callon. Multiprotdcabel Switching
Architecture. RFC 3031, January 2001.

[139] J. Rosenberg, H. Schulzrinne, and G. Camarillo. Theg®t Control Trans-
mission Protocol (SCTP) as a Transport for the Sessioratititi Protocol
(SIP). RFC 4168, October 2005.

[140] Jerome H. Saltzer, David P. Reed, and David D. Clark.d-trend ar-
guments in system design ACM Transactions on Computer Systems
2(4):277-288, 1984.

[141] P. Sarolahti. Performance Analysis of TCP Improvetadar Congested
Reliable Wireless Links. Master’s thesis, University ofl$iieki, Depart-
ment of Computer Science, Series of Publications C, No. CtH) Febru-
ary 2001.

References 169

[142] P. Sarolahti. Congestion Control on Spurious TCP &&imission Time-
outs. InProceedings of IEEE Globecom 200®Ilume 2, pages 682—686,
San Francisco, CA, USA, December 2003.

[143] P. Sarolahti, M. Allman, and S. Floyd. Determining appfopriate Send-
ing Rate Over an Underutilized Network PatBomputer Networks (Else-
vier), 51(7):1815-1832, May 2007.

[144] P. Sarolahti and M. Kojo. Forward RTO-Recovery (F-BTAn Algorithm
for Detecting Spurious Retransmission Timeouts with TC&®the Stream
Control Transmission Protocol (SCTP). RFC 4138, Augus6200

[145] P. Sarolahti, M. Kojo, and K. Raatikainen. F-RTO: arh&mnced Recovery
Algorithm for TCP Retransmission TimeoutdCM SIGCOMM Computer
Communication Revievd3(2):51-63, April 2003.

[146] P. Sarolahti, J. Korhonen, L. Daniel, and M. Kojo. UsiQuick-Start to
Improve TCP Performance with Vertical Hand-offs. Broceedings of
IEEE Local Computer Networks conference (LCN 2006), Wiseleocal
Networks workshgmpages 897-904, Tampa, FL, USA, November 2006.

[147] P. Sarolahti and A. Kuznetsov. Congestion Controlimulx TCP. InPro-
ceedings of Usenix 2002/Freenix Trapages 49—62, Monterey, CA, USA,
June 2002.

[148] S. Schitz, L. Eggert, W. Eddy, Y. Swami, and K. Le. TCPBsponse
to Lower-Layer Connectivity-Change Indications. Intarbeaft “draft-
schuetz-tcpm-tcp-rici-01”, March 2007. Work in progress.

[149] S. Schitz, L. Eggert, S. Schmid, and M. Brunner. Riot&nhancements
for Intermittently Connected HostACM SIGCOMM Computer Commu-
nication Review35(3):5-17, July 2005.

[150] E. Seurre, P. Savelli, and P.-J. PietiDGE for Mobile Internet Artech
House, 2003.

[151] M. Stemm and R.H. Katz. Vertical Handoffs in Wirelesge@ay Net-
works. Mobile Networks and Applications (SpringeB(4):335-350, Jan-
uary 1998.

[152] W. StevensTCP/IP lllustrated, Volume 1; The Protocoladdison Wesley,
1995.

170 References

[153] R. Stewart, et. al. Stream Control Transmission RmitoRFC 2960, Oc-
tober 2000.

[154] R. Stewart, et. al. Stream Control Transmission RmitdSCTP) Dy-
namic Address Reconfiguration. Internet-Draft “draff-ist/wg-addip-
sctp-17.txt”, November 2006. Work in progress.

[155] P. Stuckmann and J. Franke. Performance Charaateristthe Enhanced
General Packet Radio Service for the Mobile Internet AccesBroceed-
ings of 2nd International Conference on 3G Mobile CommuivcaTech-
nologies pages 287-291. IEEE, March 2001.

[156] S. Sundarrajan and J. Heidemann. Study of TCP Quiak-8fith NS-2.
Unpublished report, University of South California, 2002.

[157] Y. Swamiand K. Le. Decorrelated Loss Recovery (DCLQR)INg SACK
Option for Spurious Timeouts. Internet draft “draft-swatswwg-tcp-
dclor-07.txt”, February 2006. Expired Internet-Dratft.

[158] Y. Swami, K. Le, and W. Eddy. Lightweight Mobility Deton and Re-
sponse (LMDR) Algorithm for TCP. Internet-Draft “draft-ami-tcp-lmdr-
07.txt", February 2006. Work in progress.

[159] K. Tan and Q. Zhang. STODER: A Robust and Efficient Aidon for
Handling Spurious Retransmit Timeouts in TCP.Froceedings of IEEE
Globecom 2005volume 6, pages 3692—-3696, November 2005.

[160] A. S. TanenbaumComputer NetworksPrentice-Hall International, third
edition, 1996.

[161] J. Touch. TCP Control Block Interdependence. RFC 2240il 1997.

[162] B. Tuch. Development of WaveLAN, an ISM Band WirelessN. AT&T
Technical Journgl72(4):27-37, July 1993.

[163] Y. Xia, L. Subramanian, |. Stoica, and S. Kalyanaram@ne More Bit Is
Enough. INSIGCOMM 2005pages 37-48, Philadelphia, PA, USA, August
2005.

[164] L. Xu, K. Harfoush, and I. Rhee. Binary Increase CotigasControl for
Fast Long-Distance Networks. Froceedings of IEEE Infocom 200¢bl-
ume 4, pages 2514-2524, Hong Kong, China, March 2004.

References 171

[165]

[166]

[167]

[168]

[169]

[170]

[171]

G. Xylomenos, G. Polyzos, P. Mahonen, and M. Saaran&@CP Per-
formance Issues over Wireless Link#EEE Communications Magazine
39(4):52-58, April 2001.

G. Xylomenos and G.C. Polyzos. TCP and UDP Performarmeea Wire-
less LAN. InProceedings of IEEE Infocom '99olume 2, pages 439-446,
New York, NY, USA, March 1999.

K. Yamamoto, H. Suzuki, N. Ishikawa, A. Hokamura, Kkigeichi, and

Y. Suwa. Effects of F-RTO and Eifel Response Algorithms faODMA
and HSDPA networks. IfProceedings of Wireless Personal Multimedia
Communications(WPMC)' Q% eptember 2005.

X.Yang. IEEE 802.11n: Enhancements for Higher Thiqug in Wireless
LANSs. IEEE Wireless Communications2(6):82—91, December 2005.

R. Yavatkar and N. Bhagawat. Improving End-to-endétarance of TCP
over Mobile Internetworks. IfProceedings of IEEE Workshop on Mobile
Computing Systems and Applicatippages 146—-152, December 1994.

M. Yavuz and F. Kahfizov. TCP over Wireless Links withrigble Band-
width. In Proceedings of the IEEE Vehicular Technology Conference
(VTC’02 Fall), volume 3, pages 1322-1327, September 2002.

P. Young. Recursive Estimation and Time-Series Analygages 60-65.
Springer-Verlag, 1984.

TIETOJENKASITTELYTIETEEN LAITOS DEPARTMENT OF COMPUTER SCIENCE

PL 68 (Gustaf Hallstromin katu 2 b) P.O. Box 68 (Gustaflstébmin katu 2 b)
00014 Helsingin yliopisto FIN-00014 University of HelsinEINLAND
JULKAISUSARJAA SERIES OF PUBLICATIONSA

Reports may be ordered from

Kumpula Science Library, P.O. Box 64, FIN-00014 UniversifyHelsinki, AFNLAND .

A-1997-1
A-1997-2
A-1997-3
A-1997-4

A-1998-1
A-1998-2
A-1998-3
A-1999-1

A-1999-2
A-1999-3
A-1999-4
A-2000-1

A-2000-2

A-2000-3

A-2000-4
A-2000-5
A-2001-1
A-2001-2
A-2001-3
A-2002-1
A-2002-2

A-2002-3
A-2003-1

A-2003-2

A-2003-3

A-2003-4

H. Tirri: Plausible prediction by Bayesian infece. 158 pp. (Ph.D. thesis).
G. Lindén: Structured document transformatick®2 pp. (Ph.D. thesis).
M. Nykanen: Querying string databases with mdafgic. 150 pp. (Ph.D. thesis).

E. Sutinen, J. Tarhio, S.-P. Lahtinen, A.-P. Tonew, E. Rautama & V. Meisalo: Eliot —an algorithm
animation environment. 49 pp.

G. Lindén & M. Tienari (eds.): Computer Sciencéhet University of Helsinki 1998. 112 pp.
L. Kutvonen: Trading services in open distribugedironments. 231 + 6 pp. (Ph.D. thesis).
E. Sutinen: Approximate pattern matching with ghgram family. 116 pp. (Ph.D. thesis).

M. Klemettinen: A knowledge discovery methodgldgr telecommunication network alarm databases.
137 pp. (Ph.D. thesis).

J. Puustjarvi: Transactional workflows. 104 gph.D. thesis).
G. Lindén & E. Ukkonen (eds.): Department of Comep$cience: annual report 1998. 55 pp.
J. Karkkainen: Repetition-based text inded& pp. (Ph.D. thesis).

P. Moen: Attribute, event sequence, and event sypéarity notions for data mining. 190+9 pp.
(Ph.D. thesis).

B. Heikkinen: Generalization of document struetuand document assembly. 179 pp. (Ph.D.
thesis).

P. Kahkipuro: Performance modeling framework @®RBA based distributed systems. 151+15
pp. (Ph.D. thesis).

K. Lemstrom: String matching techniques for noustrieval. 56+56 pp. (Ph.D.Thesis).

T. Karvi: Partially defined Lotos specificationgldheir refinement relations. 157 pp. (Ph.D.Thesis).
J. Rousu: Efficient range partitioning in classifion learning. 68+74 pp. (Ph.D. thesis)

M. Salmenkivi: Computational methods for intéypsnodels. 145 pp. (Ph.D. thesis)

K. Fredriksson: Rotation invariant template rhatg. 138 pp. (Ph.D. thesis)

A.-P. Tuovinen: Object-oriented engineering istral languages. 185 pp. (Ph.D. thesis)

V. Ollikainen: Simulation techniques for dise@gme localization in isolated populations. 149+5
pp. (Ph.D. thesis)

J. Vilo: Discovery from biosequences. 149 pp. [Plthesis)

J. Lindstrom: Optimistic concurrency control tneds for real-time database systems. 111 pp.
(Ph.D. thesis)

H. Helin: Supporting nhomadic agent-based apfitioa in the FIPA agent architecture. 200+17 pp.
(Ph.D. thesis)

S. Campadello: Middleware infrastructure fortidisited mobile applications. 164 pp. (Ph.D.
thesis)

J. Taina: Design and analysis of a distributed lifegta architecture for IN/GSM data. 130 pp.
(Ph.D. thesis)

A-2003-5

A-2003-6

A-2003-7

A-2003-8

A-2004-1
A-2004-2
A-2004-3
A-2004-4
A-2004-5

A-2004-6

A-2004-7
A-2004-8
A-2004-9

A-2005-1

A-2005-2
A-2006-1

A-2006-2

A-2006-3
A-2006-4
A-2006-5

J. Kurhila: Considering individual differencesdomputer-supported special and elementary edu-
cation. 135 pp. (Ph.D. thesis)

V. Makinen: Parameterized approximate stringamiag and local-similarity-based point-pattern
matching. 144 pp. (Ph.D. thesis)

M. Luukkainen: A process algebraic reductionteyg for automata theoretic verification of un-
timed and timed concurrent systems. 141 pp. (Ph.D. thesis)

J. Manner: Provision of quality of service in IPsbd mobile access networks. 191 pp. (Ph.D.
thesis)

M. Koivisto: Sum-product algorithms for the arsfyyof genetic risks. 155 pp. (Ph.D. thesis)
A. Gurtov: Efficient data transport in wireless dag networks. [B 141 pp. (Ph.D. thesis)

K. Vasko: Computational methods and models foe@atology. 176 pp. (Ph.D. thesis)

P. Sevon: Algorithms for Association-Based Gerappng. 101 pp. (Ph.D. thesis)

J. Viljamaa: Applying Formal Concept Analysis tetiact Framework Reuse Interface Specifica-
tions from Source Code. 206 pp. (Ph.D. thesis)

J. Ravantti: Computational Methods for Recortsing Macromolecular Complexes from Cryo-
Electron Microscopy Images. 100 pp. (Ph.D. thesis)

M. Kaariainen: Learning Small Trees and Gratptag Generalize. 45+49 pp. (Ph.D. thesis)
T. Kivioja: Computational Tools for a Novel Tramigtional Profiling Method. 98 pp. (Ph.D. thesis)

H. Tamm: On Minimality and Size Reduction of Ong@&and Multitape Finite Automata. 80 pp.
(Ph.D. thesis)

T. Mielikainen: Summarization Techniques fottBan Collections in Data Mining. 201 pp. (Ph.D.
thesis)

A. Doucet: Advanced Document Description, a SatiaeApproach. 161 pp. (Ph.D. thesis)

A. Villamaa: Specifying Reuse Interfaces for T&fiented Framework Specialization. 285 pp.
(Ph.D. thesis)

S. Tarkoma: Efficient Content-based Routing, Migbaware Topologies, and Temporal Subspace
Matching. 198 pp. (Ph.D. thesis)

M. Lehtonen: Indexing Heterogeneous XML for FT#ixt Search. 185+3pp.(Ph.D. thesis).
A. Rantanen: Algorithms f@f C' Metabolic Flux Analysis. 92+73pp.(Ph.D. thesis).
E. Terzi: Problems and Algorithms for Sequencen8agations. 141 pp. (Ph.D. Thesis).

