1,705 research outputs found

    Efficient and Secure Resource Allocation in Mobile Edge Computing Enabled Wireless Networks

    Get PDF
    To support emerging applications such as autonomous vehicles and smart homes and to build an intelligent society, the next-generation internet of things (IoT) is calling for up to 50 billion devices connected world wide. Massive devices connection, explosive data circulation, and colossal data processing demand are driving both the industry and academia to explore new solutions. Uploading this vast amount of data to the cloud center for processing will significantly increase the load on backbone networks and cause relatively long latency to time-sensitive applications. A practical solution is to deploy the computing resource closer to end-users to process the distributed data. Hence, Mobile Edge Computing (MEC) emerged as a promising solution to providing high-speed data processing service with low latency. However, the implementation of MEC networks is handicapped by various challenges. For one thing, to serve massive IoT devices, dense deployment of edge servers will consume much more energy. For another, uploading sensitive user data through a wireless link intro-duces potential risks, especially for those size-limited IoT devices that cannot implement complicated encryption techniques. This dissertation investigates problems related to Energy Efficiency (EE) and Physical Layer Security (PLS) in MEC-enabled IoT networks and how Non-Orthogonal Multiple Access (NOMA), prediction-based server coordination, and Intelligent Reflecting Surface (IRS) can be used to mitigate them. Employing a new spectrum access method can help achieve greater speed with less power consumption, therefore increasing system EE. We first investigated NOMA-assisted MEC networks and verified that the EE performance could be significantly improved. Idle servers can consume unnecessary power. Proactive server coordination can help relieve the tension of increased energy consumption in MEC systems. Our next step was to employ advanced machine learning algorithms to predict data workload at the server end and adaptively adjust the system configuration over time, thus reducing the accumulated system cost. We then introduced the PLS to our system and investigated the long-term secure EE performance of the MEC-enabled IoT network with NOMA assistance. It has shown that NOMA can improve both EE and PLS for the network. Finally, we switch from the single antenna scenario to a multiple-input single-output (MISO) system to exploit space diversity and beam forming techniques in mmWave communication. IRS can be used simultaneously to help relieve the pathloss and reconfigure multi-path links. In the final part, we first investigated the secure EE performance of IRS-assisted MISO networks and introduced a friendly jammer to block the eavesdroppers and improve the PLS rate. We then combined the IRS with the NOMA in the MEC network and showed that the IRS can further enhance the system EE

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Joint Optimization of Offloading and Resources Allocation in Secure Mobile Edge Computing Systems

    Get PDF
    Mobile edge computing (MEC) has become a promising technology for real-time communications. Mobile devices can reduce the energy consumption and prolong the lifetime significantly via offloading the computing tasks to the MEC server. Moreover, physical layer security techniques can ensure the secure transmission of the offloading data. This paper investigates a MEC system that consists of an access point, multiple mobile devices and a malicious eavesdropper. The tasks allocation, local central processor's frequency, offloading power, and offloading timeslots are optimized jointly to minimize the total energy consumption of the system. A difference of convex algorithm based scheme is proposed to solve the joint optimization problem. Moreover, a Karush Kuhn Tucker conditions based algorithm is also proposed to reduce the computational complexity. Numerical results show that the proposed algorithms are very effective. Moreover, the power consumption for secure offloading decreases with the increase of the distance between the mobile devices and the eavesdropper
    • …
    corecore