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ABSTRACT

Efficient and Secure Resource Allocation in Mobile Edge Computing Enabled Wireless

Networks

by

Qun Wang, Doctor of Philosophy

Utah State University, 2022

Major Professor: Rose Qingyang Hu, Ph.D.
Department: Electrical and Computer Engineering

Next-generation wireless communications aim to provide highly reliable communication

services with low latency to critical applications such as the Industrial Internet of Things

(IoT), autonomous driving, virtual reality, and augmented reality. However, explosive data

generated by massive and densely connected devices will overwhelm the access and backbone

networks if using centralized cloud computing services to process. Mobile Edge Computing

(MEC) framework moves the computing services close to the user end and provides fast

response data processing services with low latency. However, deploying multiple servers with

decentralized distribution will raise energy consumption and transmission security concerns

for MEC networks. Numerous techniques can be employed to improve energy efficiency (EE)

and physical layer security (PLS) for data offloading and local computing in MEC networks.

Non-orthogonal multiple access (NOMA) allows various users to transmit simultaneously.

Multiple input multiple outputs (MIMO) with beamforming design enable the transceiver

to achieve a higher channel capacity through multiple paths and space diversity. Intelligent

reflecting surface (IRS) can supplement the severe pathloss and the lack of line of sight

(LOS) link in the mmWave communication system, thus increasing the achievable rate on

the server-side with the same transmit power on the user side. Combining those techniques
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can improve the EE and PLS performance. Exploiting the machine learning algorithms

to capture the trends of data traffic loads enables the system to coordinate its computing

resources proactively, which can further improve the system EE. In this paper, we will

explore all these techniques for improving the EE and PLS of the MEC networks. We have

built several system models and formed corresponding optimization problems. By applying

convex optimization theories, we proposed different algorithms to find resource allocation

solutions. Our simulation results verified the effectiveness of the proposed approaches.

(161 pages)
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PUBLIC ABSTRACT

Efficient and Secure Resource Allocation in Mobile Edge Computing Enabled Wireless

Networks

Qun Wang

To support emerging applications such as autonomous vehicles and smart homes and to

build an intelligent society, the next-generation internet of things (IoT) is calling for up to 50

billion devices connected world wide. Massive devices connection, explosive data circulation,

and colossal data processing demand are driving both the industry and academia to explore

new solutions.

Uploading this vast amount of data to the cloud center for processing will significantly

increase the load on backbone networks and cause relatively long latency to time-sensitive

applications. A practical solution is to deploy the computing resource closer to end-users

to process the distributed data. Hence, Mobile Edge Computing (MEC) emerged as a

promising solution to providing high-speed data processing service with low latency.

However, the implementation of MEC networks is handicapped by various challenges.

For one thing, to serve massive IoT devices, dense deployment of edge servers will consume

much more energy. For another, uploading sensitive user data through a wireless link intro-

duces potential risks, especially for those size-limited IoT devices that cannot implement

complicated encryption techniques. This dissertation investigates problems related to En-

ergy Efficiency (EE) and Physical Layer Security (PLS) in MEC-enabled IoT networks and

how Non-Orthogonal Multiple Access (NOMA), prediction-based server coordination, and

Intelligent Reflecting Surface (IRS) can be used to mitigate them.

Employing a new spectrum access method can help achieve greater speed with less

power consumption, therefore increasing system EE. We first investigated NOMA-assisted

MEC networks and verified that the EE performance could be significantly improved. Idle
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servers can consume unnecessary power. Proactive server coordination can help relieve

the tension of increased energy consumption in MEC systems. Our next step was to em-

ploy advanced machine learning algorithms to predict data workload at the server end and

adaptively adjust the system configuration over time, thus reducing the accumulated system

cost. We then introduced the PLS to our system and investigated the long-term secure EE

performance of the MEC-enabled IoT network with NOMA assistance. It has shown that

NOMA can improve both EE and PLS for the network. Finally, we switch from the single

antenna scenario to a multiple-input single-output (MISO) system to exploit space diversity

and beamforming techniques in mmWave communication. IRS can be used simultaneously

to help relieve the pathloss and reconfigure multi-path links. In the final part, we first

investigated the secure EE performance of IRS-assisted MISO networks and introduced a

friendly jammer to block the eavesdroppers and improve the PLS rate. We then combined

the IRS with the NOMA in the MEC network and showed that the IRS can further enhance

the system EE.



vii

To my family.



viii

ACKNOWLEDGMENTS

First and foremost, I would like to express my gratitude and appreciation to my Ph.D.

advisor, Rose Qingyang Hu, for her countless time and effort in helping me during my

entire Ph.D. program. She is a great advisor and also an inspiring role model that gives me

tremendous instructions and motivations to be a professional and productive researcher. I

have learned greatly from her solid technical knowledge, great sense for research direction,

excellent writing and presentation skills.

I also want to express my sincere appreciations to my committee members, Prof. Don

Cripps, Prof. Chris Winstead, Prof. Zhen Zhang, and Prof. Haitao Wang, for their

valuable comments and suggestions that help me immensely with my study, proposal and

dissertation. Additionally, I am very grateful to Prof. Todd Moon and Prof. Jacob Gunther

for their classes and helpful discussions.

Next, I would like to thank Prof.Yi Qian, Dr. Fuhui Zhou, Dr. Han Hu, Dr. Le Thanh

Tan. I have learned a lot from them while collaborating and discussing with them. For my

colleagues and friends, I want to thank Dr.Haijian Sun, Dr. Zekun Zhang, Dr. Xuan Xie,

Dr. Kuan Huang, Shan He, Xiang Ma. They helped me with multiple research discussions

and other aspects.

Lastly, my father Xiaoliang Wang and mother Yingli Weng, brother Li Wang and sister

Shu Pan, my nephew Zimo Wang, and grandparents Wenxuan He and Junlan Liu, gave me

the most support through these Ph.D. days and provided me endless encouragement and

love.

Qun Wang



ix

CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

PUBLIC ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 NOMA Enabled MEC Networks . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Server Coordination Techniques in MEC Networks With NOMA . . . . . . 6
1.3 IRS Enabled MEC Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Fair Resource Allocation in an MEC-Enabled Ultra-Dense IoT Network with NOMA 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Data Offloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Local Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Utility Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Fair Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Proportional Fairness α = 1 . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Max-Min Fairness α = ∞ . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Fairness with α = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Hierarchical Energy Efficient Mobile Edge Computing in IoT Networks . . . . . . . . . 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Local Processing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Data Offloading Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.1 Large Timescale Optimization Model . . . . . . . . . . . . . . . . . . 38
3.3.2 Small Timescale Optimization Model . . . . . . . . . . . . . . . . . . 39

3.4 Large Timescale Workload Prediction . . . . . . . . . . . . . . . . . . . . . 40
3.4.1 Overview of Machine Learning Based Prediction Method . . . . . . 40
3.4.2 Long Short Term Memory Network . . . . . . . . . . . . . . . . . . . 41



x

3.5 Small Timescale Optimization and Configuration Model . . . . . . . . . . . 43
3.5.1 Overview of Lyapunov Optimization . . . . . . . . . . . . . . . . . . 44
3.5.2 Problem Formulation for Computation and Communication . . . . . 45

3.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6.1 Long-Short Term Memory Workload Prediction . . . . . . . . . . . . 52
3.6.2 System Cost Optimization . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Secure and Energy-Efficient Offloading and Resource Allocation in a NOMA-Based
MEC Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Local Computing Model . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.2 Task Offloading Model . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Dynamic Task Offloading and Resource Allocation . . . . . . . . . . . . . . 67
4.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.2 Problem Transformation Using Lyapunov Optimization . . . . . . . 68

4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Energy Efficient Robust Beamforming and Cooperative Jamming Design for IRS-
Assisted MISO Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1.1 Related Work and Motivation . . . . . . . . . . . . . . . . . . . . . . 78
5.1.2 Contribution and Organization . . . . . . . . . . . . . . . . . . . . . 82

5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 System Design With Perfect CSI . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.2 Optimizing the Beamforming for a Given w . . . . . . . . . . . . . . 88
5.3.3 Optimizing w with (f1, f2) . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.4 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 System Design With Imperfect CSI . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.2 Optimizing the Beamforming with a Given Θ . . . . . . . . . . . . . 94
5.4.3 Optimizing w with Given (f1, f2) . . . . . . . . . . . . . . . . . . . . 100

5.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.6 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Energy-Efficient Design for IRS-Assisted MEC Networks with NOMA . . . . . . . . . 114
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2.1 Offloading Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2.2 Local Processing Model . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2.3 Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3 Resource Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.2 CPU Frequency and Offloading Power Optimization . . . . . . . . . 120



xi

6.3.3 Optimizing the Receiving Beamforming . . . . . . . . . . . . . . . . 121
6.3.4 Optimizing the IRS Reflecting Shifts w . . . . . . . . . . . . . . . . 122

6.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.5 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



xii

LIST OF TABLES

Table Page

2.1 SCA Iteration Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 SCALE Iteration Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Prediction Based Coordination Algorithm . . . . . . . . . . . . . . . . . . . 39

3.3 The SCALE Iterative Algorithm for P3.44k . . . . . . . . . . . . . . . . . . . 52

5.1 Alternating Algorithm for Solving P5.1 . . . . . . . . . . . . . . . . . . . . . 96

5.2 Alternating Algorithm for Solving P5.2.1 . . . . . . . . . . . . . . . . . . . . 103

6.1 Alternating Algorithm for Solving P6.1 . . . . . . . . . . . . . . . . . . . . . 123



xiii

LIST OF FIGURES

Figure Page

1.1 Illustration of energy efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Illustration of physical layer security. . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Illustration of NOMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Illustration of server coordination. . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Illustration of IRS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 System model of MEC-enabled IoT network with NOMA. . . . . . . . . . . 15

2.2 System efficiency for α = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 System efficiency for α = ∞. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 System efficiency for α = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Convergence with Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 System model for the three-layer IoT network. . . . . . . . . . . . . . . . . 32

3.2 LSTM network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 LSTM memory block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Comparison between LSTM model and ARMA model in training. . . . . . . 54

3.5 Detailed training part of LSTM model and ARMA model. . . . . . . . . . . 54

3.6 Comparison between LSTM model and ARMA model in testing. . . . . . . 55

3.7 Detailed testing part of LSTM model and ARMA model. . . . . . . . . . . 55

3.8 Comparison of the performance of the mean absolute performance error for
training part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.9 Comparison of the performance of mean absolute error for testing part. . . 56

3.10 Normalized system cost and average queue length per edge node vs the con-
trol parameter V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



xiv

3.11 Comparison of system cost over total duration. . . . . . . . . . . . . . . . . 59

3.12 “On/Off+FDMA” scheme vs. “On/Off+NOMA” scheme. . . . . . . . . . . 59

3.13 Strong node vs. weak node in the “On/Off+NOMA” scheme. . . . . . . . . 60

4.1 System Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 System energy efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 System energy efficiency v.s. Average arrival task length. . . . . . . . . . . 74

4.4 System energy efficiency v.s. eavesdropper relative distance. . . . . . . . . . 75

4.5 System energy efficiency v.s. maximum available power Pmax. . . . . . . . . 76

5.1 An IRS-aided MISO wireless network with a friendly jammer. . . . . . . . . 83

5.2 Energy efficiency versus the maximum transmit power. . . . . . . . . . . . . 105

5.3 Secrecy rate versus the maximum transmit power. . . . . . . . . . . . . . . 106

5.4 Power consumption versus the maximum transmit power. . . . . . . . . . . 108

5.5 Energy efficiency versus the secrecy rate threshold. . . . . . . . . . . . . . . 109

5.6 Achievable secrecy rate versus the secrecy rate threshold. . . . . . . . . . . 110

5.7 Energy efficiency versus the relative distance of UE-IRS. . . . . . . . . . . . 111

5.8 Secrecy rate versus the relative distance of UE-IRS. . . . . . . . . . . . . . 112

5.9 Energy efficiency versus the number of elements on IRS. . . . . . . . . . . . 113

5.10 Secrecy rate versus the number of elements on IRS. . . . . . . . . . . . . . . 113

6.1 An IRS-aided MEC system with NOMA. . . . . . . . . . . . . . . . . . . . 116

6.2 Energy efficiency versus the minimum rate threshold. . . . . . . . . . . . . . 124

6.3 Achievable rate versus the minimum rate threshold. . . . . . . . . . . . . . 125

6.4 Power consumption versus the minimum rate threshold. . . . . . . . . . . . 126

6.5 Energy efficiency versus the relative distance of UE-IRS. . . . . . . . . . . . 127

6.6 Convergence with Iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



xv

ACRONYMS

IoT Internet of Things

eMBB Enhanced Mobile Broadband

mMTC Massive Machine Type Communication

URLLC Ultra Reliability and Low Latency Communication

MEC Mobile Edge Computing

NOMA Non-Orthogonal Multiple Access

FDMA Frequency Division Multiple Access

IRS Intelligent Reflecting Surfaces

MISO Multiple Input Single Output

UE User Equipment

EE Energy Efficiency

PLS Physical Layer Security

SIC Successive Interference Cancellation

SCA Successive Convex Approximation

SDR Semi-Definite Relaxation

SE Spectral Efficiency

OMA Orthogonal Multiple Access

CSI Channel State Information

mmWave Millimeter Wave

Eve Eavesdropper

FJ Friendly Jammer



CHAPTER 1

INTRODUCTION

The development of 5G communication networks and smart services lead to an ex-

plosive increment of Internet of Things (IoT) devices, which will generate massive data

for communication and computing. 5G is expected to provide new applications such as

autonomous drive, virtual reality, smart homes, industrial IoT, and smart healthcare with

high reliability, low latency, fast response services, and allow massive number of devices

to connect to the Internet. However, limited wireless bandwidth and low user computa-

tion ability have gradually become a bottleneck to realize the use cases such as enhanced

mobile broadband (eMBB), Massive Machine Type Communication (mMTC), and Ultra

Reliability and Low Latency Communication (URLLC) and to meet the quality of service

(QoS) requirements [1] [2]. Furthermore, transferring large amounts of data for communi-

cation and computing may expose networks to possible attacks, creating a need for effective

security and privacy protection schemes.

In order to ensure ultra-low latency, localization of service processing, and data stor-

age, it is critical to design a new solution that can provide high-speed communication

in latency-sensitive scenarios and execute tasks and return results in a timely manner.

Motivated by the increasing computational capacity of wireless local devices as well as

the ever-increasing privacy and security concerns of sharing data, next-generation wireless

communication networks have been encountering a paradigm shift from conventional cloud

computing to Mobile Edge Computing (MEC), which largely deploys computing resource

to the network edges/fog nodes to meet the needs of applications that demand very high

computations and low latency. In wireless networks, edge nodes, such as base stations and

edge routers, can be equipped with high computational and storage capabilities. Therefore,

MEC enables user equipment (UE) to offload its tasks to nearby edge servers for processing

and has the potential to provide location-aware, real-time, and low-cost services to support
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emerging computation-intensive applications.

However, complex wireless environment, limited UE power supply, and potential ma-

licious attacks all render it very challenging to design efficient and secure MEC networks.

Therefore, our research aims to address two specific issues related to the MEC networks:

1. Energy Efficiency: Energy Efficiency (EE) is particularly crucial in the MEC net-

works. Since most UEs employ batteries as the power source, their limited energy

capacities impose restrictions on system stability for long-term operations. Further-

more, the potential to deploy MEC systems in areas without a reliable energy supply

calls for new methods of managing energy consumption not only in UEs but also

through the entire network. On the other hand, to serve the diverse energy-intensive

communication services from massive users, reducing greenhouse gas emissions caused

by overall system energy consumption is imperative. As shown in Fig. 1.1, EE is usu-

ally defined as the tradeoff between achievable rate and consumed energy. Therefore,

to improve the EE, the solution can be either seeking the new techniques that allow

the system to achieve a higher rate with the same power consumption or using a

lower power to achieve the same communication and computing performance. The

hierarchical structure of MEC networks provides multiple opportunities for improving

EE, such as advanced wireless offloading, intelligent server coordination, and efficient

resource allocation strategies.

2. Security: Despite the possible privacy protection provided by MEC networks, the

broadcast nature of wireless links and the magnitude and sensitivity of the information

maintained by UEs necessitate secure mechanisms when performing task offloading.

Specifically, malicious eavesdroppers can access data without being detected. Tech-

niques that safeguard the security of communication and privacy of user information

fall into two major categories: traditional cryptographic techniques and physical layer

security (PLS).

PLS has received tremendous attention in recent years. As illustrated in Fig. 1.2,

PLS is defined as the difference between the achievable rate at legal receivers and
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Fig. 1.1: Illustration of energy efficiency.

eavesdroppers. Security can be achieved by limiting the amount of information leak-

age to an acceptable level. PLS enable secure communications without extra overhead

caused by protecting the security key. However, in PLS, the secrecy rate achieved by

the mutual information difference between the legitimate receiver and the eavesdrop-

per can be limited as it depends on the difference between the channel condition from

the user to the legitimate receiver and that from the user to the eavesdroppers. More

advanced techniques for improving the security rate need to be investigated.

Transmitter

Receiver

Eavesdropper

Fig. 1.2: Illustration of physical layer security.
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The emergence of new wireless communication techniques provides the MEC networks

with powerful tools for improving their EE and security performance. Specifically, Non-

Orthogonal Multiple Access (NOMA) can help achieve higher efficiency and security rates.

Advanced machine learning algorithms further enable the system to coordinate the edge

servers proactively. A new technique known as Intelligent Reflecting Surface (IRS) could

potentially improve the EE and PLS performance of the NOMA-enabled MEC network. The

purpose of the research described in this work is to investigate techniques for increasing both

system EE and PLS in MEC networks.

1.1 NOMA Enabled MEC Networks

In this work, we will first study the NOMA assisted MEC network for EE improve-

ment. By exploiting superposition coding at the transmitter and successive interference

cancellation (SIC) at the receiver, NOMA significantly changes traditional multiple access

mechanisms. As shown in Fig. 1.3, NOMA allows multiple users to share the same radio

bandwidth in either power domain or code domain to increase spectral efficiency with a rela-

tively higher receiver complexity [3]. Therefore, applying NOMA to MEC-enabled networks

has recently received extensive attention due to its performance gain in both spectrum ef-

ficiency and EE [4–7]. Some existing works on NOMA-assisted MEC with eavesdroppers

also show that NOMA is an effective way to enhance the PLS [8–10].

Applying NOMA in MEC can improve the computational performance and user con-

nectivity in ultra-dense IoT networks [5–7]. The successive interference cancellation (SIC)

order and computation resource allocation have been jointly optimized in [5], which can

minimize the maximum task execution latency for IoT devices under the limitation of com-

putational resources. Sun et al. [6] proposed the NOMA communication method with the

wireless energy supply for the IoT system. Pan et al. [7] studied the MEC system, which

exploits the NOMA for computational task uploading and results downloading. By optimiz-

ing the transmit powers, transmission time allocation, and task offloading partitions, the

minimization of total energy consumption was achieved by this work. It was demonstrated

that the NOMA method can significantly improve EE compared with the OMA method.
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Fig. 1.3: Illustration of NOMA.

The PLS in NOMA-assisted MEC networks has garnered much interest in research [11].

The joint consideration of PLS in the NOMA assisted MEC network was studied in [8–10].

In [8], an iterative algorithm was proposed to maximize the minimum anti-eavesdropping

ability in a MEC network with uplink NOMA. The authors in [9] proposed a bisection

searching algorithm to minimize the maximum task completion time subject to the worst-

case secrecy rate. Instead of only considering the power consumption or computing rate

performance above, [10] studied the EE maximization problem for a NOMA enabled MEC

network with eavesdroppers.

To achieve higher performance, effective resource allocation should incorporate various

QoS metrics. One of the most important metrics is to guarantee fairness among different

users. However, most of the existing works on NOMA-assisted MEC networks did not

consider the fairness between users. Including fairness utility functions will increase the

complexity of resource allocation designs in NOMA-enabled MEC networks, an unaddressed

need that calls for effective solutions. Moreover, the existing works on NOMA-assisted

MEC with external eavesdroppers typically focus on performance evaluation in scenarios

where either channel conditions or required tasks remain constant. Such an assumption

makes analysis on computation offloading and resource allocation more tractable. However,
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in a dynamic environment, the dynamic behaviors of the workload arrivals and fading

channels impact the overall system performance. Thus a system design that focuses on

short-term performance may not be as effective from a long-term perspective. To this

end, the stochastic task offloading models and resource allocation strategies need to be

investigated over long timescales.

In this work, we will look at the EE and PLS performances of MEC networks with

NOMA offloading techniques.

1.2 Server Coordination Techniques in MEC Networks With NOMA

Most existing works did not consider the computation capacity or energy consumption

of edge servers. However, in order to support the ultra-densely deployed IoT devices and

their massive tasks, edge servers’ energy consumption and operation cost increase sharply.

The edge servers should support an energy-saving mode that activate/deactivate the servers

either manually or automatically based on demands. If this is to be done, efficient server

coordination is essential. User’s behavior and environment conditions are constantly fluctu-

ating, but according to [12], the user’s traffic behavior follows certain predictable patterns.

For example, network activities activity decreases significantly during the night. Therefore,

embedded workload prediction can help the system capture the peak and valley trends of

workloads, which the system can then use to coordinate servers in a dynamic way. It is

well known that servers consume energy even when they are not actively processing any

tasks as many server units consume considerable energy even when idle. By letting idle

servers to switch into sleeping mode or turning the sleeping servers back to active status

when necessary can greatly increase the networks’ energy efficiency. Thus, accurate predic-

tion algorithms and effective server coordination methods are important. It can enable the

network to flexibly adjust and allocate server resources, as shown in Fig. 1.4 .

As the number of UE devices grows, the edge computing service must also increase its

scalability to guarantee a latency limit and quality threshold. Several works focus on server

coordination in MEC networks.

In [13], an algorithm that utilizes virtual machine migration and transmission power
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Fig. 1.4: Illustration of server coordination.

control was proposed to coordinate edge nodes and consequently maximize cost-effectiveness.

Prediction functions can empower the MEC systems to proactively balance the users’ work-

load and efficiently coordinate their computing resources. In [14], the authors proposed a

task execution time prediction algorithm to solve a task offloading optimization problem in

MEC networks. In [15], a computation offloading and task migration algorithm based on

task prediction was proposed, which joint considered the data size of computation task and

the performance features of edge nodes. A computation offloading strategy based on task

prediction and task migration for the edge cloud scheduling scheme was used to assist in op-

timizing the edge computing offloading model. To reduce the energy cost of MEC networks,

the authors in [16] formulated the energy-saving problem in MEC networks by dynamically

switching on/off edge servers according to the variation of UEs’ distribution. A dynamic

server switching algorithm and a lightweight UE distribution prediction mechanism were

proposed to solve the problem. In [17], a proactive approach to dynamic edge server provi-

sioning for real-time IoT data streaming across edge nodes was proposed that adjusts server

provisioning ahead of time based on predictions about the upcoming workload.

Most of the existing works employed a relative sample workload prediction model,

which cannot accurately capture the workload trends and may lead to QoS degradation.

Moreover, frequently switching edge servers will decrease their lifetime. A more flexible

method that encompasses a more comprehensive time scale is needed. Finally, the existing
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works did not combine server coordination methods with NOMA transmission techniques,

which can further increase the system EE performance. This work aims to explore accurate

prediction models and effective server coordination algorithms in improving overall system

EE.

1.3 IRS Enabled MEC Networks

IRS has attracted significant attentions from the research community due to its poten-

tial of simultaneously improving EE and achieving secure communications [18]. As shown

in Fig. 1.5, IRS consists of a large number of low-cost passive reflecting elements with ad-

justable phase shifts. By properly controlling the phase shifts of the IRS’s elements, their

reflected signals can be combined with those from other paths coherently to enhance the

link achievable rate at the receiver and to decrease it at the eavesdropper [19]. Moreover,

since IRS does not employ any transmit radio frequency (RF) chains, energy consumption

only comes from reflective elements phase adjustment and is usually very low [20]. Thus,

IRS is deemed a promising technology to increase EE of wireless communica tion networks

and to improve system security [21]. The IRS-assisted multiple input single output (MISO)

secure network has attracted increasingly elevated attention. The beamforming and phase

shift matrix design schemes for different objectives were proposed in [22–28].

To determine the secrecy rate gain brought by IRS, in [22], Yu et al. considered an IRS-

assisted secure MISO wireless system. To maximize the secrecy rate, both the beamformer

and the IRS phase shift matrix were jointly optimized based on the block coordinate descent

(BCD) and minimization maximization techniques. By combining the artificial noise (AN)

technique, in [23], Xu et al. studied resource allocation design to maximize the system sum

secrecy rate. By jointly optimized the phase shift matrix, the beamforming vectors, and

the AN covariance matrix, the authors developed an efficient suboptimal algorithm based

on alternating optimization, successive convex approximation, semidefinite programming

relaxation (SDR), and manifold optimization. In [24], by jointly optimizing the beamformers

at the BS and reflecting coefficients at the IRS, the authors formulated a minimum-secrecy-

rate maximization problem under various practical constraints that captured the scenarios of
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Fig. 1.5: Illustration of IRS.

both continuous and discrete reflecting coefficients of the reflecting elements. Since IRS can

not only help increase the secrecy rate but also save more energy for the network, the joint

optimization of rate and power was also studied. By considering the power consumption,

in [25], the authors focused on maximizing the system secrecy rate subject to the source

transmission power constraint and the unit modulus constraints imposed on phase shifts at

the IRS. Furthermore, in [26], the authors proposed a power-efficient scheme to optimize

the secure transmit power allocation and the surface reflecting phase shift to minimize the

transmit power subject to the secrecy rate constraint. In [27], the authors proposed different

methods to minimize the system’s energy consumption in cases of rank-one and full-rank

access point (AP)-IRS links. In [28], secure wireless information and power transfer with the

IRS was proposed for a MISO system. Under the secrecy rate and the reflecting phase shifts

of IRS constraints, the secure transmit beamforming at the access point and phase shifts

at IRS were jointly optimized to maximize the harvested power of the energy harvesting

receiver.

Although beamforming design problems in IRS-enabled secure communication systems

have been investigated, few studies have been conducted for beamforming, friendly jamming,
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and phase shift matrix design in IRS assisted wireless MISO networks. Moreover, there are

no investigations that have studied energy-efficient design in secure IRS-assisted MISO

networks. Motivated by the above-mentioned facts, an IRS assisted MISO network with

cooperative jamming needs to be studied to pave the path for applying IRS into the MEC

system.

In this work, we will first investigate the potential benefits of exploiting IRS for trans-

mission with respect to efficiency and security. Then, the IRS-assisted MEC networks will

be designed, and the corresponding performance amelioration will be illustrated.

1.4 Dissertation Outline

The focus of this dissertation is the improvement of EE and PLS with regards to the

various challenges inherent to MEC networks mentioned above. We first investigate the EE

performance of the NOMA-enabled MEC network. Based on this framework, a hierarchical

MEC network is proposed and MEC server coordination across different layers is examined

to further increase the system EE. The PLS and EE are then investigated for NOMA-

enabled MEC networks. To explore the potential advancement of EE and secure rate when

applying IRS, we first study the IRS-assisted wireless communication system, then launch

the research for apply IRS into MEC based on this achieved research.

In Chapter 2, we first investigate how NOMA can help MEC achieve a higher EE.

In order to improve the fairness and resource efficiency among IoT users, we consider a

static setting and form a α fairness utility-based resource allocation optimization problem

for ultra-dense MEC-enabled IoT networks with NOMA. An iterative algorithm based on

successive convex approximation techniques is proposed to solve those challenging non-

convex problems under three fairness use cases.

Chapter 3 extends the model in Chapter 2 and develops a dynamic long-term energy

and computation optimization paradigm in a hierarchical MEC network with server coor-

dination functionality. The tasks collected at local IoT devices can be computed at edge

facilities. Both NOMA and frequency-division multiple access (FDMA) are used for com-

putation offloading. The system model considers both long-term and short-term system
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behaviors and makes the best decisions for energy consumption and computation efficiency.

The LSTM network is applied to predict the long-term workload, based on which the num-

ber of active process units in the edge layer is optimized. In the short-term model, a

resource optimization problem is formulated. Due to the dynamic arrival workload and

nonconvex features of the problem, the Lyapunov optimization approach and successive

convex approximation for the low-complexity method are applied to solve this problem.

In addition to EE, security is also a critical issues for MEC networks. With stochastic

task arrivals, time-varying dynamic environment, and passive existing attackers, it is very

challenging to offload computation tasks securely and efficiently. In Chapter 4, we study

the task offloading and resource allocation problem in a NOMA assisted MEC network with

security and energy efficiency considerations. To tackle the problem, a dynamic secure task

offloading and resource allocation algorithm is proposed based on Lyapunov optimization

theory. A stochastic non-convex problem is formulated to jointly optimize the local-CPU

frequency and transmit power, aiming at maximizing the network energy efficiency, which

is defined as the ratio of the long-term average secure rate to the long-term average power

consumption of all users. The formulated problem is decomposed into the deterministic

sub-problems in each time slot. The optimal local CPU-cycle and the transmit power of

each user can be given in the closed-from.

In Chapter 5, we consider that the EE achieved by using PLS can be limited by the

channel conditions. In order to tackle this problem, an intelligent reflecting surface (IRS)

assisted multiple input single output (MISO) network with independent cooperative jam-

ming is studied. The EE is maximized by jointly designing the transmit and jamming

beamforming and IRS phase-shift matrix under both the perfect channel state information

(CSI) and the imperfect CSI. In order to tackle the challenging non-convex fractional prob-

lems, an algorithm based on semidefinite programming (SDP) relaxation is proposed for

solving energy efficiency maximization problem under the perfect CSI case while an alter-

nate optimization algorithm based on S -procedure is used for solving the problem under

the imperfect CSI case.
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In Chapter 6, based on the works in previous chapters, an IRS assisted MEC network

with NOMA is studied. The EE is maximized by jointly optimizing the offloading power,

local computing frequency, receiving beamforming, and IRS phase-shift matrix. The prob-

lem is challenging to solve due to the non-convex fractional objective functions and the

coupling among the variables. A semidefinite programming relaxation (SDR) based alter-

nating algorithm is developed.

Chapter 7 concludes this dissertation and proposes future directions.
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CHAPTER 2

Fair Resource Allocation in an MEC-Enabled Ultra-Dense IoT Network with NOMA

2.1 Introduction

In this chapter, we consider the resource allocation for MEC networks in a single time

slot. We aim to investigate the benefits brought by NOMA to the system’s EE. Considering

that the channel qualities of different users can be varied, we also incorporate the fairness

function to guarantee the quality of service for every user.

Communication and computation resources allocation optimization for different ob-

jects has been studied in MEC networks with orthogonal multiple access (OMA) [29–33].

Specifically, in [29], by combining local computing and data offloading, a weighted sum user

computation efficiency optimization method based on time division multiple access (TDMA)

was proposed. In [30], the maximal delay of the mobile devices was minimized by jointly

optimizing sub-carrier and power allocation in MEC networks with orthogonal frequency

division multiple access (OFDMA). The authors of [31] proposed a single-leader-multi-user

Stackelberg game model to optimize the energy efficiency and computation capacity of the

mobile users and the edge cloud. In OFDMA-enabled cloud radio access network (C-RAN)

with an integrated MEC server, the joint sub-carrier power allocation and tasks partition

problem were studied to minimize the user delay in [32]. The researchers in [33] took a criti-

cal look at the resource allocation for TDMA and OFDMA based multiuser MEC systems in

order to minimize the weighted sum of mobile energy consumption. They demonstrated that

the power allocation has a threshold-based structure with respect to a derived offloading

priority. All these works showed that the combination of offloading and local computation

outperforms models that only considers the offloading process.

As the need to enhance user connectivity and provide more users with MEC services

has grown, NOMA has received great research attention lately. It is envisioned that the



14

application of MEC and NOMA into ultra-dense IoT networks can greatly improve the

computation performance of users and enhance user connectivity. Recently, MEC-enabled

IoT networks with NOMA have been studied in [34–36]. In [34], to maximize the harvesting

power, a NOMA cognitive radio network with simultaneous wireless information and power

transfer was considered. In [35], the weighted sum of the energy consumption of all users

was minimized for a multi-user partial offloading MEC system with NOMA under the com-

putation latency constraints. It was shown that NOMA method can significantly improve

energy efficiency compared with OMA. In [36], the authors analyzed the performance of the

spectral and energy efficiency of a multiple-user wireless communication system with the

fairness consideration.

However, the works in [34], [35] did not consider the fairness as a performance target

among users, which may result in unfairness, especially when there exist massive IoT devices

all with very limited computation capability. Although the authors in [36] considered the

fairness among users, the computation efficiency, an important metric in the IoT network,

was not considered in this work. In order to achieve the optimal system efficiency in an IoT

network, efficient resource allocation schemes are needed. An MEC-enabled ultra-dense

IoT network with NOMA can effectively balance the computation efficiency and energy

efficiency.

Towards that end, in this chapter, in order to achieve a better trade-off between compu-

tation efficiency and energy efficiency, we propose a new method for the resource allocation

in an MEC-enabled ultra-dense IoT network with NOMA. Moreover, in order to address

fairness among massive IoT users, we introduce fairness index into the utility function of the

proposed scheme. The formulated problem is solved by using the successive convex approx-

imation (SCA) method and successive convex approximation for low complexity (SCALE)

method. The simulation results demonstrate that the proposed scheme achieves desirable

performance by comparing with two other schemes.

2.2 System Model

An MEC-enabled ultra-dense IoT network as shown in Fig. 2.1 is considered. The
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Fig. 2.1: System model of MEC-enabled IoT network with NOMA.

system consists of N IoT devices denoted as user equipment (UE) that need to execute

computation-intensive yet delay-sensitive tasks and one MEC server that can provide MEC

service for those UEs. Partial computation offloading mode is supported, in which the

computation task can be partitioned into two parts, one for local computing and one for

offloading to the MEC server for computing. Moreover, NOMA is applied so that multiple

devices can offload their tasks simultaneously by using the same physical radio resource.

Each IoT device can perform local computing and computation task offloading at the same

time since the offloading unit and local computing unit are separated [37].

2.2.1 Data Offloading

In data offloading, users offload their partial computation tasks to the MEC server. Let

N = {1, 2, . . . , N} denote the set of UEs. Let gn and pn respectively represent the channel

gain and the transmission power between the MEC server and UE n. At the beginning

of each transmission frame, the MEC server ranks the UEs by their channel quality, i.e.,

g21 ≤ g22 ≤ · · · ≤ g2N . All theN users can send the offloading data to the MEC simultaneously

on the same radio resource. Successive interference cancellation (SIC) technique is applied
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at the receiving side, which is the MEC server in this case, to decode the signal for each

user successfully [38]. Specifically, the MEC server starts the decoding process with the

user that has the best received signal power by treating the signals from all other users as

interference. The decoded signal is removed from the composite received signal and then

decoding proceeds to the next best received signal. The process repeats untill all the user

signals are decoded. To summarize, in order to decode the nth user’s signal, the signals from

user i, 1 ≤ i ≤ n− 1, are treated as interference and the signals from user m, n ≤ m ≤ N ,

are all removed from the composite received signal. Thus, the offloading rate for the nth

user can be expressed as

roffn = B log2(1 +
png

2
n∑n−1

i=1 pig
2
i + σ2

), (2.1)

where σ2 is the power of the noise and B is the bandwidth shared by N NOMA users. The

corresponding power consumption for UE n under the offloading mode can be expressed as

poffn = ζpn + pr, (2.2)

where ζ denotes the amplifier coefficient, and the first part pn denotes the information

transmission power consumption, and pr denotes the constant circuit power consumed for

signal processing and it is assumed to be the same for all UEs [39].

2.2.2 Local Computing

Let Cn be the number of computation cycles required to process one bit of data for UE

n locally. Each UE can compute the data throughout the entire transmission duration. Let

fn denote the computing speed of the processor (cycles per second). Therefore, the local

computing rate of the nth UE can be expressed as

rlocaln =
fn
Cn

. (2.3)
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The power consumption of local computing is modeled as a function of processor speed fn.

It can be given as

plocaln = ϵf3n, (2.4)

where ϵ is the effective capacitance coefficient of the processor’s chip [40].

2.2.3 Utility Function

Combining data offloading and local computing, the total computation rate Rn for UE

n can be expressed as Rn = roffn + rlocaln . The total power consumption Pn of UE n is

Pn = poffn + plocaln . Moreover, in order to consider the computation rate fairness among

users, the following utility Uα(Rn) is defined [41], where α is the fairness index.

Uα(Rn) =


R1−α
n

1− α
if α ≥ 0, α ̸= 1,

ln(Rn) α = 1.

(2.5)

Accordingly, the fairness degree can range from zero to infinity. There are three special

cases corresponding to three fairness degrees, namely α = 0, 1, and ∞. When α = 0, the

utility function is the sum computation rate for all UEs; when α = 1, the utility function

is the sum logarithmic function of UE rates, which normally provides proportional fairness;

when α = ∞, the utility function is the minimum rate among all UEs, which corresponds

to the max-min fairness.

2.3 Fair Resource Allocation

In this section, with respect to the value of fairness index α, the optimal trade-off

between the number of computation bits and energy efficiency is studied. The optimization

problem aims to minimize the total power consumption as well as maximize the achievable

data rate utility. We exploit the weighted sum to tackle this multi-objective problem [36].
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Thus, the problem is formulated as

P2.1 : max
fn,pn

ΦSE
∑
n∈N

Uα(Rn)− ΦEE
∑
n∈N

Pn (2.6a)

s.t. C1 : pn ≥ 0, ∀n ∈ N , (2.6b)

C2 : Rn ≥ Rthn , ∀n ∈ N , (2.6c)

C3 : Pn ≤ P thn , ∀n ∈ N , (2.6d)

C4 : fminn ≤ fn ≤ fmaxn , ∀n ∈ N . (2.6e)

P2.1 is a resource allocation problem that optimizes the offloading power pn, local computing

chip frequency fn. ΦSE and ΦEE are the weighting factors that can be used to prioritize

different computation service requirements of UEs. C1 states that the transmit power

levels of UEs are greater than 0. In C2, R
th
n denotes the minimum computing data rate

of UE n. P thn in C3 is the total power available for UE n. C4 defines the minimum and

maximum computation capacity of each UE. P2.1 is extremely challenging to solve due to

the complex objective function and the non-convex constraints. In the following sections,

we will investigate three different fairness cases, i.e., α = 1,∞, 0.

2.3.1 Proportional Fairness α = 1

When α = 1, the system utility is the sum logarithmic function of UE’s computation

rate. In this case, the proportional fairness can be achieved. The original problem P2.1

under this case can be expressed as

P2.2 : max
fn,pn

ΦSE
∑
n∈N

ln(B log2(1 +
png

2
n∑n−1

i=1 pig
2
i + σ2

) +
fn
Cn

)− ΦEE
∑
n∈N

(ζpn + pr + ϵf3n)

s.t. C1− C4.

(2.7)

Theorem 2.1: P2.2 is a non-convex optimization problem.
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Proof: The auxiliary variables an are introduced to meet the following constraints:

exp(an) ≤ B log2(1 +
png

2
n∑n−1

i=1 pig
2
i + σ2

) +
fn
Cn

. (2.8)

Auxiliary variables ρn are introduced to meet ρn = ln(pn). Thus, eq. (2.8) is equivalent to

ln(2
exp(an)− fn

Cn
B

) − 1) + ln(

n−1∑
i=1

g2i
g2n
eρi−ρn +

σ2

g2n
e−ρn) ≤ 0. (2.9)

Let a = [a1, · · · , aN ]T , P2.2 can be transformed into

P2.3 : max
fn,ρn,an

ΦSE
∑
n∈N

an − ΦEE
∑
n∈N

(ζ exp(ρn) + pr + ϵf3n)

s.t. an ≥ ln(Rthn ), ∀n ∈ N , (2.10a)

ζ exp(ρn) + pr + ϵf3n ≤ P thn , ∀n ∈ N , (2.10b)

fminn ≤ fn ≤ fmaxn , ∀n ∈ N , (2.10c)

ln(2
exp(an)− fn

Cn
B − 1) + ln(

n−1∑
i=1

g2i
g2n
eρi−ρn +

σ2

g2n
e−ρn) ≤ 0, ∀n ∈ N . (2.10d)

The objective function is jointly concave with respect to an and ρn due to the subtraction

of a linear term and convex term. However, the first part of the last constraint (2.10d) is

non-convex. Thus, the problem is still non-convex. In order to tackle it, the SCA method

is applied. By introducing the auxiliary variables xn, we have exp(an)− fn
Cn ≤ exp(xn) and
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exp(xn) ≤ B log2(1 +
exp(ρn)g2n∑n−1

i=1 exp(ρi)g2i +σ
2
). Then the problem P2.3 becomes:

P2.4 : max
fn,ρn,an,xn

ΦSE
∑
n∈N

an − ΦEE
∑
n∈N

(ζ exp(ρn) + pr + ϵf3n)

s.t. an ≥ ln(Rthn ), ∀n ∈ N , (2.11a)

ζ exp(ρn) + pr + ϵf3n ≤ P thn , ∀n ∈ N , (2.11b)

fminn ≤ fn ≤ fmaxn ,∀n ∈ N , (2.11c)

exp(an)−
fn
Cn

≤ exp(xn), (2.11d)

exp(xn) ≤ B log2(1 +
exp(ρn)g

2
n∑n−1

i=1 exp(ρi)g2i + σ2
). (2.11e)

Since the constraint (2.11d) is non-convex, by using the SCA technique, the first-order

Taylor expansion is used to approximate the right part. Thus, P2.4 can be solved by

iteratively solving the following approximate problem, given as

P2.5 : max
fn,ρn,an,xn

ΦSE
∑
n∈N

an − ΦEE
∑
n∈N

(ζ exp(ρn) + pr + ϵf3n) (2.12a)

s.t. an ≥ ln(Rthn ), ∀n ∈ N , (2.12b)

ζ exp(ρn) + pr + ϵf3n ≤ P thn , ∀n ∈ N , (2.12c)

fminn ≤ fn ≤ fmaxn ,∀n ∈ N , (2.12d)

exp(an)−
fn
Cn

≤ exp(xkn) + exp(xkn)(xn − xkn), (2.12e)

exp(xn) ≤ B log2(1 +
exp(ρn)g

2
n∑n−1

i=1 exp(ρi)g2i + σ2
), (2.12f)

where xkn, n ∈ N are the given local points at the kth iteration. The above problem is

convex and can be readily solved by using the existing convex optimization tool.

2.3.2 Max-Min Fairness α = ∞

In this case, the objective of the system is to maximize the minimum computation rate

among all the users. For that purpose, the sum computation bit rate and energy efficiency

may have to be comprised to achieve this Max-Min fairness. When α = ∞, the original
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optimization problem P2.1 becomes

P2.6 : max
fn,pn

ΦSE min
n∈N

B log2(1 +
png

2
n∑n−1

i=1 pig
2
i + σ2

)

+
fn
Cn

− ΦEE
∑
n∈N

ζpn + pr + ϵf3n

s.t. C1− C4.

(2.13)

It is difficult to directly solve the max-min problem P2.6. By introducing a new variable l

as a lower bound and auxiliary variables ρn = log(pn), the problem P2.6 can be transformed

into

max
fn,ρn,l

ΦSE ∗ l − ΦEE
∑
n∈N

(ζ exp(ρn) + pr + ϵf3n) (2.14a)

s.t. l ≥ Rthn , ∀n ∈ N , (2.14b)

ζ exp(ρn) + pr + ϵf3n ≤ P thn , ∀n ∈ N , (2.14c)

fminn ≤ fn ≤ fmaxn , ∀n ∈ N , (2.14d)

l ≤ B log2(1 +
exp(ρn)g

2
n∑n−1

i=1 exp(ρi)g2i + σ2
) +

fn
Cn

. (2.14e)

The objective function of the above problem is concave due to the subtraction of a linear

term and a convex term, the first three constraints are convex. The final constraint (2.14e)

can be expressed as

ln(
σ2

g2n
e−ρn +

n−1∑
i=1

g2n
g2i
eρi−ρn) + ln((exp(ln 2

l − fn
Cn

B
))− 1) ≤ 0, (2.15)

which is neither convex nor concave. By introducing the new auxiliary variable zn,

exp(zn) ≤ B log2(1 +
exp(ρn)g

2
n∑n−1

i=1 exp(ρi)g2i + σ2
), (2.16)
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the problem can be expressed as

max
fn,ρn,l,zn

−ΦEE
∑
n∈N

(ζ exp(ρn) + pr + ϵf3n) + ΦSE ∗ l (2.17a)

s.t. l ≥ Rthn , ∀n ∈ N , (2.17b)

ζ exp(ρn) + pr + ϵf3n ≤ P thn , ∀n ∈ N , (2.17c)

fminn ≤ fn ≤ fmaxn , ∀n ∈ N , (2.17d)

l ≤ exp(zn) +
fn
Cn

, (2.17e)

exp(zn) ≤ B log2(1 +
exp(ρn)g

2
n∑n−1

i=1 exp(ρi)g2i + σ2
). (2.17f)

Since the constraint (2.17e) is not convex, similar to P2.4, the SCA method is used to solve

the problem given by eq. (2.17a). In this case, eq. (2.17a) is solved by iteratively solving

the approximate problem, given as

P2.7 : max
fn,ρn,l,zn

−ΦEE
∑
n∈N

(ζ exp(ρn) + pr + ϵf3n) + ΦSE ∗ l (2.18a)

s.t. l ≥ Rthn , ∀n ∈ N , (2.18b)

ζ exp(ρn) + pr + ϵf3n ≤ P thn , ∀n ∈ N , (2.18c)

fminn ≤ fn ≤ fmaxn , ∀n ∈ N , (2.18d)

l ≤ exp(zkn) + exp(zkn)(zn − zkn) +
fn
Cn

, (2.18e)

exp(zn) ≤ B log2(1 +
exp(ρn)g

2
n∑n−1

i=1 exp(ρi)g2i + σ2
), (2.18f)

where zkn, n ∈ N are the given local points at the kth iteration. It is not difficult to prove

that the above problem is convex and can be readily solved by using the existing convex

optimization tool. The algorithm for solving P2.5 and P2.7 is given in Algorithm 2.1.
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Table 2.1: SCA Iteration Algorithm

Algorithm 2.1: The SCA iterative algorithm for P2.5 and P2.7

1) Input settings:
the error tolerance ξ > 0, Rthn > 0 and P thn > 0,
the maximum iteration number K.

2) Initialization:
k = 0, fn(0), ρn(0),an(0) x

0
n;

3) Optimization:
⊵⊵⊵ for k=1:K

solve P2.5/P2.7 by using the interior-point method;
obtain the solution {fk∗n , ρk∗n , a

k∗
n , x

k∗
n } and the system efficiency H∗

k ;
if ∥H∗

k −H∗
k−1∥ ≤ ξ;

the maximum system efficiency H∗ is obtained;
break;

else
update xk+1

n = xk∗n and k = k + 1.
end

⊵⊵⊵ end
4) Output:

{f∗n, ρ∗n} and system efficiency H∗
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2.3.3 Fairness with α = 0

In this case, the tradeoff between the weighted sum computation rate and the power

consumption cost is considered. The original problem P2.1 can be expressed as

P2.8 : max
fn,pn

ΦSE
∑
n∈N

(B log2(1 +
png

2
n∑n−1

i=1 pig
2
i + σ2

) +
fn
Cn

)− ΦEE
∑
n∈N

(ζpn + pr + ϵf3n)

s.t. C1− C4.

(2.19)

Based on the proof of Theorem 1 and Theorem 3 in [42], the problem (2.19) is NP-hard. In

order to solve it, we apply a SCALE method to approximate problem P2.8 into a sequence

of convex programs and obtain the sub-optimal solution by the proposed algorithm [43], as

follows:

a log z + b ≤ log2(1 + z). (2.20)

That is tight at z = z0 when the approximation constants are given as

a =
z0

1 + z0
, (2.21a)

b = log2(1 + z0)−
z0

1 + z0
log2(z0). (2.21b)

By applying the SCALE method to the problem (2.19), and the logarithmic change of

variables ρn = log(pn), we can obtain the following problem as

P2.9 max
fn,ρn

ΦSE
∑
n∈N

(BRn(ρn; an, bn) +
fn
Cn

)− ΦEE
∑
n∈N

(ζ exp(ρn) + pr + ϵf3n), (2.22a)

s.t. BRn(ρn; an, bn) +
fn
Cn

≥ Rthn ,∀n ∈ N , (2.22b)

ζ exp(ρn) + pr + ϵf3n ≤ P thn , ∀n ∈ N , (2.22c)

fminn ≤ fn ≤ fmaxn , ∀n ∈ N , (2.22d)

(2.22e)
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where

zn =
exp(ρn)g

2
n∑n−1

i=1 exp(ρi)g2i + σ2
, (2.23a)

an =
zn

1 + zn
, (2.23b)

bn = log2(1 + zn)−
zn

1 + zn
log2(zn), (2.23c)

and

Rn(ρn; an, bn) = an log2(
exp(ρn)g

2
n∑n−1

i=1 exp(ρi)g2i + σ2
) + bn

= an[log2(g
2
n) + ln 2ρn − log(

n−1∑
i=1

exp(ρi)g
2
i + σ2)] + bn.

(2.24)

Here, we note the log-sum-exp is convex, thus Rn(ρn; an, bn) is a concave function because

it is the sum of linear and concave terms within the square brackets. Thus the problem

(2.22a) is a standard concave maximization problem. The algorithm for solving P2.8 based

on solving the convex relaxation problem P2.9 is given in Algorithm 2.2.

2.4 Performance Evaluation

In this section, we present the performance results of the proposed scheme. The param-

eters are set as follows [29]. The system bandwidth is B = 2 MHz, the number of total UEs

is N = 3, the local data process capacity for one bit is Cn = 103 cycles. The computation

energy efficiency coefficient is ϵ = 10−28, the power weight ζ = 2. The channel between

the MEC server and each UE is modeled as the joint effect of large-scale and small-scale

fading, with g2k/σ
2 = Gkhk, G1 = 7, G2 = 40, G3 = 144. hk is the unitary Gaussian random

variable. The maximum and minimum computation capacity of each UE is set equally as

fmaxn is 109 Hz and fminn is 106 Hz. The circuit power pr = 5 dBm. The results are obtained

by performing over different random channel realizations. Two benchmark schemes, namely

Offloading Only + NOMA scheme and Local&Offloading + FDMA scheme, are considered

for comparison. The proposed scheme is marked as Local&Offloading + NOMA.

In Fig. 2.2, the fairness case with α = 1 is studied. In order to balance the number of
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Table 2.2: SCALE Iteration Algorithm

Algorithm 2.2: The SCALE iterative algorithm for P2.9

1) Input settings:
the error tolerance ξ > 0, Rthn > 0 and P thn > 0, a1n = 1, b1n = 0,
the maximum iteration number K.

2) Initialization:
k = 0, fn(0), ρn(0), an(0) and bn(0);

3) Optimization:
⊵⊵⊵ for k=1:K

solve P2.9 by using the interior-point method;

obtain the solution {f∗n, ρ∗n} and the rate approximation R
k∗
n ;

if ∥Rk∗n −R
k−1∗
n ∥ ≤ ξ;

the maximum system efficiency H∗ is obtained;
break;

else
update ak+1

n , bk+1
n by (2.21) and k = k + 1.

end
⊵⊵⊵ end

4) Output:
{f∗n, ρ∗n} and system efficiency H∗
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Fig. 2.2: System efficiency for α = 1.

computation bits and energy efficiency, we choose ΦSE = 0.3 and ΦEE = 0.7. The results

show that the proposed model has a higher system efficiency than two benchmark schemes.

The system efficiency decreases with the increase of the required computation bits rate Rthn

because each UE needs to increase is transmit power as well as their local process rate

in order to meet the data requirement. The increase of the transmitting power and local

process rate both will elevate the energy cost, resulting in the decrease of the overall system

efficiency. It can also be seen that using NOMA can achieve a higher system efficiency

compared with using FDMA.

In Fig. 2.3, the fairness case with α = ∞ is studied. ΦSE = 10−6 and ΦEE = 0.5 are

the weighting factors. It can be seen that the system efficiency decreases with the increase

of Rthn . The reason is the same as for Fig. 2.2. It can also be seen that the proposed scheme

is still better than the two benchmark schemes. Moreover, the performance of the FDMA

method decreases faster than that of the scheme with NOMA.

The system efficiency of the maximum sum rate case is presented in Fig. 2.4, where
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Fig. 2.3: System efficiency for α = ∞.

α = 0. The smaller the required data computation rate is, the smaller the difference

in system efficiency among three schemes becomes. The reason is that when the system

requires a small computation bits rate, it becomes less difficult for all the schemes to meet

the requirement. However, as the required data rate keeps increasing, the energy cost for

different schemes increases as well. The proposed scheme can allocate the resources in a

more efficient way based on the combination of local computation and NOMA offloading,

thus outperforming other benchmark schemes.

In Fig. 2.5, we set ξ = 10−4. Only several iterations are required for our proposed

algorithms to converge, showing the computation efficiency of the proposed algorithm.

2.5 Chapter Conclusion

In this chapter, we formulated a fairness resource allocation problems in an ultra-dense

MEC-enabled IoT network with NOMA to improve the fairness among IoT users. We

are considering three special fairness cases to meet different system goals. In each case,
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the resource allocation schemes were obtained by using the SCA or the SCALE method.

Simulation results verified that our proposed scheme can achieve a better performance than

two other benchmark schemes.
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CHAPTER 3

Hierarchical Energy Efficient Mobile Edge Computing in IoT Networks

3.1 Introduction

In the previous chapter, we investigated resource allocation for MEC enabled IoT net-

works with NOMA in a single time slot. In addition, we have verified that the combination

of NOMA and MEC can significantly improve the system EE. In real applications, the

users’ behavior and environmental conditions change dynamically. The adaptive resource

allocation method is required to capture the dynamics in the networks. Mao et al. [44]

developed an online joint radio and computational management algorithm for multi user

MEC systems, which aims for minimizing the long-term average weighted sum power con-

sumption of the mobile devices and the MEC server. Lyu et al. [45] designed a perturbed

Lyapunov function to stochastically maximize a network utility balancing throughput and

fairness.

In this chapter, a flexible hierarchical edge computing architecture is used, in which

edge nodes and cloud servers with diverse power and computation capabilities form two tiers

to best serve end user needs. A hierarchical communication and computation framework for

jointly optimizing energy consumption and computation rate is proposed. The hierarchical

framework consists of three layers, i.e. sensor layer, edge layer, and cloud server layer. The

accumulated computing power minimization and computing rate maximization trade-off

optimization problem is formulated in this part. We will develop a prediction-based edge

node turning on/off algorithm based on long-term data dynamics to reduce system operating

cost, while we devise the dynamic resource allocation algorithm based on shot-term data

dynamics. The LSTM network [46] for arrival tasks prediction mode is applied in long-term

process unit status decision operation. Furthermore, the real-life user data will be employed

to test and to validate our proposed algorithms. The optimization of offloading transmit
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Fig. 3.1: System model for the three-layer IoT network.

power and local processing speed is determined based on Lyapunov optimization method.

3.2 System Model

We consider a three-layer IoT network as described in Fig. 3.1. The first layer is IoT

senor layer, which consists of different IoT sensor devices such as smartphones, environmen-

tal sensors, and wearable devices. The second layer is edge layer consisting of mobile edge

nodes, while the third layer is the server layer consisting of centralized or cloud servers. All

the sensor devices are deployed around randomly distributed edge nodes. IoT sensor devices

keep collecting and uploading the data to their associated edge nodes for data processing.

There are N edge nodes in the system, which provide the data processing service for the

IoT devices. After the massive raw data is received, each edge node can choose to process
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Table 3.1: LIST OF SYMBOLS

Symbol Definition

An(t) The workload arriving at edge node.

Qn(t) The buffer size.

Rtotn (t) The total processing rate of edge node n.

Etotn (t) The total energy cost of edge node n.

Cm,n The number of computation cycles to compute 1 bit
of data.

fm,n(t) The computing rate (cycles per second).

gn(t) The channel gain of edge node n.

pn(t) The transmit power of edge node n.

ζ The amplifier coefficient.

pn(t) The transmission power consumption.

pr The constant circuit power.

the data locally, or to offload the data to the more powerful cloud server, or a combination

of both. We furthermore assume that each edge node has M processing units (PUs), which

can be turned on or turned off individually based on needs.

Let An(t) denote the workload arriving at edge node n at time t. Note that the

computing workload at each edge node dynamically changes from time to time but with a

predictable pattern in many cases. We allow each edge node adaptively turn on/turn off a

subset or all of its PUs to save energy. The operation is done based on the prediction of

traffic patterns in a relatively long-term scale.

At t, An(t) bits arrive at edge node n from the connected IoT sensor devices. The size

of the buffered data at edge node n becomes

Qn(t+ 1) = max{Qn(t) +An(t)−Rtotn (t)τ, 0}, (3.1)

where Qn(t) is the buffer size at t, R
tot
n (t) is the total processing rate of edge node n at time

t, which include both local processing rate and the cloud processing rate achieved through

offloading. We consider a partial offloading for each edge node so it can decide how to

partition workload between itself and the cloud server. Table 3.1 lists the symbols and
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their definitions.

3.2.1 Local Processing Mode

At t, edge node n computes the workload at the buffer. In particular, the workload for

local processing at node n is furthermore divided into M parts. Let Cm,n be the number of

computation cycles needed to compute one bit of data at PU(m,n). Each PU can compute

the data in the entire transmission duration. Let fm,n(t) be the computing rate (cycles per

second) at t for PU(m,n) and sm,n represent the status of PU(m,n), where sm,n = 1 if

PU(m,n) is active and sm,n = 0 otherwise. Therefore, the local computing rate of edge

node n is calculated as

rlocaln (t) =
M∑
m=1

fm,n(t)

Cm,n
sm,n(t). (3.2)

The energy consumption of local computing is expressed as

elocaln (t) =

M∑
m=1

[ϵm,nf
3
m,n(t)sm,n(t)τ + pidlem,nsm,n(t)τ ], (3.3)

where ϵm,n is the energy efficiency coefficient for an active PU(m,n) and pidlem,n is the energy

consumption of an idle PU(m,n). τ is the duration of each time slot.

3.2.2 Data Offloading Mode

In the partial offloading, part of the data in each edge node can be offloaded to the

cloud server. Two different offloading schemes are considered, i.e. FDMA and NOMA.

FDMA based offloading

Assume the total channel bandwidth between edge nodes and the cloud server is W ,

which is equally partitioned among N edge nodes by using FDMA. So the bandwidth of

each channel is B = W
N . Let gn(t) and pn(t) represent the channel gain and transmit power

for edge node n, respectively. The offloading rate for node n under the FDMA method can



35

be expressed as

roffn (t) = B log2(1 +
pn(t)g

2
n(t)

σ2n
). (3.4)

The corresponding energy consumption is

eoffn (t) = (ζpn(t) + pr)τ, (3.5)

where ζ is the amplifier coefficient. pn(t) is the transmission power consumption and pr is

the constant circuit power.

NOMA based offloading

In NOMA, each edge node pairs with another edge node for transmission. For that, at

time t, all the edge nodes are firstly ranked by their channel quality, i.e. g1(t) ≤ g2(t) ≤

· · · ≤ gN (t). Then, NOMA groups are formed according to the following rules. Node 1

pairs with node K + 1, node 2 pairs with node K + 2, · · · , node K pairs with node N ,

whereK = N/2. The two nodes in the same NOMA group can offload workload to the cloud

server simultaneously on the same radio resource. Successive interference cancellation (SIC)

technique is applied at the cloud server to decode the signals for each node [38]. Specifically,

let gn(t), gk(t), pn(t), and pk(t) respectively represent the channel gains and transmit powers

for both strong node n and weak node k in the same group, where gn(t) ≥ gk(t). The cloud

server first decodes the signal of the strong node n, then subtracts the decoded signal

of node n from the composite received signal and proceeds to decode the signal of the

weak node k. When decoding the signal from node n, the signal from node k stays as

interference. Compared with FDMA, the bandwidth allocated for each NOMA group is

2B. Correspondingly, the offloading rates (roffn (t), roffk (t)) for the strong and weak nodes
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(n, k) can be expressed as

roffn (t) = 2B log2(1 +
pn(t)g

2
n(t)

pk(t)g
2
k(t) + σ2n

), strong node, (3.6)

roffk (t) = 2B log2(1 +
pk(t)g

2
k(t)

σ2k
), weak node, (3.7)

where σ2n and σ2k are the noise powers at the strong and weak nodes, respectively. The

corresponding total energy consumption for nodes (n, k) using NOMA method is given as

eoffn,k (t) = (ζnpn(t) + ζkpk(t) + 2pr) τ, (3.8)

where (ζn, ζk) are the amplifier coefficients. The first two terms represent the transmission

power consumption, while the third is the constant circuit power consumption. Moreover,

pr is assumed to be the same for all the edge nodes.

3.3 Problem Formulation

We aim to jointly design the data offloading and local computing in this work. The

total computational throughput Rtotn (t) and the total energy consumption Etotn (t) for node

n at t are expressed as

Rtotn (t) = rlocaln (t) + roffn (t), (3.9)

Etotn (t) = elocaln (t) + eoffn (t). (3.10)

Our goal is to achieve a high computational throughput as well as a high energy efficiency

by minimizing the power consumption and maximizing the computed bits. These two

performance metrics are normally two conflicting goals to optimize. We exploit the weighted

sum to tackle this multi-objective problem and define the system cost as follows [47]:

F (x(t), s(t)) = ϕfeEtot(x(t), s(t))− ϕfsRtot(x(t), s(t)), (3.11)
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where x(t) =: {fm,n(t), pn(t)}, Etot(x(t), s(t)) =
∑N

n=1E
tot
n (t) is the overall energy cost by

all the edge nodes at Edge layer, while Rtot(x(t), s(t)) =
∑N

n=1R
tot
n (t), is the overall system

computation throughput. Furthermore, (ϕfe, ϕfs) are the energy and rate coefficients. The

problem is formulated as

P3.1 min
pn(t),fm,n(t),sm,n(t)

lim sup
B→∞

1

B

B−1∑
t=0

E {F (x(t), s(t))}

s.t. C3.1 : lim sup
B→∞

1

B

B−1∑
t=0

N∑
n=1

E {Qn(t)} <∞,

C3.2 : fminm,n ≤ fm,n(t) ≤ fmaxm,n , ∀m,n,

C3.3 : 0 ≤ pn(t) ≤ Pmaxn , ∀n,

C3.4 : sm,n(T ) ∈ {0, 1},∀m,n.

(3.12)

The first constraint C3.1 is the queue stability constraint. Constraints C3.2 and C3.3 repre-

sent the ranges of edge node processing frequency and transmission power, while constraint

C3.4 denotes active or de-active state for each PU. Each PU of an edge node can be turned

on or turned off depending on the demands. In the following, we will use the system cost

and system efficiency alternately, since minimizing the system cost defined in P3.1 is the

same as maximizing the system efficiency.

Firstly, the problem P3.1 is an NP-Hard mixed integer nonlinear programming prob-

lem, which normally has a very high computational complexity and is very challenging to

solve in a real-time manner. On the other hand, the PU turn-on/turn-off operation may

not need to be made in real-time for most systems due to on-off overhead concerns and

hardware constraints. To address both real time need to allocate computing and communi-

cation resources as well as non-real-time need to turn on/off processing units, we propose a

two-timescale algorithm to solve this optimization problem. The small timescale problem

is executed every time slot t, while the large timescale problem is executed every epoch

with the duration of T time slots. Correspondingly, the original problem P3.1 can be de-

composed into two sub-problems. The first sub-problem at large timescale decides how

many PUs are needed for each edge node, while the second one at small timescale is the
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computing/communication resource allocation problem. To solve the first sub-problem, we

design the large timescale prediction scheme to estimate the arriving workload, based on

which turn-on/turn-off decisions for the PUs at each edge node are made. As a result, the

number of active PUs changes from one epoch to another. For the second sub-problem, we

aim for minimizing the total cost of both the energy consumption and the delay by using

efficient resource allocation.

3.3.1 Large Timescale Optimization Model

This sub-problem aims for minimizing the energy consumption from large timescale

perspective. The status of PU sm,n(T ), m = 1, 2, · · · ,M , at node n is determined in every

T time slots. The sub-problem can be formulated as

P3.2 min
{sm,n(T )}

∑
T∈T

F1 (x
∗, s(T ))

s.t. sm,n(T ) ∈ {0, 1},∀m,n,

(3.13)

where F1(x
∗, s(T )) = ϕfeEtot(x

∗, s(T )) − ϕfsRtot(x
∗, s(T )). x(t) is firstly set to x(T − 1)∗

in the objective function, which is the optimal resource allocation in the previous epoch.

The decision is made based on both the prediction of the arriving workloads and also the

efficiency of turn-on/off. The main idea for deciding turn-on/off of a PU is presented as

follows.

The decision to turn on the inactive units depends on the workload state. If the arriving

workload to an edge node keeps increasing, this edge node needs to turn on more PUs to

support the arising workload. The turning-on operation is also performed at the beginning

of each epoch. This operation is the coarse control in the long-term timescale model to

protect the negotiated service level agreement (SLA). The finer control is implemented at the

short timescale model to regulate the network parameters for the workload processing. This

cooperative long-term and short-term timescale models would not only reduce the operating

cost but also ensure the system’s stability. Therefore, the proposed two-timescale framework

is more efficient and flexible. The turning-on/off algorithm at each epoch is summarized
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in Algorithm. 3.1. The remaining task is how to estimate the arriving workloads, which is

presented in the sections 3.4.

Table 3.2: Prediction Based Coordination Algorithm

Algorithm 3.1: Prediction Based Coordination Algorithm

1) Input settings:
Workload A(t)

2) Initialization:
Set s(t) = 1;

3) Optimization:
Predict the arriving workload for each edge node at the beginning of each epoch T .

At every epoch T , perform the following jobs according to estimated workload:
if workload increases

Turn on the PUs from de-active set until the available resources can serve the
arriving workload.

else if workload decreases
Turn off the PUs from the active set of the edge nodes until reaching the
balance of demand and resources.

4) Output:
Set the processing unit status s(T ) = s∗(T ).

3.3.2 Small Timescale Optimization Model

In this subsection, we aim for minimizing the system cost at each time slot, given that

the optimal value of the status vector st = s∗(T ) is obtained in the large timescale model.

The small timescale model directly uses s∗(T ) to seek the optimal value for x(t). Thus, we

formulate the second sub-problem as follows:

P3.3 : min
x(t)

t0+T−1∑
t=t0

F2(x(t), s
∗(T ))

s.t. C3.1− C3.3,

(3.14)

where t0 is the starting point of the current epoch and F2(x(t), s
∗(T )) = ϕfeEtot(x(t), s

∗(T ))−

ϕfsRtot(x(t), s
∗(T )). The Lyapunov optimization method and SCALE method are used to
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make the resource allocation decision in every time slot, which will be presented in Section

3.5.

3.4 Large Timescale Workload Prediction

In this section, we firstly present the overview of machine learning, which is applied to

the prediction method. Next, we provide some constraints of this method. We then present

the long short term memory network to overcome these constraints.

3.4.1 Overview of Machine Learning Based Prediction Method

Many stochastic mechanisms have been exploited to effectively predict the workload

flows. These methods can be generally classified into two categories, linear prediction meth-

ods and nonlinear prediction methods. For the linear prediction methods, one of the best

prediction mechanisms in the correlated time series category is the autoregressive–moving-

average (ARMA) model [48, 49], while the most commonly used non-linear mechanism is

neural network. ARMA is a typical parametric regression model, which assumes that the

traffic condition is a stationary process. It implies that the mean, variance and auto-

correlation all stay constant. However, the ARMA method cannot capture the rapid vari-

ational process underlying the traffic data due to it concentrates on the mean value of the

past series data.

The neural network technique is able to model more complicated data by using the

distributed and hierarchical feature representation. Recently, many deep learning models

that can extract multilevel features have been developed. To train the network parame-

ters, they employ the machine learning such as supervised/unsupervised/semi-supervised

learning methods, reinforcement learning schemes and nature-inspired algorithms [50–54].

Workload prediction accuracy can be greatly improved. One of the common methods in

deep neural network forecast is based on recurrent neural network (RNN) [52, 54], which

is used in this paper. In particular, RNN works efficiently with time series and sequence

modeling tasks, because it contains a self-recurrent loop that facilitates transporting infor-

mation from one time slot to another. Note that the traditional neural network cannot
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Fig. 3.2: LSTM network.

achieve the same level performance in the temporal-spatial problems as it does not have the

interconnection between nodes in the same layer. RNN introduces hidden units that allows

the current state to receive feedback from the previous state.

3.4.2 Long Short Term Memory Network

The original RNN only has one state, i.e. h. Therefore it is very sensitive to the short

timescale input and has the gradient vanishing problem for large timescale forecasting. To

tackle this issue, we use the long short term memory (LSTM) model, which is one of the

specially designed RNN models. LSTM [46] does the advanced time series prediction with

long temporal dependency. It can learn information with long time spans and determine

the optimal time lags autonomously. The key component that makes LSTM work for the

long-term dependencies is called memory block. Fig. 3.2 shows a typical LSTM network,

which usually consists of one input layer, one output layer, and one recurrent hidden layer

containing the memory block.

The memory block integrated in the LSTM network is illustrated in Fig. 3.3. Here,

the memory block is the recurrently connected subnet, which contains functional modules

such as memory cells and gates. The memory cells are used for memorizing the temporal

states of the network while the gates are composed of sigmoid layers, which are responsible

for controlling the amount of information flows. According to the corresponding functions,
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gates can be classified into input gates, output gates, and forget gates. The input gate

controls how much new information flows into the memory cell and its weight matrix is

defined as Ui. The forget gate controls how much information remains in the current

memory cell through a recurrent connection and its corresponding weight matrix is Uf . An

output gate controls how much information is used to compute the output activation of the

memory block and how much information furthermore flows into the rest of the network.

Its weight matrix is denoted by Uo.

Detailed relationships of the entities in the LSTM network can be presented as follows.

Recall that the input vector at the input layer at time t is Ao
t , the hidden state vector at

time t is ht, and the memory cell at time t is ct. Let the operations of dot product and

summation of two vectors be denoted by · and +, respectively. Let σ(·) and ψ(·) denote

the sigmoid function and the hyperbolic tangent function, respectively. So we have the

definitions of these functions as

σ(x) =
1

1 + e−x
, (3.15)

ψ(x) = 2σ(2x)− 1. (3.16)
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Based on the above definitions, the output of the forget gate ft can be written as ft =

σ(Ufhht−1 +UfaA
o
t + bf ), where Ufa and Ufh are the weight matrices of Ao

t and ht−1,

respectively. Furthermore, bf is the bias of ft, while σ is a sigmoid function.

Similar to the input gate, the output vector it of the input gate can be given by

it = σ(Uihht−1 +UiaA
o
t + bi), where Uia and Uih are the weight matrix for Ao

t and ht−1,

while bi is the corresponding bias. The input activation vector c′t of the memory cell can

be calculated as c′t = ψ(Uchht−1+UcaA
o
t +bc), where Uca and Uch are the weight matrix

for Ao
t and ht−1, Uc = [Uch,Uca], bc is the corresponding bias. Here, the memory cell state

vector ct can be calculated as ct = ft · ct−1 + it · c′t, which is the combination of the input

activation vector c′t and the long memory ct−1.

Now we consider the last gate, i.e. the output gate. We have the calculation of the

vector ot of the output gate as ot = σ(UoaA
o
t +Uohht−1+bo), where Uoa and Uoh are the

weight matrix for Ao
t and ht−1 respectively, and bo is the corresponding bias. The output

vector ht of the hidden layer can be expressed as ht = ot · ψ(ct). So the output vector At

of the output layer is calculated as

At = g(UNht), (3.17)

where UN is the weight matrix of the output layer, g(·) is active function.

Now, we obtain the predicted workload At for the large timescale operation. In Section

3.6.1, we provide detailed operations of LSTM networks, the configuration for the inputs

and the networks as well as the performance evaluations. In particular, our predicted

mechanism outperforms the benchmark of ARMA. In the next section, based on the large

timescale optimization results, we further determine the small timescale resource allocation

optimization for each edge node.

3.5 Small Timescale Optimization and Configuration Model

In this section, we aim to minimize the system cost at each time slot. Recall that the

large timescale model is proposed to solve problem P3.2, where the optimal value of the
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status vector s(T ) = s∗(T ) is determined. Given the solution of s∗(T ), the small timescale

model seeks the optimal value x(t) for problem P3.3. Note that problem P3.3 is an NP-hard

problem, so we develop the Lyapunov optimization method to solve this problem in the

following.

3.5.1 Overview of Lyapunov Optimization

We firstly provide the brief description of Lyapunov optimization, interested readers

can find detailed information in [55]. The dynamic change of the arrival workload in con-

straint C3.1 of problem P3.3 makes the objective function F2(x(t), s
∗(T )) hard to be solved.

However, Lyapunov optimization method [55] can be used to deal with the dynamic re-

source allocation problem. In particular, the optimal solution would be obtained by solving

a deterministic per-time slot problem with a much lower complexity.

We now formulate the Lyapunov function L(t) as follow:

L(t) =
1

2

N∑
n=1

Q2
n(t). (3.18)

The Lyapunov drift △(t) can be written as

△(t) = L(t+ 1)− L(t) =
1

2

N∑
n=1

[Q2
n(t+ 1)−Q2

n(t)]. (3.19)

Accordingly, the Lyapunov drift-plus-penalty function can be expressed as

△V (t) = △(t) + V F2(t), (3.20)

where V is a control parameter, while F2(t) = F2(x(t), s
∗(T )) is the objective function of

P3.3.

Based on the definition of Qn(t), we have

Q2
n(t+ 1) ≤ [Qn(t) +An(t)−Rtotn (t)τ ]2 ≤ Q2

n(t) +A2
n(t) +Rtotn

2
(t)τ2

+ 2Qn(t)An(t)− 2(Qn(t) +An(t))R
tot
n (t)τ.

(3.21)
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Combining (3.19) and (3.21) and furthermore employing some mathematical manipulations,

we have

△(t) ≤
N∑
n=1

1

2
(A2

n(t) +Rtotn
2
(t)τ2)−An(t)R

tot
n (t)τ +Qn(t)(An(t)−Rtotn (t)τ). (3.22)

Substituting Rtotn (t) from (3.9). Since log2(1 + x) ≤ x
ln 2 and log22(1 + x) ≤ 2x

(ln 2)2
, we have

△(t) ≤
N∑
n=1

1

2
[(Amaxn )2 + (

M∑
m=1

fmaxm,n τ

Cm,n
+
Bγmaxn τ

(ln 2)
)2]−Amaxn (

M∑
m=1

fmaxm,n τ

Cm,n
+
Bγmaxn τ

ln 2
)

+
N∑
n=1

Qn(t)(An(t)−Rtotn (t)τ)

≤D1 +
N∑
n=1

Qn(t)(An(t)−Rtotn (t)τ)),

(3.23)

where Amaxn is the maximum arrival workload at edge node n, while γmaxn is the maximum

SINR for the edge node n. So D1 is defined as

D1 =

N∑
n=1

1

2

(Amaxn )2 +

(
M∑
m=1

fmaxm,n τ

Cm,n
+
Bγmaxn τ

(ln 2)

)2
−Amaxn

(
M∑
m=1

fmaxm,n τ

Cm,n
+
Bγmaxn τ

ln 2

)
.

(3.24)

By adding V F2(t) to both sides of the above inequality (3.23), we obtain

△V (t) ≤ D1 + V F2(t) +
N∑
n=1

Qn(t)(An(t)−Rtotn (t)τ). (3.25)

The proposed resource allocation algorithm for the small timescale model mainly focuses

on minimizing the upper bound of △V (t) on the right side of (3.25) at each time slot t.

3.5.2 Problem Formulation for Computation and Communication

We now formulate the problem for both communication and computation in the small

timescale model. In particular, we aim for performing the following goals: the workload at

buffer queue Qn(t) can be kept at a stable level, while the system cost can also be minimized

for each edge node and the cloud server. Using derivations in section 3.5.1, problem P3.3
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can be transformed to

P3.4 min
x(t)

D1 + V [ϕfeEtot(x(t))− ϕfsRtot(x(t))]

+
N∑
n=1

Qn(t)(An(t)−Rtotn (x(t))τ)

s.t. C3.2, C3.3.

(3.26)

It is worth mentioning that the objective function of P3.4 is from the right-hand side of

(3.25) and all the constraints in P3.3 except the task buffer constraint C3.1 are retained

in P3.4. We can observe that it is still difficult to determine the optimal solution for P3.4,

where we must seek the optimal edge node local computation frequency and the optimal

transmit power for offloading. Therefore, the problem P3.4 can be further divided into two

sub-problems, i.e. problem for local process speed optimization and problem for offloading

power optimization.

Local Process Speed Optimization

In this subsection, we determine the optimal solution for the processing rates of PUs at

each edge node. To obtain the optimal local process frequency, we would solve the following

sub-problem

P3.41 : min
fm,n(t)

t0+T−1∑
t=t0

F3(t)

s.t. fminm,n ≤ fm,n(t) ≤ fmaxm,n ,

(3.27)

where F3(t) = V
∑N

n=1[ϕfee
local
n (t)τ −ϕfsrlocaln (t)τ ]+

∑N
n=1Qn(t)(An(t)− rlocaln (t)τ). Prob-

lem P3.41 is a convex problem as the objective function is convex and the constraints are

linear. The optimal solution is given as

f∗m,n(t) = min(fmaxm,n ,max(fm,n(t), f
min
m,n )), (3.28)

where fm,n(t) =
√

V ϕfs+Qn(t)
3ϕfeV ϵm,nCm,n

.

We have the following observations of the relation between f∗m,n(t) and the network
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parameters. In (3.28), it is readily observed that f∗m,n(t) is a strictly increasing function

with respect to Qn(t). It means that when Qn(t) increases, the computational frequency

f∗m,n(t) increases to keep the local computing buffer queue at the certain acceptable level.

On the other hand, f∗m,n(t) decreases with the increases of Cm,n, ϵm,n and ϕfe. In particular,

when Cm,n and ϵ increase, the system needs a higher computational frequency and/or more

energy consumption to process one bit of data. Thus, the processing unit m at edge node

n must reduce its computational frequency to consume less power. With the increase of

ϕfe, we have a higher priority on the energy consumption and therefore, the computational

frequency f∗m,n(t) must be decreased. Of course, we also observe that f∗m,n(t) is a strictly

increasing function of ϕfs

Let us consider the homogeneous scenario, where we have the same computational

energy efficiency coefficient ϵm,n and the same number of computation cycles Cm,n needed

to process one bit of data for each processing unit m at node n. In this scenario, we have

the same computational rate for all the units at each node. So the workload is equally

assigned to each unit at node n.

FDMA Based Offloading Power Optimization

The task offloading can employ two methods, i.e. FDMA and NOMA. The optimization

sub-problem of the FDMA based offloading is formulated in this subsection, while NOMA

based offloading is presented in the next section. So the optimization sub-problem under

the FDMA setting is given as

P3.42 : min
pn(t)

t0+T−1∑
t=t0

F4(t)

s.t. 0 ≤ pn(t) ≤ pmaxn ,

(3.29)

where F4(t) is defined as

F4(t) = V
N∑
n=1

[
ϕfee

off
n (t)τ − ϕfsr

off
n (t)τ

]
+

N∑
n=1

Qn(t)
[
An(t)− roffn (t)τ

]
. (3.30)
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Recall that eoffn (t) and roffn (t) are calculated at (3.4) and (3.5). By substituting eoffn (t)

and roffn (t) into the above equation, F4(t) can be rewritten as

F4(t)=V τ
N∑
n=1

ϕfe(ζpn(t)+pr)−ϕfsB log2(1+
pn(t)g

2
n(t)

σ2n
)

+
N∑
n=1

Qn(t)

[
An(t)−Bτ log2(1+

pn(t)g
2
n(t)

σ2n
)

]
.

(3.31)

The problem P3.42 is a convex function as its objective function is a linear function of convex

terms and the constraint is also linear. We can derive its optimal solution as

p∗n(t) = min(pmaxn ,max(pn(t), 0)), (3.32)

where pn(t) =
(V ϕs+Qn(t))B

ln 2V ϕfeζ
− σ2

n
g2n(t)

.

We have the following observations on the optimal transmit power p∗n(t). The optimal

transmit power p∗n(t) is non-decreasing with respect to queue size Qn(t). This indicates

that when the queue size of node n increases, the offloading power increases in order to

achieve a higher offloading rate. As a result, the workload accumulated in the queue is

reduced. The transmit power p∗n(t) also increases with the increase of bandwidth B. Thus,

the offloading rate is increased and we can offload more workloads. The transmit power is

a decreasing function of the energy weight ϕfe. In particular, when ϕfe is higher, we set

the higher priority for optimizing the energy consumption, i.e. energy consumption would

be reduced.

Offloading Power Optimization for NOMA Method

With NOMA based offloading, the problem P3.42 is reformulated to P3.43. The detailed

procedure is presented as follows. Under the NOMA setting, the optimization problem P3.43

can be further divided to K optimization problems with each one denoted as P3.43k for each
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NOMA group k. So problem P3.43k is expressed as

P3.43k : min
pk,i(t)

t0+T−1∑
t=t0

F k5 (t)

s.t. 0 ≤ pk,i(t) ≤ pmaxk , i = 1, 2,

(3.33)

where F k5 (t) is the objective function, which is given as

F k5 (t) = V ϕfe(ζpk,1(t) + ζpk,2(t) + 2pr)τ − V ϕfs2Bτ [log2(1 +
pk,1(t)g

2
k,1(t)

pk,2(t)g
2
k,2(t) + σ2k,1

)

+ log2(1 +
pk,2(t)g

2
k,2(t)

σ2k,2
)] +Qk,1(t)[Ak,1(t)− 2Bτ log2(1 +

pk,1(t)g
2
k,1(t)

pk,2(t)g
2
k,2(t) + σ2k,1

)]

+Qk,2(t)[Ak,2(t)− 2Bτ log2(1+
pk,2(t)g

2
k,2(t)

σ2k,2
)].

(3.34)

Here, we have two kinds of nodes in a NOMA group, i.e. the strong node and the weak

node, which are denoted by the subscripts k,1 and k,2, respectively. Recall that we use the

calculations of the offloading rates and the energy consumption for both strong and weak

nodes from (3.6), (3.7) and (3.8).

It is observed that the objective function F k5 (t) is not a convex function, therefore the

optimization problem is a non-convex problem. We exploit the convex relaxation method

called SCALE (Successive Convex Approximation for Low Complexity) [43]. In the SCALE

method, we use the following observation

α log2(z) + β ≤ log2(1 + z). (3.35)

This is tight at z = z ≥ 0, when the approximation coefficients are given as

α =
z

1 + z
,

β = log2(1 + z)− z

1 + z
log2(z).

(3.36)

We now apply the SCALE method, where we use a logarithmic change of variables ρk,i(t) =
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ln(pk,i(t)). Furthermore, the terms (αk,1, βk,1) and (αk,2, βk,2) calculated by (3.36) are used

for both the strong and weak nodes. After using some simple manipulations, we have the

approximation of the F k5 (t) as

F̃ k5 (t) = V ϕfe[ζ(exp(ρk,1(t)) + exp(ρk,2(t))) + 2pr]τ +Qk,1(t)Ak,1(t) +Qk,2(t)Ak,2(t)

+ 2Bτ(V ϕfs +Qk,1(t)){αk,1 log2[exp(−ρk,1(t))
σ2k,1
g2k,1(t)

+
g2k,2(t)

g2k,1(t)
(exp(ρk,2(t)− ρk,1(t))]

− βk,1}+ 2Bτ(V ϕfs +Qk,2(t)){αk,2 log2[exp(−ρk,2(t))
σ2k,2
g2k,2(t)

]− βk,2}.

(3.37)

So the problem P3.43k can be transformed into

P3.44k : min
ρk,i(t)

F̃ k5 (t)

s.t. ρk,i(t) ≤ ln(pmaxk ).

(3.38)

Lemma 1. The problem P3.44k is a convex problem with the given αk,i, βk,i.

Proof. The first part of the objective function F̃ k5 (t) is evidently convex. The last two

terms of the objective function are also convex as they are the log-sum-exp functions. The

remaining parts are constant. Therefore, the objective function F̃ k5 (t) is the summation of

all convex terms, which is also convex. Furthermore, the constraint is convex. As a result,

the problem considered is convex.

In the following, we utilize the Lagrangian duality technique to solve the problem

P3.44k. We define the Lagrangian function L(ρ) as L(ρ) = F̃ k5 (t). We firstly solve the

stationary condition, i.e. ∂L(ρ)/∂ρk,1 = 0, where ∂L(ρ)/∂ρk,1 is calculated as

∂L(ρ)

∂(ρk,1)
= V ϕfeτζ exp(ρk,1)−

2B

ln 2
αk,1τ(V ϕfs +Qk,1(t)). (3.39)

Then, we transform the result back to the original solution space after solving the fixed-

point equation. So the optimal solution for the strong node in group k at time slot t is
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given as

p∗k,1(t) = min(pmaxn ,max(pk,1(t), 0)), (3.40)

where pk,1(t) =
2Bαk,1(V ϕfs+Qk,1(t))

ln 2V ϕfeζ
.

We have the following observations for the optimal solution as follows. The optimal

transmit power p∗k,1(t) for strong node increases with the increase of the rate coefficient

ϕfs and the buffer queue Qk,1(t). This confirms that 1) when the weight of data process

rate becomes higher, the edge node increases its offloading power to achieve a higher rate;

2) when the buffer queue Qk,1(t) becomes larger, the edge node also needs to improve its

offloading rate to reduce the buffer queue by increasing the transmit power. The optimal

transmit power p∗k,1(t) decreases with the increase of the weight of transmission power

consumption. When ζ becomes larger, i.e. the system consumes more energy for offloading

tasks, it needs to reduce the transmit power and allocate more tasks to the local processing

than to offloading.

Similarly, we can determine the optimal solution for the weak node in the same man-

ner. We firstly set ∂L(ρ)/∂ρk,2 = 0 and then use some manipulations to obtain the optimal

transmit power. The calculations and derivations of the optimal solution are omitted be-

cause they can be done in the simple steps. Finally, the optimal transmit power for the

weak node in group k at time slot t can be given as

p∗k,2(t) = min(pmaxn ,max(pk,2(t), 0)), (3.41)

where pk,2(t) =
−1
2 (d3−

√
d23 + 4d4), d3 =

σ2
k,1

g2k,2(t)
+ d1−d2
V ϕfeζ

, d4 =
d2σ2

k,1

V ϕfeζg
2
k,2(t)

, d1 =
2B
ln 2αk,1(V ϕfs+

Qk,1(t)) and d2 =
2B
ln 2αk,2(V ϕfs+Qk,2(t)). We summarize the procedures of solving problem

P3.44k in Algorithm. 3.2.

Algorithm complexity analysis

For Algorithm. 3.1, the complexity comes from two parts. The first part comes from
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estimating the workload at each E-node, while the second part comes from the turn on/off

operation performed at each PU. Let N andM denote the number of users and the number

of PUs of each user, respectively. Then, based on workload estimation and turn on/off

operation, the complexity of Algorithm. 3.1 is O(MN).

For Algorithm. 3.2, the complexity also comes from two parts. The first part comes

from updating the parameters α and β, while the second part comes from calculating the

offloading power for each edge node. Let L be the number of iterations required to update

the approximation parameters α and β and let N be the number of edge nodes. Then, the

complexity of Algorithm. 3.2 is O(LN).

Table 3.3: The SCALE Iterative Algorithm for P3.44k

Algorithm 3.2: The SCALE Iterative Algorithm for P3.44k

1) Input settings:
The error tolerance ξ > 0, pmaxn > 0 and ϕfe,ϕfs, α

1
k,1 = 1,α1

k,2 = 1, β1k,1 = 0, β1k,2 = 0

and the maximum iteration number I.
2) Initialization:

i = 0, pik,1(t) and p
i
k,2(t).

3) Optimization:
i = 1 : I obtain the solution pik,1(t) by (3.40) and solve pik,2(t) by (3.41)

if pik,1(t)− pi−1
k,1 (t) ≤ ξ &&pik,2(t)− pi−1

k,2 (t) ≤ ξ

the optimal p∗k,1(t) and p
∗
k,2(t) are obtained.

else

update αi+1
k,1 , α

i+1
k,2 , β

i+1
k,1 and βi=1

k,2 by (3.36) and i = i+ 1.

4) Output:
{p∗k,1(t), p∗k,2(t)}.

3.6 Numerical Results

3.6.1 Long-Short Term Memory Workload Prediction

The LSTM model performance on traffic prediction is first evaluated using the real

traffic dataset [56], which records a total of 91065 user activities and their behaviors between



53

Jan. 2006 and Jan. 2009. These data are widely used in different cloud communication

studies and used as the arrival workload in this study [57]- [58]. The original data contains

many features such as user ID, user class, sequence number, etc. Here, the number of active

users is used as the number of arrived workloads. Therefore, the raw data is transformed

to the number of users arriving in every time slot. We assume that each user represents a

workload with 1000-bit data that needs to be processed [44] [47].

For the efficient learning of LSTM, the original data first is normalized based on min-

max normalization as follows:

A
o
t =

Aot −Aomin
Aomax −Aomin

, (3.42)

where Aomin and Aomax are the minimum and maximum values of the original data [59]. The

LSTM network adopted has one input layer with one input, one hidden layer with 4 LSTM

blocks, and one output layer that makes a single-value prediction. We use the LSTMmethod

to predict the data arriving at the edge nodes. Each dataset is divided into two parts, where

67% of the dataset are used for training the LSTM model, and the remaining 37% data are

used for testing. We also compare the proposed method with ARMA(2, 1) model [60]. The

mean absolute performance error (MAPE) is used in this paper for evaluating the prediction

errors [61]. The MAPE is the ratio of the error and the true value, which is defined as

MAPE =
1

T

T∑
t=1

|At −A
o
t |

A
o
t

. (3.43)

Figs. 3.4 and 3.5 illustrate the training outcomes with different methods. For a better

observation, we shift the results of the ARMA model [48, 49] and the LSTM model with 1

time slot from the original data. From Fig. 3.4, both ARMA model and LSTM model can

well capture the overall trend of the original data. However, Fig. 3.5 with finer granularity

indicates that ARMA method does not follow the rapid change of the workload flow as well

as LSTM. Thus, the ARMA method has larger prediction errors when comparing to the

LSTM mechanism. Figs. 3.6 and 3.7 show the testing results for the different predic-

tion method, where the LSTM method outperforms the ARMA(2,1) method. The MAPE
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Fig. 3.4: Comparison between LSTM model and ARMA model in training.

600 650 700 750 800

Time

0.5

1

1.5

2

2.5

3

3.5

4

W
o

rk
lo

ad

10
6

Original data

LSTM training

ARMA(2,1)

Fig. 3.5: Detailed training part of LSTM model and ARMA model.
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Fig. 3.6: Comparison between LSTM model and ARMA model in testing.
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Fig. 3.7: Detailed testing part of LSTM model and ARMA model.
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Fig. 3.8: Comparison of the performance of the mean absolute performance error for training
part.
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performances for both training part and testing part of the two methods are presented in

Figs. 3.8 and 3.9, respectively. We can see that LSTM can achieve a lower error result.

Therefore, the LSTM method is used for the prediction of workload flows in the following

experiments.

3.6.2 System Cost Optimization

Based on the prediction results, this section gives the performance of the proposed

methods. The simulation settings are based on the work in [29], [62]. All the parameters are

chosen as follows unless stated otherwise. There are N = 2 edge nodes and one centralized

server, where each edge node has M = 10 processing units. Since the mobility is not

considered in this paper, the location for each edge node is fixed during the entire simulation.

The offloading transmission power for the communication link between each edge node and

the sever is in the range of
[
pminn , pmaxn

]
, where pminn = 0 W and pmaxn = 2.5 W. The

channel bandwidth for FDMA is B = 2MHz, the local processing capacity for one bit is

Cm,n = 1× 103 cycles/bit. The computational energy efficiency coefficient is ϵ = 1× 10−27,

the power weight ζ = 2. The channel between the edge node and the server is modeled

as the joint effect of large-scale and small-scale fading, where the channel parameters are

given as g2k/σ
2 = Gkhk, G1 = 7 and G2 = 3. Note that hk is the unitary Gaussian random

variable [29]. The computational capacity of each edge node is set equally in the range of[
fminm,n , f

max
m,n

]
, where fmaxm,n = 109 Hz and fminm,n = 103 Hz. The circuit power is pr = 1 dBm.

To balance the value of throughput and energy, the weights are selected as ϕfe = 106 and

ϕfs = 0.1. The results are obtained in different random channel realizations.

The study considers four cases: (1) the proposed PU on/off scheme with FDMA of-

floading. In this scheme, the data offloading from the edge node to the cloud server adopts

the FDMA method based on problem P4.2, thus, it marked as “On/Off + FDMA offload-

ing”. (2) The proposed method PU on/off with NOMA offloading “On/Off + NOMA

offloading”, where the offloading scheme between the edge node and the cloud server is

the NOMA method based on the problem P4.3. (3) The benchmark scheme without PU

on/off based on FDMA offloading. All the PUs keep in “on” status. The scheme is marked
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Fig. 3.10: Normalized system cost and average queue length per edge node vs the control
parameter V .

as “FDMA offloading” in the figure. (4) The benchmark scheme without the cloud server

assistance. So the system can only process the data locally at edge nodes but allows PUs to

turn on/off. The method is marked as “On/Off + local computing only”. We set the epoch

duration at T = 50τ . All the simulation results are averaged based on 100 independent

runs. We note that only the last scheme is the local processing, while the first three schemes

have both local processing and cloud processing. To avoid any confusion, we firstly confirm

that the term “offloading” does not mean that all the tasks must be offloaded to the cloud.

It only means that we use offloading mechanisms, like NOMA or FDMA, to offload partial,

or complete, or no tasks to the cloud, while the remaining tasks can be still processed at

the local PUs. So we always keep the PUs in “on” status in the third case of “without PU

on/off” due to the following reason. In this case, we do not use the large timescale model

to predict the workload flow as well as use the turning-on/off algorithm. So we keep the

PUs “on” to serve the high demand of workload as we consider the dynamic change of the

workload flow.
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The relationship between the system cost/average queue length of the task buffers

and the control parameter V is presented in Fig. 3.10 for the proposed “On/Off + NOMA

offloading” scheme. For a better illustration, the values of both system cost and queue

length are normalized. The system cost firstly maintains at a high level when V ≤ 104,

it then decreases with the increase of V . When V ≥ 108, the system cost keeps at a low

level. On the other hand, the lengths of buffer queues for both the strong edge node and

weak edge node are small when the system cost is high. It then increases when the system

cost drops down. The reason is that the parameter V controls the tradeoff between the

original cost function F (t) and the buffer queue stability in the Lyapunov drift-plus-penalty

function in (3.20). Therefore, by increasing the value of V , the system gives more priority

to reduce the system cost and less priority to serve the buffered data. The optimal solution

of V to achieve a good tradeoff between the system cost and buffer queue stability is around

V = 107 based on the simulation setting. Thus, we choose the control parameter as V = 107

in the following simulation results.
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We proceed to show the performance of different schemes by using the predicted work-

loads and parameters setting found above. Fig. 3.11 shows the system cost for four different

schemes defined above. By properly turning on/off processing units, the proposed scheme

achieves a much lower total system cost than all other schemes by integrating NOMA, com-

putation offloading and PU On/Off altogether. The only scheme “FDMA offloading” that

does not use PU On/Off has a significantly higher system cost than others. Furthermore,

computation offloading considerably reduces the system cost. We also observe that all the

schemes converge after 500 time slots. This observation confirms the stability and con-

vergence of the proposed methods. Although the workload flows dynamically change over

time, all the edge nodes effectively allocate the transmit power for communication and also

adjust the processing unit frequency for computation. Therefore, the model can adaptively

achieve the optimal and stable system efficiency even with the dynamic traffic behaviors.

We further compare the performance for the two best schemes, namely “On/Off +

NOMA offloading” and “On/Off + FDMA offloading” in Fig. 3.12. Fig. 3.12(a) shows that

the NOMA offloading based scheme achieves a higher computation throughput than the

FDMA offloading based scheme. Further in Fig. 3.12(b), the NOMA offloading based scheme

consumes less power than the FDMA offloading based scheme. Combining the two figures,

it demonstrates that NOMA based scheme attains a much higher efficiency in energy usage

by consuming less energy but gaining a higher computation rate. A higher computation

throughput leads to less queued data in the buffer, which is verified in Fig. 3.12(c).

Another thing worth noticing is that the curves of the total computation throughput,

the power consumption and the buffer queue length for the FDMA method in Fig. 3.12 first

go up and then decline in the main observation. However, we would see the fluctuations

at the very beginning. This transient behavior is explained as follows. The initial value is

high based on the initial parameter setting so that the system can achieve high throughput

and low power consumption. There are not too many workloads needed to be processed

at the beginning of large timescale. Thus, the system only adjusts parameters for the

throughput and power, which can help to keep the higher efficiency. We now explain the
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system behavior in the main observation. At the beginning of each epoch, the workload is

firstly buffered in the queue due to insufficient computation throughput of each node. Due

to the increase of the queue length, the system adjusts both the offloading rate and local

process speed so that the queued data can be served. At the end of the epoch, with the

small queue length, the system can keep the computation throughput stabilized at a lower

optimal level and maintains the minimum system cost. On the other hand, we observe that

the curves of the NOMA based scheme keep decreasing. At the beginning of the epoch, the

computation throughput is high enough to sufficiently serve the arrival and queued data

so that queue size does not build up. Ultimately the NOMA and FDMA based schemes

converge to the similar queue level and similar power consumption level.

The performance of the strong node and weak node for the NOMA based scheme is

provided in Fig. 3.13. The weak edge node in the NOMA method has a lower throughput

and also a lower energy consumption than the strong node. The proposed method aims to

minimize the overall system cost. The transmit power for the nodes with different channel

quality is adjusted by slightly increasing the power of the strong node and decreasing the

weak one. We also have the transient duration at the beginning, which is similar to the

observation in Fig. 3.12. Thus, the system can achieve an overall low system cost but still

guarantee the weak node’s performance. Therefore, the proposed method can dynamically

adjust the resource allocated to each node to achieve the optimal overall system efficiency

and meet the performance requirements of each node.

3.7 Chapter Conclusions

This chapter considers a hierarchical architecture that consists of IoT sensor layer,

edge computing layer, and cloud server layer. A twin-timescale optimization model was

developed to manage the workload offloading in the system to optimize the trade off between

the power consumption and overall computation throughput. In the large timescale model,

based on predicted workload, the scheme decides how to turn on or turn off processing unit

in order to save energy. In the small timescale model, a Lyapunov optimization method was

designed to allocate the offloading power and to determine the local process speed for each
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processing unit. Simulation results reveal that the proposed method can greatly improve

system performance by saving energy costs and achieving a high processing rate.
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CHAPTER 4

Secure and Energy-Efficient Offloading and Resource Allocation in a NOMA-Based MEC

Network

4.1 Introduction

In the previous chapters, we investigated EE improvement by NOMA and prediction-

based server coordination methods from different time scales. Besides EE, secure com-

munications are also critical in the 5G wireless networks as communication environments

become increasingly complicated, and both the security and privacy of user information

are put at risks [63]. To this end, PLS has received significant attention in recent years.

This is because it can achieve secure communications without extra overhead caused by

protecting the security key [50]. However, the secrecy rate achieved by the mutual informa-

tion difference between the legitimate user and the eavesdropper is limited as it depends on

the difference between the channel condition from the base station to the legitimate user

and that from the base station to the eavesdroppers [64]. NOMA has been viewed as one

potential mechanism for improving the achievable secure rate at the receiver side to make

up for this oversight. For this reason, PLS in NOMA-assisted MEC networks has been the

subject of considerable research [11]. In this chapter, we will begin to take a look at the

security issues in MEC-enabled IoT networks with NOMA.

The joint consideration of PLS in the NOMA assisted MEC network was studied in [8]-

[10]. Most of the existing works on NOMA-assisted MEC with external eavesdroppers typi-

cally focus on the performance evaluation in the scenarios where either channel conditions or

required tasks remain constant. Such an assumption makes the analysis on the computation

offloading and resource allocation more tractable. However, in a dynamic environment, the

dynamic behaviors of the workload arrivals and fading channels impact the overall system

performance. Thus the system design that focuses on the short term performance may not
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work well from the long term perspective. Towards that, a stochastic task offloading model

and resource allocation strategy should be adopted [65]. In this work, we integrate PLS

and study the long-term EE performance in a NOMA-enabled MEC network. By incor-

porating the statistical behaviors of the channel states and task arrivals, we formulate a

stochastic optimization problem to maximize the long-term average EE subject to multiple

constraints including task queue stability, maximum available power, and peak CPU-cycle

frequency. An energy-efficient offloading and resource allocation method based on Lyapunov

optimization is proposed.

4.2 System Model

UE 2

UE N UE 1

MEC server

UE-MEC link

UE-Eve link

Eavesdropper

Fig. 4.1: System Model.

In Fig. 4.1, an uplink NOMA communication system is considered, which consists of

N user equipments (UEs), one access point (AP) with the MEC server, and one external

eavesdropper (Eve) near the AP. All the UEs can offload their computation tasks to the

MEC while the external eavesdropper intends to intercept the confidential information. The

arrival task of user n at time slot t is denoted as An(t). Note that the prior statistical infor-

mation of An(t) is not required and it could be difficult to obtain in the practical systems.
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We focus on a data-partition-oriented computation task model. A partial offloading scheme

is used, i.e., part of the task is processed locally and the remaining part of the data can

be offloaded to the remote server for processing. For each UE, local computing and task

offloading can be executed simultaneously.

Assuming that each UE has buffering ability, where the arrived but not yet processed

data can be queued for the next time slot. Let Qn(t) be the queue backlog of UE n, and

its evolution equation can be expressed as

Qn(t+ 1) = max{Qn(t)−Rtotn (t)τ , 0}+An(t), (4.1)

where Rtotn (t) = Roffn (t)+Rlocn (t) is the total computing rate of UE n at time slot t, Roffn (t)

and Rlocn (t) are secure offloading rate and local task processing rate, respectively. τ is time

duration of each slot.

4.2.1 Local Computing Model

Let fn(t) denote the local CPU-cycle frequency of UE n, which cannot exceed its

maximum value fmax. Let Cn be the computation intensity (in CPU cycles per bit). Thus,

the local task processing rate can be expressed as Rlocn (t) = fn(t)/Cn. We use the widely

adopted model P locn (t) = κnf
3
n(t) to calculate the local computing power consumption of

UE n, where κn is the energy coefficient and its value depends on the chip architecture [66].

4.2.2 Task Offloading Model

The independent and identically distributed (i.i.d) frequency-flat block fading channel

model is adopted, i.e., the channel remains static within each time slot but varies across

different time slots. The small-scale fading coefficients from UE n to the MEC server and to

the Eve are denoted asHb,n(t) andHe,n(t), respectively. Both are assumed to be exponential

distributed with unit mean [44]. Thus, the channel power gain from UE n to the MEC is

given as hi,n(t) = Hi,n(t)g0(d0/di,n)
θ, i ∈ {b, e}, where g0 is the path-loss constant, θ is

the path-loss exponent, d0 is the reference distance, and di,n is the distance from UE n to
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receiver. Furthermore, to improve the spectrum efficiency, NOMA is applied on the uplink

access for offloading. We assume that hb,1 ≤ hb,2 ≤ · · · ≤ hb,N and he,1 ≤ he,2 ≤ · · · ≤ he,N .

Using SIC at the receiver side, the achievable secure offloading rate at UE n can be given

by

Roffn (t) = [B log2(1 + γb,n)−B log2(1 + γe,n)]
+, (4.2)

where B is the bandwidth allocated to each UE, γb,n =
pn(t)hb,n(t)∑n−1

i=1 pi(t)hb,i(t)+σ
2
b,n

and γe,n =

pn(t)he,n(t)∑n−1
i=1 pihe,i(t)+σ2

e,n
are the SINRs received by the MEC server and the Eve respectively. pn(t)

is the transmit power of UE n, σ2b,n and σ2e,n are the background noise variances at the MEC

and the Eve respectively. [x]+= max(x, 0). The power consumption for offloading can be

expressed as

P offn (t) = ζpn(t) + pr, (4.3)

where ζ is the amplifier coefficient and pr is the constant circuit power consumption.

4.3 Dynamic Task Offloading and Resource Allocation

4.3.1 Problem Formulation

EE is defined as the ratio of the number of long term total computed bits achieved by

all the UEs to the total energy consumption (in unit bits/Joule) [67],

η(t) =
limT→∞

1
T E
[∑T

t=1Rtot(t)τ
]

limT→∞
1
T E
[∑T

t=1 Ptot(t)τ
] =

Rtotτ

P totτ
, (4.4)

where Rtot(t) =
∑N

n=1R
tot
n (t) and Ptot(t) =

∑N
n=1 P

off
n (t) +P locn (t) are the total achievable

rate and consumed power by all the users at t.

This work aims to maximize the long-term average EE for all the UEs under the

constraints of resource limitations while guaranteeing the average queuing length stability.



68

Therefore, the problem is formulated as

P4.0 max
fn(t),pn(t)

η

s.t. P totn (t) ≤ Pmax, (4.5a)

lim
T→∞

1

T
E[| Qn(t)|] = 0, (4.5b)

fn(t) ≤ fmax, (4.5c)

0 ≤ pn(t), (4.5d)

where Qn(t) is the average queue length of UE n. The constraint (4.5a) indicates that the

total power consumed by UE at time slot t should not exceed the maximum allowable power

Pmax. (4.5b) requires the task buffers to be mean rate stable, which also ensures that all

the arrived computation tasks can be processed within a finite delay. (4.5c) is the range of

local computing frequency, and (4.5d) denotes the transmit power of each UE should not

be negative.

4.3.2 Problem Transformation Using Lyapunov Optimization

The problem P4.0 is a non-convex problem, which is difficult to be solved due the

fractional structure of the objective function and the long term queue constraint (4.5b). By

introducing a new parameter η∗(t) =
∑t−1

i=0 Rtot(i)τ∑t−1
i=0 Ptot(i)τ

[67], the problem can be transformed to

P4.1, which can be solved in an alternating way.

P4.1 : maxfn(t),pn(t)Rtot(t)τ − η∗(t)P tot(t)τ

s.t. (4.5a)− (4.5d).

Note that η∗(t) is a parameter that depends on the resource allocation strategy before t-th

time block [67]. In the following, the Lyapunov optimization is introduced to tackle the

task queue stability constraint.

To stabilize the task queues, the quadratic Lyapunov function is first defined as L(Q(t))



69

Algorithm 4 Dynamic Resource Allocation Algorithm

1: At the beginning of the tth time slot, obtain {Qn(t)}, {An(t)}.
2: Determine f(t) and p(t) by solving

P4.2 max
fn(t),pn(t)

N∑
n=1

{Qn(t)(R
tot
n (t)τ −An(t))}+ V

N∑
n=1

[Rtot
n (t)τ − η∗(t)P tot

n (t)τ ]

s.t. (4.5a), (4.5c), (4.5d)

3: Update {Qn(t)} and set t = t+ 1. Go back to step 1.

∆
= 1

2

∑N
n=1Q

2
n(t) [55]. Next, the one-step conditional Lyapunov drift function is introduced

to push the quadratic Lyapunov function towards a bounded level.

∆(Q(t))
∆
=E[L(Q(t+ 1))− L(Q(t))|Q(t)]. (4.7)

By incorporating queue stability, the Lyapunov drift-plus-penalty function is defined as

∆V (Q(t)) = −∆(Q(t)) + V [Rtot(t)τ − η∗(t)Ptot(t)τ ], (4.8)

where V is a control parameter to control the tradeoff between the queue length and system

EE. The minus sign is used to maximize EE and to minimize the queue length bound. For

an arbitrary feasible resource allocation decision that is applicable in all the time slots, the

drift-plus-penalty function ∆V (Q(t)) satisfies

∆V (Q(t)) ≥ −C +

N∑
n=1

E{Qn(t)(Rtotn (t)τ −An(t))}+ V

N∑
n=1

[Rtotn (t)τ − η∗(t)P totn (t)τ ],

(4.9)

where C = 1
2

U∑
u=1

(Rmax
n

2τ2 +Amax
n

2), Rmax
n and Amax

n are the maximum achievable comput-

ing rate and the maximum arrival workload, respectively.

Thus, P4.1 is converted to a series of per-time-slot deterministic optimization problem

P4.2, which needs to be solved at each time slot and is given as in Algorithm 4.

In P4.2, f(t) and p(t) can be decoupled with each other in both the objective function

and the constraints. Thus, the problem P4.2 can be decomposed into two sub-problems,
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namely the optimal CPU-cycle frequency scheduling sub-problem and the optimal transmit

power allocation sub-problem, which can be solved alternately in the following.

Optimal CPU-Cycle Frequencies Scheduling: The optimal CPU-cycle frequen-

cies f(t) can be obtained by

P4.21 max
0≤fn(t)≤fmax

N∑
n=1

(Qn(t) + V )(Roffn (t) + fn(t)/Cn)− V η∗(t)(κnf
3
n(t) + pr + ζpn(t))

s.t. κnf
3
n(t) ≤ Pmax − P offn . (4.10)

Since the objective function of P4.21 and the constraints are convex with respect to fn(t),

the optimal fn(t) can be given as

f∗n =

[√
(V +Qn(t))

3V ηκnCn

]fmax

0

, (4.11)

where fmax = min{fmax,
3
√
(Pmax

n − ζpn − pr)/κn} is the upper bound of the frequency.

Optimal Transmit Power Allocation: For the transmission power allocation opti-

mization, the problem P4.22 is transformed into

P4.22 max
pn(t)

N∑
n=1

B ln 2(Qn(t) + V )[ln(

n∑
i=1

pi(t)h
2
b,i + σ2b,n)− ln(

n−1∑
i=1

pi(t)h
2
b,i + σ2b,n)

− ln(
n∑
i=1

pih
2
e,i + σ2e,n) + ln(

n−1∑
i=1

pih
2
e,i + σ2e,n) +

fn
B ln 2Cn

]− V η∗(t)(ζpn + pr + κnf
3
n)

s.t. 0 ≤ pn(t) ≤ (Pmax − pr − κnf
3
n)/ζ. (4.12)

The minus logarithmic terms make the objective function not convex, which is addressed

by Lemma 1 introduced in the following.

Lemma 1: By introducing the function ϕ(y) = −yx+ ln y + 1, ∀x > 0, one has

− lnx = max
y>0

ϕ(y). (4.13)

The optimal solution can be achieved at y = 1/x. The upper bound can be given by using
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Lemma 1 as ϕ(y) [68]. By setting xb,n =
n−1∑
i=1

pi(t)h
2
b,i + σ2b,n and xe,n =

n∑
i=1

pi(t)h
2
e,i + σ2e,n,

one has

P4.23 max
pn(t),yb,n,ye,n

N∑
n=1

B ln 2(Qn(t) + V )[ln(
n∑
i=1

pi(t)h
2
b,i

+ σ2b,n) + ϕb,n(yb,n) + ϕe,n(ye,n) + ln(
n−1∑
i=1

pi(t)h
2
e,i + σ2e,n)

+
fn

B ln 2Cn
]− V η∗(t)(ζpn(t) + pr + κnf

3
n)−Qn(t)An(t)

s.t. 0 ≤ pn(t) ≤ (Pmax − pr − κnf
3
n)/ζ, (4.14)

where

ϕb,n(yb,n) = −yb,n(
n−1∑
i=1

pi(t)h
2
b,i + σ2b,n) + ln yb,n + 1, (4.15)

and

ϕe,n(ye,n) = −ye,n(
n∑
i=1

pi(t)h
2
e,i + σ2e,n) + ln ye,n + 1. (4.16)

The problem P4.23 is a convex problem with respect to both pn(t) and yb,n, ye,n. It can

be solved by using a standard convex optimization tool. After we obtain p∗n(t), the values

of y∗b,n and y∗e,n can be respectively given by y∗b,n = (
n−1∑
i=1

p∗i (t)h
2
b,i + σ2b,n)

−1 and y∗e,n =

(
n∑
i=1

p∗i (t)h
2
e,i + σ2e,n)

−1. By alternately updating pn(t) and yb,n, ye,n, the optimal solutions

of P4.23 can be achieved at convergence.

Remark 4.1: To obtain fundamental and insightful understanding of the offloading

power allocation for a multi-user NOMA assisted secure MEC system, we consider a special
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case with two UEs [69]. The problem with respect to pn is given as

P4.24 max
p1(t),p2(t)

B ln 2(V +Q2(t))[ln(p2(t)h
2
b,2 + p1(t)h

2
b,1 + σ2b,2)

− ln(p1(t)h
2
b,1 + σ2b,2)− yb2(p1(t)h

2
b,1 + σ2b,2)

+ ln yb2 + 1 + ln(p1(t)h
2
e,1 + σ2e,2) +

f2
C2B ln 2

]

+B ln 2(V +Q1(t))[ln(σ
2
b,1 + p1(t)h

2
b,1)− lnσ2b,1

− ye1(σ
2
e,1 + p1(t)h

2
e,1) + ln ye1 + 1 + lnσ2e,1

+
f1

C1B ln 2
]− V η(ζ(p2(t) + p1(t)) + 2pr + κn(fn

3)

s.t. 0 ≤ pn(t) ≤ (Pmax − pr − κnf
3
n)/ζ. (4.17)

P4.24 is a convex problem with respect to p1(t) and p2(t), and the optimal solutions are

given as

p∗1(t) =
−b1 ±

√
b21 − 4b2
2

, (4.18)

and

p∗2(t)=
1

( V ηζ
B ln 2(V+Q2(t))

+ ye2h2e,2)
−
p1h

2
b,1

h2b,2
−
σ2b,2
h2b,2

, (4.19)

where

a1 =
V ηζ

B ln 2
+ (V +Q2(t))(yb2h

2
b,1 + ye2h

2
e,1) + (V +Q1(t))ye1h

2
e,1

−
(V +Q2(t))h

2
b,1(

V ηζ
B ln 2(V+Q2(t))

+ ye2h
2
e,2)

h2b,2
,

(4.20)

b1 = (σ2b,1/h
2
b,1 + σ2e,2/h

2
e,1 −

(V +Q1(t))

a1
− (V +Q2(t))

a1
), (4.21)

and

b2 =
σ2e,2σ

2
b,1

h2e,1h
2
b,1

− (V +Q2(t))

a1
σ2b,1/h

2
b,1 −

(V +Q1(t))

a1
σ2e,2/h

2
e,1. (4.22)

4.4 Simulation Results

In this section, simulation results are provided to evaluate the proposed algorithm. The
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simulation settings are based on the works in [66], [69]. We consider the configuration with

2 UEs, which can be readily extended to a more general case. The system bandwidth for

computation offloading is set as B = 1 MHz, the time slot duration is τ = 1 sec, path-loss

exponent is θ = 4, the noise variance is σi,j = −60 dBm, where i ∈ {b, e}, j ∈ {1, 2}. The

size of the arrival workload An(t) is uniformly distributed within [1, 2]×106 bits [70]. Other

parameter settings include the reference distance d0 = 1 m, g0 = −40 dB, db,1 = 80 m,

db,2 = 40 m, de,1 = 120 m, de,2 = 80 m. κn = 10−28, Pmax = 2 W, fmax = 2.15 GHz,

Cn = 737.5 cycles/bit, the amplifier coefficient ζ = 1, and the control parameter V = 107.

The numerical results are obtained by averaging over 1000 random channel realizations. We

consider two more cases as the benchmark schemes to compare with our proposed algorithm.

In the first benchmark scheme, marked as ”Full offloading”, all the tasks are offloaded to the

MEC server and there is no local computation at all. The second benchmark [69] is marked

as ”Eve fully decode”, in which the Eve can correctly decode other users’ information. This

provides a worst-case scenario for comparison.
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Fig. 4.2: System energy efficiency.
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The performance of the system EE vs time is presented in Fig. 4.2. We can see that

the proposed method can achieve the highest system EE compared with the other two

benchmark schemes. Furthermore, owing to the flexibility of having both offloading and

local computing in the proposed scheme and in the “Eve fully decode” scheme, the system

can decide not to offload if the eavesdropper has a better channel on the offloading link

while it can decide to offload if the link is secure enough. Therefore, these two schemes

have a higher EE performance than the “Full offloading” scheme, which has to offload even

when the links are insecure. The system EE stabilizes for all the three schemes after 200

time slots.
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Fig. 4.3: System energy efficiency v.s. Average arrival task length.

The system EE versus the average arrival task length is presented in Fig. 4.3. The

proposed method achieves the highest EE. For all the three schemes, EE decrease with the

increase of the arrival task length because a higher workload forces the system to increase

the computing rate to maintain the low queue level. This in turn decreases the system EE.

Furthermore, we notice that the performance gap between the ”Full offloading” scheme and
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other two schemes goes up with the increase of the task length. This demonstrates that

local computing is more energy efficient and secure for processing the computation tasks

when the task size goes up.
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Fig. 4.4: System energy efficiency v.s. eavesdropper relative distance.

Fig. 4.4 shows the system EE versus the eavesdropper location. Here the eavesdropper

relative distance is defined as the distance between the eavesdropper and the UE. The

proposed design achieves the best performance among all the schemes. The system EE of

all the schemes goes up as the eavesdropper relative distance increases since a larger distance

leads to a worse intercepting channel at the eavesdropper. Furthermore, the performance

gap between the “Full offloading” scheme and the other two schemes decreases quickly with

the increase of the relative distance. This is because the secure offloading rate increases

quickly when the eavesdropper moves away.

The relationship between EE and the maximum available power is illustrated in Fig.

4.5. It is observed that EE increases with available power and gradually converges to

a constant value. This is because that when the available power is limited, the higher
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Fig. 4.5: System energy efficiency v.s. maximum available power Pmax.

computing rate and corresponding optimal EE cannot be achieved. With the power increase,

EE of all the schemes keeps increasing and only stops when it achieves the highest level.

After the optimal tradeoff has been reached, even there is more power available in the

system, all the schemes maintain at the highest level without consuming any more power.

4.5 Chapter Conclusion

This chapter aims to design a secure and energy efficient computation offloading scheme

in a NOMA enabled MEC network with the presence of a malicious eavesdropper. In

order to achieve a long term performance gain by considering dynamic task arrivals and

fading channels, we proposed a secure task offloading and computation resource allocation

scheme that aims to maximize the long-term average EE and used Lyapunov optimization

framework to solve the problem. Numerical results validated the advantages of the proposed

design via comparisons with two other benchmark schemes.
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CHAPTER 5

Energy Efficient Robust Beamforming and Cooperative Jamming Design for IRS-Assisted

MISO Networks

5.1 Introduction

In previous chapters, the NOMA-assisted MEC networks have been thoroughly inves-

tigated with respect to EE and PLS. However, new spectrum bands, such as mmWave

communications in 5G networks, bring many potential benefits to IoT networks. For ex-

ample, the multiple-input multiple-output (MIMO) techniques enable the transceivers to

explore the space diversity and seek a higher throughput and EE. However, severe pathloss

and the tendency of LoS propagation links to block impair the higher frequency channels.

To exploit the spatial diversity in a controllable way and protect against path fading and

block, many researchers are looking to IRS to potentially improve EE and achieve secure

communications at one blow. It has also been shown that secure performance can be im-

proved significantly by cooperative jamming [71]. Thus, it is envisioned that IRS-assisted

cooperative jamming is promising to further improve the secrecy rate of the legitimate users.

Most of the existing works that focus on IRS-assisted secure communication networks

assumed that the channel state information of the link from the IRS to the eavesdropper

can be perfectly obtained [72], [73]. However, in practice, it is extremely difficult to obtain

perfect CSI of the link from the IRS to eavesdropper. The reasons are as follows. On

one hand, the existence of channel estimation errors and quantization errors can result in

imperfect CSI estimation [50]. On the other hand, since the locations of the eavesdroppers

are unknown and there is no cooperation between the legitimate user and the eavesdroppers,

perfect CSI is almost impossible to obtain [74]. Imperfect CSI can significantly deteriorate

the beamforming and IRS performance. Thus, it is of crucial importance to design robust

secure beamforming and phase shift matrix for IRS assisted cooperative jamming (CJ)
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communication networks.

Motivated by the above-mentioned facts, in this paper, robust secure beamforming

and phase shift matrix are designed for an IRS assisted MISO network with an indepen-

dent cooperative jamming user. The EE maximization framework is formulated. To the

author’s best knowledge, this is the first work that considers robust beamforming and co-

operative jamming design in IRS-assisted MISO networks with CJ and that studies the EE

maximization problems in this type of network.

5.1.1 Related Work and Motivation

Optimal beamforming design plays an important role in the improvement of secure per-

formance in wireless communication networks by using physical layer security. The related

works can be classified into three categories, namely, secure beamforming design in con-

ventional MISO networks with CJ under perfect CSI [75]- [76], robust secure beamforming

design in conventional MISO networks with CJ under imperfect CSI [77]- [78], and secure

beamforming design in IRS-assisted secure wireless networks [22]- [28].

For the conventional MISO network secure communication with perfect CSI, the beam-

forming and jamming design were jointly optimized to achieve different objectives, e.g., the

secrecy rate maximization of users [75]- [79], the minimization of energy consumption [80],

and the system efficiency maximization [81], [76]. Specifically, in [75], the authors exploited

the CJ for multiple users via broadcast channels to enhance the secure performance with

the help of a friendly jammer. The optimal CJ was designed to keep the achieved SINR

at the eavesdroppers below the threshold to guarantee that the transmission from the base

station to the legitimate users is confidential. To achieve a higher secrecy rate performance,

in [82], Park et al. investigated a single relay assisted secure communication network. By

using CJ to prevent the eavesdropper from intercepting the source message, they proposed

three jamming power allocation strategies to minimize the outage probability of the secrecy

rate. Different from the single relay system, a wireless network with multiple relays was

considered in [83]. A two-slot cooperative relaying scheme was proposed to maximize the

secrecy rate. The access method is another key element for increasing the system secrecy
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rate. The authors in [79] studied the secrecy rate maximization problem in an orthogonal

frequency division multiple (OFDM) system with a potential eavesdropper. With the assis-

tance of a cooperative jammer, the approaches they proposed can significantly improve the

secrecy rate by jointly optimizing the transmit power and time allocation. While the works

in [75]- [79] aim to achieve a higher secrecy rate, they only consider one performance metric

therefore may not be able to achieve a good tradeoff between conflicting performance goals

such as high rate and low energy consumption. Recently, the authors in [80] considered

secure resource allocations for OFDM networks under scenarios with and without CJ. The

joint optimization problem of subcarrier assignments and power allocations subject to a lim-

ited power budget at the relay was solved to maximize the secrecy sum-rate and save energy.

Different from the works in [75]- [80], energy-efficient secure communication was considered

in [81]. By using two jamming strategies, namely, beamforming and cooperative diversity,

they demonstrated that a cooperative diversity strategy is desirable. Significant EE can be

achieved by selectively switching between the two strategies. Besides the strategy selection,

the mode switch can also improve the EE. In [76], the authors proposed an intermittent

jamming strategy where a jammer alternates between jamming and non-jamming modes

during the legitimate transmission. By jointly measuring security requirements and energy

costs, they formulated and solved an optimization problem with respect to the jamming

duration proportion and jamming power.

In practice, the perfect CSI is not always available at the transmitter. The secure

network designs presented above are not suitable for imperfect CSI cases. Thus, to achieve

robust design of the secure communication network, the beamforming design problems with

channel estimation error have been considered [77]- [78]. The authors in [77] studied ro-

bust transmission schemes with a single eavesdropper for MISO networks. Both the cases

of direct transmission and CJ were investigated with imperfect CSI for the eavesdropper

links. Robust transmission covariance matrices were obtained by solving the worst-case

secrecy rate maximization. For the MISO system with multiple eavesdroppers, Ma et al.

in [84] investigated a robust quality-of-service (QoS)-based and secrecy rate-based secure
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transmission design. By jointly optimizing the transmit beamforming vector and the co-

variance matrix of jamming signals under individual power constraints, they proposed an

algorithm for each problem through semidefinite relaxation (SDR). In [85], the authors

aimed to minimize the total transmit power by jointly designing the beamforming vector at

the transmitter and AN covariance at jammer under the reliability and secrecy constraints

for all the possible distributions of CSI errors. Su et al. in [86] proposed a novel robust

beamforming strategy for the direct transmission NOMA and cooperative jamming NOMA

to minimize the worst-case sum power subject to secrecy rate constraint. In [87], Feng et

al. investigated cooperative secure beamforming for simultaneous wireless information and

power transfer (SWIPT) in AF relay networks with imperfect CSI. They proposed a joint

cooperative beamforming (CB) and energy signal (ES) scheme to maximize the secrecy rate

under both the power constraints and the wireless power transfer constraint. In [88], Chu

et al. studied a MISO secrecy network with CJ and SWIPT to maximize the minimum

harvested energy subject to the total power constraints while guaranteeing the minimum

secrecy rate. By incorporating the norm-bound channel uncertainty model, they proposed

a joint design of the robust secure transmission scheme which outperforms the separate

AN-aided or CJ-aided schemes. By considering the secrecy rate and consumed energy of

the robust secure communication network simultaneously, the tradeoff between them can be

investigated to achieve the maximum EE. In [74], a MISO cognitive radio downlink network

with SWIPT was studied. The tradeoff was elucidated between the secrecy rate and the

harvesting energy under the max-min fairness criterion. The joint design of the beamform-

ing vector and the artificial noise covariance matrix were investigated in [78] for the MISO

multiple-eavesdropper SWIPT systems. The secrecy EE maximization problem was for-

mulated and two suboptimal solutions were proposed based on the heuristic beamforming

techniques.

Recently, the IRS-assisted MISO secure network has attracted increasingly elevated

attention. The beamforming and phase shift matrix design schemes for different objectives

were proposed in [89]- [28]. For the multi-user network, in [89], the authors investigated the
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symbol-level precoding in IRS-assisted multiuser MISO systems to minimize the transmit

power while guaranteeing the information transmissions. In [90], the authors considered the

downlink multigroup multicast communication systems assisted by an IRS. By optimizing

the precoding matrix and the reflection coefficients, the sum rate of all the multicasting

groups was maximized. For the multi-IRS deployment problems, in [91], the deploying

strategies for IRS were investigated for a single-cell multiuser system aided by multiple

IRSs. It was shown that the IRS-aided system outperforms the full-duplex relay-aided

counterpart system and that the deployment strategies and the elements of IRS have sig-

nificant influence on the achievable spatial throughput. In [92], the authors analyzed the

impact of the deployment of IRS on the downlink throughput and showed that IRS density

can significantly enhance the signal power at the expense of only a marginally increasing

interference.

Although beamforming design problems in CJ assisted secure MISO networks [75]- [76]

and robust beamforming design problems in CJ assisted secure MISO networks under the

imperfect CSI [77]- [78] have been investigated, few studies have been conducted for beam-

forming, friendly jamming and phase shift matrix design in IRS assisted wireless MISO net-

works. Moreover, EE optimization based on perfect CSI proposed in the above-mentioned

works are not applicable to the imperfect CSI since the channel estimated errors can have

a big impact on the performance of both base station and friendly jammer. Furthermore,

with imperfect CSI, the application of IRS into the MISO network with friendly jamming

can face more challenges that have not been considered in the works mentioned above.

Thus, in order to improve EE performance and achieve robustness against the uncertainty

introduced by the imperfect CSI, it is of crucial importance to study robust beamforming,

friendly jamming, and phase shift matrix design problems in IRS-aided MISO networks.

These problems are normally challenging to tackle due to two reasons. There exists de-

pendence among different variables that makes the problems non-convex. The imperfect

CSI model further increases the complexity of the problems by introducing the uncertainty

constraints to the optimization problems.
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5.1.2 Contribution and Organization

Motivated by the above-mentioned observations, in this chapter, the EE maximization

problems are studied in an IRS-assisted MISO network with cooperative jamming under

both perfect and imperfect CSI models. The corresponding robust design to address channel

uncertainty is also provided. The major contributions of this paper are summarized as

follows.

1) We investigate the joint design of information beamforming, cooperative jam-

ming, and phase shift matrix to maximize the EE in an IRS-assisted secure network

with eavesdroppers under the perfect CSI model. The problem is challenging to

solve due to its non-convexity and coupling of the beamforming vector with the

IRS phase shift matrix. An alternating optimization algorithm is proposed to solve

the non-convex fractional problem by using SDR.

2) For the IRS aided MISO network under imperfect CSI model, the estimated

channel error results in the uncertainty to the system and brings more difficulties

for beamforming and phase shift matrix design compared with the perfect CSI case.

To deal with this uncertainty, the bounded channel error model is considered and

the S-procedure method is applied for optimizing the robust beamforming and IRS

phase shift matrix to maximize the EE.

3) The simulation results show that the proposed method with the perfect CSI can

achieve the highest EE among all the benchmark methods. Moreover, it is found

that there is a tradeoff between secrecy rate and the consumed energy. Furthermore,

it is shown that the exploitation of IRS is beneficial for improving EE even under

the imperfect CSI case.

Notation: CM×N denotes theM×N complex-valued matrices space. CN (µ, σ2) denotes

the distribution of complex Gaussian random variable with mean µ and variance σ2. For

a square matrix X, the trace of X is denoted as Tr(X) and rank(X) denotes the rank of

matrix X. ∠(x) denotes the phase of complex number x. Matrices and vectors are denoted

by boldface capital letters and boldface lower case letters. [x]+ denotes the maximum
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between 0 and x.

5.2 System Model

As shown in Fig. 5.1, an IRS assisted wireless communication system is considered.

A multi-antenna base station transmits the confidential information to a single-antenna

legitimate user. At the same time, K eavesdroppers (Eves) are trying to intercept the

information from the base station. In order to improve the security, a friendly jammer

intentionally issues the jamming signals. It is assumed that both the base station and the

jammer are equipped with N antennas, and the IRS has M reflecting elements. Each Eve

is equipped with a single antenna.
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Fig. 5.1: An IRS-aided MISO wireless network with a friendly jammer.

The base band equivalent channel from the base station to the IRS, base station to the

user, and base station to the kth Eve are denoted as HB,I ∈ CM×N , hB,U ∈ C1×N , and

hB,E,k ∈ C1×N , respectively. The baseband equivalent channel from the Jammer to the

IRS, Jammer to user, and Jammer to Eve k are denoted as GJ,I ∈ CM×N , gJ,U ∈ C1×N ,

and gJ,E,k ∈ C1×N , respectively. The channel from the IRS to the user and Eve k are
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denoted as hI,U , hI,E,k, gI,U , and gI,E,k, respectively, each of which is a 1 ×M complex

vector. The performance achieved under the perfect CSI case can serve as an upper bound

for the proposed secure communication design. According to the works in [93], [94], the

Eves may be legitimate users in the past but cannot access the confidential information in

the current communication process or the base station does not want to send confidential

information to those users. To guarantee the communication security, the system has to

treat those receivers as potential eavesdroppers. Therefore, the perfect CSI of those Eves

can be acquired.

It is assumed that the channel information between the IRS and the user is available

at both the base station and the jammer. However, since eavesdroppers normally try to

hide their existence from the base station, it is difficult to obtain the perfect CSI between

Eves and base station. In practice, the CSI knowledge of the links from the IRS to Eves

is not accurate. This can also be caused by channel estimation and quantization errors.

In order to develop a robust scheme under the imperfect CSI case, the worst case channel

uncertainty model is considered. The bounded CSI error models for the channel vector

hI,E,k, and gI,E,k are given as

hI,E,k =hI,E,k +∆hI,E,k, HI,E,k (5.1a)

={∆hI,E,k ∈ CM×1 : ∆hHI,E,k∆hI,E,k ≤ ξ2I,E,k},

gI,E,k =gI,E,k +∆gI,E,k, GI,E,k (5.1b)

={∆gI,E,k ∈ CM×1 : ∆gHI,E,k∆gI,E,k ≤ ξ2J,E,k},

where hI,E,k, and gI,E,k are the estimated values of the channel vectors hI,E,k, and gI,E,k,

respectively. HI,E,k, and GI,E,k denote the uncertainty regions of hI,E,k, and gI,E,k, respec-

tively. ∆hI,E,k, and ∆gI,E,k represent the channel estimation errors. ξI,E,k, and ξJ,E,k are

the radius of the uncertainty region HI,E,k, and GI,E,k, respectively [74].

In this paper, the IRS adjusts its elements to maximize the combined incident sig-

nal for the legitimate user. The diagonal phase-shift matrix can be denoted as Θ =
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diag(exp(jθ1), exp(jθ2), · · · , exp(jθM )), wherein its main diagonal, θm ∈ [0, 2π), denotes

the phase shift on the combined incident signal by its mth element, m = 1, 2, ...,M [95].

The transmitted signal from the base station to the user is given as xB = f1s1 and

the jamming signal from the jammer is given as xJ = f2s2, where s1 ∼ CN (0, 1) and

s2 ∼ CN (0, 1) denote the independent information and jamming signal, respectively. f1 ∈

CN×1 and f2 ∈ CN×1 denote the beamforming and jamming precode vectors, respectively.

Let P1,max and P2,max denote the maximum transmit power available at base station and

jammer. We have (fH1 f1) ≤ P1,max and (fH2 f2) ≤ P2,max. The signal received at legitimate

user and Eve k can be respectively given as

yU = (hHB,U + hHI,UΘHB,I)f1s1 + (gHJ,U + gHI,UΘGJ,I)f2s2 + nU , (5.2)

and

yE,k = (hHB,E,k + hHI,E,kΘHB,I)f1s1 + (gHJ,E,k + gHI,E,kΘGJ,I)f2s2 + nE,k, (5.3)

where nU and nE,k ∼ CN (0, σ2) are the complex additive white Gaussian noise (AWGN).

Thus, the signal of interference plus noise ratio (SINR) of the legitimate user and Eve k

can be given as

γU =
|(hHB,U + hHI,UΘHB,I)f1|2

|(gHJ,U + gHI,UΘGJ,I)f2|2 + σ2
, (5.4)

and

γE,k =
|(hHB,E,k + hHI,E,kΘHB,I)f1|2

|(gHJ,E,k + gHI,E,kΘGJ,I)f2|2 + σ2
. (5.5)

The achievable secrecy rate is defined as

RS = [RU −RE ]
+ = [B log2(1 + γU )−max

k∈K
B log2(1 + γE,k)]

+. (5.6)

The energy consumed by the base station and the jammer consists of the transmit

power and the circuit power consumption PBS and PG. The power consumed by the IRS is
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denoted as PIRS . Thus, the total power consumed in the system can be given as

Ptot = ζ(fH1 f1 + fH2 f2) + PBS + PG + PIRS , (5.7)

where ζ is the amplifier coefficient.

According to [95], the energy efficiency (bps/ Watt or bits/Joule) is defined as

η =
[B log2(1 + γU )−maxk∈K B log2(1 + γE,k)]

+

ζ(fH1 f1 + fH2 f2) + PBS + PG + PIRS
. (5.8)

In order to maximize the energy efficiency, the beamforming and jamming vectors

and the phase shift matrix are jointly optimized. Since the energy efficiency maximization

problem is extremely challenging under the imperfect CSI case, the problem is firstly studied

under the perfect CSI case in order to provide some meaningful insights in Section 5.3. Based

on the results obtained in Section 5.3, the energy efficiency maximization problem is further

studied under the imperfect CSI in Section 5.4.

5.3 System Design With Perfect CSI

In this section, the energy efficiency maximization problem with perfect CSI is studied

by jointly optimizing the beamforming vector, jamming vector, and phase shift matrix. An

alternating algorithm is proposed to tackle the challenging non-convex problem.
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5.3.1 Problem Formulation

Under the perfect CSI model, the energy efficiency maximization problem is formulated

as

P5 : max
f1,f2,Θ

η

s.t. fH1 f1 ≤ P1,max, (5.9a)

fH2 f2 ≤ P2,max, (5.9b)

Rs ≥ Rth, (5.9c)

| exp(jθm)| = 1, (5.9d)

where Rth is the minimum required secure rate threshold. It is evident that problem P5

is non-convex due to the fractional structure of the objective function and the non-convex

constraints. In order to tackle it, an alternating algorithm is proposed to solve this problem.

The problem P5 is non-convex due to the coupling of the beamforming vector, jam-

ming vector and IRS phase shift matrix. By introducing wH = [w1, w2, · · · , wM ], one has

hHI,jΘHB,I = wHHI,j , where wm = exp(jθm), HI,j = diag(hHI,j)HB,I , j ∈ {U, (E, k)}. The

interference from the jammer can be denoted as gHI,jΘGJ,I = wHGI,j , where GI,j =

diag(gHI,j)GJ,I , j ∈ {U, (E, k)}. Thus, the SINRs of user and Eve k are given as

γj =
a0|wHHjf1|2
a0|wHGjf2|2+1

, j ∈ {U, (E, k)}, where a0 = 1/σ2, Hj =

 HI,j

hB,j

, Gj =

 GI,j

gJ,j

,
wH = exp(jw)[wH , 1] and w is an arbitrary phase rotation. The problem can be trans-

formed into

P5.1 : max
f1,f2,w

1

Ptot
{ B

ln 2
ln(1 +

a0|wHHU f1|2

a0|wHGU f2|2 + 1
)−max

k∈K

B

ln 2
ln(1 +

a0|wHHE,kf1|2

a0|wHGE,kf2|2 + 1
)}

s.t. (5.9a), (5.9c),

B

ln 2
ln(1 +

a0|wHHU f1|2

a0|wHGU f2|2 + 1
)−max

k∈K

B

ln 2
ln(1 +

a0|wHHE,kf1|2

a0|wHGE,kf2|2 + 1
) ≥ Rth.

(5.10a)
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The problem P5.1 is yet still non-convex. In order to tackle it, the beamforming and

jamming vectors can be optimized for a given w, and then w can be optimized for the

obtained optimal f1 and f2. This process iteratively continues till convergence.

5.3.2 Optimizing the Beamforming for a Given w

In this section, we solve the problem P5.1 to achieve the optimal secure transmit

beamformer f1 and jammer vector f2 for a given w. Let h
H
U = wHHU , gHU = wHGU ,

h
H
E,k = wHHE,k, and gHE,k = wHGE,k. The problem P5.1 can be transformed into

P5.2 : max
f1,f2

1

Ptot
{ B

ln 2
ln(1 +

a0|h
H
U f1|2

a0|gHU f2|2 + 1
)−max

k∈K

B

ln 2
ln(1 +

a0|h
H
E,kf1|2

a0|gHE,kf2|2 + 1
)}

s.t.
B

ln 2
ln(1 +

a0|h
H
U f1|2

a0|gHU f2|2 + 1
)−max

k∈K

B

ln 2
ln(1 +

a0|h
H
E,kf1|2

a0|gHE,kf2|2 + 1
) ≥ Rth, (5.11a)

fH1 f1 ≤ P1,max, f
H
2 f2 ≤ P2,max. (5.11b)

Let |hHj f1|2 = Tr(Hjf1f
H
1 ) and |gHj f2|2 = Tr(Gjf2f

H
2 ). By defining Hj = hjh

H
j , Gj =

gjg
H
j , j ∈ {U, (E, k)}, F1 = f1f

H
1 and F2 = f2f

H
2 , one has F1 ⪰ 0, F2 ⪰ 0 and rank(F1) =

rank(F2) = 1. The rank-1 constraint makes the problem difficult to solve. Thus, we apply

the SDR method to relax the constraints. The problem P5.2 is thus expressed as

P5.3 : max
F1,F2

1

Ptot
(
B

ln 2
ln(1 +

a0Tr(HUF1)

a0Tr(GUF2) + 1
)−max

k∈K

B

ln 2
ln(1 +

a0Tr(HE,kF1)

a0Tr(GE,kF2) + 1
))

s.t. (F1,F2) ∈ F , (5.12a)

B

ln 2
ln(1 +

a0Tr(HUF1)

a0Tr(GUF2) + 1
)−max

k∈K

B

ln 2
ln(1 +

a0Tr(HE,kF1)

a0Tr(GE,kF2) + 1
) ≥ Rth, (5.12b)

where F = {(F1,F2)|Tr(F1) ≤ P1,max, Tr(F2) ≤ P2,max, F1 ⪰ 0, F2 ⪰ 0}. However,

the problem P5.3 is still a non-convex problem due to the objective function and the non-

convex second constraint with respect to F1 and F2. To solve this, the following lemma is

applied [68].
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Lemma 5.1: By introducing the function ϕ(t) = −tx+ ln t+ 1 for any x > 0, one has

− lnx = max
t>0

ϕ(t). (5.13)

The optimal solution can be achieved at t = 1/x. The upper bound can be given by using

Lemma 1 as ϕ(t). By setting x = a0Tr(GUF2) + 1, and t = tU , one has

RU
ln 2

B
= [ln(a0Tr(HUF1) + a0Tr(GUF2) + 1)− ln(a0Tr(GUF2) + 1)] = max

tU>0
ϕu(F1,F2,tU ),

(5.14)

where ϕU (F1,F2,tU ) = ln(a0Tr(HUF1) + a0Tr(GUF2) + 1)−tU (a0Tr(GUF2)+1)+ln tU+1.

In the same way, let x = a0Tr(HE,kF1) + a0Tr(GE,kF2) + 1 and t = tE,k, one has

RE,k
ln 2

B
= [ln(a0Tr(HE,kF1) + a0Tr(GE,kF2) + 1)− ln(a0Tr(GE,kF2) + 1)]

= min
tE,k>0

ϕE,k(F1,F2,tE,k),
(5.15)

where ϕE,k(F1,F2,tE,k) = tE,k(a0Tr(HE,kF1) + a0Tr(GE,kF2) + 1) − ln(a0Tr(GE,kF2) +

1)− ln tE,k− 1. By using Sion’s minimax theorem [96], the problem given by eq. (5.12) can

be transformed into

P5.4 max
F1,F2,tU ,tE,k

ϕU (F1,F2,tU )−maxk ϕE,k(F1,F2tE,k)
ln 2
B (Tr(F1 + F2) + PBS + PG + PIRS)

s.t. (F1,F2) ∈ F , (5.16a)

ϕU (F1,F2,tU )−max
k

ϕE,k(F1,F2,tE,k) ≥ Rth
ln 2

B
, (5.16b)

tU , tE,k ≥ 0. (5.16c)

According to Lemma 1, the optimal values of tU and tE,k can be achieved when t∗U =

(a0Tr(GUF2) + 1)−1 and t∗E,k = (a0Tr(HE,kF1) + a0Tr(GE,kF2) + 1)−1. Here, a slack

variable l ≥ maxk∈K ϕE,k is introduced. Thus, the optimization problem P5.4 for F1 and
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F2 based on t∗U and t∗E,k can be given as

P5.5 max
F1,F2

ϕU (F1,F2,t
∗
U )− l

ln 2
B (ζTr(F1 + F2) + PBS + PG + PIRS)

s.t. (F1,F2) ∈ F , (5.17a)

ϕU (F1,F2,t
∗
U )− l ≥ Rth

ln 2

B
, (5.17b)

ϕE,k(F1,F2,t
∗
E,k) ≤ l. (5.17c)

The objective function of P5.5 is now a concave function over a convex function, and the

constraints are all convex, since ϕU (F1,F2,t
∗
U ) is concave and ϕE,k(F1,F2, t

∗
E,k) is convex.

It is a single ratio maximization problem and can be solved with the Dinkelbach’s method

[97] [98]. Using the Dinkelbach’s method [99], P5.5 can be solved by iteratively solving the

following problem, given as

P5.6 max
F1,F2

ϕU (F1,F2,t
∗
U )− l − ln 2

B
η∗1(ζTr(F1 + F2) + PBS + PG + PIRS)

s.t. (5.17a), (5.17b), (5.17c),

where η∗1 is a non-negative parameter. P5.6 is convex and can be solved by using a standard

convex optimization tool [93].

After the F1 and F2 are obtained, if rank(F1) = rank(F2) = 1, f1 and f2 can be

obtained from F1 = f1f
H
1 and F2 = f2f

H
2 by performing the eigenvalue decomposition.

Otherwise, the Gaussian randomization can be used for recovering the approximate f1 and

f2 [93]. Thus, the problem P5.2 can be solved by alternately updating (tU , tE,k) and (f1, f2),

which is summarized in Algorithm 5.1.

5.3.3 Optimizing w with (f1, f2)

After obtaining the beamforming vectors f1 and f2, by setting hW,U = HU f1, gW,U =

GU f2, hW,E,k = HE,kf1, and gW,E,k = GE,kf2, the SINR of user and eavesdroppers can be

denoted as γj =
a0|wHhW,j |2
a0|wHgW,j |2+1

, j ∈ {U, (E, k)}. Similar to the previous section, let W =
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wwH , HW,j = hW,jh
H
W,j and GW,j = gW,jg

H
W,j . The problem of P5.1 can be transformed

into

P5.7 : max
W

1

Ptot
{ B

ln 2
ln(1 +

a0Tr(HW,UW)

a0Tr(GW,UW) + 1
)−max

k∈K

B

ln 2
ln(1 +

a0Tr(HW,E,kW)

a0Tr(GW,E,kW) + 1
)}

s.t. (5.9b), (5.9c).

By applying Lemma 1 with SDR and introducing the variable lW ≥ maxk∈K ϕW,E,k, the

problem P5.7 can be transformed into

P5.8 : max
W,tW,U ,tW,E,k

1
ln 2
B Ptot

[ϕW,U (W, tW,U )− lW ]

s.t. ϕW,E,k(W, tW,E,k) ≤ lW , (5.20a)

ϕW,U (W, tW,U )− lW ≥ ln 2

B
Rth, (5.20b)

W ⪰ 0,Wmm = 1, m = 1, 2, ...,M, (5.20c)

where

ϕW,U = ln(1 + a0Tr(GW,U +HW,U )W)− tW,U (a0Tr(GW,UW) + 1) + ln tW,U + 1, (5.21)

and

ϕW,E,k =tW,E,k(1 + a0Tr(GW,E,k +HW,E,k)W)− ln(a0Tr(GW,UW) + 1)− ln tW,E,k − 1.

(5.22)

Since the objective function is a concave-convex fractional function, By using the Dinkel-

bach’s method [99], P5.8 can be solved by iteratively solving the following problem, given
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as

P5.9 : max
W,tW,U ,tW,E,k

ϕW,U (W, tW,U )− lW − ln 2

B
η∗2Ptot

s.t. ϕW,E,k(W, tW,E,k) ≤ lW , (5.23a)

ϕW,U (W, tW,U )− lW ≥ ln 2

B
Rth, (5.23b)

W ⪰ 0,Wmm = 1, m = 1, 2, ...,M, (5.23c)

The problem P5.9 is a convex problem and can be solved by using the standard convex

optimization tool. After the optimal W is obtained, tW,U and tW,E,k can be given as t∗W,U =

(a0Tr(GW,UW)+1)−1 and t∗W,E,k = (1+a0Tr(GW,E,k+HW,E,k)W)−1. After obtaining W,

the w can be given by eigenvalue decomposition if rank(W) = 1, otherwise, the Gaussian

randomization can be used for recovering the approximate w [93]. The reflection coefficients

can be given by wm = ∠( wm
wM+1

), m = 1, 2, ..,M . The overall optimization algorithm for

solving P5 is summarized in Algorithm 5.1, where δ is the threshold and T is the maximum

number of iterations.

5.3.4 Convergence Analysis

For the convergence of the proposed algorithm, similar to [21], the proof is given as

follows. Let (Wk,Fk1,F
k
2) denote the feasible solution in the kth iteration, and let J5.4

denote the objective function of P5.4. It can be seen that for the given Wk+1 and Wk from

two iterations, one has J5.4(W
k+1,Fk+1

1 ,Fk+1
2 )

(a)

≥ J5.4(W
k+1,Fk1,F

k
2)

(b)

≥ J5.4(W
k,Fk1,F

k
2),

where (a) holds because for the given Wk+1 in Algorithm 5.1, (Fk+1
1 ,Fk+1

2 ) are the optimal

solutions of problem P5.4, and (b) holds because from the objective function of P5.7, we

have ln[1+a0Tr(HuF1H
H
u W

k+1)+Tr(GuF2G
H
u W

k+1)]−tW,U [a0Tr(GuF2G
H
u W

k+1)+1]+

ln tW,U+1 = ln[1+a0Tr(H
H
u W

k+1HuF1)+Tr(GH
u W

k+1GuF2)]− ln(a0Tr(G
H
u W

k+1GuF2)+

1) ≥ln[1 + a0Tr(H
H
u W

kHuF1) + Tr(GH
u W

kGuF2)] − ln(a0Tr(G
H
u W

kGuF2) + 1). Simi-

larly, one has RE,k(W
k+1,Fk1,F

k
2) ≤ RE,k(W

k,Fk1,F
k
2). Therefore, the objective function

of problem P5.4 is non-decreasing over the iterations in the proposed algorithm, and the ob-
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jective value of P5.4 is finite due to the limited resource in the system. Thus, the proposed

method is able to converge to a stationary point. A similar proof can be obtained for P5.7.

When the obtained solutions F1, F2, and W are not rank-one matrices, based on

Gaussian randomization, a set of ζ1 ∼ CN (0,F1), ζ2 ∼ CN (0,F2), and ζ3 ∼ CN (0,W) are

generated. Then, the feasibility of P5 is checked with ζi, i ∈ {1, 2, 3}, and the monotonicity

is also checked by comparing the current results with the results from the previous iteration.

Via independently generating enough feasible ζi, i ∈ {1, 2, 3}, the optimal value of problem

P5 can be approximated by the best ζi among all random vectors with an arbitrary small

bias ϵ > 0 [100].

The proposed method can provide a sub-optimal solution when the Gaussian random-

ization is applied. In Section V, we will compare the proposed method with the existing

maximum ratio transmission (MRT) beamforming method to verify the superiority of our

proposed scheme in terms of energy efficiency.

5.4 System Design With Imperfect CSI

In this section, based on the results obtained in Section 5.3, the energy efficiency

maximization problem is extended into the case that the CSIs of the links from the IRS to

the Eves are imperfect. The beamforming and jamming vectors and the phase shift matrix

are jointly optimized to maximize the energy efficiency.

5.4.1 Problem Formulation

By considering the imperfect CSI model between the Eves and IRS, the energy efficiency

maximization problem can be formulated as

P5.2.1 : max
f1,f2,Θ

η

s.t. fH1 f1 ≤ P1,max, f
H
2 f2 ≤ P2,max, (5.24a)

Rs ≥ Rth, ∆hI,E,k ∈ HI,E,k,∆gI,E,k ∈ GI,E,k, (5.24b)

| exp(jθm)| = 1. (5.24c)
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Motivated by the method used for solving P5.1, the problem P5.2.1 can be also solved by

using an alternating optimization method.

5.4.2 Optimizing the Beamforming with a Given Θ

In this section, we solve the problem P5.2.1 to achieve the optimal secure transmit

beamforming vector f1 and jamming vector f2 for a given Θ.

LetHB,W = ΘHB,I andGJ,W = ΘGJ,I to simplify the formulas. By settingHB,E,k,X = HB,W

hHB,E,k

,GJ,E,k,X =

 GJ,W

gHJ,E,k

, and introducing hI,E,k,X=hI,E,k,X+∆hI,E,k,X , gI,E,k,X =

gI,E,k,X + ∆gI,E,k,X , where hI,E,k,X =

 hI,E,k

1

, ∆hI,E,k,X =

 ∆hI,E,k

0

, gI,E,k,X =

 gI,E,k

1

, and ∆gI,E,k,X =

 ∆gI,E,k

0

, respectively, the SINR of Eve k can be reformu-

lated as γE,k =
|(hH

I,E,k,XHB,E,k,X)f1|2

|(gH
I,E,k,XGJ,E,k,X)f2|2+σ2 . The problem P5.2.1 can be transformed into

P5.2.2: max
f1,f2 Ptot

{ B

ln 2
ln(1 +

|wHHU f1|2

|wHGU f2|2 + σ2
)−max

k∈K

B

ln 2
ln(1 +

|(hHI,E,k,XHB,E,k,X)f1|2

|(gHI,E,k,XGJ,E,k,X)f2|2 + σ2
)}

s.t. fH1 f1 ≤ P1,max, f
H
2 f2 ≤ P2,max, (5.25a)

B

ln 2
ln(1 +

|wHHU f1|2

|wHGU f2|2 + σ2
−max

k∈K

B

ln 2
ln(1 +

|(hHI,E,k,XHB,E,k,X)f1|2

|(gHI,E,k,XGJ,E,k,X)f2|2 + σ2
)

≥ Rth, ∆hI,E,k,X ∈ HI,E,k,∆gI,E,k,X ∈ GI,E,k.

(5.25b)

Similar to the method used in Section 5.3, by defining F1 = f1f
H
1 and F2 = f2f

H
2 , one

has F1 ⪰ 0, F2 ⪰ 0 and rank(F1) = rank(F2) = 1. The rank-1 constraint makes problem

hard to be solved. By applying the SDR method to relax the rank-1 constraints [101], the
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problem P5.2.2 can be transformed into

P5.2.3 : max
F1,F2

1

Ptot

(
B

ln 2
[ln(Tr(HUF1) + Tr(GUF2) + σ2)− ln(Tr(GUF2) + σ2)]

−max
k∈K

B

ln 2
[ln(hHI,E,k,XHB,E,k,XF1H

H
B,E,k,XhI,E,k,X + gHI,E,k,XGJ,E,k,XF2G

H
J,E,k,XgI,E,k,X + σ2)

− ln(gHI,E,k,XGJ,E,k,XF2G
H
J,E,k,XgI,E,k,X + σ2)]

)
s.t. (F1,F2) ∈ F , (5.26a)

B

ln 2
[ln(Tr(HUF1) + Tr(GUF2) + σ2)− ln(Tr(GUF2) + σ2)]

−max
k∈K

B

ln 2
[ln(hHI,E,k,XHB,E,k,XF1H

H
B,E,k,XhI,E,k,X + gHI,E,k,XGJ,E,k,XF2G

H
J,E,k,XgI,E,k,X + σ2)

− ln(gHI,E,k,XGJ,E,k,XF2G
H
J,E,k,XgI,E,k,X + σ2)] ≥ Rth,∆hI,E,k,X ∈ HI,E,k, ∆gI,E,k,X ∈ GJ,E,k,

(5.26b)

where F = {(F1,F2)|Tr(F1) ≤ P1,max, Tr(F2) ≤ P2,max, F1 ⪰ 0, F2 ⪰ 0)}. Lemma 1 can

be applied to solve the non-convexity caused by the second term in objective function and

constraint (26b).

Let xE,k = hHI,E,k,XHB,E,k,XF1H
H
B,E,k,XhI,E,k,X+gHI,E,k,XGJ,E,k,XF2G

H
J,E,k,XgI,E,k,X+

σ2 and t = tE,k, the transmit rate of Eve k can be denoted as

RE,k
ln 2

B
= ln(hHI,E,k,XHB,E,k,XF1H

H
B,E,k,XhI,E,k,X + gHI,E,k,XGJ,E,k,XF2G

H
J,E,k,XgI,E,k,X + σ2)

− ln(gHI,E,k,XGJ,E,k,XF2G
H
J,E,k,XgI,E,k,X + σ2)

= min
tE,k≥0

ϕE,k(F1,F2, tE,k),

(5.27)

where ϕ(tE,k) = tE,k(h
H
I,E,k,XHB,E,k,XF1H

H
B,E,k,XhI,E,k,X +gHI,E,k,XGJ,E,k,XF2G

H
J,E,k,XgI,E,k,X+

σ2) + ln(gHI,E,k,XGJ,E,k,XF2G
H
J,E,k,XgI,E,k,X + σ2) − ln(tE,k) − 1. Therefore, the problem
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Table 5.1: Alternating Algorithm for Solving P5.1

Algorithm 5.1: Alternating Algorithm for Solving P5.1

1) Input settings:
δ, Rth, P1,max, P2,max > 0, and T .

2) Initialization:
tU (0), tE,k(0), tW,U (0), tW,E,K(0), w(0), η(0);

3) Optimization:
⊵⊵⊵ for τ1=1:T

solve P5.6 with (w∗(τ1 − 1));
obtain the solution f∗1 (τ1), f

∗
2 (τ1);

solve P5.9 with (f∗1 (τ1), f
∗
2 (τ1));

obtain the solution w∗(τ1);
calculate energy efficiency η(τ1);
if ∥η(τ1)− η(τ1 − 1)∥ ≤ δ;

the optimal energy efficiency η∗ is obtained;
end

⊵⊵⊵ end
4) Output:

{f∗1 , f∗2 ,w∗} and energy efficiency η∗.

P5.2.3 can be transformed into

P5.2.4 : max
F1,F2

max
tU

1
ln 2
B Ptot

[ϕU (F1,F2, tU )−min
tE,k

ϕE,k(F1,F2, tE,k)]

s.t. (F1,F2) ∈ F , (5.28a)

max
tU

ϕU (F1,F2, tU )−min
tE,k

ϕE,k(F1,F2, tE,k) ≥ Rth,

∆hI,E,k,X ∈ HI,E,k,∆gI,E,k,X ∈ GJ,E,k.
(5.28b)
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By using Sion’s minimax theorem [96], and introducing the slack variable l ≥ maxk∈K ϕE,k,

the problem P5.2.4 can be further transformed into

P5.2.5 max
F1,F2,tU ,tE,k

ϕU (F1,F2,tU )− l
ln 2
B (Tr(F1 + F2) + PBS + PG + PIRS)

s.t. (F1,F2) ∈ F , tU , tE,k ≥ 0, (5.29a)

ϕU (F1,F2,tU )− l ≥ Rth
ln 2

B
, (5.29b)

ϕE,k(F1,F2,tE,k) ≤ l, (5.29c)

∆hI,E,k,X ∈ HI,E,k, ∆gI,E,k,X ∈ GI,E,k. (5.29d)

However, the problem is still difficult to be solved due to the uncertainty of the CSI from

the IRS to the Eves. We introduce the slack variable ψB,E,k, and ψJ,E,k to deal with this

uncertainty.

hHI,E,k,XHB,E,k,XF1H
H
B,E,k,XhI,E,k,X ≤ ψB,E,k, (5.30a)

gHI,E,k,XGJ,E,k,XF2G
H
J,E,k,XgI,E,k,X ≥ ψJ,E,k. (5.30b)

Then we have ϕE,k ≤ tE,k(ψB,E,k+ψJ,E,k+σ
2)− ln(ψJ,E,k+σ

2)− ln(tE,k)−1. The problem

P5.2.5 can be transformed into

P5.2.6 max
F1,F2,tU ,tE,k,ψB,E,k,ψJ,E,k

1
ln 2
B Ptot

[ϕU (F1,F2,tU )− l]

s.t. (5.29a), (5.29b), (5.30a), (5.30b),

tE,k(ψB,E,k + ψJ,E,k + σ2)− ln(ψJ,E,k + σ2) (5.31a)

− ln(tE,k)− 1 ≤ l,∀k. (5.31b)

P5.2.6 can be solved by alternately solving (tU , tE,k) and (F1,F1). First, with the given

(t∗U , t
∗
E,k), to solve the problem P5.2.6 for (F1,F1), the S-Procedure is applied.

Lemma 5.2: Let fi(z) = zHAiz + 2ℜ(bHi z) + ci, i ∈ {1, 2}, where z ∈ CM×1, Ai ∈

CM×M , bi ∈ CM×1, and ci ∈ R. Then, the expression f1(z) ≤ 0 ⇒ f2(z) ≤ 0 holds if and
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only if there exists a λ ≥ 0 such that

λ

 A1 b1

bH1 c1

−

 A2 b2

bH2 c2

 ⪰ 0, (5.32)

which assumes that there exists a vector z such that f(z) < 0 [74]. By applying Lemma 5.2,

let hE,k,X = HH
B,E,k,XhI,E,k,X and gE,k,X = GH

J,E,k,XgI,E,k,X , the constraint (5.30a)-(5.30b)

can be transformed into (5.33) and (5.34).

 λB,E,kI−HB,E,k,XF1H
H
B,E,k,X −HB,E,k,XF1H

H
B,E,k,XhI,E,k,X

−hHI,E,k,XHB,E,k,XF1H
H
B,E,k,X ψB,E,k − λB,E,kξ

2
I,E,k − h

H
E,k,XF1hE,k,X

 ⪰ 0, (5.33)

 λJ,E,kI+GJ,E,k,XF2G
H
J,E,k,X GJ,E,k,XF2G

H
J,E,k,XgI,E,k,X

gHI,E,k,XGJ,E,k,XF2G
H
J,E,k,X −λJ,E,kξ2J,E,k − ψJ,E,k + gHE,k,XF2gE,k,X

 ⪰ 0. (5.34)

Then, similar to the previous section, by introducing the variable η∗3, the optimization

problem P5.2.6 for F1 and F2 based on tU and tE,k can be given as

P5.2.7 max
F1,F2,ψB,E,k,ψJ,E,k,λB,E,k,λJ,E,k

ϕU (F1,F2,tU )− l − ln 2

B
η∗Ptot

s.t. (5.29a), (5.29b), (5.33), (5.34).

The problem P5.2.7 is a convex problem since the objective function and the constraints are

all convex. It can be solved by using a standard convex optimization tool.

After F1 and F2 are obtained, if rank(F1) = rank(F2) = 1, f1 and f2 can be obtained

from F1 = f1f
H
1 and F2 = f2f

H
2 by applying the eigenvalue decomposition. Otherwise, the

Gaussian randomization can be used for recovering the approximate f1 and f2. After f1 and

f2 are obtained, according to Lemma 1, the optimal value of tU can be achieved when

t∗U = (Tr(GUF2) + σ2)−1. (5.36)
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To optimize tE,k, the following problem should be solved.

max
tE,k

− tE,k( max
∆hI,E,k,X

hHI,E,k,XHB,E,k,XF1H
H
B,E,k,XhI,E,k,X

+ min
∆gJ,E,k,X

gHI,E,k,XGJ,E,k,XF2G
H
J,E,k,XgI,E,k,X + σ2) + ln(tE,k) + 1.

(5.37)

This needs to first solve the following problems, given as,

Γ1,k = max
∆hI,E,k,X

hHI,E,k,XHB,E,k,XF1H
H
B,E,k,XhI,E,k,X (5.38a)

s.t. ∆hHI,E,k,X∆hI,E,k,X ≤ ξ2I,E,k, (5.38b)

and

Γ2,k = min
∆gJ,E,k,X

gHI,E,k,XGJ,E,k,XF2G
H
J,E,k,XgI,E,k,X + σ2 (5.39a)

s.t. ∆gHI,E,k,X∆gI,E,k,X ≤ ξ2J,E,k. (5.39b)

For notational simplification, we denote HI,E,k,XF1H
H
I,E,k,X = F1,k,X . Then, the La-

grangian function of problem (5.38) can be given as

L1,k = (h
H
I,E,k,X +∆hHI,E,k,X)F1,k,X(hI,E,k,X +∆hI,E,k,X) + µ1,k(ξ

2
I,E,k −∆hHI,E,k,X∆hI,E,k,X),

(5.40)

where µ1,k is the Lagrange multiplier. L1,k is convex respect to ∆hI,E,k,X . The Karush-

Kuhn-Tucker (KKT) condition can be applied to solve this problem. Thus, one has

Γ1,k = tr[F1,k,X(hI,E,k,Xh
H
I,E,k,X + ξ2I,E,kI+ 2ξI,E,k

√√√√h
H
I,E,k,XF1,k,XhI,E,k,X

tr(F1,k,X)
I)]. (5.41)

Similarly, letting GJ,E,k,XF2G
H
J,E,k,X = F2,k,X , one has

Γ2,k = tr[F2,k,X(gI,E,k,Xg
H
I,E,k,X + ξ2J,E,kI− 2ξJ,E,k

√
gHI,E,k,XF2,k,XgI,E,k,X

tr(F2,k,X)
I)]. (5.42)
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The closed-form expression for solution for tE,k can be given as

t∗E,k = (Γ1,k + Γ2,k + σ2)−1. (5.43)

Thus, the problem P5.2.2 can be solved by alternately updating (tU , tE,k) and (f1, f2),

which is summarized at Algorithm 5.2.

5.4.3 Optimizing w with Given (f1, f2)

After obtaining f1 and f2, by setting HB,E,k,F =

 diag(HB,If1)
H

hHB,E,kf1

, and
GJ,E,k,F =

 diag(GJ,If2)
H

gHJ,E,kf2

, the SINR of Eve k can be given as

γE,k =
hHI,E,k,XHB,E,k,FWHH

B,E,k,FhI,E,k,X

gHI,E,k,XGJ,E,k,FWGH
J,E,k,FgI,E,k,X + σ2

, ∀k ∈ K, (5.44)

where W = wwH , W ⪰ 0, and Rank(W) = 1. The problem of P5.2.1 can be transformed

into

P5.2.8 : max
W

1

Ptot

[
B

ln 2
ln(1 +

Tr(HW,UW)

Tr(GW,UW) + σ2
)

−max
k∈K

B

ln 2
ln(1 +

hHI,E,k,XHB,E,k,FWHH
B,E,k,FhI,E,k,X

gHI,E,k,XGJ,E,k,FWGH
J,E,k,FgI,E,k,X + σ2

)

]
s.t. W ⪰ 0,Rank(W) = 1,Wm,m = 1, m = 1, 2, ...,M, (5.45a)

Rs ≥ Rth, ∆hI,E,k ∈ HI,E,k,∆gI,E,k ∈ GI,E,k. (5.45b)

Similar to the previous section, by applying Lemma 1 with SDR and introducing the

variable tW,U , tW,E,K , and lW ≥ maxk∈K ϕW,E,k, the problem P5.2.8 can be transformed into
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P5.2.9 : max
W,tW,U ,tW,E,k

1
ln 2
B Ptot

[ϕW,U (W, tW,U )− lW ]

s.t. ϕW,U (W, tW,U )− lW ≥ ln 2

B
Rth, (5.46a)

ϕW,E,k(W, tW,E,k) ≤ lW , (5.46b)

∆hI,E,k ∈ HI,E,k,∆gI,E,k ∈ GI,E,k, (5.46c)

W ⪰ 0,Wmm = 1, m = 1, 2, ...,M, (5.46d)

tW,U > 0, tW,E,k > 0, k = 1, ...,K, (5.46e)

where

ϕW,E,k =tW,E,k(g
H
I,E,k,XGJ,E,k,FWGH

J,E,k,FgI,E,k,X + σ2 + hHI,E,k,XHB,E,k,FWHH
B,E,k,FhI,E,k,X)

− ln(gHI,E,k,XGJ,E,k,FWGH
J,E,k,FgI,E,k,X + σ2)− ln tW,E,k − 1.

(5.47)

To solve the uncertainty channel constraints, we introduce the variables ψWB,E,k and ψWJ,E,k,

which are given as

hHI,E,k,XHB,E,k,FWHH
B,E,k,FhI,E,k,X ≤ ψWB,E,k,

gHI,E,k,XGJ,E,k,FWGH
J,E,k,FgI,E,k,X ≥ ψWJ,E,k.

(5.48)

Thus, problem P5.2.9 can be transformed into

P5.2.10 : max
W,tW,U ,tW,E,k,ψ

W
B,E,k,ψ

W
J,E,k

[ϕW,U (W, tW,U )− lW ]
ln 2
B Ptot

s.t. (5.46a), (5.46c), (5.46d),

tW,E,k(ψ
W
J,E,k + σ2 + ψWB,E,k)− ln(ψWJ,E,k + σ2)− ln(tW,E,k)− 1 ≤ lW , (5.49a)

hHI,E,k,XHB,E,k,FWHH
B,E,k,FhI,E,k,X ≤ ψWB,E,k,∆hI,E,k ∈ HI,E,k, (5.49b)

gHI,E,k,XGJ,E,k,FWGH
J,E,k,FgI,E,k,X ≥ ψWJ,E,k,∆gI,E,k ∈ GI,E,k. (5.49c)
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P5.2.11 : max
W,tW,U ,tW,E,k,ψ

W
B,E,k,ψ

W
J,E,k,λ

W
B,E,k,λ

W
J,E,k

ϕW,U (W, tW,U )− lW − ln 2

B
η∗4Ptot

s.t. (5.46a), (46c), (46d), (49a),[
λWB,E,kI−HB,E,k,FWHH

B,E,k,F −HB,E,k,FWHH
B,E,k,FhI,E,k,X

−h
H
I,E,k,XHB,E,k,FWHH

B,E,k,F −λWB,E,kξ2I,E,k + ψWB,E,k − h
H
E,k,FWhE,k,F

]
⪰ 0,

(5.50a)[
λWJ,E,kI+GJ,E,k,FWGH

J,E,k,F GJ,E,k,FWGH
J,E,k,FgI,E,k,X

gHI,E,k,XGJ,E,k,FWGH
J,E,k,F −λWJ,E,kξ2J,E,k − ψWJ,E,k + gHE,k,FWgE,k,F

]
⪰ 0. (5.50b)

By using Lemma 2, letting hE,k,F = HH
B,E,k,FhI,E,k,X gE,k,F = GH

J,E,k,FgJ,E,k,X , and

introducing the variable η∗4, the problem P5.2.10 can be transformed as P5.2.11. The problem

P5.2.11 is a convex problem with respect to W or (tW,U , tW,E,k) when other variables are

fixed and can be solved by using a standard convex optimization tool. After obtaining

W, w can be given by eigenvalue decomposition if rank(W) = 1; otherwise, the Gaussian

randomization can be used for recovering the approximate w. With the optimal W, one

has

t∗W,U = (Tr(GW,UW) + σ2)−1. (5.51)

And tW,E,k can obtained by solving the following problems.

max
tW,E,k

−tW,E,k( min
∆gJ,E,k,X

gHI,E,k,XGJ,E,k,FWGH
J,E,k,FgI,E,k,X

+ max
∆hI,E,k,X

hHI,E,k,XHB,E,k,FWHH
B,E,k,FhI,E,k,X + σ2) + ln tW,E,k + 1.

(5.52)

Let HB,E,k,FWHH
B,E,k,F = WB,k,X , and GJ,E,k,FWGH

J,E,k,F = WJ,k,X . The solution for

tW,E,k can be given as

t∗W,E,k = (ΓW,1,k + ΓW,2,k + σ2)−1, (5.53)
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Table 5.2: Alternating Algorithm for Solving P5.2.1

Algorithm 5.2: Alternating Algorithm for Solving P5.2.1

1) Input settings:
δ, Rth, P1,max, P2,max > 0, and T .

2) Initialization:
tU (0), tE,k(0), tW,U (0), tW,E,K(0), w(0), η(0);

3) Optimization:
⊵⊵⊵ for τ2=1:T

solve P5.2.2 with (w∗(τ2 − 1));
obtain the solution f∗1 (τ2), f

∗
2 (τ2);

solve P5.2.8 with (f∗1 (τ2), f
∗
2 (τ2));

obtain the solution w∗(τ2)
calculate energy efficiency η(τ2);
if ∥η(τ2)− η(τ2 − 1)∥ ≤ δ;

the optimal energy efficiency η∗ is obtained;
end

⊵⊵⊵ end
4) Output:

{f∗1 , f∗2 ,w∗} and energy efficiency η∗.

ΓW,1,k and ΓW,2,k are respectively given as

ΓW,1,k = tr[WB,k,X(hI,E,k,Xh
H
I,E,k,X + ξ2I,E,kI+ 2ξI,E,k

√√√√h
H
I,E,k,XWB,k,XhI,E,k,X

tr(WB,k,X)
I)],

(5.54)

and

ΓW,2,k = tr[WJ,k,X(gI,E,k,Xg
H
I,E,k,X + ξ2J,E,kI− 2ξJ,E,k

√
gHI,E,k,XWJ,k,XgI,E,k,X

tr(WJ,k,X)
I)].

(5.55)

The overall optimization algorithm for solving P5.2.1 is summarized in Algorithm 5.2, where

δ is the threshold and T is the maximum number of iterations.

5.5 Simulation Results
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In this section, simulation results are provided to verify the proposed algorithms. We

consider a three-dimensional Cartesian coordinate system. The simulation settings are

based on the work in [18], [93]. The locations of the base station, the Jammer, the IRS,

and the legitimate user are respectively set as (5, 0, 20), (5, 0, 15), (0, 100, 2), (3, 100, 0) and

the locations of 5 different Eves are set as (2, 105, 0), (2, 102.5, 0), (2, 100, 0), (2, 97.5, 0),

(2, 95, 0), respectively [93]. The channels are generated by the model hi,j =
√
G0d

−ci,j
i,j gi,j ,

where G0 = −30 dB is the path loss at the reference point. di,j , ci,j and gi,j denote the

distance, path loss exponent, and fading between i and j, respectively, where i ∈ {B, J, I}

and j ∈ {U, (E, k)} [102]. The path loss exponents are set as cB,U = cB,E,k = cJ,U =

cJ,E,k = 5, cB,J = cG,J = 3.5, cJ,U = 2, and cJ,E,k = 3. We consider that the vertical

location of the IRS is higher than those of the user and Eves. In this case, a less scattered

environment is expected and one has cB,I ≤ cB,i, cJ,I ≤ cJ,i, i ∈ {B, (E, k)}. For the

path loss exponents between IRS and the receivers, since IRS is deployed to support the

legitimate user, it is assumed that the path loss between IRS and user is smaller than that

of Eves, one has cI,U ≤ cI,E,k. The bandwidth B is normalized to 1. The other parameters

are set as ξI,E,k = ξJ,E,k = 10−4, P1,max = P2,max = Pmax, σ
2 = −105 dBm, ζ = 1,

PBS = PG = 23 dBm, PIRS = 20 dBm, and δ = 10−7.

Our proposed scheme for the perfect CSI model is marked as ‘Efficiency-IRS’. The

proposed scheme for the imperfect CSI model is marked as ‘Robust-IRS’. We consider five

cases as benchmarks to compare with our proposed method. The first benchmark optimizes

the transmit rate, which is marked as ‘Rate-IRS’. The second benchmark minimizes the

transmit power, which is marked as ‘Power-IRS’. The third benchmark without IRS is

marked as ‘Efficiency-NoIRS’. The fourth benchmark is the method that has IRS but no

phase adjustment, which is marked as ‘Efficiency-NoAngle’. The fifth benchmark is the

method that is based on the maximum ratio transmission (MRT) method for beamforming

design under perfect CSI case [103] and is marked ‘MRT-IRS’.

Fig. 5.2 shows the energy efficiency versus the maximum transmit power achieved by

different designs. The minimum secrecy rate threshold is set as Rth = 0.5 Bits/Hz/s. It
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Fig. 5.2: Energy efficiency versus the maximum transmit power.

is observed that the energy efficiency achieved by the proposed method with the perfect

CSI is the best among all the schemes. This indicates that our proposed IRS assisted

cooperative jamming scheme is efficient in improving energy efficiency and achieving secure

communications.

The system energy efficiency of the proposed method under the imperfect CSI condi-

tion is smaller than those achieved with the ‘Efficiency-IRS’ method, ‘MRT-IRS’ method,

‘Efficiency-Noangle’ method, and ‘Rate-IRS’ method at the beginning. This is because

even without the phase optimization, IRS can help to increase the energy efficiency with

the perfect CSI. Under the imperfect CSI, the energy efficiency degrades compared to that

achieved under the perfect CSI case due to the CSI uncertainty. However, compared with

the method without IRS, the ‘Robust-IRS’ method can still achieve a higher energy effi-

ciency. This further indicates that the application of IRS is effective to improve energy

efficiency even under the imperfect CSI.

It is worth noting that the system efficiencies obtained by the proposed method, the

benchmark ‘Efficiency-NoIRS’, and ‘Efficiency-NoAngle’ all increase first with Pmax and
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Fig. 5.3: Secrecy rate versus the maximum transmit power.

finally converge. For these methods, when the available power is limited, the increase of

the secrecy rate is beneficial for the system to obtain a higher energy efficiency with only

a slightly more power consumption. However, when the power availability is sufficient,

e.g., Pmax is larger than 23 dBm in this setting, further increase of the secrecy rate causes

repaid elevation of the energy consumption, which leads to a decrease in energy efficiency.

Similarly, the energy efficiency of the ‘Rate-IRS’ method first increases with the transmit

power and then gradually decreases. The reason is that this method aims to maximize the

secrecy rate without the constraint on the power consumption. Thus the study shows that

there is a tradeoff between the energy efficiency and the secrecy rate. The energy efficiency

of the ‘Power-IRS’ method first slightly decreases and then keeps at a low level. The reason

is that this method aims to minimize power consumption, and thus it achieves the minimum

secrecy rate Rth to save energy. In this case, both the energy efficiency and secrecy rate are

relatively low. The energy efficiency of the ‘MRT-IRS’ method keeps increasing with Pmax

until reaching the highest efficiency, which is lower than that obtained with ‘Efficiency-IRS’

method. This validates the superiority of the proposed design.
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Fig. 5.3 shows the achievable secrecy rate versus the maximum available transmits

power Pmax. The secrecy rate obtained by the proposed scheme is comparable with the

‘Rate-IRS’ scheme when Pmax is smaller than 23 dBm. When Pmax is larger than 23 dBm,

the ‘Rate-IRS’ method continues to use all the available energy to increase the achievable

secrecy rate. The ‘MRT-IRS’ method shows a similar trend with the ‘Efficiency-IRS’ method

but achieves a lower rate at the optimal level, which validates the observation in Fig. 5.2.

However, the proposed scheme maintains the secrecy rate at a stable level in order to achieve

the maximum energy efficiency. Similar trends can also be observed from the ‘Robust-IRS’

method, ‘Efficiency-NoIRS’ method, and ‘Efficiency-NoAngle’ method. The secrecy rate

achieved by the ‘Power-IRS’ method first decreases and then stabilizes at the lowest level in

order to save energy. The achievable secrecy rate of ‘Robust-IRS’ stabilizes at a lower level

than other methods because based on the estimated channel quality, this algorithm needs

to decrease the transmission rate to achieve the optimal energy efficiency under this setting.

The curves in Fig. 5.3 indicate that with the aided IRS, our proposed method with the

perfect CSI can achieve a higher secrecy rate and obtain the maximum energy efficiency.

Fig. 5.4 presents the power consumption for different methods versus Pmax. The results

of all the methods in Fig. 5.4 are consistent with what have been shown in Fig. 5.2 and

Fig. 5.3. It is worth noting that the power consumption by the proposed method with the

perfect CSI and imperfect CSI are almost the same and both are quite low. This indicates

that even with channel estimation errors, the ‘Robust-IRS’ method can still use less energy

to achieve a higher rate, which demonstrates the advantage of the exploitation of IRS in

improving energy efficiency.

Fig. 5.5 shows the energy efficiency versus the minimum secrecy rate threshold Rth.

The maximum available transmit power is set to Pmax = 36 dBm. The energy efficiency

achieved by the proposed method is the best among all the schemes. This indicates that

the IRS assisted cooperative jamming can help guarantee the secrecy rate requirement and

achieve the maximum energy efficiency. The energy efficiency of the proposed method,

and the ‘Efficiency-NoAngle’ method initially maintain at a stable level and then decreases
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Fig. 5.4: Power consumption versus the maximum transmit power.

with the increase of Rth. When the minimum secrecy requirement is low, a higher rate can

help the system to obtain a higher energy efficiency. However, when Rth is larger than the

optimal rate, the system has to consume excessive energy to increase the secrecy rate in

order to meet the minimum secrecy rate constraint, which causes the decrease of the energy

efficiency.

In Fig. 5.5, the curves of the ‘Efficiency-NoIRS’ method, the ‘Robust-IRS’ method,

the ‘MRT-IRS’ method, and the ‘Efficiency-NoAngle’ method vanish when Rth is larger

than 1.5 Bits/Hz/s, 2 Bits/Hz/s, 2.5 Bits/Hz/s, and 3 Bits/Hz/s, respectively. The reason

is that there is no feasible solution that can meet a higher Rth in those regions even with

the maximum available transmit power. Moreover, the energy efficiency of the ‘Power-IRS’

method first increases and the curve starts to decrease when Rth is larger than 3 Bits/Hz/s,

When the secrecy rate is smaller than 3 Bits/Hz/s, the increase of the secrecy rate can bring

more performance gains (say rate gain) than the energy consumption. Thus, it results in

the increase of the system energy efficiency. However, when the secrecy rate becomes larger

and larger, the power cost for increasing the secrecy rate goes higher than the benefits that
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it brings to the system, which causes a lower energy efficiency. This also indicates that

there is a tradeoff between energy efficiency and the secrecy rate. The energy efficiency of

‘Rate-IRS’ stays at a constant level. This can be explained by the fact that the system

uses all the available power to maximize the secrecy rate without considering the achievable

energy efficiency. Thus, the curve does not change with the increase of Rth.

0 0.5 1 1.5 2 2.5 3 3.5 4

R
th

 (Bits/Hz/s)

0

0.5

1

1.5

2

2.5

3

3.5

4

E
n
e
rg

y
 e

ff
ic

ie
n
c
y
 (

B
it
s
/H

z
/J

o
u
le

)

Efficency-IRS

Robust-IRS

Rate-IRS

Power-IRS

Efficency-NoIRS

Efficency-NoAngle

MRT-IRS

Fig. 5.5: Energy efficiency versus the secrecy rate threshold.

A comparison of the achievable secrecy rate versus the rate threshold Rth is presented

in Fig. 5.6. The secrecy rates obtained by the proposed method, the ‘Efficiency-NoIRS’

method, and the ‘Efficiency-NoAngle’ method are first maintained at the stable level to

guarantee the maximum energy efficiency. After Rth is larger than the optimal rate, the

secrecy rate constraint enforces a linear increase of the rate with Rth. Similar to the reason

for Fig. 5.5, the missing points are caused by lack of feasible solutions for the two benchmark

schemes in certain Rth regions. With the assistance of the IRS, the system can use a

smaller transmit power to achieve a higher secrecy rate. Additionally, the secrecy rate of

the ‘Power-IRS’ method increases with the Rth linearly, which also verifies the observation
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Fig. 5.6: Achievable secrecy rate versus the secrecy rate threshold.

in Fig. 5.5. For the ’Robust-IRS method, the system efficiency and secrecy rate are both

higher than those of the ‘Efficiency-NoIRS’ method and the ‘Efficiency-NoAngle’ method

under this setting, which indicates that even with imperfect CSI, the proposed method can

still achieve a better performance than the method without IRS under perfect CSI. The

secrecy rate achieved by the ‘Rate-IRS’ method is the largest among all the methods and

remains constant.

Fig. 5.7 shows the energy efficiency versus the relative distance between the user and

IRS. The curves for all the methods with IRS decrease with the increase of the distance.

This is because the increase of the distance results in the increase of the path loss and

the reduction of the power gain from the reflecting path through the IRS. Therefore, the

achievable secure rate and energy efficiency both are decreased. It is also seen that the

‘Efficiency-IRS’ method still has the highest performance among all the methods, which

validates the superiority of our proposed design.

Fig. 5.8 shows the achievable secure rate versus the relative distance. The trend is

consistent with that shown in Fig. 5.7. It is worth noting that although the secrecy rate of
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Fig. 5.7: Energy efficiency versus the relative distance of UE-IRS.

the ‘Robust-IRS’ method is lower than that obtained with ‘Efficiency-NoIRS’ method due

to the uncertainty under the imperfect CSI, the energy efficiency of the ‘Robust-IRS’ is still

larger than that achieved with the ‘Efficiency-NoIRS’ method. This further demonstrates

the efficiency of the proposed robust design.

Fig. 5.9 shows energy efficiency versus the number of reflecting elements on the IRS. It

is seen that the higher the number of the reflecting elements on the IRS, the better the energy

efficiency obtained in the IRS- assisted network. The reason is that a better performance

can be achieved by employing a higher number of reflecting elements to enhance the desired

signals for the legitimate user. The increasing gain of the proposed method is higher than

those obtained with other benchmarks, which demonstrates that the proposed scheme can

effectively exploit the IRS to assist the secure transmission.

Fig. 5.10 shows the impact of the number of IRS elements on the achievable secure

rate. It can be observed that both the ‘Rate-IRS’ method and the ‘Efficiency-IRS’ method

achieve evident improvement on the secure rate. Compared with Fig. 5.9, it is worth noting

that energy efficiency of the ‘Rate-IRS’ method is also increased. The reason is that the
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Fig. 5.8: Secrecy rate versus the relative distance of UE-IRS.

diversity gain can be achieved by increasing the number of the reflecting elements.

5.6 Chapter Conclusions

In this chapter, an IRS-assisted MISO wireless communication network was considered

with the independently cooperative jamming in order to achieve secure communications.

The energy efficiency was maximized by jointly optimizing the beamforming, jamming pre-

code vectors, and IRS phase shift matrix under both perfect and imperfect CSI conditions.

Two alternating algorithms were proposed to solve the challenging non-convex fractional

optimization problems. It was shown that our proposed method outperforms other schemes

in terms of energy efficiency. Although there is a tradeoff between the secrecy rate and

energy efficiency, the application of IRS can effectively improve the energy efficiency even

under the imperfect CSI case. The proposed alternating algorithm can be extended to the

multi-IRS multi-UE MIMO communication network and the research will be done in our

future works.
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Fig. 5.9: Energy efficiency versus the number of elements on IRS.
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CHAPTER 6

Energy-Efficient Design for IRS-Assisted MEC Networks with NOMA

6.1 Introduction

In the last chapter, we look at how the IRS can help the wireless network achieve a

higher EE. Considering the NOMA-assisted MEC networks in previous chapters, combining

IRS into this framework is imperative. However, there are new challenges that need to be

overcome before this method can be successfully implemented.

The following studies have tested the efficacy of using IRS with NOMA. In [104], an

IRS-assisted uplink NOMA system was considered to maximize the sum rate of all the

users under the individual power constraint. The considered problem requires a joint power

control at the users and beamforming design at the IRS, and an SDR-based solution has

been developed. In [105], the problem of joint user association, subchannel assignment,

power allocation, phase shifts design, and decoding order determination was formulated for

maximizing the sum-rate for an IRS-assisted NOMA network. In [106], an EE algorithm

was proposed to yield a tradeoff between the rate maximization and power minimization for

an IRS-assisted NOMA network. The authors aimed to maximize the system EE by jointly

optimizing the transmit beamforming and the reflecting beamforming. It was shown that

NOMA can improve EE compared to OMA.

Furthermore, recently application of IRS into NOMA-based MEC networks has been

studied. In [107], the authors investigated an IRS-aided MEC system with NOMA. By

jointly optimizing the passive phase shifters, the size of transmission data, transmission

rate, power, and time, as well as the decoding order, they aimed to minimize the sum energy

consumption. A block coordinate descent method was developed to alternately optimize

two separated subproblems. In [108], an IRS-aided MEC system was considered and a

flexible time-sharing NOMA scheme was proposed to allow users to divide their data into
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two parts that are transmitted via NOMA and TDMA respectively. By designing the IRS

passive reflection and users’ computation-offloading scheduling, the delay was minimized.

However, neither [107] nor [108] considered the EE performance of IRS-assisted MEC

networks with NOMA, which is very important for system design to obtain the optimal

trade-off between achievable rate and consumed power. Motivated by the above-mentioned

observations, in this paper, the EE maximization problem is studied in an IRS-assisted

MEC network with NOMA. To the authors’ best knowledge, this is the first work that

focuses on EE performance for applying both NOMA and IRS in the MEC network. The

major contributions of this paper are summarized as follows.

We investigate the joint design of the receiver beamforming, offloading power, phase

shift matrix, and local computing frequency to maximize the EE in an IRS-assisted MEC

network with NOMA. The problem is challenging to solve due to its non-convexity fractional

objective function and coupling of the beamforming vector with the IRS phase shift ma-

trix. An alternating optimization algorithm is proposed to solve the non-convex fractional

problem by using semidefinite programming relaxation (SDR). The simulation results show

that the proposed method can achieve the highest EE among all the benchmarks.

6.2 System Model

As shown in Fig. 6.1, an IRS-assisted MEC system is considered. There are K single-

antenna user equipments (UEs) in the system, which can do both local computing and data

offloading. The access point (AP) with an MEC server is equipped with N antennas and

the IRS has M reflecting elements.

6.2.1 Offloading Model

The baseband equivalent channel from UE k to IRS, IRS to AP, and UE k to AP

are denoted as hI,U,k ∈ C1×M , HB,I,k ∈ CM×N , and hB,U,k ∈ C1×N , respectively. In this

paper, IRS adjusts its elements to maximize the combined incident signal from each UE to

the AP. The diagonal phase-shift matrix can be denoted as Θ = diag(exp(jθ1), exp(jθ2),
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Fig. 6.1: An IRS-aided MEC system with NOMA.

· · · , exp(jθM )), wherein its main diagonal, θm ∈ [0, 2π), denotes the phase shift on the

combined incident signal by its mth element, m = 1, 2, ...,M [95].

The transmitted signal from UE k is given as
√
pksk, where

√
pk denotes the transmit

power and sk denotes the independent information. mB,k ∈ CN×1 denotes the receive beam

vectors with unit norm, i.e., ∥mB,k∥2 = 1 [104]. Therefore, the signal received at AP can

be given as

yB,U =
K∑
k=1

(hHB,U,k + hHI,U,kΘHB,I,k)mB,k
√
pksk + nB,U,k, (6.1)

where nB,U,k ∼ CN (0, σ2) is the complex additive white Gaussian noise (AWGN) [106], [109].

NOMA is used to improve SE and mitigate the interference between different UEs. By

exploiting the SIC techniques, the received signal at AP is sequentially decoded and the

UE with the best channel conditions is firstly decoded. The channel of each UE includes a

direct link and a reflect link. Since the reflect link depends on the unknown parameters Θ,

the effective channels cannot be used to order the users at the receiver side. Similar to [104],

we simply remove unknown reflect matrix by considering it as an identity matrix I. UEs are

then sorted based on this channel gain |(hHB,U,k+hHI,U,kIHB,I,k)|. Without loss of generality,
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we assume that UEs are sorted in an increasing order, i.e., |(hHB,U,1 + hHI,U,1IHB,I,1)| ≤

|(hHB,U,2+hHI,U,2IHB,I,2)| ≤ · · · ≤ |(hHB,U,K +hHI,U,KIHB,I,K)|. When decoding the signal for

UE k, the signals from i = 1, 2, · · · , k − 1 are treated as interference. Thus, the signal to

interference plus noise ratio (SINR) for UE k is expressed as

γB,k =
pk|(hHB,U,k + hHI,U,kΘHB,I,k)mB,k|2∑k−1

i=1 pi|(hHB,U,i + hHI,U,iΘHB,I,i)mB,i|2 + σ2
. (6.2)

The achievable offloading rate is

Roffk = B log2(1 + γB,k). (6.3)

6.2.2 Local Processing Model

Let Ck be the number of computation cycles required to process one bit of data for

UE k locally. UE can compute and transmit simultaneously. Let fk denote the computing

frequency of the processor (cycles/second) [29]. Therefore, the local computing rate can be

given as

Rlock =
fk
Ck
. (6.4)

The power consumption of local computing is modeled as a function of processor speed fk.

It can be given as plock = ϵf3k , where ϵ is effective capacitance coefficient of processor chip.

6.2.3 Energy Efficiency

The energy consumed by each UE consists of transmit power, local computing power,

and circuit power consumption. Thus, the total power consumed by each UE is given as

P totk = pk + ϵf3k + P cnk , (6.5)
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where P cnk denotes the constant circuit power consumed for signal processing and it is

assumed to be the same for all UEs. The total achievable rate for each UE is

Rtotk = Roffk +Rlock . (6.6)

According to [95], EE is defined as

η =

∑K
k=1R

tot
k∑K

k=1 P
tot
k

. (6.7)

In order to maximize the EE, the local CPU frequency, offloading power, decoding vectors,

and the phase shift matrix need to be jointly optimized.

6.3 Resource Optimization

In this section, the EE maximization problem is studied by jointly optimizing the local

CPU frequency, offloading power, decoding vectors, and phase shift matrix. An alternating

algorithm is further proposed to tackle the formulated problem.

6.3.1 Problem Formulation

The EE maximization problem is formulated as

P6.1 : max
pk,fk,mB,k,Θ

η

s.t. P totk ≤ P thk , (6.8a)

Rtotk ≥ Rth, (6.8b)

| exp(jθm)| = 1, (6.8c)

∥mB,k∥2 = 1, (6.8d)

where Rth is the minimum required rate threshold. P thk is the maximum available power of

each UE. It is evident that problem P6.1 is non-convex due to the fractional structure of

the objective function and the non-convex constraints. In order to tackle it, an alternating
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algorithm is proposed.

By introducing wH = [w1, w2, · · · , wM ], one has hHI,U,kΘHB,I,k = wHHB,k, where

wm = exp(jθm), HB,k = diag(hHI,U,k)HB,I,k. Thus, the SINR of UE k is given as γB,k =

a0pk|wHHB,kmB,k|2

a0
∑k−1

i=1 pi|w
HHB,imB,i|2+1

, where a0 = 1/σ2, HB,k =

 HB,k

hB,U,k

, wH = exp(jw)[wH , 1],

and w is an arbitrary phase rotation. The objective of the optimization problem can be

transformed into

B
ln 2(ln(1 +

∑K
k=1 a0pk|wHHB,kmB,k|2)) +

∑K
k=1R

loc
k∑K

k=1 P
tot
k

. (6.9)

To tackle the complexity introduced by the logarithmic function of Roffk in (6.8b), Lemma

1 is introduced. First, we have

Roffk =
B

ln 2
[ln(a0

k∑
i=1

pi|wHHB,imB,i|2 + 1)− ln(a0

k−1∑
i=1

pi|wHHB,imB,i|2 + 1)]. (6.10)

Lemma 6.1: By introducing the function ϕ(t) = −tx+ ln t+ 1 for any x > 0, one has

− lnx = max
t>0

ϕ(t). (6.11)

The optimal solution can be achieved at t = 1/x. By setting x = a0
k−1∑
i=1

pi|wHHB,imB,i|2+1,

and t = tB,k, one has

Roffk =
B

ln 2
max
tB,k>0

ϕB,k(pk, fk,mB,k,w, tB,k)

=
B

ln 2
[ln(a0

k∑
i=1

pi|wHHB,imB,i|2 + 1) + ln(tB,k) + 1− tB,k(a0

k−1∑
i=1

pi|wHHB,imB,i|2 + 1)].

(6.12)
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By further introducing a variable η1 to deal the fractional structure of (6.9), P1 can be

transformed into

P6.2 : max
pk,fk,mB,k,tB,k,w

[
K∑
k=1

Rlock +
B

ln 2
(ln(1 +

K∑
k=1

a0pk|wHHB,kmB,k|2))]− η1

K∑
k=1

P totk

s.t. (6.8a), (6.8c), (6.8d),

B

ln 2
ϕB,k(pk, fk,mB,k,w, tB,k) +Rlock ≥ Rth. (6.13a)

P6.2 is still non-convex due to the coupling of variables. An alternating algorithm is

proposed. To be specific, pk and fk are first optimized with a given mB,k, and w. mB,k

can then be optimized with the obtained pk, fk, and w. Further w can be optimized with

the obtained pk, fk, and mB,k. This process iteratively continues until convergence.

6.3.2 CPU Frequency and Offloading Power Optimization

With the given mB,k and w, let AB,k = a0|wHHB,kmB,k|2, the problem can be trans-

formed into

P6.3 : max
pk,fk

B

ln 2
(ln(

K∑
k=1

pkAB,k + 1)) +

K∑
k=1

fk
Ck

− η1

K∑
k=1

(ζpk + ϵf3k + P cnk )

s.t. pk + ϵf3k + P cnk ≤ P thk , (6.14a)

B

ln 2
ϕB,k(pk, fk) +

fk
Ck

≥ Rth. (6.14b)

Problem P6.3 is convex with respect to fk and pk, therefore, it can be solved by using a

standard convex optimization tool.
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6.3.3 Optimizing the Receiving Beamforming

In this section, we solve the problem P6.2 to achieve the receive beamforming vector

mB,k for a given w, pk, and fk. Let h
H
B,k = wHHB,k, P6.3 can be transformed into

P6.4 : max
mB,k

ln 2

B
ln(a0

K∑
k=1

pk|h
H
B,kmB,k|2 + 1) +

K∑
k=1

Rlock − η1

K∑
k=1

P totk

s.t.
B

ln 2
ln(a0

k∑
i=1

pi|h
H
B,kmB,i|2 + 1) + ln(tB,k) + 1

− tB,k(a0

k−1∑
i=1

pi|h
H
B,imB,i|2 + 1) +Rlock ≥ Rth,

(6.15a)

∥mB,k∥2 = 1. (6.15b)

Let |hHB,kmB,k|2 = Tr(H̃B,kmB,km
H
B,k). By defining H̃B,k = hB,kh

H
B,k, MB,k = mB,km

H
B,k,

one has MB,k ⪰ 0 and rank(MB,k) = 1. The rank-1 constraint makes the problem difficult

to solve. Thus, we apply the SDR method to relax the constraints [110]. P6.4 is then

expressed as

P6.5 : max
MB,k

[
B

ln 2
ln(a0

K∑
k=1

pkTr(H̃B,kMB,k) + 1) +
K∑

k=1

Rloc
k ]− η1

K∑
k=1

Ptot
k

s.t.
B

ln 2
ln(a0

k∑
i=1

piTr(H̃B,iMB,i) + 1) + ln(tB,k) + 1

− tB,k(a0

k−1∑
i=1

piTr(H̃B,iMB,i) + 1) + Rloc
k ≥ Rth,

(6.16a)

Tr(MB,k) = 1. (6.16b)

P6.5 is convex and can be solved by using a standard convex optimization tool [93]. After

MB,k is obtained, if rank(MB,k) = 1, mB,k can be obtained from MB,k = mB,km
H
B,k by

performing the eigenvalue decomposition. Otherwise, the Gaussian randomization can be

used for recovering mB,k [93].
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6.3.4 Optimizing the IRS Reflecting Shifts w

After obtaining the beamforming vectors mB,k, by setting hW,B,k = HB,kmB,k, prob-

lem P6.2 can be transformed into

P6.6 : max
w

B

ln 2
ln(a0

K∑
k=1

pk(w
HhW,B,k) + 1) +

K∑
k=1

fk
Ck

− η1

K∑
k=1

P totk

s.t. |wm| = 1, m = 1, 2, ...,M, (6.17a)

ln(a0

k∑
i=1

pi(w
HhW,B,i) + 1) + ln(tB,k) + 1− tB,k(a0

k−1∑
i=1

pi(w
HhW,B,i) + 1) +

fk
Ck

≥ Rth.

(6.17b)

Similar to the previous section, let W = wwH , HW,B,k = hW,B,kh
H
W,B,k. By applying the

SDR method, we have

P6.7 : max
W

B

ln 2
ln(a0

K∑
k=1

pkTr(HW,B,kW) + 1) +

K∑
k=1

fk
Ck

− η1

K∑
k=1

P totk

s.t. W ⪰ 0,Wmm = 1, m = 1, 2, ...,M, (6.18a)

ln(a0

k∑
i=1

piTr(HW,B,kW) + 1) + ln(tB,k) + 1

− tB,k(a0

k−1∑
i=1

piTr(HW,B,kW) + 1) +
fk
Ck

≥ Rth.

(6.18b)

The problem P6.7 is a convex problem and can be solved by using a standard convex

optimization tool. After obtaining W, w can be given by eigenvalue decomposition if

rank(W) = 1; otherwise, the Gaussian randomization can be used for recovering the ap-

proximatew [93]. The reflection coefficients can be given by wm = ∠( wm
wM+1

), m = 1, 2, ..,M .

The overall optimization algorithm is summarized in Algorithm 6.1, where δ is the threshold

and T is the maximum number of iterations.

6.4 Simulation Results

In this section, simulation results are provided to evaluate the performance of the
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Table 6.1: Alternating Algorithm for Solving P6.1

Algorithm 6.1: Alternating Algorithm for Solving P6.1

1) Input settings:
δ, Rth, P

th
k > 0, and T .

2) Initialization:
tB,k(0), w(0),mB,k(0), and η1(0);

3) Optimization:
⊵⊵⊵ for τ1=1:T

solve P6.4 with w∗(τ1 − 1),m∗
B,k(τ1 − 1);

obtain the solution p∗k(τ1), f
∗
k (τ1);

solve P6.5 with p∗k(τ1), f
∗
k (τ1), and w∗(τ1 − 1);

obtain the solution m∗
B,k(τ1);

solve P6.7 with p∗k(τ1), f
∗
k (τ1), and m∗

B,k(τ1);

obtain the solution w∗(τ1);
calculate EE η(τ1) and update tB,k(τ1) and η1(τ1);

if |η(τ1)−η(τ1−1)
η(τ1)

| ≤ δ;

the optimal EE η∗ is obtained;
end

⊵⊵⊵ end
4) Output:

p∗k, f
∗
k , m

∗
B,k, and w∗ and EE η∗.
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proposed algorithms. We consider a three-dimensional Cartesian coordinate system. The

simulation settings are based on those used in [18], [93]. We consider a 2-UE case and it

can be readily extend to multiple UE cases. The locations of the MEC, the IRS, UE1, and

UE2 are set as (5, 0, 20), (0, 50, 2), (5, 75, 5) and (5, 50, 10), respectively [93]. The channels

are generated by hi,j =
√
G0d

−ci,j
i,j gi,j , where G0 = −30 dB is the path loss at the reference

point. di,j , ci,j and gi,j denote the distance, path loss exponent, and fading between i and j,

respectively, where i ∈ {B, I} and j ∈ {U, k}. The path loss exponents are set as cB,U,k = 5,

cB,I = 3.5, and cI,U,k = 2. The bandwidth B is set to 1 Mhz. Other parameters are set as

σ2 = −105 dBm, P thk = 31 dBm, P cnk = 23 dBm, Ck = 103 cycles/bit, and ϵ = 10−28.

The proposed scheme is marked as ‘Efficiency-IRS’. We consider three other cases as

benchmarks to compare with the proposed method. The first benchmark, marked as ‘OMA-

IRS’, uses FDMA with equally allocated bandwidth to all the users. The second benchmark,

marked as ‘OnlyOff-IRS’, has no local computing and all the tasks are offloaded. The third

benchmark, marked as ‘Efficiency-NoIRS”, aims to investigate the performance without

IRS.
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Fig. 6.2: Energy efficiency versus the minimum rate threshold.
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Fig. 6.2 shows EE versus the minimum rate threshold Rth. The EE achieved by the

proposed method is the best among all the schemes. This indicates that the IRS assisted

MEC with NOMA can help improve the system rate and achieve high EE. With the increase

of Rth, all the curves are decreasing. The system has to consume excessive energy to increase

the rate in order to meet the minimum rate constraint, which decreases EE.
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Fig. 6.3: Achievable rate versus the minimum rate threshold.

A comparison of the system rate versus the rate threshold Rth is presented in Fig. 6.3.

All the curves increase with Rth in order to meet the service requirement, which verifies

the observation in Fig. 6.2. The system rates obtained by the proposed method and the

‘OnlyOff-IRS’ method are higher than those of the other two methods, which indicates that

combining IRS with NOMA can significantly help the system to achieve a higher rate. It

is worth noting that even though the ‘OnlyOff-IRS’ method can achieve the highest rate

when Rth is low, its efficiency is lower than the proposed method. This indicates that the

overall efficiency performance degrades when there is no local computing.

Fig. 6.4 presents the power consumption versus Rth for different methods. The results



126

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
th

 (Mb/s)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

P
o
w

e
r 

c
o
n
s
u
m

p
ti
o
n
 (

W
a
tt
)

Efficiency-IRS

OMA-IRS

Efficiency-NoIRS

OnlyOff-IRS

Fig. 6.4: Power consumption versus the minimum rate threshold.

of all the methods in Fig. 6.4 are consistent with what are shown in Fig. 6.2 and Fig.

6.3. It is worth noting that the power consumption by the proposed method is quite low.

So UEs can use less energy to achieve a higher rate, which demonstrates the advantage of

combining NOMA and IRS to MEC network in improving EE.

Fig. 6.5 shows EE versus the distance between UEs and IRS. The distance is the relative

increased amount compared with UEs’ original position. The curves for all the methods with

IRS decrease with the increase of the distance except ‘Efficiency-NoIRS’. This is because

the increase of the distance results in the increase of the path loss and the reduction of the

power gain from the reflecting path through the IRS. Therefore, the achievable rate and

EE are both decreased. It can also be seen that the ‘Efficiency-IRS’ method still has the

highest performance among all the methods, which validates the superiority of the proposed

design.

In Fig. 6.6, the coverage of proposed methods based on different Rth setting are

investigated. It can be observed from Fig. 6.6 that only several iterations are needed for

the proposed algorithms to converge, showing the computation efficiency of the proposed
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algorithm.

6.5 Chapter Conclusions

In this chapter, an IRS-assisted MEC network with NOMA was considered. EE was

maximized by jointly optimizing the offloading power, local computing frequency, beam-

forming vectors, and IRS phase shift matrix. An alternating algorithm was proposed to

solve the challenging non-convex fractional optimization problems. The numerical results

showed that our proposed method outperforms other benchmark schemes in terms of EE.

It was proved that NOMA and IRS could help the MEC network to achieve a higher rate

with a lower power. The convergence of the proposed algorithm was also verified.
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CHAPTER 7

Conclusions

7.1 Summary

In this thesis, we employed multiple techniques to improve the EE and PLS for IoT

networks under the MEC framework. We started from a NOMA-based MEC network. By

considering fairness between different users with respect to their overall rate, we developed

several optimization algorithms to find the optimal trade-off between users’ rate and the

corresponding consumed power for three different fairness indicators.

We then expanded this model to a more complicated dynamic setting. Considering

dynamic arrival traffic loads and environmental changes, we proposed a twin time scale

resource allocation approach to improve the system EE. LSTM was adopted to predict the

arrival tasks at the edge server-side, and a corresponding server coordination algorithm was

developed to optimize the power consumption and guarantee the QoS for each user. A

Lyapunov optimization theory-based algorithm was proposed in the short time slot to solve

the resource allocation problem.

We then further investigated PLS together with EE for this dynamic model and verified

that NOMA could help the system achieve a higher EE and PLS. Enlighted by the space

diversity brought by multiple antennas, we begin to investigate a MISO network’s perfor-

mance with IRS. We then formed a secure EE maximization problem which included IRS,

PLS, and FJ. Based on the channel state information, we developed two alternating ap-

proaches to optimize the beamform vector and phase shift matrix for the system. Finally,

we applied IRS to our MEC networks with NOMA and verified that IRS could further

improve the system EE.



130

7.2 Future Work

In our preliminary work, we have investigated the performance of the IRS-assisted MEC

network for the EE. However, the improvement of the PLS of the MEC system by combining

IRS with NOMA needs further research. Moreover, while considering multiple MEC servers

and multiple IRS for IoT networks, the server association and coordination will introduce

more challenges to the resource allocation optimization. Classical optimization theory may

not be able to deal with such complexity. Fortunately, machine learning provides a powerful

tool for researchers to dive deeply into those complex challenges. Therefore, in our future

work, we will keep exploring new approaches that can further improve the system EE and

PLS under more practical and complicated settings.
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