6 research outputs found

    From the Inside Out: A Literature Review on Possibilities of Mobile Emotion Measurement and Recognition

    Get PDF
    Information systems are becoming increasingly intelligent and emotion artificial intelligence is an important component for the future. Therefore, the measurement and recognition of emotions is necessary and crucial. This paper presents a state of the art in the research field of mobile emotion measurement and recognition. The aim of this structured literature analysis using the PRISMA statement is to collect and classify the relevant literature and to provide an overview of the current status of mobile emotion recording and its future trends. A total of 59 articles were identified in the relevant literature databases, which can be divided into four main categories of emotion measurement. There was an increase of publications over the years in all four categories, but with a particularly strong increase in the areas of optical and vital-data-based recording. Over time, both the speed as well as the accuracy of the measurement has improved considerably in all four categories

    Accuracy of heart rate variability estimated with reflective wrist-PPG in elderly vascular patients

    Get PDF
    Optical heart rate monitoring (OHR) with reflective wrist photoplethysmography is a technique mainly used in the wellness application domain for monitoring heart rate levels during exercise. In the absence of motion, OHR technique is also able to estimate individual beat‑to‑beat intervals relatively well and can therefore also be used, for example, in monitoring of cardiac arrhythmias, stress, or sleep quality through heart rate variability (HRV) analysis. HRV analysis has also potential in monitoring the recovery of patients, e.g. after a medical intervention. However, in order to detect subtle changes, the calculated HRV parameters should be sufficiently accurate and very few studies exist that asses the accuracy of OHR derived HRV in non‑healthy subjects. In this paper, we present a method to estimate beat‑to‑beat‑intervals (BBIs) from reflective wrist PPG signal and evaluated the accuracy of the proposed method in estimating BBIs in a cross‑sectional study with 29 hospitalized patients (mean age 70.6 years) in 24‑h recordings performed after peripheral vascular surgery or endovascular interventions. Finally, we evaluate the accuracy of more than 30 commonly used HRV parameters and find that the accuracy of certain metrics, for example SDNN and triangular index, shown in the literature to be associated with the deterioration of the status of the patients during recovery from surgical intervention, could be adequate for patient monitoring. On the other hand, the parameters more affected by the high‑frequency content of the HRV and especially the LF/HF‑ratio should be used with caution

    Photoplethysmography based psychological stress detection with pulse rate variability feature differences and elastic net

    No full text
    Detecting psychological stress in daily life is useful to stress management. However, existing stress-detection models with only heartbeat/pulse input are limited in prediction output granularity, and models with multiple prediction levels output usually require additional bio-signal other than heartbeat, which may increase the number of sensors and be wearable unfriendly. In this study, we took a novel approach of incremental pulse rate variability and elastic-net regression in predicting mental stress. Mental arithmetic task paradigm was used during the experiments. A total of 178 participants involved in the model building, and the model was verified with a group of 29 participants in the laboratory and 40 participants in a 14-day follow-up field test. The result showed significant median correlations between self-report and model-prediction stress levels (cross-validation: r=0.72 (p<0.0001), laboratory verification: r=0.70 (p<0.0001), field test r=0.56 (p<0.0001)) with fine granularity ratings of 0-7 float numbers. The correct prediction took 86%-91% of the testing samples with error standard deviation of 0.68-0.81 in the label space of 14. By simplifying the process of prediction with a perspective of stress difference and handling the collinearity among pulse rate variability features with elastic net, we successfully built a stress prediction model with only pulse rate variability input source, fine granularity output and portable friendly sensor

    Photoplethysmography based psychological stress detection with pulse rate variability feature differences and elastic net

    No full text
    Detecting psychological stress in daily life is useful to stress management. However, existing stress-detection models with only heartbeat/pulse input are limited in prediction output granularity, and models with multiple prediction levels output usually require additional bio-signal other than heartbeat, which may increase the number of sensors and be wearable unfriendly. In this study, we took a novel approach of incremental pulse rate variability and elastic-net regression in predicting mental stress. Mental arithmetic task paradigm was used during the experiments. A total of 178 participants involved in the model building, and the model was verified with a group of 29 participants in the laboratory and 40 participants in a 14-day follow-up field test. The result showed significant median correlations between self-report and model-prediction stress levels (cross-validation: r=0.72 (p<0.0001), laboratory verification: r=0.70 (p<0.0001), field test r=0.56 (p<0.0001)) with fine granularity ratings of 0-7 float numbers. The correct prediction took 86%-91% of the testing samples with error standard deviation of 0.68-0.81 in the label space of 14. By simplifying the process of prediction with a perspective of stress difference and handling the collinearity among pulse rate variability features with elastic net, we successfully built a stress prediction model with only pulse rate variability input source, fine granularity output and portable friendly sensor

    The 2023 wearable photoplethysmography roadmap

    Get PDF
    Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology
    corecore