34 research outputs found

    WDM/TDM PON bidirectional networks single-fiber/wavelength RSOA-based ONUs layer 1/2 optimization

    Get PDF
    This Thesis proposes the design and the optimization of a hybrid WDM/TDM PON at the L1 (PHY) and L2 (MAC) layers, in terms of minimum deployment cost and enhanced performance for Greenfield NGPON. The particular case of RSOA-based ONUs and ODN using a single-fibre/single-wavelength is deeply analysed. In this WDM/TDM PON relevant parameters are optimized. Special attention has been given at the main noise impairment in this type of networks: the Rayleigh Backscattering effect, which cannot be prevented. To understand its behaviour and mitigate its effects, a novel mathematical model for the Rayleigh Backscattering in burst mode transmission is presented for the first time, and it has been used to optimize the WDM/TDM RSOA based PON. Also, a cost-effective, simple design SCM WDM/TDM PON with rSOA-based ONU, was optimized and implemented. This prototype was successfully tested showing high performance, robustness, versatility and reliability. So, the system is able to give coverage up to 1280 users at 2.5 Gb/s / 1.25 Gb/s downstream/upstream, over 20 Km, and being compatible with the GPON ITU-T recommendation. This precedent has enabled the SARDANA network to extend the design, architecture and capabilities of a WDM/TDM PON for a long reach metro-access network (100 km). A proposal for an agile Transmission Convergence sub-layer is presented as another relevant contribution of this work. It is based on the optimization of the standards GPON and XG-PON (for compatibility), but applied to a long reach metro-access TDM/WDM PON rSOA-based network with higher client count. Finally, a proposal of physical implementation for the SARDANA layer 2 and possible configurations for SARDANA internetworking, with the metro network and core transport network, are presented

    Schemes for building an efficient all-optical virtual private network.

    Get PDF
    by Tam Scott Kin Lun.Thesis submitted in: October 2005.Thesis (M.Phil.)--Chinese University of Hong Kong, 2006.Includes bibliographical references (leaves 58-64).Abstracts in English and Chinese.Chapter 1. --- Introduction --- p.1Chapter 1.1. --- Optical Networks --- p.1Chapter 1.1.1. --- IP over Optical Networks --- p.1Chapter 1.1.2. --- Challenges in Optical Networks --- p.4Chapter 1.2. --- Virtual Private Networks (VPN) --- p.5Chapter 1.2.1. --- CE Based VPN --- p.6Chapter 1.2.2. --- Network Based VPN --- p.7Chapter 1.2.2.1. --- MPLS Layer 2 VPN --- p.8Chapter 1.2.2.2. --- MPLS Layer 3 VPN --- p.9Chapter 1.2.3. --- Optical VPN --- p.9Chapter 1.2.4. --- Challenges in VPN Technologies --- p.11Chapter 1.3. --- Objective of this Thesis --- p.11Chapter 1.4. --- Outline of this Thesis --- p.12Chapter 2. --- Architecture of an All-Optical VPN --- p.13Chapter 2.1. --- Introduction --- p.13Chapter 2.2. --- Networking Vendor Activities --- p.13Chapter 2.3. --- Service Provider Activities --- p.15Chapter 2.4. --- Standard Bodies Activities --- p.16Chapter 2.5. --- Requirements for All-Optical VPN --- p.17Chapter 2.6. --- Reconfigurability of an All-Optical VPN --- p.19Chapter 2.7. --- Switching Methods in All-Optical VPN --- p.20Chapter 2.8. --- Survivability of an All-Optical VPN --- p.23Chapter 3. --- Maximizing the Utilization Of A Survivable Multi-Ring WDM Network --- p.25Chapter 3.1. --- Introduction --- p.25Chapter 3.2. --- Background --- p.25Chapter 3.3. --- Method --- p.26Chapter 3.3.1. --- Effect on packet based services --- p.28Chapter 3.3.2. --- Effect on optical circuit based services --- p.28Chapter 3.4. --- Simulation results --- p.29Chapter 3.5. --- Chapter Summary --- p.36Chapter 4. --- Design of an All-Optical VPN Processing Engine --- p.37Chapter 4.1. --- Introduction --- p.37Chapter 4.2. --- Concepts of Optical Processors --- p.38Chapter 4.3. --- Design Principles of the All-Optical VPN Processing Engine --- p.40Chapter 4.3.1. --- Systolic System --- p.41Chapter 4.3.2. --- Design Considerations of an Optical Processing Cell --- p.42Chapter 4.3.2.1. --- Mach-Zehnder Structures --- p.43Chapter 4.3.2.2. --- Vertical Cavity Semiconductor Optical Amplifier --- p.43Chapter 4.3.2.3. --- The Optical Processing Cell --- p.44Chapter 4.3.3. --- All-Optical VPN Processing Engine --- p.47Chapter 4.4. --- Design Evaluation --- p.49Chapter 4.5. --- Application Example --- p.50Chapter 4.6. --- Chapter Summary --- p.54Chapter 5. --- Conclusion --- p.55Chapter 5.1. --- Summary of the Thesis --- p.55Chapter 5.2. --- Future Works --- p.56Chapter 6. --- References --- p.5

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Traffic engineering in dynamic optical networks

    Get PDF
    Traffic Engineering (TE) refers to all the techniques a Service Provider employs to improve the efficiency and reliability of network operations. In IP over Optical (IPO) networks, traffic coming from upper layers is carried over the logical topology defined by the set of established lightpaths. Within this framework then, TE techniques allow to optimize the configuration of optical resources with respect to an highly dynamic traffic demand. TE can be performed with two main methods: if the demand is known only in terms of an aggregated traffic matrix, the problem of automatically updating the configuration of an optical network to accommodate traffic changes is called Virtual Topology Reconfiguration (VTR). If instead the traffic demand is known in terms of data-level connection requests with sub-wavelength granularity, arriving dynamically from some source node to any destination node, the problem is called Dynamic Traffic Grooming (DTG). In this dissertation new VTR algorithms for load balancing in optical networks based on Local Search (LS) techniques are presented. The main advantage of using LS is the minimization of network disruption, since the reconfiguration involves only a small part of the network. A comparison between the proposed schemes and the optimal solutions found via an ILP solver shows calculation time savings for comparable results of network congestion. A similar load balancing technique has been applied to alleviate congestion in an MPLS network, based on the efficient rerouting of Label-Switched Paths (LSP) from the most congested links to allow a better usage of network resources. Many algorithms have been developed to deal with DTG in IPO networks, where most of the attention is focused on optimizing the physical resources utilization by considering specific constraints on the optical node architecture, while very few attention has been put so far on the Quality of Service (QoS) guarantees for the carried traffic. In this thesis a novel Traffic Engineering scheme is proposed to guarantee QoS from both the viewpoint of service differentiation and transmission quality. Another contribution in this thesis is a formal framework for the definition of dynamic grooming policies in IPO networks. The framework is then specialized for an overlay architecture, where the control plane of the IP and optical level are separated, and no information is shared between the two. A family of grooming policies based on constraints on the number of hops and on the bandwidth sharing degree at the IP level is defined, and its performance analyzed in both regular and irregular topologies. While most of the literature on DTG problem implicitly considers the grooming of low-speed connections onto optical channels using a TDM approach, the proposed grooming policies are evaluated here by considering a realistic traffic model which consider a Dynamic Statistical Multiplexing (DSM) approach, i.e. a single wavelength channel is shared between multiple IP elastic traffic flows

    Towards a cloud enabler : from an optical network resource provisioning system to a generalized architecture for dynamic infrastructure services provisioning

    Get PDF
    This work was developed during a period where most of the optical management and provisioning system where manual and proprietary. This work contributed to the evolution of the state of the art of optical networks with new architectures and advanced virtual infrastructure services. The evolution of optical networks, and internet globally, have been very promising during the last decade. The impact of mobile technology, grid, cloud computing, HDTV, augmented reality and big data, among many others, have driven the evolution of optical networks towards current service technologies, mostly based on SDN (Software Defined Networking) architectures and NFV(Network Functions Virtualisation). Moreover, the convergence of IP/Optical networks and IT services, and the evolution of the internet and optical infrastructures, have generated novel service orchestrators and open source frameworks. In fact, technology has evolved that fast that none could foresee how important Internet is for our current lives. Said in other words, technology was forced to evolve in a way that network architectures became much more transparent, dynamic and flexible to the end users (applications, user interfaces or simple APIs). This Thesis exposes the work done on defining new architectures for Service Oriented Networks and the contribution to the state of the art. The research work is divided into three topics. It describes the evolution from a Network Resource Provisioning System to an advanced Service Plane, and ends with a new architecture that virtualized the optical infrastructure in order to provide coordinated, on-demand and dynamic services between the application and the network infrastructure layer, becoming an enabler for the new generation of cloud network infrastructures. The work done on defining a Network Resource Provisioning System established the first bases for future work on network infrastructure virtualization. The UCLP (User Light Path Provisioning) technology was the first attempt for Customer Empowered Networks and Articulated Private Networks. It empowered the users and brought virtualization and partitioning functionalities into the optical data plane, with new interfaces for dynamic service provisioning. The work done within the development of a new Service Plane allowed the provisioning of on-demand connectivity services from the application, and in a multi-domain and multi-technology scenario based on a virtual network infrastructure composed of resources from different infrastructure providers. This Service Plane facilitated the deployment of applications consuming large amounts of data under deterministic conditions, so allowing the networks behave as a Grid-class resource. It became the first on-demand provisioning system that at lower levels allowed the creation of one virtual domain composed from resources of different providers. The last research topic presents an architecture that consolidated the work done in virtualisation while enhancing the capabilities to upper layers, so fully integrating the optical network infrastructure into the cloud environment, and so providing an architecture that enabled cloud services by integrating the request of optical network and IT infrastructure services together at the same level. It set up a new trend into the research community and evolved towards the technology we use today based on SDN and NFV. Summing up, the work presented is focused on the provisioning of virtual infrastructures from the architectural point of view of optical networks and IT infrastructures, together with the design and definition of novel service layers. It means, architectures that enabled the creation of virtual infrastructures composed of optical networks and IT resources, isolated and provisioned on-demand and in advance with infrastructure re-planning functionalities, and a new set of interfaces to open up those services to applications or third parties.Aquesta tesi es va desenvolupar durant un període on la majoria de sistemes de gestió de xarxa òptica eren manuals i basats en sistemes propietaris. En aquest sentit, la feina presentada va contribuir a l'evolució de l'estat de l'art de les xarxes òptiques tant a nivell d’arquitectures com de provisió d’infraestructures virtuals. L'evolució de les xarxes òptiques, i d'Internet a nivell mundial, han estat molt prometedores durant l'última dècada. L'impacte de la tecnologia mòbil, la computació al núvol, la televisió d'alta definició, la realitat augmentada i el big data, entre molts altres, han impulsat l'evolució cap a xarxes d’altes prestacions amb nous serveis basats en SDN (Software Defined Networking) i NFV (Funcions de xarxa La virtualització). D'altra banda, la convergència de xarxes òptiques i els serveis IT, junt amb l'evolució d'Internet i de les infraestructures òptiques, han generat nous orquestradors de serveis i frameworks basats en codi obert. La tecnologia ha evolucionat a una velocitat on ningú podria haver predit la importància que Internet està tenint en el nostre dia a dia. Dit en altres paraules, la tecnologia es va veure obligada a evolucionar d'una manera on les arquitectures de xarxa es fessin més transparent, dinàmiques i flexibles vers als usuaris finals (aplicacions, interfícies d'usuari o APIs simples). Aquesta Tesi presenta noves arquitectures de xarxa òptica orientades a serveis. El treball de recerca es divideix en tres temes. Es presenta un sistema de virtualització i aprovisionament de recursos de xarxa i la seva evolució a un pla de servei avançat, per acabar presentant el disseny d’una nova arquitectura capaç de virtualitzar la infraestructura òptica i IT i proporcionar serveis de forma coordinada, i sota demanda, entre l'aplicació i la capa d'infraestructura de xarxa òptica. Tot esdevenint un facilitador per a la nova generació d'infraestructures de xarxa en el núvol. El treball realitzat en la definició del sistema de virtualització de recursos va establir les primeres bases sobre la virtualització de la infraestructura de xarxa òptica en el marc de les “Customer Empowered Networks” i “Articulated Private Networks”. Amb l’objectiu de virtualitzar el pla de dades òptic, i oferir noves interfícies per a la provisió de serveis dinàmics de xarxa. En quant al pla de serveis presentat, aquest va facilitat la provisió de serveis de connectivitat sota demanda per part de l'aplicació, tant en entorns multi-domini, com en entorns amb múltiples tecnologies. Aquest pla de servei, anomenat Harmony, va facilitar el desplegament de noves aplicacions que consumien grans quantitats de dades en condicions deterministes. En aquest sentit, va permetre que les xarxes es comportessin com un recurs Grid, i per tant, va esdevenir el primer sistema d'aprovisionament sota demanda que permetia la creació de dominis virtuals de xarxa composts a partir de recursos de diferents proveïdors. Finalment, es presenta l’evolució d’un pla de servei cap una arquitectura global que consolida el treball realitzat a nivell de convergència d’infraestructures (òptica + IT) i millora les capacitats de les capes superiors. Aquesta arquitectura va facilitar la plena integració de la infraestructura de xarxa òptica a l'entorn del núvol. En aquest sentit, aquest resultats van evolucionar cap a les tendències actuals de SDN i NFV. En resum, el treball presentat es centra en la provisió d'infraestructures virtuals des del punt de vista d’arquitectures de xarxa òptiques i les infraestructures IT, juntament amb el disseny i definició de nous serveis de xarxa avançats, tal i com ho va ser el servei de re-planificació dinàmicaPostprint (published version

    Distributed control architecture for multiservice networks

    Get PDF
    The research focuses in devising decentralised and distributed control system architecture for the management of internetworking systems to provide improved service delivery and network control. The theoretical basis, results of simulation and implementation in a real-network are presented. It is demonstrated that better performance, utilisation and fairness can be achieved for network customers as well as network/service operators with a value based control system. A decentralised control system framework for analysing networked and shared resources is developed and demonstrated. This fits in with the fundamental principles of the Internet. It is demonstrated that distributed, multiple control loops can be run on shared resources and achieve proportional fairness in their allocation, without a central control. Some of the specific characteristic behaviours of the service and network layers are identified. The network and service layers are isolated such that each layer can evolve independently to fulfil their functions better. A common architecture pattern is devised to serve the different layers independently. The decision processes require no co-ordination between peers and hence improves scalability of the solution. The proposed architecture can readily fit into a clearinghouse mechanism for integration with business logic. This architecture can provide improved QoS and better revenue from both reservation-less and reservation-based networks. The limits on resource usage for different types of flows are analysed. A method that can sense and modify user utilities and support dynamic price offers is devised. An optimal control system (within the given conditions), automated provisioning, a packet scheduler to enforce the control and a measurement system etc are developed. The model can be extended to enhance the autonomicity of the computer communication networks in both client-server and P2P networks and can be introduced on the Internet in an incremental fashion. The ideas presented in the model built with the model-view-controller and electronic enterprise architecture frameworks are now independently developed elsewhere into common service delivery platforms for converged networks. Four US/EU patents were granted based on the work carried out for this thesis, for the cross-layer architecture, multi-layer scheme, measurement system and scheduler. Four conference papers were published and presented

    Congestion control mechanisms within MPLS networks

    Get PDF
    PhDAbstract not availabl
    corecore