
Evaluatie en verbetering van
foutconvergerende technieken voor IP
netwerken

Evaluating and improving failure
convergence schemes in IP networks
————————————————————————————————

Pim Van Heuven

Promotor: Prof. Dr. Ir. Piet Demeester

Proefschrift tot het behalen van de graad van

Docotor in de Toegepaste Wetenschappen:
computerwetenschappen

Universiteit Gent

Faculteit Toegepaste Wetenschappen

Vakgroep Informatietechnologie

Academiejaar 2002-2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/188638081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dankwoord

Als u het mij toestaat, zou ik het behalen van een doctoraat willen vergelijken
met een lange wielerrit. Deze rit, en dit zal ieder kunnen bevestigen die deze rit
reeds heeft afgelegd, eindigt na een laatste steile beklimming: het schrijven van
het doctoraat. Ondanks het individuele karakter van schrijven, kan het behalen
van een doctoraat, als ik de beeldspraak nog wat verder doortrek, het best
worden beschouwd als een teamsport. Vandaar dat ik aan het einde van mijn
inspanning een aantal teamleden wil bedanken.

Eerst en vooral dank ik mijn promotor Piet Demeester voor het vertrouwen dat
hij mij heeft geschonken en voor het feit dat er op de belangrijke momenten
steeds een plaatsje vrij was in zijn drukke agenda.

Het IST Tequila project heeft zonder twijfel een belangrijke rol gespeeld in mijn
doctoraat. Ik dank dan ook al mijn collega’s voor de interessante tijd, niet enkel
op technisch gebied maar ook op persoonlijk vlak. Ik dank in het bijzonder Eleni
Mykoniati, David Griffin en Panos Georgatsos voor hun eerlijkheid en
oprechtheid, ook in moeilijker tijden (cheers!), maar ook mijn IBCN-collega’s
Steven Van den Berghe en Jan Coppens. Daarnaast dank ik Steven nog voor het
nalezen van mijn doctoraat en Jan voor het werk dat hij heeft verzet tijdens zijn
licentiaatsthesis. Ook Erik Van Breusegem ben ik dank verschuldigd voor het
analyseren van de Zebra-broncode in het kader van zijn thesis.

Didier Colle wil ik bedanken voor het kritisch nalezen van mijn thesis en het
meedenken rond FTCR (over FTCR zal u nog veel te weten komen als u dit werk
verder leest). Filip De Turck dank ik voor de medewerking aan de MPLS-sectie
van de Wiley Encyclopedia of Telecommunication.

Als ik wat verder terugdenk dan dank ik Henk Neefs, die mijn thesisbegeleider
was, zonder hem was ik waarschijnlijk nooit aan een doctoraat begonnen. Ook
Mike Vogeleer dank ik omdat hij me bij het toetreden tot onze onderzoeksgroep
op het goede pad heeft gezet.

Hilary Kerslake wil ik danken voor het taalkundig doorworstelen van mijn
doctoraat. Ik besef maar al te goed dat dit geen sinecure is voor een leek.

Het spreekt vanzelf dat elke inspanning moet worden afgewisseld met
ontspanning. Sta mij even toe een groet uit te brengen aan de vaste slachtoffers
van dienst: Toem, Tom en Zita. Daarnaast wens ik Mark nog veel succes met
zijn doctoraat.

Een nieuwe uitdaging staat al voor de deur: een eigen vennootschap. Danny
Cools mijn toekomstig medezaakvoerder bedank ik alvast voor het vertrouwen.

Ten slotte rest mij nog mijn ouders te bedanken voor het leveren van het
genetisch materiaal, voor de opvoeding en de steun, soms op afstand, soms heel
concreet en direct.

Aan iedereen die ik opgenoemd heb, maar ook aan degenen die ik spijtig genoeg
vergeten ben:

Bedankt!

Pim Van Heuven, 16 juni 2003

Abbreviations

ACTS

AF

Advanced Communications Technologies and Services

Assured Forwarding

API Application Program Interface

AS

ATLANTIS

Autonomous System

Test Lab for Advanced Network Technologies and
Integrated Services

ATM Asynchronous Transfer Mode

BA Behaviour Aggregate

BGP-4

BSD

Border Gateway Protocol, version 4

Berkeley Software Distribution

CBS

CLI

Committed Burst Size

Command Line Interface

CR Constraint-based Routing

CR-LDP Constraint-based Routing-Label Distribution Protocol

DS Diffserv

DSCP Diffserv Code Point

ECMP Equal Cost Multi-Path

ECN Explicit Congestion Notification

EF Expedited Forwarding

EGP Exterior Gateway Protocol

E-LSP

FAQ

EXP inferred PSC LSP

Frequently Asked Questions

EXP EXPerimental (field)

FEC Forward Equivalence Class

Abbreviations b

FIB Forwarding Information Base

FIS Failure Indication Signal

FR Frame Relay

FRS Fault Recovery Signal

FSL FTCR Switch LSR

FTCR Fast Topology based Constrained Rerouting

FTN FEC To NHLFE

GPS Global Positioning System

G-MPLS

IBCN

Generalised-MPLS

Intec Broadband Communication Network

ICMP

ITHACI

Internet Control Message Protocol

Internet and the ATM: Experiments & Enhancements for
Convergence and Integration

IETF Internet Engineering Task Force

IGP Interior Gateway Protocol

ILM

INTEC

Incoming Label Map

(department of) Information Technology

IP Internet Protocol

IPv4 Internet Protocol version 4

IS-IS Intermediate System – Intermediate System

ISO International Standards Organisation

ISP

IST

Internet Service Provider

Information Society Technologies

ITU International Telecommunications Union

LAN Local Area Network

LDP Label Distribution Protocol

LER

LIB

Label Edge Router

Label Information Base

Abbreviations c

LSA Link State Advertisement

L-LSP Label only inferred PSC LSP

LSP Label Switched Path

LSR Label Switch Router

MAC Media Access Control

MPLS MultiProtocol Label Switching

MF Multi Field

MIB Management Information Base

MPLS Multi Protocol Label Switching

NHLFE Next Hop Label Forwarding Entry

NIC Network Interface Card

NLRI Network Layer Reachability Information

NTP Network Time Protocol

OA Ordered Aggregate

OAM Operations And Maintenance

OMP Optimal Multi-Path

OSI Open Systems Interconnect

OSPF Open Shortest Path First

PHB Per Hop Behaviour

PML

PRC

Protection Merge LSR

Partial Route Computation

PSC Per hop behaviour Scheduling Class

PSL Protection Switch LSR

QoS Quality of Service

RED Random Early Detection

RFC Request For Comments

RIB Routing Information Base

RIP Routing Information Protocol

Abbreviations d

RSVP Resource reSerVation Protocol

RSVP-TE RSVP for Traffic Engineering

SLS Service Level Specification

SNMP Simple Network Management Protocol

TB Token Bucket

TCP Transmission Control Protocol

TE

TEQUILA

Traffic Engineering

Traffic Engineering for Quality of Service in the Internet, at
Large Scale

ToS Type of Service

UDP User Datagram Protocol

VPN

VoIP

Virtual Private Network

Voice over IP

WG Working Group

WWW World Wide Web

Table of contents

I. Nederlandse Samenvatting.. i

I.1 Inleiding .. i

I.2 Overzicht .. ii

I.3 MPLS en zijn toepassingen.. iii
I.3.1 Inleiding... iii
I.3.2 Het versturen van pakketten in IP en MPLS netwerken iii
I.3.3 Het opzetten van een LSP... vii
I.3.4 Lussen.. viii
I.3.5 Het aantal gebruikte labels verminderen ix

I.4 Foutconvergerende technieken.. xi
I.4.1 Inleiding... xi
I.4.2 Foutdetectie en foutverwittiging.. xiii
I.4.3 Open Shortest Path First ... xv
I.4.4 MPLS herroutering .. xviii
I.4.5 Protectie in MPLS ... xix

I.5 FTCR... xxi
I.5.1 Basiswerking ... xxi
I.5.2 Het herrouteren van expliciete LSPs .. xxii
I.5.3 Meerdere fouten herstellen ... xxii
I.5.4 Terugkeer in FTCR.. xxiv

I.6 Evaluatie van foutconvergerende technieken xxiv
I.6.1 Convergentietijd .. xxiv
I.6.2 Stabiliteit.. xxxi
I.6.3 Schaalbaarheid.. xxxv
I.6.4 Extra capaciteit van een beschermd netwerk xxxvi

I.7 Verbetering van foutconvergerende technieken xxxviii
I.7.1 Linkstatusroutering.. xxxviii
I.7.2 FTCR... xl

Evaluating and improving failure convergence schemes in IP networks f

I.8 Besluit..xli

Chapter 1 Introduction...1

1.1 Scope ...1

1.2 Overview...2

1.3 Publications ..3
1.3.1 International Journal papers ..3
1.3.2 International Conference papers..4
1.3.3 Chapters in International Publications ..5
1.3.4 National Journal/Conference papers ...5

Chapter 2 MPLS technology and applications ...7

2.1 Introduction..7
2.1.1 Forwarding in IP and MPLS networks..8
2.1.2 Label distribution in MPLS networks ...11
2.1.3 Separation of forwarding and routing ...13
2.1.4 History...14

2.2 The forwarding layer of MPLS...14
2.2.1 MPLS forwarding concepts...15
2.2.2 Label merging ...15
2.2.3 Label spaces ..15
2.2.4 Penultimate-hop popping ..16
2.2.5 Label encapsulation...16
2.2.6 Label operations and label stacks..18
2.2.7 Supporting the IP Time-to-live field ...20

2.3 Label distribution modes...20
2.3.1 Down stream versus upstream allocation20
2.3.2 Unsolicited distribution versus distribution on demand21
2.3.3 Independent versus ordered control ..21
2.3.4 Liberal retention versus conservative retention.............................22
2.3.5 Label use method ..22

2.4 The Label Distribution Protocols ...23
2.4.1 The Label Distribution Protocol (LDP)..23
2.4.2 Constrained based Label Distribution Protocol (CR-LDP)24

Table of Contents g

2.4.3 Extensions to RSVP for LSP tunnels (RSVP-TE)........................ 26
2.4.4 Border Gateway Protocol ... 27

2.5 MPLS and Quality of Service... 27
2.5.1 Integrated Services ... 28
2.5.2 Differentiated Services ... 28

2.6 Traffic Engineering ... 31
2.6.1 Applicability ... 31
2.6.2 Implementation considerations... 32
2.6.3 Virtual Private Networks .. 33
2.6.4 Resilience ... 34

2.7 Generalised MPLS (G-MPLS) ... 35

2.8 Conclusions .. 36

Chapter 3 Failure convergence in IP networks.. 37

3.1 Failure recovery and reversion cycle ... 37
3.1.1 Failure recovery cycle .. 37
3.1.2 Failure reversion cycle.. 39

3.2 Failure detection and notification .. 40
3.2.1 Failure detection schemes... 40
3.2.2 Failure notification and failure clearance notification 46

3.3 Convergence schemes for IP and MPLS ... 49
3.3.1 Distance vector routing... 50
3.3.2 Link-state routing ... 61
3.3.3 MPLS rerouting .. 73
3.3.4 MPLS Protection Switching ... 80

3.4 Conclusion.. 91

Chapter 4 Fast Topology based Constrained Rerouting (FTCR) 93

4.1 Introduction ... 93

4.2 The basic operation of rerouting a shortest path LSP 94

Evaluating and improving failure convergence schemes in IP networks h

4.3 FTCR architecture...96

4.4 Modes of operation ..97
4.4.1 FTCR Switch LSR selection modes..97
4.4.2 Failure presume modes..99

4.5 Rerouting Explicitly Routed LSPs..101
4.5.1 Problem statement ...101
4.5.2 Different approaches ...102

4.6 Support for Multiple failures ..104
4.6.1 From explicit routed LSPs to multiple failures104
4.6.2 Rerouting pending label requests ..107
4.6.3 Generalising ..108
4.6.4 Nearest non-looping and ingress repair.......................................111

4.7 Support for Revertive mode..113
4.7.1 Single failure on a shortest path LSP ..113
4.7.2 Single failure on an explicitly routed LSP115
4.7.3 Multiple failures on a shortest path LSP115
4.7.4 Multiple failures on an explicitly routed LSP117
4.7.5 Ingress repair and nearest non-looping repair118

4.8 FTCR operations..118
4.8.1 The recovery mode..120
4.8.2 The failure detected mode ...124
4.8.3 The revertive mode ...127

4.9 Prerequisites for FTCR ...128
4.9.1 MPLS and explicitly routed LSP support....................................128
4.9.2 Link-state database..129
4.9.3 Extensions to MPLS signalling ...130
4.9.4 Failure detection and extended failure indication signal130
4.9.5 FTCR requirements matrix..130

4.10 Convergence and reversion cycle ...132
4.10.1 Convergence cycle ..133
4.10.2 Reversion cycle...133

4.11 Conclusion ..134

Table of Contents i

Chapter 5 Evaluating convergence schemes .. 135

5.1 Introduction ... 135

5.2 The Test network... 136
5.2.1 Experimentation platform... 136
5.2.2 Measurement platform.. 141

5.3 Investigating convergence times... 152
5.3.1 OSPF convergence ... 152
5.3.2 MPLS rerouting with RSVP-TE... 157
5.3.3 Comparing OSPF with MPLS rerouting..................................... 160
5.3.4 Comparing FTCR with Protection Switching............................. 161
5.3.5 Conclusions .. 163

5.4 Investigating stability .. 165
5.4.1 Introduction .. 165
5.4.2 Failure detection ... 166
5.4.3 OSPF stability... 167
5.4.4 MPLS rerouting stability .. 171
5.4.5 Protection Switching stability... 172
5.4.6 FTCR stability .. 173

5.5 Investigating scalability .. 178
5.5.1 OSPF scalability ... 178
5.5.2 MPLS rerouting scalability... 179
5.5.3 Protection Switching scalability ... 180
5.5.4 FTCR scalability... 180

5.6 Comparing the backup capacity requirements............................... 180
5.6.1 Simulation model.. 180
5.6.2 Simulation results ... 181

5.7 Conclusions .. 184

Chapter 6 Improving convergence schemes... 187

6.1 Introduction ... 187

6.2 Failure detection.. 187

Evaluating and improving failure convergence schemes in IP networks j

6.3 Recent advances in link-state routing ..187
6.3.1 SPF optimisations..188
6.3.2 Exponential backoff ..189
6.3.3 Improved convergence times...190

6.4 Improving FTCR ...191
6.4.1 Exponential backoff timers ...191
6.4.2 Incremental SPF ..191
6.4.3 Propagation delays in large networks..192
6.4.4 Pre-computation and pre-establishing recovery LSPs.................193

6.5 Conclusion ..195

Chapter 7 Concluding remarks ...197

Appendix A Testbed configuration parameters ...199

Appendix B RSVP-TE daemon for DiffServ over MPLS under Linux......201

B.1 Introduction ...201

B.2 The open source community ...205

Appendix C An experiment automation framework209

C.1 Introduction ...209

C.2 An example...209

I.Nederlandse Samenvatting

I.1 Inleiding
In de loop van de jaren is het Internet een alomtegenwoordig
hogesnelheidsnetwerk geworden dat bedrijfskritisch is. Fouten van korte duur in
het netwerk lijden tot het verlies van grote hoeveelheden gegevens en het
aantasten van de netwerkdiensten. Indien de fout langer duurt, dan heeft dit grote
financiële gevolgen. Het is daarom van primair belang dat netwerkfouten worden
vermeden. Dit is slechts mogelijk in beperkte mate. Vermits fouten niet te
vermijden zijn, is het van belang om hun impact zo klein mogelijk te houden.

Dit werk behandelt de manier waarop netwerken in staat zijn zichzelf te
herstellen na een fout. Technieken die men aanwendt om netwerken fouttolerant
te maken worden foutconvergerende technieken genoemd. Het Van Dale groot
woordenboek der Nederlandse taal definieert convergentie als: “het convergeren
of convergent-zijn; samenkomst in een punt” [1]. Foutconvergentie aldus
beschouwd is een groep van operaties, mogelijk gedistribueerd uitgevoerd, die
als gemeenschappelijk doel hebben het netwerk te herstellen na een fout.

Het onderzoek naar methoden om netwerken meer fouttolerant te maken is een
zeer uitgebreid en actief onderzoeksdomein. Het is daarom van belang dat we
vooraf het onderwerp van dit werk afbakenen. Dit werk analyseert en evalueert
de operationele procedures die worden toegepast na een netwerkfout. Het
behandelt dus de acties die worden ondernomen direct nadat een fout wordt
ontdekt. Dit werk behandelt niet hoe een netwerk gepland moet worden om meer
fouttolerant te zijn. Bovendien zullen we slechts vluchtig bestuderen hoeveel
extra middelen moeten worden ingezet om het verkeer in het netwerk tegen
fouten te beschermen. We beperken ons ook tot IP netwerken, netwerken met
meerdere lagen worden niet behandeld. Wat we wel beschouwen is het gebruik
van “verscheidene protocol labelschakelen” (MPLS, Multi-Protocol Label
Switching). Zoals we zullen zien biedt MPLS interessante foutconvergerende
technieken aan IP netwerken aan.

Zoals reeds vermeld zullen we bestaande foutconvergerende technieken
evalueren en verbeteren. Daarnaast stellen we ook een eigen ontwikkelde
foutconvergerende techniek voor: snelle topologisch gebaseerde herroutering
met beperking (FTCR, Fast Topology based Constrained Rerouting).

Evaluatie en verbetering van foutconvergerende technieken voor IP netwerken ii

I.2 Overzicht
In deze sectie geven we een overzicht van dit werk. Na dit overzicht beschrijven
we MPLS en de toepassingen ervan. Dit is een vertaling en samenvatting van
onze bijdrage rond MPLS aan de “Wiley Encyclopedia of Telecommunication”
[2].

Vervolgens geven we een overzicht van de bestaande foutconvergerende
technieken. Deze zijn IP routering en MPLS routering en protectie.

Daarna beschrijven we FTCR, een foutconvergerende techniek ontwikkeld door
de auteur. Het idee van FTCR was eerst gepubliceerd in 2000 in [3] als een
nieuw foutconvergerende techniek voor MPLS netwerken. Latere publicaties [4,
5, 6] vergelijken de capaciteitsvereisten van de verschillende technieken,
onderzoeken hoe de foutconvergerende technieken voor elektrische MPLS
kunnen worden omgezet naar optische MPLS en beschrijven datacentrische
optische netwerken en hun fouttolerantie. In deze publicaties speelt FTCR steeds
een belangrijke rol.

De sectie rond FTCR behandelt hoe FTCR de trafiek in het netwerk rond fouten
herrouteert. We behandelen eerst enkelvoudige fouten op een kortste pad LSP.
Daarna beschouwen we enkelvoudige fouten op expliciet gerouteerde LSPs en
vervolgens meerdere fouten. Daarnaast bekijken we hoe FTCR de trafiek terug
op het kortste pad routeert, nadat een fout is hersteld.

De sectie rond FTCR wordt gevolgd door een sectie over de evaluatie van de
reeds besproken foutconvergerende technieken. De criteria die worden gebruikt
voor deze evaluatie zijn: de snelheid van convergentie, de schaalbaarheid, de
stabiliteit en de extra hoeveelheid capaciteit die nodig is om een netwerk
fouttolerant te maken. Voor de evaluatie van de convergentiesnelheid maken we
gebruik van een eigen ontwikkeld routerplatform. De beschrijving ervan werd
gepubliceerd in [7]. De resultaten werden gedeeltelijk gepubliceerd in [8]. Het
werk rond de extra capaciteitsvereisten werd gepubliceerd in de reeds vermelde
publicaties [4, 5, 6].

De daaropvolgende sectie behandelt de recente vooruitgang geboekt in
foutconvergerende technieken. Daarbij kijken we vooral naar de vooruitgang met
betrekking tot linkstatusrouteringsprotocollen en hoe deze technieken kunnen
worden toegepast op FTCR. Daarnaast worden ook technieken voorgesteld die
de convergentie van FTCR kunnen versnellen.

De laatste sectie vat de belangrijkste conclusies samen en geeft enkele
slotbemerkingen.

Nederlandse Samenvatting iii

I.3 MPLS en zijn toepassingen
I.3.1 Inleiding

MPLS speelt een belangrijke rol in dit werk omdat het toelaat nieuwe
foutconvergerende technieken te implementeren in IP netwerken. Om deze
technieken uit te leggen is het nodig MPLS voldoende toe te lichten.

We lichten eerst de belangrijkste concepten met betrekking tot het versturen van
pakketten in IP en MPLS netwerken uit. Vervolgens bekijken we naast de meer
geavanceerde onderwerpen rond het versturen van pakketten in MPLS ook de
manier waarop de paden worden opgezet (signalering). Een Engelstalige, meer
uitgebreide, versie van de tekst in deze sectie werd reeds gepubliceerd in [2].

I.3.2 Het versturen van pakketten in IP en MPLS netwerken

Het Internet Protocol (IP) dat de basis vormt van het Internet is een
connectieloos protocol [9, 10, 11, 12]. Dit wil zeggen dat elke knoop (router) in
het netwerk de hoofding (header) van elk pakket onderzoekt alvorens die verder
te sturen over het correcte pad. Deze beslissing wordt onafhankelijk genomen
door elke router aan de hand van de routeringstabel (routing table) met als
gevolg een knoop per knoop versturing van de pakketten in het netwerk. De
routeringstabel bevat informatie over de volgende knoop en de uitgaande
interface voor elk bestemmingsprefix.

In MPLS netwerken omzeilt men het verzenden van pakketten knoop per knoop,
zoals in IP netwerken, door gebruik te maken van labelgeschakelde paden (LSP,
Label Switched Path). Hierbij wordt elk pakket voorzien van een label. Het
oorspronkelijk doel van MPLS was om het verzenden van pakketten te
versnellen [13, 14, 15]. Tegenwoordig gebeurt het verzenden van pakketten in IP
netwerken even snel als in MPLS netwerken dus dit initiële voordeel van MPLS
is niet meer geldig. Toch biedt MPLS nog steeds een aantal voordelen ten
opzichte van IP. Ten eerste laat MPLS beter toe het netwerkverkeer te
optimaliseren binnen het netwerk [16, 17]. Het aanbieden van een netwerk met
private communicatie over het publieke Internet een zogenaamd virtueel privaat
netwerk (VPN, Virtual Private Network) wordt door MPLS vereenvoudigd [18,
19]. Dankzij MPLS is het vaak ook mogelijk om meerdere protocol-lagen te
elimineren en te vervangen door MPLS [20, 21, 22]. Daarnaast zijn er natuurlijk
de foutconvergerende technieken die MPLS biedt [3].

In MPLS worden de paden opgezet door informatie in verband met labels op te
slaan in elke router van het pad. Deze labels zijn entiteiten met vaste lengte die
enkel lokaal betekenis hebben. In MPLS worden deze labels gebruikt om

Evaluatie en verbetering van foutconvergerende technieken voor IP netwerken iv

pakketten te versturen. Laten we nu even het versturen van pakketten in IP
netwerken en MPLS netwerken vergelijken.

Figuur 1: Deze figuur illustreert hoe een pakket afkomstig van knoop A
door knoop B verder wordt gestuurd naar knoop D. Hiervoor gebruikt
knoop B de informatie die hij vindt in zijn routeringsinformatietabel.

In IP netwerken worden pakketten knoop per knoop verstuurd. Dit wil zeggen
dat de beslissingen die moeten worden genomen tijdens het versturen van een
pakket door elke knoop op zich wordt genomen. Hiervoor wordt gebruik
gemaakt van de routeringsinformatietabel (RIB, Routing Information Base).
Figuur 1 illustreert de routeringsinformatietabel van knoop B in een klein
netwerk bestaande uit vier knopen: A, B, C en D. Wanneer knoop B een pakket
ontvangt zal hij de uitgaande interface en het adres van de volgende knoop
opzoeken in de routeringsinformatietabel. Om het aantal toegangen in de
routeringsinformatietabel te reduceren worden deze toegangen geaggregeerd aan
de hand van hun doeladres. Dit is mogelijk door niet de volledige adressen op te
slaan maar enkel het meest significante gedeelte gevolgd door de lengte ervan (0
tot 32 bits). Een dergelijk partieel adres wordt een prefix genoemd en genoteerd
als a/n, waarbij a het adres is en n de lengte. Tijdens het opzoeken van een
doeladres wordt enkel het meest significante deel van het adres vergeleken met
de toegangen in de routersinformatietabel. Daarbij wordt de toegang gekozen die
het meest specifiek is, de toegang dus met de langste prefix die overeenkomt met

O
pzoeking langeste

prefix

C
iface2A

D

B

Doeladres Volgende Interface
Knoop

10.0.1.0/24 A iface1
10.0.2.0/24 C iface2
10.0.3.0/24 D iface3

iface1

iface3

Routeringsinformatietabel (RIB)
(vereenvoudigd)

10.0.1.0
/24

10.0.2.0
/24

10.0.3.0
/24

router

Nederlandse Samenvatting v

het doeladres (longest prefix match). Een dergelijke opzoeking die rekening
houdt met de langste prefix is complexer dan een opzoeking die gebruik maakt
van adressen met vaste lengte [12].

Een belangrijke eigenschap van het versturen van pakketten in IP netwerken is
dat elk pakket met eenzelfde doeladresprefix op eenzelfde manier wordt
verzonden. Een verzameling van pakketten die op dezelfde manier kan worden
verstuurd wordt een klasse van gelijkaardig verstuurbare pakketten genoemd
(FEC, Forwarding Equivalence Class). Doordat het versturen van pakketten in
IP netwerken gewoonlijk gebaseerd is op het doeladres zal een FEC meestal
overeenkomen met een doeladresprefix. Het is daarbij belangrijk op te merken
dat een pakket in elke knoop opnieuw in de juiste FEC moet worden ingedeeld
om de volgende knoop en de juiste uitgaande interface te vinden.

Figuur 2: Een MPLS netwerk bestaande uit de vier knopen B, C, D en E.
De knopen A en F behoren niet tot het MPLS domein. Een LSP is opgezet
vanuit B (de ingang) langs C (kern) naar E (uitgang). Over de LSP worden
de pakketten met behulp van labels verzonden.

Het versturen van pakketten in MPLS netwerken is niet gebaseerd op
doeladresprefixen maar op labels [23]. Deze labels hebben een vaste lengte en
zijn slechts significant binnen één knoop. Daar deze labels enkel binnen een
knoop betekenis hebben moeten ze in iedere knoop worden veranderd, dit wordt
labelschakeling genoemd (label switching). Binnen een MPLS netwerk worden

IP hoofding
IP belasting
MPLS hoofding

MPLS
domein

A F
B

LSR
ingang

LSR
uitgang

LSR
(kern)

LSR

C

D

E

LSP

Evaluatie en verbetering van foutconvergerende technieken voor IP netwerken vi

de labels verdeeld door een labeldistributieprotocol (label distribution protocol).
Routers in een MPLS domein worden labelschakelende routers genoemd (LSR,
Label Switching Routers, zie Figuur 2). Een aaneenschakeling van labels wordt
een labelgeschakeld pad genoemd (LSP, Label Switched Path). Een LSP wordt
opgezet vanuit de ingang door de kern van het netwerk naar de uitgang.

Pakketten die tot een bepaalde FEC behoren worden op een LSP gemapt. Het
bepalen van de FEC van een pakket moet enkel gebeuren aan de ingang van de
LSP. Dit in tegenstelling tot in IP netwerken waar dit in elke knoop moet
gebeuren. Dit laat een flexibele mapping van een FEC op een LSP toe. De
mapping kan bijvoorbeeld gebaseerd zijn op zowel het doeladres als het
bronadres van het pakket. Merk op dat een LSP een unidirectioneel pad is.

Figuur 3: Labelschakeling in MPLS netwerken. Het binnenkomend label
wordt opgezocht in de ILM. Vanuit de toegang in de ILM wordt een
toegang gevonden in de NHLFE. De NHLFE toegang bevat de nodige
informatie om het pakket verder te sturen met inbegrip van het uitgaand
label.

De labelschakeling is gebaseerd op twee tabellen (zie Figuur 2): een eerste met
de binnenkomende labels (ILM, Incoming Label Map) en een tweede tabel met
de volgende knopen en de uitgaande labels (NHLFE, Next hop label forwarding
entry). De NHFLE bevat de nodige informatie om een pakket verder te sturen

binnenkomend label
map (ILM)

A

D

B
iface1

iface3

Binnenkomend
label
100
200
300

Volgende knoop uitgaand uitgaande
label interface

A 101 iface1
C 201 iface2
D 301 iface3

Volgende knoop en label
versturingstabel
(NHLFE)

C
iface2

300

301

Nederlandse Samenvatting vii

[24]. Door de ILM en de NHFLE te verbinden kan men aan labelschakeling
doen. Aan de ingang van de LSP moet een FEC worden gemapt op een NHLFE.
Alle pakketten die tot die FEC behoren zullen dan over de LSP worden
verstuurd. In de volgende sectie bekijken we hoe een LSP wordt opgezet.

I.3.3 Het opzetten van een LSP

Er bestaan twee soorten van LSPs: de knoop per knoop gerouteerde LSPs en de
expliciet gerouteerde LSPs. Een knoop per knoop gerouteerde LSP wordt
opgezet volgens het kortste pad vanaf de ingang van de LSP naar de uitgang van
de LSP. Dit kortste pad wordt bepaald door de IP routering. Een expliciet
gerouteerde LSP is een pad dat geheel of gedeeltelijk is gespecificeerd wanneer
het wordt opgezet. Zo’n LSP kan dus afwijken van het kortste pad van de ingang
naar de uitgang van de LSP.

Figuur 4: Het opzetten van een expliciet gerouteerde LSP vanuit knoop A
naar knoop D via knoop C. Knoop A kan het pad van de LSP geheel of
gedeeltelijk bepalen door knopen mee te geven met de aanvraag. Deze
knopen zullen dan worden doorlopen bij het verwerken van de aanvraag.
De labels worden bepaald in de omgekeerde richting als de aanvraag,
Elke knoop bepaalt het label dat hij wil ontvangen. Daar de ingang geen
label ontvangt zal hij ook geen label kiezen.

Een LSP wordt opgezet met een labeldistributieprotocol. Voorbeelden van
dergelijke protocollen zijn LDP (Label Distribution Protocol) [25, 26, 27], CR-
LDP (Constraint-based routed LDP) [28, 29] en RSVP-TE (ReSource
reserVation Protocol for Traffic Engineering) [30, 31, 32, 33]. Enkel de twee
laatst vermelde protocollen ondersteunen expliciet gerouteerde LSPs. Het

A

C

D

B

Aanvraag
<netD, C>

 Label

a

f

b

Label

Aanvraag
<netD, C>

Aan-
vraag
<netD>

Label
c

d

e

Evaluatie en verbetering van foutconvergerende technieken voor IP netwerken viii

grootste verschil tussen CR-LDP en RSVP-TE is dat de informatie met
betrekking tot de LSPs CR-LDP permanent is waar deze in RSVP-TE slechts
van tijdelijke aard is zodat ze regelmatig moet worden vernieuwd.

Het opzetten van een LSP gebeurt in twee fasen (zie Figuur 4). In de eerste fase
wordt een aanvraag verstuurd vanuit de ingang van de LSP naar de uitgang.
Daarna zal de uitgang een antwoord versturen naar de ingang. De labels worden
meegegeven in het antwoord. Het is dus zo dat de uitgang het eerst een label
kiest en dat vervolgens opstuurt. Elke knoop tussen de uitgang en de ingang
ontvangt een label en verstuurt vervolgens een label dat hij zelf kiest. De ingang
van de LSP zal enkel een label ontvangen maar kiest er zelf geen.

Het pad van een LSP kan gestuurd worden door bij de aanvraag één of meerdere
knopen mee te geven die de LSP moet doorlopen. Indien er geen knopen worden
meegegeven dan verkrijgt men een knoop per knoop gerouteerde LSP. Figuur 4
toont hoe de expliciet gerouteerde LSP van A naar D via C wordt opgezet. Merk
op dat alle knopen de labels die ze versturen en ontvangen opslaan in
respectievelijk de NHLFE en ILM tabellen. Bovendien zal er in knoop A een
mapping van een FEC naar de LSP nodig zijn om trafiek op de LSP te mappen.

Zowel CR-LDP als RSVP-TE laten toe om meer informatie mee te geven bij het
opzetten van een LSP. Het is daarbij mogelijk de gewenste bandbreedte van de
LSP kenbaar te maken. Als ook de prioriteit waarmee de LSP moet opgezet
worden of waarmee hij eventueel afgebroken kan worden. Het is ook mogelijk
een LSP een bepaalde kleur te geven. Het is dan mogelijk om bijvoorbeeld te
eisen dat een LSP enkel door het gedeelte van het netwerk loopt dat gelijkaardig
gekleurd is. Deze bijkomende functionaliteit van CR-LDP en RSVP-TE is
belangrijk om de trafiek zo optimaal mogelijk over het netwerk te verdelen
(traffic engineering) [16, 17].

In de volgende secties gaan we nog enkele facetten van MPLS nader toelichten.
We beginnen eerst met de beschrijving van de verschillen tussen lussen in IP en
MPLS netwerken. Vervolgens lichten we toe hoe het gebruikte aantal labels kan
worden verminderd.

I.3.4 Lussen

Zoals we later zullen zien kunnen lussen in zowel IP als in MPLS netwerken
voorkomen. In MPLS is het mogelijk om te vermijden dat een LSP met een lus
wordt opgezet [34, 35]. Er is echter een groot verschil tussen een lus in een IP
netwerk en een MPLS netwerk (zie Figuur 5).

Vermits het versturen van een pakket in een IP netwerk gebeurt op basis van het
doeladres is het onmogelijk om een lus te verlaten eenmaal men daarin is
verzeild. Men ziet op de figuur dat knoop A elk pakket verder stuurt naar C

Nederlandse Samenvatting ix

onafhankelijk of dit pakket A bereikt via de lus of niet. In de praktijk zal het
pakket dat de lus bereikt een aantal maal de lus doorlopen om tenslotte te worden
verwijderd.

Figuur 5: Lussen in IP en MPLS netwerken verschillen danig.

In MPLS is het mogelijk dat een LSP wordt opgezet die een lus bevat. Dit hoeft
echter niet zulke drastische gevolgen te hebben als in IP netwerken. In het
voorbeeld doorloopt de LSP het segment A-B-C eenmaal om vervolgens verder
te lopen. Dit is mogelijk omdat het versturen van pakketten in MPLS netwerken
gebaseerd is op labels. Het is duidelijk dat de negatieve gevolgen van een
dergelijke lus veel kleiner zijn dan bij een lus in een IP netwerk.

I.3.5 Het aantal gebruikte labels verminderen

In deze sectie bekijken we hoe het aantal labels dat binnen een netwerk of zelfs
binnen een bepaalde knoop wordt gebruikt kan worden verminderd. We zullen
drie mechanismen bespreken. De eerste methode bestaat erin labels samen te
voegen, de tweede methode tunnelt een aantal LSPs in elkaar en tenslotte
bespreken we ook hoe de voorlaatste hop geen label hoeft te gebruiken. Maar
eerst vermelden we dat een label een bepaald bereik heeft.

Het bereik van labels
Het bereik van een label kan beperkt worden tot een bepaalde interface (per
interface label, per interface label space) of de label kan globaal voor heel de
router gelden (platform wide label space) [24]. Indien de labels over de gehele
router gelden dan heeft dit het voordeel dat een inkomend label zal herkend
worden gelijk over welke interface het binnenkomt. Dit kan handig zijn wanneer
het pad van een LSP verandert. Het nadeel is dat er minder labels beschikbaar
zijn omdat de waarden niet worden opgesplitst per interface.

A C

B

A C

B

IP lus MPLS lus

Evaluatie en verbetering van foutconvergerende technieken voor IP netwerken x

Het samenvoegen van labels
Om het aantal labels dat wordt gebruikt binnen een router te verminderen is het
soms mogelijk een aantal binnenkomende labels samen te nemen en slechts één
uitgaand label te gebruiken. Dit is enkel mogelijk als de FEC van de
verschillende LSPs dezelfde zijn. In de praktijk betekent dit dat de LSPs dezelfde
bestemming en pad naar bestemming moeten hebben. Merk op dat er geen
onderscheid meer mogelijk is tussen de verschillende LSPs die samengevoegd
zijn.

Voorlaatste knoop ploffing
Zoals we reeds hebben besproken, worden in MPLS labels gebruikt om te
bepalen hoe een pakket verder moet worden gestuurd. Het is echter niet nodig
om een label te gebruiken tussen de voorlaatste en de laatste knoop. De
voorlaatste knoop neemt deze beslissing aan de hand van het label dat hij heeft
ontvangen en de laatste knoop moet enkel het pakket ontvangen en niet meer
verder sturen. Indien er geen label gebruikt wordt tussen de voorlaatste en de
laatste knoop dan noemen we dit voorlaatste knoop ploffing (penultimate hop
popping).

Het tunnellen van LSPs
We hebben reeds gezien dat het aantal labels verminderd kan worden door
verscheidene labels samen te nemen. Een andere methode is het tunnellen van
verschillende LSPs in een andere LSP (zie Figuur 6).

Het is belangrijk om even stil te staan bij de manier waarop een pakket wordt
verstuurd over een dergelijke getunnelde LSP. We nemen als voorbeeld het LSP
B-C-D-E-G. Een pakket over die LSP wordt natuurlijk verzonden in knoop B.
Knoop B voegt een MPLS hoofding toe die het label bevat dat knoop C hem
gezonden heeft. Daarna stuurt knoop B het pakket verder. Wanneer knoop C dit
pakket ontvangt dan zal hij het binnenkomende label vervangen door het label
dat hij heeft ontvangen van knoop E. Verder zal hij ook een extra hoofding
toevoegen die het label bevat dat hij heeft ontvangen van knoop D. Op dit
moment bevat het pakket dus twee labels. Dit wordt labelstapeling genoemd
(label stacking). Vervolgens zendt knoop C dit pakket verder. Merk op dat
knoop D de voorlaatste knoop is van de LSP C-D-E. Om LSPs te tunnellen is het
nodig dat de LSRs werken met voorlaatste knoop ploffing. Knoop D zal dus het
label dat hij naar knoop C heeft gestuurd verwijderen (merk op dat dit het
bovenste label is) en het pakket verder sturen. Op dit moment zal het pakket
slechts één label bevatten namelijk het label dat knoop C heeft ontvangen van
knoop E. Knoop E herkent natuurlijk dit label en zal het vervangen door het label
dat hij heeft ontvangen van knoop G.

Nederlandse Samenvatting xi

Figuur 6: Het tunnellen van LSPs. Deze figuur is illustreert hoe de LSPs A-
C-D-E-F en B-C-D-E-G worden getunneld in de LSP C-D-E.

Zoals we zien vereist het tunnellen van LSPs dat we zowel gebruik maken van
voorlaatste knoop ploffing en labelstapeling. Merk op dat in dit geval er slechts
over één link gebruik wordt gemaakt van twee labels. Indien de LSP die wordt
gebruikt om andere LSPs in te tunnellen langer is dan zal er ook langer gebruik
moeten gemaakt worden van twee labels tegelijk.

In de volgende sectie bekijken we de belangrijkste foutconvergerende technieken
voor IP en MPLS netwerken.

I.4 Foutconvergerende technieken
I.4.1 Inleiding

In deze sectie onderzoeken we drie belangrijke foutconvergerende technieken.
Eerst onderzoeken we hoe fouten worden behandeld in IP netwerken. Daarvoor
gebruiken we het Open Shortest Path First (OSPF) [36] protocol als voorbeeld.
Dit wil zeggen dat we een ander veel gebruikt protocol Intermediate System-
Intermediate System (IS-IS) [37, 38] niet zullen bespreken. De principes die we
uitleggen voor OSPF zijn in principe overdraagbaar naar IS-IS. Naast OSPF en
IS-IS wordt soms ook het Routing Information Protocol (RIP) [39, 40, 41]
gebruikt binnen een netwerk. RIP convergeert echter zeer traag na het optreden
van een fout. RIP wordt minder en minder gebruikt en is zeker niet toepasbaar in

B

A F
C E

D

G

MPLS hoofding
IP hoofding

MPLS hoofding
MPLS hoofding

Evaluatie en verbetering van foutconvergerende technieken voor IP netwerken xii

grotere netwerken. Vandaar dat we RIP niet verder beschouwen. Naast de
routeringsprotocollen die binnen één netwerk worden gebruikt is er Border
Gateway Protocol (BGP) [42] dat tussen de verschillende autonome systemen
wordt gebruikt. Ook BGP beschouwen we niet verder.

Naast de foutconvergerende technieken voor IP netwerken gaan we ook kijken
naar dergelijke technieken in MPLS netwerken. De eerste categorie is het
herrouteren in MPLS, daarnaast kijken we ook naar protectie in MPLS.

Zowel herroutering als protectie doorlopen beide dezelfde fasen wanneer ze een
fout herstellen. Tijdens de eerste fase wordt de fout vastgesteld. Nadat de fout is
ontdekt moeten de relevante partijen worden geïnformeerd van dit feit. Het kan
zijn dat de fout enkel lokaal gemeld moet worden maar het kan ook zijn dat alle
knopen in het netwerk verwittigd moeten worden. Daarna kan er eventueel een
tijdje worden gewacht voor de herstelacties worden gestart. Dit kan nodig zijn
om zich ervan te vergewissen dat de fout persistent is of om de stabiliteit te
verhogen. Vervolgens worden de hersteloperaties uitgevoerd. Deze herstelcyclus
is geïllustreerd in [43].

Figuur 7: De herstelcyclus en de terugkeercyclus

Netwerkfout

Fout gedetecteerd

Verwittiging ontvangen

Start hersteloperaties

Herstel gerealiseerd

Foutdetectietijd

Verwittigingstijd

Herstelwachttijd

Tijd van hersteloperaties

Netwerkfout valt weg

Fout valt weg gedetecteerd

Verwittiging ontvangen

Start terugkeeroperaties

Terugkeer gerealiseerd

Detectietijd

Verwittigingstijd

Terugkeerwachttijd

Tijd voor terugkeeroperaties

Herstelcyclus Terugkeercyclus

Nederlandse Samenvatting xiii

Naast een herstelcyclus bestaat er ook een terugkeerfase. Deze fase wordt niet
gekenmerkt door een nieuwe fout maar door het feit dat een fout niet langer
geldt. Wanneer een fout wegvalt, zal dit opnieuw gemeld moeten worden.
Wederom wordt er meestal gewacht voor de hersteloperaties worden
aangevangen analoog aan het wachten in de herstelcyclus. In de terugkeercyclus
is het nog belangrijker om lang genoeg te wachten zodat het netwerk hersteld is,
indien er niet lang genoeg gewacht wordt zal er onnodig trafiek verloren gaan.

Zoals we hebben gezien begint de herstelcyclus met een netwerkfout. In de
volgende sectie bekijken we hoe netwerkfouten kunnen worden ontdekt.

I.4.2 Foutdetectie en foutverwittiging

Hardware gebaseerde foutdetectie
De snelste manier om een fout te ontdekken is wanneer de gebruikte hardware
dit ondersteunt. Bijvoorbeeld een Pakket over Sonet (POS) interface kan
detecteren wanneer de drager (de link) tussen twee kaarten verbroken wordt.
Deze detectie gebeurt zeer snel (in de orde van 10ms) maar ze ondersteunt niet
alle foutoorzaken. Wanneer het signalisatiegedeelte van een knoop faalt zal dit
niet worden ontdekt. Daarnaast zijn er ook interface types die geen hardware
gebaseerde foutdetectie ondersteunen. Er zijn dus complementaire technieken
nodig.

Algemeen hartslag mechanisme
In deze sectie beschrijven we een techniek die algemeen wordt gebruikt om
fouten te detecteren. De techniek is unidirectioneel omdat er één zender en één
ontvanger is.

De zender en de ontvanger spreken af dat de zender elk zendinterval een pakket
stuurt naar de ontvanger. Indien de ontvanger geen pakket heeft ontvangen
binnen een ontvangstinterval zal deze concluderen dat er een fout is opgetreden.
Het is dus belangrijk dat het ontvangstinterval groter is dan het zendinterval om
te vermijden dat er valse positieven optreden. Bijvoorbeeld in het OSPF protocol
heet het zendinterval het Hello Interval en het ontvangstinterval het Routerdead
Interval en hun waarden zijn respectievelijk 10s en 40s [36].

De detectietijd, namelijk de tijd tussen het optreden van de fout (T0) en het
detecteren van de fout (T1), is afhankelijk van het grootte van het zendinterval en
het ontvangstinterval (zie Figuur 8). Indien de fout onmiddellijk na het
verzenden van een hartslagpakket (Hn) optreedt dan bedraagt de detectietijd bijna
een volledig ontvangstinterval. Indien de fout optreedt juist voordat het volgende
hartslagpakket moet worden verstuurd dan is detectietijd bijna een volledig
zendinterval kleiner.

ontangstinterval – zendinterval ≤ Tdetect = T1-T0≤ ontvangstinterval (1)

Evaluatie en verbetering van foutconvergerende technieken voor IP netwerken xiv

We zien duidelijk in formule (1) dat de detectietijd afhangt van de
ontvangstinterval. Om de detectie te versnellen kunnen we dus het
ontvangstinterval verkleinen. Indien we echter het ontvangstinterval verkleinen
moeten we ook het zendinterval verkleinen om te vermijden dat er vals positieve
detecties optreden.. In de praktijk heeft het ontvangstinterval een ondergrens
omdat de netwerkbelasting en de verwerkinglast van de pakketten anders te groot
wordt.

Figuur 8: De detectietijd van het algemeen hartslag mechanisme hangt af
van wanneer de fout optreedt ten opzichte van wanneer het laatste pakket
is verzonden.

Dit algemeen hartslagmechanisme wordt gebruikt in zowel OSPF, IS-IS en LDP.

De bandbreedte verminderen
Zoals we reeds hebben gezien is het moeilijk om het ontvangstinterval zeer klein
te nemen omdat het zendinterval dan ook kleiner moet worden wat dan weer als
gevolg heeft dat de gebruikte bandbreedte toeneemt. Het is echter ook mogelijk
om het ontvangstinterval te verkleinen door gelijk welk pakket impliciet als een
hartslagpakket te beschouwen. Dit heeft als voordeel dat de detectie sneller kan
gebeuren zonder de bandbreedte te verhogen maar heeft als nadeel dat niet alle

Pakket

Zend-
interval

Pakket Pakket
(Hn)

Fout
(T0)

Detectietijd

Maximale detectietijd
Ontvangstinterval

Fout
ontdekt

(T1)

Minimum detectietijd
Zendinterval -

ontvangstinterval

(Hn+1)

Zend-
interval

Zend-
interval

Nederlandse Samenvatting xv

fouten worden ontdekt. Stel bijvoorbeeld dat de controlelaag van een knoop faalt
maar niet het onderdeel dat binnenkomende pakketten verder stuurt. Een
dergelijke fout zal niet worden ontdekt indien de falende knoop voldoende
pakketten verder zendt.

Voor meer informatie over foutdetectie verwijzen we naar ons onderzoek in [44]
Naast de beschrijving van foutdetectie met behulp van impliciete
hartslagpakketten geeft dit werk ook experiementeel bepaalde foutdetectie- en
convergentietijden voor Linux gebaseerde netwerken.

Foutverwittiging
Soms is het noodzakelijk om andere knopen te informeren over een fout die
lokaal wordt gedetecteerd. Een dergelijk foutverwittigingsmechanisme kan
onderdeel zijn van de convergentietechniek of het kan een apart mechanisme
zijn. We gaan niet verder in op foutverwittiging maar we veronderstellen dat
steeds een adequaat mechanisme wordt gebruikt.

In de volgende secties beschouwen we de belangrijkste foutconvergerende
technieken voor IP en MPLS netwerken. We beginnen met OSPF.

I.4.3 Open Shortest Path First

Het Open Shortest Path First (OSPF) routeringsprotocol behoort samen met IS-
IS tot de familie van de linkstatusrouteringsprotocollen [12].

In de opstartfase beginnen de routers in het netwerk met het verspreiden van
linkstatuspakketten in het netwerk (Link Status Advertisement, LSA). Een
linkstatuspakket bevat informatie over elke interface van de router samen met de
kost die aan deze interface is toegewezen. Figuur 9 toont dit proces voor router
A.

Figuur 9: Het verspreiden van de lokale informatie van router A met
behulp van een linkstatuspakket doorheen het netwerk.

A D E

B C

[(AB,1),(AD,1)]

Evaluatie en verbetering van foutconvergerende technieken voor IP netwerken xvi

Elke router in het netwerk zal hetzelfde doen en tegelijk er ook voor zorgen dat
de linkstatuspakketten van de andere routers doorheen het netwerk vloeien
(flooding). Wanneer een router een linkstatuspakket ontvangt dat hij nog niet
heeft gezien zal hij een kopie ervan opslaan in zijn linkstatusdatabank (link state
database) alvorens het verder te sturen.

Nadat alle routes in het netwerk hun lokale informatie hebben verspreid en de
linkstatuspakketten van alle andere routers hebben ontvangen is het mogelijk om
uit deze informatie de topologie van het netwerk te construeren. Vervolgens kan
men deze topologie gebruiken om de kortste paden te berekenen binnen het
netwerk aan de hand van het Dijkstra kortste pad algoritme (Shortest Path First,
SPF) [45]. Nadat de kortste paden bekend zijn kan deze informatie worden
gebruikt om de volgende knoop voor elk doeladres in de routeringstabel in te
vullen (Figuur 10). Merk op dat elke router dit afzonderlijk doet voor elk
doeladres in het netwerk. Het is daarom van kritiek belang dat iedere router
hetzelfde beeld heeft van de topologie van het netwerk.

We hebben reeds gezien dat een variant van het algemeen hartslagmechanisme in
OSPF wordt gebruikt om fouten te detecteren. Stel nu dat een fout optreedt, de
router die deze fout detecteert zal een nieuw linkstatuspakket verzenden waarin
de kost van de falende link op oneindig wordt gezet. Dit is het signaal voor de
andere routers om deze link niet langer te gebruiken. De volgende kortste pad
berekening zal deze link dan ook niet meer gebruiken. Dit heeft als gevolg dat
ook in de routeringstabellen de falende link niet meer wordt gebruikt en dat de
trafiek niet langer over de fout loopt.

Het berekenen van de kortste paden in het netwerk is vrij belastend. Daarom
worden de kortste pad berekeningen beperkt. Bijvoorbeeld in de Zebra
implementatie van OSPF [46] wordt er voor elke kortste pad berekening een
aantal seconden gewacht (de SPF vertraging, SPF delay). Bovendien ligt de
minimale tijd tussen twee opeenvolgende berekeningen nog hoger (de SPF
wachttijd, SPF hold-down). Deze twee timers worden samen de wachttijden van
OSPF genoemd.

Merk op dat de nieuwe linkstatuspakketten steeds worden opgenomen in de
linkstatusdatabank maar dat de berekening van de kortste paden even wordt
uitgesteld om zo veel mogelijk linkstatuspakketten te betrekken in elke kortste
pad berekening.

Nederlandse Samenvatting xvii

Figuur 10: In OSPF worden de routeringstabellen berekend door het
kortste pad algoritme toe te passen op de linkstatusdatabank.

Het is belangrijk op te merken dat een fout meestal wordt ontdekt door meer dan
één router. Bijvoorbeeld wanneer de link AD faalt zal zowel knoop A als knoop
D deze fout ontdekken (zie Figuur 11). Als gevolg daarvan zal knoop B zowel
een linkstatuspakket van knoop A als van knoop D ontvangen. Indien knoop B
even wacht voor hij de kortste pad berekening doet wordt er vermeden dat beide
pakketten elk voor een kortste pad berekening zorgen.

Knoopfouten worden ontdekt doordat elke router die verbonden is met de koop
merkt dat zijn link met die knoop faalt. Elk van deze routers zal een

A D E

B C

[(AB,1),(AD,1)
 (BA,1),(BC,1),
 (CB,1),(CD,1),
 (DA,1),(DC,1),
 (DE,1) (ED,1)]

Link Kost
AB 1
AD 1
BC 1
CD 1
DE 1

Doeladres Via Kost
B AB 1
D AD 1
C AB 2
E AD 2

Kortste pad
algoritme

Afgeleide topologie

Evaluatie en verbetering van foutconvergerende technieken voor IP netwerkenxviii

linkstatuspakket verzenden met de kost naar de falende router gelijk aan
oneindig. Dit zal leiden tot de situatie waarin geen enkele router een link
gebruikt van de falende router waardoor de router niet langer wordt gebruikt.

Figuur 11: Een fout wordt meestal door meer dan één router gedetecteerd,
het is daarom van belang het ontvangen van een linkstatuspakket niet
direct te laten volgen door een kortste pad berekening omdat dit leidt tot
overbodige berekeningen.

Tot zover hebben we ons toegespitst op de herstelcyclus van OSPF. De
terugkeercyclus is vergelijkbaar met de herstelcyclus. De herstelcyclus begint
nadat een fout hersteld is, als gevolg daarvan zullen de verbonden routers elkaar
terugvinden en opnieuw OSPF pakketten beginnen uit te wisselen. Deze initiële
uitwisseling loopt onder leiding van het Hello protocol. Daarna zal informatie
over de nieuwe link opnieuw worden verspreid over het netwerk zodat de routers
deze kunnen gebruiken in de volgende kortste pad berekening zodat de link
tenslotte ook gebruikt zal worden in de nieuwe routeringstabellen.

I.4.4 MPLS herroutering

Herroutering in MPLS is gebaseerd op de herroutering in IP. Dit wil zeggen dat
het IP routeringsprotocol verantwoordelijk is om nieuwe routeringstabellen te
berekenen nadat een fout is opgetreden. Hoe dit gebeurt hebben we reeds
geïllustreerd in de vorige sectie aan de hand van het OSPF protocol.

Het herrouteren van een LSP komt neer op het aanpassen van het pad van de
LSP zodat dit pad terug overeenkomt met de routeringstabellen. Dit is
geïllustreerd in Figuur 12 aan de hand van een kortste pad LSP van knoop A naar
knoop E. We zien dat link CD faalt waardoor de LSP wordt aangetast. Als
gevolg van de fout zal de IP routering nieuwe routeringstabellen installeren in
het netwerk. Zo ook in knoop B waar de volgende knoop voor het doeladres van
de LSP, knoop E, verandert van C naar F. Wanneer dit gebeurt zal B een nieuwe

A D E

B C

DA=∞AD=∞

DA=∞

DA=∞

Nederlandse Samenvatting xix

LSP opzetten vanuit B naar E en vervolgens het oude gedeelte vervangen door
het nieuwe.

Figuur 12: Herroutering van de LSP A-B-C-D-E door knoop B na een fout
op link CD

De aanzet van het herrouteren van de LSP wordt gegeven door een verandering
van de volgende knoop ergens op het pad van de LSP. In LDP is het nodig om te
kunnen detecteren dat een volgende knoop is veranderd om de LSP te kunnen
herrouteren. In RSVP-TE ligt dit anders omdat de staat niet vast is en dus
regelmatig moet worden ververst. Wanneer de volgende knoop is veranderd en
de staat van de LSP wordt ververst dan zal deze automatisch worden
geherrouteerd. De LSPs worden ververst binnen het interval [0.5,1.5]R waarbij
R=30s de standaard waarde is [31]. Dit kan leiden tot zeer grote vertraging van
de herroutering. Het is echter ook mogelijk zoals bij LDP actief de
routeringstabellen te monitoren en de LSPs onmiddellijk te verversen indien
deze wijzigen.

I.4.5 Protectie in MPLS

Het herrouteren van LSPs is sterk afhankelijk van de herroutering in IP. MPLS
biedt echter een alternatief om trafiek binnen het netwerk te beschermen,
protectie genaamd. In protectie wordt een herstel-LSP opgezet samen met de
LSP die onder normale omstandigheden wordt gebruikt (de werkende LSP).

Indien protectie wordt gebruikt is het bijvoorbeeld mogelijk om de LSP A-B-C-
D-E als werkende LSP te gebruiken en de LSP A-B-F-G-D-E uit Figuur 12 als
herstel-LSP. Wanneer een fout optreedt op de link BC of link CD of in de knoop
C dan kan er overgeschakeld worden van de werkende naar de herstel-LSP.

B C D EA

F G

Originele LSP
Geherrouteerde LSP

Evaluatie en verbetering van foutconvergerende technieken voor IP netwerken xx

Figuur 13: Lokale link- en knoopprotectie en globale protectie.

We onderscheiden lokale en globale protectie. In lokale bescherming wordt de
werkende LSP beschermd tegen het falen van een knoop of een link (zie Figuur
13). In globale protectie wordt een LSP over zijn gehele lengte zo goed mogelijk
beschermd tegen alle mogelijke fouten.

Het gebruik van lokale protectie en in zekere mate ook globale protectie kan
leiden tot een zeer groot aantal herstel-LSPs. Het is daarom aan te raden om
meerdere werkende LSPs te beschermen met behulp van één herstel-LSP indien
mogelijk. Dit wordt gewoonlijk genoteerd als N:1 protectie, waarbij N het aantal
werkende LSPs is. Het aantal herstel-LSPs kan ook worden verminderd door de
technieken die werden voorgesteld in sectie I.3.5 toe te passen. Het is
bijvoorbeeld mogelijk een aantal herstel-LSPs te tunnelen binnen een andere
LSP. Een andere techniek bestaat erin een aantal herstel-LSPs samen te nemen
op hun bestemming.

Hoewel protectie meestal gepaard gaat met off line berekende herstel-LSPs hoeft
dit zeker niet altijd het geval te zijn. Tijdens het opstellen van de werkende LSP
kan er worden opgegeven dat deze moet worden beschermd. De individuele
routers op het pad kunnen dan tijdens het opzetten van de werkende LSP ook
lokale herstel-LSPs opzetten [47].

B C

E

D

G H

A

F

Werkende LSP
Link BC lokaal beschermd
Knoop C lokaal beschermd
LSP globaal beschermd

Nederlandse Samenvatting xxi

I.5 FTCR
I.5.1 Basiswerking

In deze sectie beschrijven we Fast Topology based Constrained Rerouting
(FTCR) een convergentietechniek ontwikkeld door de auteur [4, 5, 6, 8].

Figuur 14: Deze figuur illustreert hoe de linkstatusdatabank wordt gebruikt
in FTCR om de herstel-LSP te berekenen.

We zullen de werking van FTCR illustreren aan de hand van een voorbeeld (zie
Figuur 14). We gebruiken dezelfde topologie en werkende LSP als in Figuur 12,
deze keer faalt de link BC. Wanneer knoopt B merkt dat de link BC faalt kan hij
een herstel-LSP berekenen aan de hand van zijn linkstatusdatabank. Zoals we
hebben gezien in de sectie rond OSPF bevat de linkstatusdatabank voldoende
informatie om de topologie van een netwerk op te bouwen. Door nu in deze
topologie de falende link te verwijderen kan men met behulp van het kortste pad
algoritme een herstel-LSP berekenen. Het opzetten van de herstel-LSP vormt wel
een probleem omdat de routeringstabellen in het netwerk de fout nog niet in acht
hebben genomen. Het is nochtans mogelijk de herstel-LSP op te zetten indien
alle knopen langs de LSP expliciet worden meegegeven bij het opzetten ervan.
Vermits elke knoop wordt meegegeven is het niet nodig dat de routeringstabellen
accuraat zijn.

Het herrouteren van een LSP met behulp van FTCR zal sneller zijn dan gebruik
te maken van MPLS herroutering omdat het opzetten van de herstel-LSP
simultaan gebeurt met het hernieuwen van de routeringstabellen.

De knoop die de herstel-LSP opzet wordt de FTCR Switch LSR, de FSL,
genoemd. De FSL kan zich onmiddellijk stroomopwaarts van de fout bevinden
(lokale FSL) zoals reeds geïllustreerd, maar de FSL kan zich ook aan de ingang
van de LSP bevinden (ingangs-FSL) of ergens tussenin. Een belangrijke geval
van deze laatste vorm is wanneer de FSL daar wordt geplaatst zodat er geen lus

B C D EA

F G

Evaluatie en verbetering van foutconvergerende technieken voor IP netwerkenxxii

op de herstel-LSP optreedt maar toch zo dicht mogelijk bij de fout
(dichtstbijzijnde lusvrije FSL). Dit zijn de drie belangrijkste FSL-selectiemodes.
We veronderstellen steeds, tenzij anders vermeld, dat de lokale FSL
selectiemode wordt gebruikt.

I.5.2 Het herrouteren van expliciete LSPs

Het herrouteren van een expliciet gerouteerde LSP is moeilijker dan een kortste
pad LSP vermits een deel of het gehele pad van de LSP vast ligt. Er zijn een
aantal mogelijkheden om een expliciete LSP te herrouteren maar deze zullen het
originele pad moeten wijzigen. Eén mogelijkheid bestaat erin het originele pad
zoveel mogelijk te herbruiken. Dit is geïllustreerd in Figuur 15 waar de
expliciete LSP A-B-F-G-D-E is geherrouteerd door een nieuw pad te zoeken
vanuit de FSL naar de volgende hop in de LSP specificatie (F). Het is duidelijk
dat dit pad verre van ideaal is. Men kan natuurlijk eerst de lus elimineren voor
men de herstel-LSP opzet. Een andere mogelijkheid om de LSP te herrouteren
bestaan erin het kortste pad te gebruiken van de FSL naar de uitgang van de LSP.
Tenslotte kan men soms hetzelfde algoritme gebruiken dat de werkende LSP
heeft berekend maar ditmaal op de nieuwe topologie.

Figuur 15 : Herrouteren van de expliciete LSP A-B-F-G-D-E

I.5.3 Meerdere fouten herstellen

We hebben reeds behandeld hoe een kortste pad en expliciet gerouteerde LSPs
kunnen worden hersteld met FTCR. In deze sectie beschouwen we hoe meerdere
fouten op een LSP kunnen worden hersteld. Het is belangrijk om op te merken
dat meerdere fouten op één LSP betekent dat er een fout optreedt en vervolgens
nog minstens één fout vóór de IP herroutering heeft plaats gevonden.

Wanneer er een fout optreedt zal de FSL de werkende LSP herrouteren door een
aanvraag voor een herstel-LSP te verzenden. Stel nu dat er een nieuwe fout

B C D EA

F G

Originele LSP
Geherrouteerde LSP

Nederlandse Samenvatting xxiii

optreedt, ditmaal op het pad van de herstel-LSP. Het is duidelijk dat de herstel-
LSP niet meer geldig is. Er is dan een nieuwe FSL, de FSL verantwoordelijk
voor de nieuwe fout. We gaan er even vanuit dat deze FSL direct
stroomopwaarts van de fout ligt. Deze FSL kan de aanvraag van de eerste FSL
gaan herrouteren en hiervoor een nieuwe herstel-LSP opzetten. Dit is
geïllustreerd in Figuur 16. Eerst stuurt A een aanvraag voor de herstel-LSP na de
fout op link AB, daarna zal C deze aanvraag herrrouteren om de fout op link CD
te vermijden.

Figuur 16: Het herrouteren van een LSP indien meer dan één fout
optreedt.

Als de ingang van de LSP steeds de FSL is dan zal knoop A tweemaal een
herstel-LSP trachten op te zetten. De eerste keer zal dit mislopen omdat de link
CD ook gefaald heeft, de tweede maal weet knoop A dat CD niet bruikbaar is en
zal deze link dan ook vermijden.

Stel nu dat de fouten in omgekeerde volgorde optreden namelijk dat link CD
faalt voor link AB, we beschouwen opnieuw de lokale FSL mode. In dit geval
zal knoop C de werkende LSP herrouteren over het pad G-H-E. Op het moment
dat link AB faalt zal knoop A een aanvraag voor de herstel-LSP F-C-D-E
verzenden (merk op dat A niet weet dat link CD heeft gefaald). Opnieuw zal
knoop C deze aanvraag herrouteren over het pad G-H-E. In beide gevallen is de
herstel-LSP dezelfde, de volgorde van de fouten heeft dus geen invloed op het
pad van de herstel-LSP.

Het herrouteren van meerdere fouten tegelijk werkt in het algemeen omdat er
steeds één FSL verantwoordelijk is voor een bepaalde fout op een LSP. Deze
FSL zal ofwel de werkende LSP herrouteren ofwel de LSP aanvragen die hij
ontvangt en die over de fout lopen herrouteren.

B C

F

D E

G H

A

LSP aanvraag
<F-C-D-E>

LSP aanvraags-
herroutering <G-H-E>

Evaluatie en verbetering van foutconvergerende technieken voor IP netwerkenxxiv

I.5.4 Terugkeer in FTCR

De terugkeer cyclus in IP routering begint vanaf het moment dat een fout is niet
meer van kracht is. Terugkeer in FTCR kan pas gebeuren nadat de IP
herroutering is volbracht. Nadat de IP routering is volbracht zal de originele LSP
opnieuw moeten worden opgezet. Figuur 17 toont hoe de kortste pad LSP A-B-
C-D tweemaal geherrouteerd is geweest, eenmaal voor een fout over link AB en
eenmaal voor een fout over link CD.

Figuur 17: Terugkeer in FTCR hangt af van de terugkeer van het IP
routeringsprotocol.

In het geval van een kortste pad LSP is de terugkeer eenvoudig omdat deze LSP
enkel gekenmerkt wordt door het doeladres wat steeds gekend is. Indien echter
een expliciete LSP geherrouteerd wordt moet het volledig pad worden
opgeslagen omdat tijdens de terugkeercyclus dit pad gekend moet zijn.

I.6 Evaluatie van foutconvergerende technieken
In deze sectie evalueren we de convergentietechnieken over een aantal criteria.
Naast de convergentietijd kijken we ook naar de schaalbaarheid, de stabiliteit en
de hoeveel extra middelen die nodig zijn om een bepaalde hoeveelheid trafiek te
beschermen.

I.6.1 Convergentietijd

Test netwerk en meettechniek
We maken gebruik van een netwerk van Linux routers [48, 49, 50, 51]. Het
alternatief is het gebruik van commerciële routers maar deze zijn niet eenvoudig
aanpasbaar. Daarom is het onmogelijk om FTCR erop te implementeren.
Vandaar dat dit alternatief niet werd weerhouden.

De routers worden met elkaar verbonden via het testnetwerk maar daarnaast ook
met een controlenetwerk. Het controlenetwerk wordt gebruikt om de tests te
orchestreren. Daarnaast wordt het netwerk verbonden met een Smartbits 2000
netwerktestapparaat [52]. De Smartbits is in staat zorgvuldig getimed,
genummerde pakketten te sturen doorheen het testnetwerk (zie Figuur 18).

B C

E
F G

DA 1 2

Nederlandse Samenvatting xxv

Figuur 18: De Smartbits stuurt genummerde testpakketten doorheen het
testnetwerk.

De convergentietijd wordt bepaald door het aantal gemiste pakketten te
vermenigvuldigen met de tijd tussen het verzenden van de pakketten:

convergentietijd = (aantal pakketten verloren ± 1)* (1 / snelheid) (2)

Formule (2) neemt reeds de absolute fout van één pakket in rekening. Figuur 19
toont dat de gemeten convergentietijd één eenheid hoger of lager kan liggen dan
de reële convergentietijd. Deze fout stemt overeen met de absolute fout op de
meting. In de experimenten die we uitvoeren komt de convergentietijd overeen
met meer dan drie pakketten. De relatieve fout zal dus veel lager liggen dan de
50% die we krijgen in het voorbeeld van Figuur 19. In de praktijk krijgen we een
relatieve fout tussen de 0.01% en de 5.6% wat acceptabel is.

Experiment Gemeten Reële
waarde Waarde

A . x x . . . 2 ~2
B . . x . . . 1 ~2
C . x x x . . 3 ~2

Figuur 19: De absolute fout op de meting

Er is echter een tweede oorzaak voor fouten op de metingen. De meetmethode
veronderstelt dat de meetpakketten die door de Smartbits worden verstuurd met
een constante snelheid door het netwerk worden verstuurd. Dit veronderstelt ten

C D

A B E F

G H I

Smartbits
2000

Evaluatie en verbetering van foutconvergerende technieken voor IP netwerkenxxvi

eerste dat de pakketten met een constante vertraging worden verstuurd. Dit is
geen probleem omdat de Smartbits de pakketten met voldoende precisie kan
versturen (400ns). Het bufferen van pakketten in de routers zorgt echter voor
fluctuaties in de snelheid waarmee de pakketten het netwerk doorkruisen.

Cumulatieve vertragingsdistributie

<0.2 <0.5 <1 <2.5 <5 <10 <25 ms

0 99,32 99,40 99,62 99,89 99,99 100 %

Figuur 20: De vertraging die de meetpakketten ondervinden wanneer ze
het netwerk doorkruisen.

Figuur 20 toont de vertraging van de pakketten indien ze worden verstuurd met
een tussenpauze van 1ms. Uit de figuur leren we dat het merendeel van de
pakketten een kleine vertraging ondervinden. 99,40% van de pakketten
ondervinden een vertraging die lager ligt dan de absolute fout van 1ms. De
overige pakketten kunnen echter een vertraging oplopen tot 25ms. De kans dat
een pakket significant wordt vertraagd (>10ms) bedraagt 0,01%. Opdat een
dergelijk pakket een invloed kan hebben op de convergentietijd moet het
overlappen met het begin of het einde van de convergentieperiode. Indien de
convergentieperiode bijvoorbeeld 50ms bedraagt dan is de kans dat een pakket
de meting van de periode beïnvloedt 0.2%. Indien we verder opmerken dat elk
experiment 100 maal wordt herhaald dan is het duidelijk dat significant
vertraagde pakketten geen grote invloed hebben op de gemiddelde
convergentietijd. We zijn echter ook geïnteresseerd in de minimale en de
maximale convergentietijd. Opnieuw vormt dat geen probleem omdat een
dergelijke anomalie eenvoudig kan worden opgemerkt in een reeks van 100
metingen.

Parameters
In de experimenten onderzoeken we de convergentietijd van OSPF met directe
foutdetectie, RSVP herroutering door verversing van staat, RSVP herroutering
getriggered door de OSPF herrroutering, FTCR en protectie.

OSPF en RSVP hebben een aantal configuratieparameters deze worden getoond
in Tabel 1. Daarnaast vermeldt deze tabel ook dat elk experiment 100 maal wordt
uitgevoerd en dat het meetinterval 1ms bedraagt.

De topologie van het netwerk gebruikt in de experimenten is deze van Figuur 18.

Nederlandse Samenvatting xxvii

Tabel 1: De algemene en de OSPF en de RSVP parameters gebruikt in de
experimenten.

Parameter Waarde
a Aantal metingen 100
b Meetinterval 1ms
c OSPF Hello interval 10s
d OSPF Router Dead interval 40s
e OSPF SPF vertraging 5s
f RSVP ververs periode (R) 30s
g RSVP herstelwachttijd 2s

Resultaten
In deze sectie geven en bespreken we de resultaten van de experimenten [8]. We
zien onmiddellijk op Figuur 21 dat er enorme verschillen bestaan tussen de
technieken, van die aard zelfs dat de grafieken voor FTCR en protectie niet
zichtbaar zijn op de lineaire schaal van Figuur 21a. We bespreken de resultaten
nu één voor één. Daarbij maken we gebruik van de convergentiecyclus uit sectie
I.4.1.

Voor elke techniek die we bespreken geven we een tabel met de theoretische
convergentiecyclus en de convergentiecyclus waarbij bepaalde waarden, waar
mogelijk, gesubstitueerd zijn met deze uit Tabel 1. Onbekende factoren worden
voorgesteld door een Griekse kleine letter.

We zien dat in de derde rij van Tabel 2 de herstelwachttijd 5s bedraagt. Deze
waarde wordt gevonden door de SPF vertraging in de tweede rij te substitueren
met de waarde uit Tabel 1. Merk op dat de SPF wachttijd geen rol speelt omdat
er slechts één SPF berekening moet worden uitgevoerd. Daarnaast zien we dat de
overige factoren die de convergentietijd beïnvloeden onbekend zijn.

Tabel 2: Convergentiecyclus van OSPF met directe foutdetectie

Foutdetectietijd Verwittigings-
tijd

Herstelwacht-
tijd

Hersteloperaties

κ δ [SPF vertraging,
SPF wachttijd]s

SPF (ε),
aanpassen RIB (γ)

κ δ 5s ε+γ

Evaluatie en verbetering van foutconvergerende technieken voor IP netwerkenxxviii

In Figuur 21 zien we dat de convergentietijd iets meer dan ongeveer 5s bedraagt.
We zien dus dat de theoretische convergentietijd overeenkomt met de
experimentele convergentietijd. Daarnaast zien we dat de tijd die nodig is voor
de detectie van de fout en het berekenen en het aanpassen van de
routeringstabellen klein is (<27ms).

Figuur 21: De convergentietijden van de verschillende technieken: a)
lineaire schaal b) logarithmische schaal. De minimale, maximale en
gemiddelde waarden van de convergentietijden zijn gegeven voor 100
experimenten.

1

10

100

1000

10000

100000

OSPF 5013 5027 5018,45

Softstate RSVP 7031 46803 30348,00

Getriggered RSVP 7030 7033 7031,43

FTCR 28 31 29,60

Protectie 18 20 18,59

Min Max Avg

Gemeten convergentietijd

0

10000

20000

30000

40000

50000

(m
s)

b)

a)

Nederlandse Samenvatting xxix

Tabel 3: Convergentiecyclus van RSVP herroutering door verversing van
staat.

Foutdetectietijd Verwittigings-
tijd

Herstelwachttijd Herstel-
operaties

IP convergentie IP
convergentie

RSVP
herstelwachttijd +

[0,5-1,5]R

Opzetten LSP
(ζ)

IP convergentie IP
convergentie

2s +
[15-45]s

Opzetten LSP
(ζ)

De theoretische convergentietijd voor RSVP herroutering door verversing van
staat is gegeven in Tabel 3. De foutdetectie en verwittiging gebeurt in MPLS
herroutering onder invloed van de IP herroutering. De herstel-LSP wordt opgezet
van zodra de originele LSP wordt ververst en dus niet onder impuls van de
gewijzigde routeringstabel. Indien er een wijziging in de routeringstabel wordt
vastgesteld tijdens de verversing van de LSP dan wacht men even (de
herstelwachttijd) voor de LSP wordt ververst. Een LSP wordt gemiddeld elke
30s (R) ververst maar deze concrete waarde varieert tussen de 15s en de 45s. We
kunnen dus verwachten dat de convergentietijd tot 2s + 45s hoger ligt dan bij IP
herroutering plus de tijd die nodig is om de herstel-LSP op te zetten. Deze
analyse wordt bevestigd door Figuur 21. Enkel de hoogst mogelijke theoretische
convergentietijden worden niet gehaald. Dit komt door de zwakke implementatie
van verversingsinterval waarbij de hoogste waarde slechts 42s in plaats van 45s
bedraagt (gecontroleerd over 100 experimenten). Toch is dit voldoende om aan
te tonen dat de convergentietijd sterk varieert en potentieel heel hoog kan zijn in
vergelijking met OSPF herroutering.

Tabel 4: Convergentiecyclus RSVP herroutering getriggerd door
gewijzigde routeringstabel.

Foutdetectietijd Verwittigings-
tijd

Herstelwachttijd Herstel-
operaties

IP convergentie IP
convergentie

RSVP
herstelwachttijd

Opzetten LSP
(ζ)

IP convergentie IP
convergentie

2s Opzetten LSP
(ζ)

Evaluatie en verbetering van foutconvergerende technieken voor IP netwerkenxxx

Zoals we reeds hebben besproken is het ook mogelijk de herroutering van een
LSP onmiddellijk te starten wanneer de routeringstabellen worden aangepast
door de IP routering. Op deze manier gebeurt de convergentie veel sneller omdat
deze niet meer afhangt van de verversingsperiode van RSVP. Figuur 21 toont
duidelijk aan dat dit een positieve invloed heeft op de convergentietijd. De
convergentietijd van RSVP met getriggerde herroutering is ook veel beter
voorspelbaar. De convergentietijd ligt nog steeds hoger dan deze van OSPF
omdat er een herstelwachttijd is van 2s. Het herrouteren van de LSP wordt wat
vertraagd om de routeringstabellen in het netwerk te laten stabiliseren.

Tabel 5: Convergentiecyclus van FTCR

Foutdetectietijd Verwittigings-
tijd

Herstelwacht
-tijd

Hersteloperaties

κ η 0s Berekening herstel-
LSP (θ),

opzetten LSP (ζ)

Zoals we reeds hebben besproken worden de hersteloperaties in FTCR
onmiddellijk gestart na het detecteren van de fout. Een LSP wordt hersteld door
het berekenen en het opzetten van de herstel-LSP vanuit de FSL. In deze
experimenten gebruiken we lokaal herstel. Figuur 21b toont duidelijk aan dat
FTCR aanzienlijke sneller is dan MPLS herroutering en OSPF herroutering.

Herstel met behulp van protectie gebeurt, zoals in FTCR, ook onmiddellijk na
het detecteren van de fout. Het verschil tussen FTCR en protectie is dat bij
protectie de herstel-LSP reeds vooraf is opgezet. De enige actie die dus nog moet
worden ondernomen is het overschakelen van de originele LSP naar de herstel-
LSP (zie Tabel 6). Dit zorgt voor nog snellere convergentietijden dan FTCR
(ongeveer 10ms sneller).

Tabel 6: Convergentiecyclus van protectie

Foutdetectietijd Verwittigings-
tijd

Herstelwacht
-tijd

Hersteloperaties

κ η 0s Aanpassen LIB (ι)

Het verschil tussen de convergentietijden van FTCR en protectie zal echter
toenemen als het netwerk in grootte toeneemt omdat zowel de rekentijd als de
tijd die nodig is om de herstel-LSP op te zetten toeneemt.

Nederlandse Samenvatting xxxi

Besluit
We kunnen drie categorieën van convergentietechnieken onderscheiden. De
snelste technieken zijn protectie en FTCR. OSPF herroutering en getriggerde
RSVP herroutering zijn twee orden van grootte trager maar hebben een
voorspelbare convergentietijd. MPLS herroutering door de verversing van staat
is potentieel zeer traag en kan dus best worden vermeden indien mogelijk. Te
meer daar het geen voordelen biedt ten opzichte van getriggerde herroutering.

I.6.2 Stabiliteit

De convergentietijd van OSPF en MPLS herroutering wordt grotendeels bepaald
door de herstelwachttijd. Deze wachttijden verhogen de convergentietijd maar
kunnen niet zomaar worden geëlimineerd omdat ze de stabiliteit moeten
garanderen. In deze sectie leggen we uit waarom de herstelwachttijden nodig zijn
in OSPF en MPLS herroutering en waarom ze niet nodig zijn in FTCR.

OSPF
OSPF gebruikt SPF vertraging en SPF wachttijd om het aantal kortste pad
berekeningen te beperken (zie sectie I.4.3). Indien een knoop in het netwerk faalt
zal elke router verbonden met die knoop het falen van de link met de falende
knoop detecteren. Als gevolg daarvan zal elke router direct verbonden met de
falende knoop een nieuw linkstatuspakket verzenden waarbij de kost van de link
oneindig is. Dit kan leiden tot een groot aantal linkstatuspakketten op korte
termijn. Het is dan niet aan te raden om direct bij het binnenkomen van een
linkstatuspakket direct een kortste pad berekening te doen omdat nog niet alle
linkstatuspakketten zijn ontvangen. De SPF vertraging en de SPF
herstelwachttijd dienen dus om het aantal onnodige kortste pad berekeningen te
beperken. Het introduceren van deze wachttijden zal echter steeds de
convergentietijd doen toenemen.

Figuur 22: Het tijdsverschil tussen linkstatuspakketten van knoop E en
knoop B bij het falen van knoop C kan oplopen tot 10s.

A

G

D

E F

B

C
tf: LSAB

tf+10s: LSAE

Evaluatie en verbetering van foutconvergerende technieken voor IP netwerkenxxxii

De optimale waarden van SPF vertraging en SPF herstelwachttijd zijn zeer
moeilijk te bepalen. Het is dan ook eenvoudig aan te tonen dat de standaard
waarden van de Zebra OSPF implementatie niet ideaal zijn.

Stel dat knoop C faalt, zowel knoop B als knoop E zullen dit detecteren (zie
Figuur 22). Stel dat het Hello protocol wordt gebruikt om de fout te detecteren.
Het verschil tussen de tijd dat knoop B het falen van knoop C detecteert en de
tijd dat knoop E dit doet kan oplopen tot 10s (zie formules (1, 2, 3)).

Tdetect = T1 – T0 = [ontvangstinterval– zendinterval, ontvangstinterval] (2)

Tdetect = T1 – T0 = [40 – 10, 40] = [30, 40] (3)

Doordat de detectietijd 10s kan verschillen is het ook mogelijk dat knoop A de
linkstatuspakketten van B en E met een tussenpauze van 10s ontvangt. Knoop A
zal, na het ontvangen van het linkstatuspakket van B, 5s (SPF vertraging)
wachten alvorens de kortste pad berekening te starten. In dit geval zal dit niet
voldoende zijn om het linkstatuspakket van knoop E te ontvangen. Als gevolg
daarvan zal pas de volgende kortste pad berekening, 10s later (SPF wachttijd),
het linkstatuspakket van E in rekening brengen.

Niet enkel het verschil in detectietijd kan zorgen voor grote verschillen tussen
het ontvangen van de linkstatuspakketten van eenzelfde fout. Ook door
vertraging in het netwerk of het verliezen van een linkstatuspakket, waardoor het
opnieuw moet worden verzonden, kan leiden tot grote vertragingen.

De stabiliteit van OSPF komt ook in gevaar tijdens linkstatuspakketstormen
(LSA storm). Tijdens een LSA storm worden onder invloed van een groot aantal
wijzigingen in het netwerk zeer veel linkstatuspakketten verzonden. Dit kan als
gevolg hebben dat de pakketten niet tijdig worden bevestigd waardoor ze
opnieuw moeten worden verstuurd waardoor er nog meer pakketten worden
verstuurd. Bij een voldoende grote linkstatuspakketstorm kan deze situatie
blijven duren zodat het netwerk totaal onstabiel wordt. Een
linkstatuspakketstorm kan bijvoorbeeld te wijten zijn aan het falen van een groot
aantal knopen tegelijk. De stormen kunnen voorkomen worden door de timers in
het OSPF netwerk te vergroten maar dit heeft natuurlijk als gevolg dat de
convergentietijden stijgen.

In het algemeen kan men stellen dat er een wisselwerking bestaat tussen de
stabiliteit en de convergentietijden in OSPF.

MPLS herroutering
De stabiliteit van MPLS herroutering ligt typisch hoger dan deze in OSPF. Dit
komt doordat er een extra wachttijd timer wordt gebruikt (de RSVP
herstelwachttijd in de experimenten van sectie I.6.1). Met behulp van deze

Nederlandse Samenvatting xxxiii

herstelwachttijd probeert men ervoor te zorgen dat de routeringstabellen stabiel
zijn alvorens de herstel-LSP op te zetten. Uit Figuur 22 blijkt echter wel dat de
standaard waarde van 2s niet altijd voldoende is (in dit geval is er meer dan 10s
nodig). Toch zal de standaard timer al een aantal fluctuaties die optreden tijdens
het herrouteren in IP kunnen opvangen.

Indien de routeringstabellen nog niet stabiel zijn na 2s zal dit echter stabieler
worden opgevangen door MPLS herroutering omdat deze een herstel-LSP opzet.
Indien bijvoorbeeld de routeringstabellen de trafiek in een zwart gat sturen dan
zal de herstel-LSP niet worden opgezet simpelweg omdat deze niet kan worden
opgezet. Er kan gesteld worden dat het pad van een LSP wordt getest tijdens het
opzetten ervan.

Men kan besluiten dat MPLS herroutering stabieler is dan IP herroutering door
het gebruik van een extra wachttijd en door de padgeoriënteerde natuur van
MPLS.

Protectie
Protectie is in principe zeer stabiel omdat er tijdens het optreden van een fout
enkel moet worden overgeschakeld naar een vooraf opgezette herstel-LSP. Het
ondersteunen van meerdere fouten is echter moeilijk met behulp van protectie.
Meerdere fouten ondersteunen vereist dat niet enkel de werkende LSPs maar ook
de herstel-LSPs worden beschermd. Daarnaast moeten ook fouten kunnen
worden ontdekt op de herstel-LSPs. Wegens de complexiteit ervan worden
meerdere fouten niet altijd ondersteund door protectie. Indien meerdere fouten
niet worden ondersteund dan kan de techniek niet als stabiel worden beschouwd.
Daarnaast worden soms ook niet alle enkelvoudige foutscenario’s ondersteund
omdat dit te veel herstel-LSPs vereist. Dit leidt opnieuw tot een verminderde
stabiliteit.

FTCR
FTCR convergeert veel sneller dan OSPF omdat in FTCR geen
herstelwachttijden worden gebruikt. Het is dan ook de vraag of dit de stabiliteit
van FTCR niet in gevaar brengt. In de vorige paragraaf hebben we verklaard
waarom OSPF wachttijden nodig heeft. FTCR heeft deze niet nodig omdat er
slechts één FSL is die verantwoordelijk is voor een bepaalde fout op een LSP. In
OSPF is dit niet het geval omdat een fout minstens door twee knopen wordt
ontdekt en deze knopen ook beide acties zullen ondernemen als gevolg daarvan.
Stel dat bijvoorbeeld een link faalt dan zullen in OSPF beide eindpunten een
nieuw linkstatuspakket versturen. De routers in het netwerk zullen deze
informatie dan gebruiken om nieuwe routeringstabellen te berekenen. In FTCR
zal enkel de knoop direct stroomopwaarts van de fout een herstelactie
ondernemen met betrekking tot de aangetaste LSPs. Waar in OSPF de

Evaluatie en verbetering van foutconvergerende technieken voor IP netwerkenxxxiv

herstelacties worden gedistribueerd, zullen bij FTCR deze centraal gebeuren in
de FSL. Doordat er geen gedistribueerde herstelacties zijn is er ook geen nood
aan de impliciete synchronisatie door expliciete wachttijden. Deze vaststelling
geldt voor alle FSL selectiemodes van FTCR maar ook indien meerdere fouten
optreden. Indien er meerdere fouten optreden zal er nog steeds slechts één FSL
verantwoordelijk zijn voor een bepaalde fout op een gegeven LSP ondanks het
feit dat er meerdere fouten optreden op de LSP.

Figuur 23: De fluctuatieperiode van een link die alterneert tussen
werkende en falende status. Het herstel en de terugkeer van OSPF en
FTCR zijn geïllustreerd.

Het snelle herstel van FTCR betekent ook niet dat FTCR onstabiel is bij het
fluctueren van een link tussen werkende en falende status. Dit komt omdat FTCR
tijdens de terugkeercyclus afhankelijk is van de terugkeer in IP. Stel dat een link
zeer sterk fluctueert tussen werkende en falende status dan zal in OSPF de
fluctuaties van de routeringstabellen in het netwerk worden beperkt door de
wachttijden. Doordat FTCR voor de terugkeer afhangt van OSPF zal de
fluctuatieperiode gelijk zijn aan deze van OSPF. Dit is geïllustreerd in Figuur 23

Link
faalt

OSPF
wachttijd

Link
hesteld

Link
faalt

OSPF
wachttijd

OSPF
hersteld

OSPF & FTCR
teruggekeerd

fluctuatie-
periode

FTCR
hersteld

FTCR
terugkeerwacht-

tijd

Nederlandse Samenvatting xxxv

waar de link iets trager fluctueert dan twee maal de OSPF wachttijd. Deze figuur
toont ook dat FTCR even traag fluctueert als OSPF omdat er bij de terugkeer
wordt gewacht op OSPF. Het is echter duidelijk dat het herstel, wat veel
kritischer is dan de terugkeer, veel sneller gebeurt in FTCR dan in OSPF. Men
zegt dat FTCR snel reageert op slecht nieuws en traag op goed nieuws. Deze
positieve eigenschap van FTCR heeft OSPF niet omdat het even snel op slecht
nieuws als op goed nieuws reageert.

I.6.3 Schaalbaarheid

In deze sectie kijken we naar de schaalbaarheid van de convergentietechnieken
in functie van de grootte van het netwerk en het aantal LSPs dat kan worden
ondersteund.

OSPF
De schaalbaarheid van OSPF wordt beperkt door de maximale grootte van de
linkstatusdatabank. Zowel de opslagruimte en de hoeveelheid linkstatus-
pakketten dat moet worden verspreid over het netwerk neemt toe als de
linkstatusdatabank in grootte toeneemt. De grootte van de linkstatusdatabank
hangt af van het aantal knopen in het netwerk maar ook met het aantal externe
routes dat wordt toegevoegd. Externe routes worden soms toegevoegd om steeds
de ideale uitgang in het netwerk naar een dergelijke route te gebruiken.
Daarnaast neemt de duur van de kortste pad berekening ook toe naarmate de
grootte van de linkstatusdatabank toeneemt (O(n.log(n)) of O(n2)).

Het is mogelijk om een OSPF netwerk op te delen in meerdere subnetwerken
met één centraal ruggengraatnetwerk. Op die manier zullen meerdere, kleinere
linkstatusdatabanken worden gebruikt met als nadeel dat de verschillende
subnetwerken moeten worden geconfigureerd en onderhouden [36, 53].

MPLS herroutering
Zoals de herroutering in MPLS afhangt van het IP routeringsprotocol wordt de
schaalbaarheid natuurlijk ook beperkt door het IP routeringsprotocol. Daarnaast
wordt de schaalbaarheid ook bepaald door de MPLS implementatie. Er zijn
namelijk een beperkt aantal LSPs dat simultaan kan worden ondersteund. Vooral
bij RSVP kan dit voor beperkingen zorgen omdat in RSVP continu de staat met
betrekking tot de LSPs wordt ververst. Bij een groot aantal LSPs kan dit zorgen
voor een aanzienlijke hoeveelheid trafiek. Bijvoorbeeld met 10.000 LSPs over
één link en een standaard verversperiode van 30 seconden bedraagt de gebruikte
bandbreedte 600kb per seconde. LDP heeft dit probleem niet omdat de staat vast
is en niet meer wordt herhaald. Gelukkig bestaan er extensies die
verversingsactiviteit van RSVP drastisch reduceren zodat de schaalbaarheid in de
buurt komt van deze van LDP [54].

Evaluatie en verbetering van foutconvergerende technieken voor IP netwerkenxxxvi

Een ander facet van de schaalbaarheid is het aantal LSPs dat simultaan kan
worden opgezet. In principe moet elke implementatie robuust genoeg zijn om
een zeer groot aantal LSPs tegelijk op te zetten. De tijd die nodig is om een LSP
op te zetten zal wel toenemen indien er veel LSPs tegelijk worden opgezet.

Protectie
De schaalbaarheid van protectie zal vooral afhangen van het aantal LSPs dat
simultaan opgezet kan zijn. In protectie is dit veel meer kritiek dan in MPLS
herroutering omdat de herstel-LSPs vooraf worden opgezet waardoor er dus
meer LSPs simultaan bestaan. Het voordeel van protectie ten opzichte van MPLS
herroutering met betrekking tot de schaalbaarheid is dat de snelheid waarmee een
LSP wordt opgezet en het aantal LSPs dat simultaan kan worden opgezet niet
meer kritiek is omdat de herstel-LSPs vooraf worden opgezet. Natuurlijk moet
de juiste herstel-LSP nog steeds worden gekozen bij een fout wat bij een groot
aantal aangetaste werkende LSPs tot eventueel schaalbaarheidsproblemen kan
leiden.

FTCR
FTCR vereist dat er een linkstatusdatabank wordt onderhouden in het netwerk.
Daarnaast wordt de schaalbaarheid ook beperkt door het aantal LSPs dat
simultaan kan worden ondersteund en opgezet. De schaalbaarheid van FTCR is
dus vergelijkbaar met deze van MPLS herroutering indien er daarbij een
linkstatusrouteringsprotocol wordt gebruikt.

I.6.4 Extra capaciteit van een beschermd netwerk

Om tijdens foutsituaties alle trafiek in het netwerk te kunnen blijven versturen
moet er in het netwerk extra capaciteit worden voorzien. De hoeveelheid extra
capaciteit die zo moet worden voorzien hangt af van convergentietechniek. De
volgende sectie beschrijft het simulatiemodel dat werd gebruikt om de extra
capaciteit te bepalen, de sectie daaropvolgend geeft de resultaten.

Simulatiemodel
In de simulaties wordt er verondersteld dat elke link bidirectioneel is maar dat de
capaciteit ervan en de vraag erover unidirectioneel is. Daarnaast veronderstellen
we dat de capaciteit van een link elke willekeurige positieve waarde kan
aannemen. Verder veronderstellen we dat de kost van een link recht evenredig is
met de lengte en de capaciteit ervan. De totale kost van het netwerk is de som
van de links [55].

Voor de convergentietechnieken vergelijken we de kost van een onbeschermd
netwerk met de kost waarbij het netwerk is beschermd tegen een willekeurige
enkelvoudige fout. Herroutering en MPLS herroutering moeten daarbij niet
afzonderlijk worden beschouwd omdat zij topologisch de trafiek op dezelfde

Nederlandse Samenvatting xxxvii

manier herrrouteren met als gevolg dat de capaciteitsvereisten dezelfde zijn. We
beschouwen naast OSPF herroutering, lokale protectie en FTCR met lokaal
herstel.

We gebruiken het e.spire netwerk als voorbeeldtopologie in deze studie [55]. Het
netwerk bestaat uit 44 knopen en 57 links. Het gewicht van de link wordt
proportioneel genomen met zijn afstand, het gewicht van een knoop wordt
bepaald door de grootte van de stad waarin het zich bevindt. Hoe groter de stad
des te groter het gewicht en des te groter de vraag van en naar de knoop. De
vraag in het netwerk wordt willekeurig bepaald maar er wordt rekening
gehouden met het gewicht van de knopen en de links. De resultaten worden
gegeven voor tien willekeurige vraagmatrices. De vraag in het netwerk wordt
steeds zo goedkoop mogelijk gerouteerd door het netwerk (door gebruik te
maken van het kortste pad algoritme).

Resultaten
Het eerste wat opvalt in Figuur 24 is dat het beschermen van het netwerk steeds
op zijn minst een verdubbeling van de netwerkkost met zich meebrengt.

Figuur 24: De extra kost van een netwerk dat is beschermd tegen een
enkelvoudige fout ten opzichte van een onbeschermd netwerk.

Verder zien we dat herroutering de goedkoopste techniek is gevolgd door FTCR
en daarna protectie. Herroutering is de goedkoopste techniek omdat herroutering
de trafiek in het netwerk globaal herrouteert en dus ook globaal kan spreiden. Dit
in tegenstelling tot lokale protectie dat de trafiek lokaal beschermt. FTCR heeft

Extra kost beschermd t.o.v. een onbeschermd network

0%

50%

100%

150%

200%

250%

300%

Ex
tr

a
ko

st
 (%

)

Symmetrisch 178% 242% 200%

Naar 1 bestemming 205% 301% 263%

Vanuit 1 bron 205% 299% 248%

Herroutering Protectie FTCR

Evaluatie en verbetering van foutconvergerende technieken voor IP netwerkenxxxviii

stroomopwaarts het lokale gedrag van protectie maar stroomafwaarts het globale
gedrag van herroutering met als gevolg dat de extra capaciteitskost van FTCR
tussen deze van herroutering en protectie zit.

Verder zien we dat een asymmetrisch trafiekpatroon meer capaciteit vereist.
Daarnaast zien we dat enkel FTCR meer capaciteit vereist indien de trafiek naar
één bestemming vloeit in plaats van dat alle trafiek van één bestemming komt.
Dit valt te verklaren door het asymmetrisch karakter van FTCR. De FSL zal alle
trafiek over eenzelfde pad naar de bestemming sturen waardoor er een zeer
geconcentreerd trafiek patroon ontstaat.

I.7 Verbetering van foutconvergerende technieken
In deze sectie kijken we naar recente verbetering in linkstatusroutering, hoe deze
technieken kunnen worden toegepast op FTCR en hoe FTCR verder kan worden
verbeterd.

I.7.1 Linkstatusroutering

We bekijken de recente verbeteringen die worden voorgesteld om de
convergentietijden van linkstatusrouteringsprotocollen te verbeteren.

Bij de implementatie van de eerste linkstatusrouteringsprotocollen, rond 1990,
concentreerde men zich vooral op de correctheid van de implementatie en niet op
de snelheid van de convergentie. In een tweede fase werd de
convergentiesnelheid wel belangrijk maar eigenlijk vooral in de marketing omdat
de versnelde convergentie vaak gepaard ging met een verlaagde stabiliteit en dus
onbruikbaar was in realistische netwerken. Vanaf 1995 begonnen de IP
netwerken zeer groot en bedrijfskritisch te worden dus de stabiliteit was het
eerste belang. Deze stabiliteit werd behaald door zeer lange timers te gebruiken
wat natuurlijk een negatief effect heeft op de convergentietijd. Meer recent is er
een hernieuwde interesse naar verlaagde convergentietijden onder invloed van
het stijgende belang van interactieve services zoals telefonie over het Internet en
de snelle convergentietijden van MPLS protectie [56].

Er zijn een aantal technieken die de convergentie kunnen versnellen. De
belangrijkste is misschien wel eenvoudigweg het gebruik van hardwarematige
foutdetectie. Met de standaard timers van OSPF duurt de detectie van een fout
[30-40]s (zie Figuur 8) terwijl dat bij hardwarematige foutdetectie slechts enkele
milliseconden duurt. Naast het gebruik van hardwarematige foutdetectie kan de
convergentietijd ook versneld worden door het gebruik van incrementele kortste
pad berekeningen en exponentiële timers.

Nederlandse Samenvatting xxxix

Incrementele kortste pad berekeningen [57, 58, 59] zijn efficiënter dan gewone
kortste pad berekeningen omdat ze rekening houden met de locatie van de
verandering in de topologie van het netwerk. Een gewone kortste pad berekening
zal steeds alle routes herberekenen ongeacht of dit noodzakelijk is of niet. Het is
eenvoudig aan te tonen dat dit zeker niet altijd nodig is.

Stel dat de link CE faalt in het netwerk van Figuur 25. Bij een gewone kortste
pad berekening zullen alle paden opnieuw worden berekend in alle knopen. Dit
is niet nodig omdat bijvoorbeeld de kortste paden in de knopen A en B niet
veranderen. In knoop E zullen de kortste paden naar C en D wel veranderen
onder de invloed van de fout, maar de andere kortste paden niet. Opnieuw zal de
incrementele kortste pad techniek ervoor zorgen dat knoop E enkel de nodige
paden herberekent.

Incrementele kortste pad berekening kan leiden tot een tienduizendvoudige
versnelling van de padberekening. De versnelling zal echter afhangen van de
locatie van de fout, indien de fout zich in het centrum van het netwerk bevindt
dan zal de versnelling kleiner zijn omdat de link of knoop dan praktisch voor elk
pad wordt gebruikt.

Figuur 25: Incrementele kortste pad berekeningen vermijden dat
overbodige kortste pad berekeningen in knoop A en B worden uitgevoerd.

Naast incrementele kortste pad berekeningen kan de convergentietijd ook
worden ingekort door het gebruik van exponentiële timers op de wachttijden. Het
idee hierbij is dat korte timers goed zijn voor de convergentietijd maar eveneens
slecht voor de stabiliteit waarbij het gebruik van een vaste timer dus geen goed
idee is. Bijvoorbeeld een korte wachttijd zal leiden tot snelle convergentie maar
instabiel gedrag indien een link fluctueert tussen werkende en falende status. Het
idee is de initiële waarden voor de timers klein te nemen maar indien de timers
kort na elkaar aflopen de waarden ervan exponentieel, met een bepaald
maximum, te laten toenemen. Dit heeft als gevolg dat fouten snel worden

A

G

D

E F

B

C

Evaluatie en verbetering van foutconvergerende technieken voor IP netwerken xl

behandeld indien ze niet recentelijk voorkwamen. In het geval van een
fluctuerende link zullen de routeringstabellen initieel snel mee fluctueren maar al
snel zullen ze een stabiel gedrag vertonen omdat de wachttijden sterk stijgen. Het
voordeel van exponentiële timers ligt er dus niet zo zeer in dat de convergentie
altijd sneller gebeurt maar eerder dat de initiële waarden van de timers klein
kunnen worden genomen zonder de stabiliteit op langere termijn in gevaar te
brengen.

Door het toepassen van exponentiële timers en incrementele kortste pad
berekeningen is het mogelijk convergentietijden onder de seconde te halen zelfs
in grote netwerken. Snellere convergentie is niet mogelijk in grote netwerken
omdat de rekentijd en de verwittigingstijd te hoog worden [60].

I.7.2 FTCR

De technieken die worden aangewend om de convergentie te versnellen in
linkstatusroutering kunnen ook worden gebruikt in FTCR. FTCR heeft inderdaad
ook baat bij incrementele kortste pad berekeningen bij het berekenen van de
herstel-LSPs. Vermits de herstelcyclus van FTCR geen gebruik maakt van
wachttijden zijn exponentiële timers hier niet toepasbaar. De terugkeercyclus
onder invloed van de terugkeer in IP kan echter baat hebben bij exponentiële
timers. Indien de terugkeer sneller gebeurt is de herstel-LSP minder lang
kwetsbaar met als gevolg dat er minder kans is op meerdere fouten.

De convergentietijden in grote netwerken blijven zoals bij linkstatusroutering
beperkt tot ongeveer één seconde. Snellere convergentie is niet mogelijk omdat
de reken- en verwittigingstijden te groot zijn. In FTCR kan echter de
convergentie versneld worden door de herstel-LSPs vooraf te berekenen. In
FTCR met lokaal herstel betekent dit dat elke router, dus elke potentiële FSL,
een nieuw pad berekent voor elke potentiële fout, dus elke uitgaande interface,
voor elke LSP. In FTCR met herstel aan de ingang betekent dit dat de ingangs-
LSRs een nieuw pad berekent voor elke LSP die er begint en voor elke potentiële
fout op deze LSP. Het is belangrijk op te merken dat het berekenen van de paden
van de herstel-LSPs in de achtergrond gebeurt en dus geen invloed heeft op de
normale werking van de router. Indien het pad van een herstel-LSP vooraf
berekend is dan kan de herstel-LSP sneller worden opgezet wanneer een fout
optreedt.

Zelfs met het gebruik van vooraf berekende herstel-LSPs moet de herstel-LSP
nog steeds worden opgezet wat de convergentietijd doet toenemen vooral in
grote netwerken. Men kan natuurlijk de herstel-LSP zowel vooraf berekenen als
vooraf opzetten. Merk op dat dit nog steeds in de achtergrond gebeurt zodat de
techniek niet te vergelijken is met on line protectie. Het aantal opgezette herstel-

Nederlandse Samenvatting xli

LSP kan hierdoor sterk toenemen. Het is daarbij aan te raden slechts een
maximum aantal herstel-LSPs te voorzien. Daarnaast is het praktisch onmogelijk
om in grote netwerken de werkende LSPs te beschermen tegen meerdere fouten.
Het is dan ook aan te raden om in meerdere foutenscenario’s te betrouwen op
FTCR herroutering.

I.8 Besluit
MPLS is een techniek die labelgeschakelde paden aanbiedt aan IP netwerken.
Deze LSPs kunnen bijvoorbeeld worden gebruikt om de trafiek in het netwerk
beter te verdelen, om virtueel private netwerken aan te bieden of om meerdere
protocol-lagen te elimineren. Daarnaast laat MPLS toe nieuwe
convergentietechnieken te gebruiken die niet zomaar implementeerbaar zijn in
zuivere IP netwerken. Voorbeelden daarvan zijn protectie en FTCR.

De convergentietechnieken die behandeld werden zijn IP herroutering, MPLS
herroutering, FTCR en protectie. Naast het beschrijven van deze technieken zijn
deze technieken ook geëvalueerd over een aantal criteria (zie Tabel 7).

Tabel 7: Overzicht van de eigenschappen van de behandelde
convergentietechnieken. ++: zeer goed, +: goed, 0: neutraal, –: minder
goed, – –: slecht.

OSPF
herroutering

MPLS
herrroutering FTCR Protectie

Convergentie-
tijd – –(–) +(+) ++

Stabiliteit – 0 + +

Schaalbaar-
heid ++ + + –

Capaciteits-
vereisten ++ ++ +(+) –

Protectie convergeert het snelste na een fout omdat er enkel moet worden
overgeschakeld van de werkende naar een vooraf opgezette herstel-LSP. FTCR
is sneller dan herroutering omdat het niet wacht op de routeringstabellen en er
geen herstelwachttijd wordt gebruikt. Dit is mogelijk omdat het herstel centraal
gebeurt waardoor er geen synchronisatie nodig is. Toch blijft FTCR trager dan
protectie omdat de herstel-LSP moet worden berekend en opgezet. MPLS

Evaluatie en verbetering van foutconvergerende technieken voor IP netwerken xlii

herroutering is trager dan herroutering in IP omdat MPLS herroutering een extra
herstelwachttijd gebruikt.

De extra wachttijd die MPLS herroutering gebruikt ten opzichte van IP
herroutering vertraagt inderdaad de convergentie maar aan de andere kant neemt
de stabiliteit er door toe. Daarnaast zijn de MPLS convergentietechnieken
stabieler omdat ze gebruik maken van LSPs die enkel kunnen worden opgezet
als hun pad geldig is. FTCR is stabieler dan MPLS herroutering omdat de
herstelwachttijd, die gebruikt wordt in MPLS herroutering om er voor te zorgen
dat de routeringstabellen geldig zijn, niet altijd volstaat. In FTCR is er geen
herstelwachttijd nodig omdat de herroutering centraal gebeurt. De stabiliteit van
FTCR wordt verder verbeterd doordat meerdere foutenscenario’s worden
ondersteund door LSP en LSP-aanvraag herroutering. Protectie is ook zeer
stabiel omdat de hersteloperaties zeer eenvoudig en statisch zijn. Tijdens het
herstel wordt er enkel overgeschakeld naar de herstel-LSP. De stabiliteit van
protectie wordt gelimiteerd door het moeilijk ondersteunen van meerdere fouten.

De schaalbaarheid van linkstatusroutering wordt voornamelijk bepaald door de
grootte van de linkstatusdatabank. Deze linkstatusdatabank moet worden
onderhouden door het verspreiden van de linkstatuspakketten en hij moet ook
worden opgeslagen in de routers. Ook de complexiteit van de kortste pad
berekeningen hangt af van de grootte van de linkstatusdatabank. Vandaar dat er
een bovengrens is op de grootte ervan. MPLS herroutering en FTCR schalen iets
minder goed dan IP herroutering omdat de schaalbaarheid afhangt van de grootte
van de linkstatusdatabank en de schaalbaarheid van de MPLS implementatie. De
schaalbaarheid van de MPLS implementatie hangt af van het aantal LSPs dat kan
worden ondersteund en hoeveel LSPs tegelijk kunnen worden opgezet. Protectie
schaalt minder goed omdat het aantal herstel-LSPs vaak wordt beperkt door het
maximum aantal LSPs. Deze bovengrens kan snel worden bereikt indien de
werkende LSPs worden beschermd tegen meerdere fouten. Door het intelligent
samen nemen van de herstel-LSPs kan de schaalbaarheid sterk worden verbeterd.
Indien de LSPs slechts tegen enkelvoudige fouten moeten worden beschermd
dan kan de schaalbaarheid van protectie als goed worden beschouwd.

OSPF herroutering, MPLS herroutering en FTCR met herroutering aan de ingang
van de LSP vragen het minste extra capaciteit indien het netwerk beschermd
wordt tegen enkelvoudige fouten. Lokale protectie heeft meer extra capaciteit
nodig omdat de fout lokaal wordt hersteld zodat er geen globale spreiding
mogelijk is. FTCR met lokaal herstel situeert zich tussen OSPF herroutering en
lokale protectie omdat het stroomopwaarts het lokale gedrag heeft van protectie
en stroomafwaarts het globale gedrag van herroutering.

Nederlandse Samenvatting xliii

FTCR kan beschouwd worden als een herrouteringstechniek die werkelijk
gebruik maakt van de padgeoriënteerde eigenschappen van MPLS. MPLS
herroutering doet dit niet omdat de LSPs enkel worden gebruikt voor het
verzenden van pakketten, de routering hangt nog steeds af van de
routeringtabellen. Daarnaast biedt FTCR ook de nodige flexibiliteit.
Voorbeelden daarvan zijn de keuze uit verschillende algoritmen voor het
herrouteren van ER-LSPs en de verschillende FSL selectie modes. De
belangrijkste bron van flexibiliteit is waarschijnlijk de mogelijkheid om de
herstel-LSP vooraf te berekenen en op te zetten, de herstel-LSPs vooraf te
berekenen en op te zetten wanneer de fout optreedt of de herstel-LSPs pas te
berekenen en op te zetten wanneer de fout optreedt. FTCR kan dus gezien
worden als een techniek die de beste eigenschappen van herroutering en protectie
combineert waarbij een grote vorm van flexibiliteit wordt gegeven.

De verschillende vormen van herstel in FTCR zijn interessant in een netwerk
met differentiatie van diensten zoals in DiffServ netwerken. De meer premium
diensten kunnen dan worden beschermd door vooraf opgezette herstel-LSPs en
de minder belangrijke diensten door het berekenen en opzetten van herstel-LSP
tijdens het optreden van de fout.

Chapter 1

Introduction

1.1 Scope
The Internet has evolved into a high speed and mission critical network. Even a
short disruption in its network operation causes severe loss of data and disrupts
interactive services. Longer network outages lead to large monetary losses.
Unfortunately network failures are inevitable. Using robust equipment and
physically protecting that equipment to prevent failures is only effective to a
certain extent. It is important to prevent failures but it is equally important to
limit the negative effects of failures by recovering the network from these
failures as good as possible. An important, but certainly not the only factor, is the
time it takes before the network becomes operational again after a failure.

The subject of this work is how networks are able to recover from failures.
Techniques that are used to recover a network after a failure are called failure
convergence schemes. The Merriam-Webster dictionary [61] defines
convergence as “the act of converging and especially moving toward union or
uniformity”. And to converge in turn is defined as “to tend or move toward one
point or one another: come together”. As such, failure convergence can be
regarded as a set of operations, possibly distributed, which have the overall goal
of recovering the network after a failure.

Supporting failure convergence in networks to improve their reliability is a very
broad and active research field and as such it is important to give the scope of
our work up front. This work is about the operational procedures of failure
convergence. It describes and analyses the recovery operations the network
undertakes when a failure occurs. Therefore, its main topic is not about planning
how a network can be made more fault-tolerant or how much resources are
needed to protect the traffic in the network. Although we will briefly touch upon
the latter. We limit our scope also to IP networks. That means that other
technologies like the self-healing rings of SDH will not be considered and that
multi-layer failure convergence is also out-of-scope [4, 5, 6, 62, 63]. We will
investigate which failure convergence schemes are available to pure IP networks
but also to IP networks that use Multi-Protocol Label Switching (MPLS). As we

Evaluating and improving failure convergence schemes in IP networks 2

will see, MPLS has a lot to offer to IP networks in terms of failure convergence
schemes.

The title of this work is “Evaluating and improving failure convergence schemes
in IP networks”. This means that we will evaluate how the different convergence
schemes for IP networks perform under different circumstances and with respect
to different criteria. We will also discuss recent improvements to these
convergence schemes. But the most important improvement is given by a new
convergence scheme developed by the author called Fast Topology based
Constrained Rerouting (FTCR).

1.2 Overview
In the first chapter after this introduction, we explain how MPLS works and
describe its major applications. We start by comparing the forwarding in IP and
MPLS networks. Later on we will explain the major concepts of the MPLS
forwarding and signalling in more detail. Many of these concepts are used in the
MPLS convergence schemes and are also used in the major applications of
MPLS. These applications are also covered in the second chapter. We explain the
applications of MPLS to illustrate that MPLS has other benefits besides the
improved convergence schemes. The major part of this chapter has been
published in [2].

The third chapter we will introduce the failure convergence schemes for IP and
MPLS. We propose a generic recovery and reversion cycle which is based on the
combination of the different cycles in [43]. In this chapter we will not only cover
the different convergence schemes but we also look at failure detection and
failure notification. One of the failure detection mechanisms that we cover has
been published in [44]. After the discussion about failure detection and
notification we look at several convergence schemes for IP and MPLS in more
detail. We start with the IP convergence schemes: Routing Information Protocol
(RIP) and Open Shortest Path First (OSPF). Afterwards we look at MPLS
rerouting and Protection Switching (PS) two techniques used to recover traffic in
MPLS networks.

While the third chapter covers existing convergence schemes, we will propose a
new convergence scheme called Fast Topology based Constrained Rerouting
(FTCR) in the fourth chapter. The idea of FTCR was first published in 2000 in
[3] as a new convergence scheme for MPLS networks. Subsequent publications
[4, 5, 6] compare the capacity of different convergence schemes including
FTCR, investigate how different convergence schemes for electrical MPLS
including FTCR can be ported towards optical networks and describes data
centric optical networks and their survivability again including FTCR. In this

Introduction 3

chapter about FTCR we will look at how FTCR is able to recover a single failure
on a shortest path LSP. Afterwards we investigate more complex scenarios
including recovering failures on explicitly routed LSPs, recovering multiple
failures and FTCR in revertive mode. The chapter concludes with the overall
FTCR operations, an FTCR requirement matrix and the final conclusions.

In the fifth chapter we will evaluate the different convergence schemes covered
so far over a number of criteria. The first criteria we use is the speed of
convergence. The time to convergence of the different schemes is measured in a
PC based router network. First we cover the design of the router platform which
has been published in [7]. Afterwards we look at the measurement technique
used and the error analysis. This is followed by the results of the measurements
and the conclusions that can be drawn from them. These results have been
partially published in [8]. We will also look at the scalability and stability of the
convergence schemes. Finally, the amount of backup resources that is needed to
protect the working traffic is investigated. The work related to the backup
resource requirements has been published in [4, 5, 6].

In the sixth chapter we will look at the recent advancements in failure
convergence times. We will focus mainly on new techniques in link-state routing
and how these techniques can be applied to FTCR. Further on we look at how
the convergence times of FTCR can be improved even more by introducing
techniques from protection switching to FTCR.

The final chapter summarises the most important conclusions from this work and
adds some personal remarks.

1.3 Publications
1.3.1 International Journal papers

1. I. Andrikopoulos, G. Pavlou, P. Georgatsos, N. Karatzas, K.
Kavidopoulos, J. Rothig, S. Schaller, D. Ooms, P. Van Heuven,
“Experiments and enhancement for IP and ATM integration: The IthACI
project”, IEEE Communications Magazine, ISBN 0163-6804-01, Vol. 39,
Nr. 5, May 2001, Pages 146-155.

2. D. Colle, P. Van Heuven, C. Develder, S. Van den Berghe, I. Lievens,
M. Pickavet, P. Demeester, “MPLS recovery mechanisms for IP-over-
WDM networks”, Photonic Network Communications, Kluwer Academic
Publishers, Vol. 3, Nr. 1/2, January 2001, Pages 23-40.

3. D. Colle, A. Groebbens, P. Van Heuven, S. De Maesschalck, M.
Pickavet, P. Demeester, “Porting MPLS-recovery techniques to the MPlS

Evaluating and improving failure convergence schemes in IP networks 4

paradigm”, (Invited paper) Optical Networks Magazine, Special Issue on
Protection and Survivability, Vol. 2, Nr. 4, July/August 2001, Pages 29-
47.

4. D. Colle, S. De Maesschalck, C. Develder, P. Van Heuven, A.
Groebbens, J. Cheyns, I. Lievens, M. Pickavet, P. Lagasse, P. Demeester,
“Data centric Optical Networks and Their Survivability”, IEEE journal of
selected areas in communications, Vol. 20, Nr.1, January 2002, Pages 6-
21.

5. S. Van den Berghe, P. Van Heuven, J. Coppens, F. De Turck, P.
Demeester, “Distributed policy-based management of measurement-based
traffic engineering: design and implementation”, Future Generation
Computer Systems, Vol. 19, Issue 2, February 2003, Pages 291-302.

1.3.2 International Conference papers

1. D. Colle, S. De Maesschalck, P. Van Heuven, P. Demeester, M.
Pickavet, “Reliability consideration in WDM empowered IP networks”,
Combined COST 266 and COST 267 workshop Optical Signal Processing
in Photonic Networks, April 5-7, 2000, Berlin, Germany, Pages 18-20.

2. P. Demeester, D. Colle, S. Demaesschalck, C. Develder, M. Pickavet, P.
Van Heuven, “Resilience in IP over WDM based multilayer networks”,
(Invited paper) The 26st European Conference on Optical
Communication (ECOC 2000), Tutorial, 3-7 September, 2000, Munich,
Germany.

3. D. Colle, C. Develder, P. Van Heuven, M. Pickavet, P. Demeester, L.
Raptis, G. Chatzilias, C. Mas, Y.I. Manolessos, J. Comellas, A. Rafel, J.
Prat, J. Solé-Pareta, J. Moyano, S. Brunazzi, S. Rotolo, R. Stankiewicz,
A. Gladish, “Recovery techniques for IP-over-WDM networks”, (Invited
paper) IP over DWDM conferentie (CD-Rom), 27-30 November 2000,
Paris, France.

4. P. Van Heuven, S. De Maesschalck, D. Colle, S. Van den Berghe, M.
Pickavet, P. Demeester, “Recovery in IP based networks using MPLS”,
IEEE Workshop on IP-oriented Operations & Management IPOM'2000,
ISBN 83-88309-00-5, 2-4 September, 2000, Cracow, Poland, Pages 70-
78.

5. P. Van Heuven, P. Demeester, “Defining the rationale for moving
restoration and protection up to the MPLS layer”, MPLS Forum June 12-
13, 2000, Dublin, Ireland.

Introduction 5

6. P. Van Heuven, P. Demeester, “Defining the rationale for moving
restoration and protection up to the MPLS layer”, The Second Vision in
Business summit on MPLS, June 14-16, 2000, Dublin, Ireland.

7. C. Develder, D. Colle, P. Van Heuven, S. Van den Berghe, M. Pickavet,
P. Demeester, “Influence of recovery time on TCP behaviour”, MPLS
World Congress "Building the New IP Architecture", 6-9 February 2001,
Paris, France.

8. C. Duret, F. Rischette, J. Lattmann, V. Laspreses, P. Van Heuven, S. Van
den Berghe and P. Demeester, “High Router Flexibility and Performance
by Combining Dedicated Lookup Hardware (IFT), off the Shelf Switches
and Linux.”, Networking 2002, 19-24 May, Pisa, Italy, poster
prensentation accepted.

9. P. Demeester, D. Colle, S. Demaesschalck, C. Develder, M. Pickavet, P.
Van Heuven, “Resilience in IP over WDM based multilayer networks”,
(Invited paper) Optical Networks, 2000, December 7, 2000, Chalmers
Teknikpark, Göteborg, Sweden.

10. D. Colle, C. Develder, P. Van Heuven, S. Demaesschalck, A. Groebbens,
M. Pickavet, P. Demeester, “Resilience in IP-over-WDM networks”,
(Invited paper) Proceedings of the 5th Working Conference on Optical
Network Design and Modelling (ONDM 2001), 5-7 February 2001,
Vienna, Austria.

11. P. Van Heuven, J. Coppens, S. Van den Berghe, P. Demeester, “RSVP-
TE daemon for DiffServ over MPLS under Linux”, Linux Kongress,
p141-155, 5-6 September 2002, Cologne, Germany.

12. P. Van Heuven, J. Coppens, S. Van den Berghe, D. Colle, P. Demeester,
“Quantitative and Theoretical Analysis of Recovery Convergence in IP
networks”, SoftCom 2002, p 209-213, 8-11 October 2002, Split, Kroatia.

1.3.3 Chapters in International Publications

1. P. Van Heuven, S. Van den Berghe, F. De Turck, P. Demeester, “Wiley
encyclopedia of technology (MPLS section)”, Wiley and Sons, ISBN 0-
471-36972-1, December 2002.

1.3.4 National Journal/Conference papers

1. P. Van Heuven, S. Van den Berghe, T. Aernoudt, P. Demeester,
“Flexible and service aware networks with DiffServ and MPLS”, 1st
FTW PHD Symposium, Interactive poster session, paper 88 (Proceedings
available on CD-Rom), 5 December 2000, Gent, Belgium.

Evaluating and improving failure convergence schemes in IP networks 6

2. S. Van den Berghe, J. Coppens, P. Van Heuven, F. De Turck, P.
Demeester, “Traffic Engineering For Large Scale QoS provisioning”, 3rd
FTW PHD Symposium, Interactive poster session, 11 December 2002,
Gent, Belgium.

Chapter 2

MPLS technology and applications

The MPLS technology plays an important role in this work because it offers
additional functionality to IP networks. This additional functionality can be used
to implement advanced failure convergence schemes that are not feasible in pure
IP. In order to explain these convergence schemes quite detailed knowledge
about the MPLS technology is required. Therefore, this section will introduce the
MPLS technology and its applications. The first section of this chapter will give
a quick overview of the most important concepts of IP and MPLS forwarding.
Subsequent sections will focus on more advanced topics covering the
forwarding, the signalling and the applications of MPLS. The majority of this
chapter has been published in [2].

2.1 Introduction
The Internet Protocol (IP) is a connection-less networking layer protocol used to
route IP packets over a network of IP routers [9, 10, 11, 12]. Every router in the
IP network examines the IP packet header and independently determines the next
hop based on its internal routing table. A routing table contains information
about the next hop and the outgoing interface for the destination address of each
IP address. In MPLS networks Label Switched Paths (LSPs) are set up between
IP routers to avoid this IP forwarding in the intermediate routers. In MPLS IP
packets are tagged with labels. The initial goal of label based switching was to
increase the throughput of IP packet forwarding [13, 14, 15]. Label based
switching methods allow routers to make forwarding decisions based on the
contents of a simple label, rather than by performing a complex route lookup
based on destination IP address. This initial justification for MPLS is no longer
perceived as the main benefit, since nowadays routers are able to perform route
lookups at sufficiently high speeds to support most interface types. However,
MPLS brings many other benefits to IP-based networks, they include: traffic
engineering, i.e., the optimisation of traffic handling in network [16, 17], Virtual
Private Networks (VPNs), networks that offer private communication over the
public Internet using secure links [18, 19], the elimination of multiple protocol
layers [20, 21, 22] and improved failure convergence [3].

Evaluating and improving failure convergence schemes in IP networks 8

MPLS paths are constructed by installing label state in the subsequent routers of
the path. Labels are fixed length entities that only have a local meaning. Labels
are installed with a label distribution protocol. The MPLS forwarding of the IP
packets is based on these labels. In the next subsection the IP and MPLS
forwarding principles will be detailed followed by a subsection on the MPLS
label distribution process.

2.1.1 Forwarding in IP and MPLS networks

In regular, non-MPLS, IP networks packets are forwarded in a hop by hop
manner. This means that the forwarding decision for a packet traversing the
network is based on the look up of the destination address in the local routing
table (also called Routing Information Base, RIB). Figure 1 illustrates a network
consisting of four routers: A, B, C and D. A simplified IP routing table of router
B is shown. It consists of entries which map the destination network addresses of
the IP packets to the IP addresses of the next hop and the router interface, which
is connected to the next hop. When forwarding a packet, a router inspects the
destination address of the packet (found in the IP header), searches through its
local router table via a longest prefix match and forwards it to the next hop on
the outgoing interface.

Figure 1: IP forwarding in a network consisting of four routers and three
subnetworks

Longest prefix
m

atch

C
iface2A

D

B

Destination Nexthop Interface
10.0.1.0/24 A iface1
10.0.2.0/24 C iface2
10.0.3.0/24 D iface3

iface1

iface3

Routing information base (RIB)
(simplified)

10.0.1.0
/24

10.0.2.0
/24

10.0.3.0
/24

router

MPLS technology and applications 9

The destination addresses in this table are aggregated in order to reduce the
number of entries in this table. These entries are aggregated by indicating the
length of the significant part of the destination addresses (from 0 to 32 bits). If n
is the length of address a then only the first n (most significant) bits of a are
considered. The resulting partial address is called a prefix and is noted as a/n
(e.g. 10.15.16.0/24). This aggregation of addresses has the drawback that
searching through the table needs to be done with a longest prefix match. A
longest prefix match is more complex than an exact match because the result of
the search must be the entry with the longest prefix that matches the address
[12].

An important characteristic of IP forwarding is that packets arriving at a router
with the same destination prefix are forwarded equivalently over the network. A
class of packets that can be forwarded equivalently is a Forwarding Equivalence
Class (FEC). Because of the destination based forwarding of IP, FECs are
usually associated with IP prefixes. The forwarding in an IP router can be
restated as the partitioning of packets in FECs and assigning a next hop to each
FEC. It is important to note that the determination of the FEC needs to be done
in every hop for every packet and that it is based on the routing table.

Figure 2: An MPLS domain that connects two external networks

On the other hand, MPLS forwarding relies on labels instead of prefixes to route
packets through the network [23]. Labels are fixed length entities that have only
a local meaning. Because a label only has a local meaning it can be different at

IP header
IP payload
MPLS header

MPLS
domain

A F
B

LER
ingress

LER
egress

LSR
(core)

LSR

C

D

E

LSP

Evaluating and improving failure convergence schemes in IP networks 10

every hop and therefore needs to be adapted before forwarding the packet. The
process where the label is changed at every hop is called label switching. The
labels are distributed over the MPLS domain by means of a label distribution
protocol. MPLS routers are called Label Switching Routers (LSR) (see Figure 2)
because they operate on labels rather than on IP prefixes when forwarding
packets. The concatenation of these installed labels in the different LSRs is
called a Label Switched Patch (LSP). An LSP is set up between the ingress LSR
and the egress LSR, these edge LSRs are also called Label Edge Routers (LER).
Label Edge Router is indeed a more correct name for a router that does not
switch on labels but rather adds (ingress) or removes (egress) labels, however the
term LSR is often used for both LERs and LSRs. We will use the term LSR to
encompass both LSRs and LERs.

In MPLS packets belonging to a FEC are mapped on an LSP. Determining the
FEC of a packet is only necessary at the ingress of the LSP. The segregation of
packets in FECs needs only be done once, in the ingress router, and this
segregation can also be based on more than the destination prefix of the packet.
For example, it is possible to take both the source and the destination into
account. Because LSPs are based on FEC-to-label binding makes that an LSP is
a unidirectional path.

Figure 3: MPLS label switching in a network consisting of four Label
Switch Routers

Incoming label
map (ILM)

A

D

B
iface1

iface3

Incoming label
100
200
300

Exact m
atch

Next hop outgoing outgoing
label interface

A 101 iface1
C 201 iface2
D 301 iface3

Next Hop Label
Forwarding Entry
(NHLFE)

C
iface2

LSR

300

301

MPLS technology and applications 11

In the case of label switched routers, every router contains two tables: an
Incoming Label Map (ILM) table that contains all the incoming labels the router
has allocated and a table that contains all the necessary information to forward a
packet over an LSP (see Figure 3). The latter table is populated with Next Hop
Label Forwarding Entries (NHLFE). There is a mapping between the ILM and
an NHLFE, mapping the incoming label to an output label, the outgoing
interface and the next hop [24]. The router inspects the incoming label and
consults the ILM table to find the right NHLFE. Before the packet is sent to the
next hop, the label is switched to the outgoing label value.

Now that we have investigated how packets are forwarded via label switching in
MPLS networks we will continue the discussion investigating how these labels
are installed in the routers of the network.

2.1.2 Label distribution in MPLS networks

There are two different types of LSP, hop-by-hop routed LSPs or shortest path
LSPs (SP-LSPs) that are set up according to the shortest paths in the network and
explicitly routed LSPs (ER-LSPs) that are set up according to an arbitrary path
specified during the setup. How these two types of LSPs are established is the
topic of this subsection. However, we will not describe the label distribution
process in its full detail nor will we discuss every possible distribution mode or
distribution protocol. The goal of this section is to give a general overview, more
details will be added in the subsequent sections of this chapter.

2.1.2.a Setting up a shortest path LSP

To distribute labels over the network and consequently set up an LSP a label
distribution protocol is used. The LSP setup procedure typically consists of two
steps: a request is sent to the egress of the LSP and then the response propagates
back to the ingress. The first step will be denoted by the generic term “Label
Request” whereas the second step will be denoted by the term “Label Mapping”.
Figure 4 illustrates the label distribution process in a simple four node network.
When LSR A wants to set up an LSP to network netD, it will send a Label
Request to its next hop towards netD (step a, Figure 4). This next hop is
determined by the local routing table of node A. The intermediate nodes from the
ingress towards the egress (i.e. LSR B in the figure) will install state about the
request and will then forward the request towards D according to their routing
information base (step b). When the request reaches the destination of the LSP,
the egress, this node will allocate a label for the LSP and stores this information
in the Incoming Label Map (ILM). The LSR will then send a Label Mapping
back to the previous hop. The Label Mapping message contains the label

Evaluating and improving failure convergence schemes in IP networks 12

previously allocated by the LSR (step d). LSR B will then receive the Label
Mapping from node D.

Figure 4: Example of hop-by-hop routed label distribution

The label contained in the Label Mapping will be used to make a Next-Hop
Label Forwarding Entry (NHLFE). B will then, in its turn, allocate a label and
store this label in its ILM. The information in the ILM (incoming label) and the
NHLFE (outgoing label) is combined, effectively storing the information about
the label switch (step e). After allocating the label and storing the relevant
information, LSR B will send a Label Mapping to its previous hop (step f).
Finally, the initiator of the LSP setup (node A) will receive the Label Mapping
from its next hop. LSR A will store this information in a NHLFE. This ingress
LSR will then map traffic to the newly established LSP by mapping a class of
packets (FEC) to the LSP, which implies that traffic that belongs to this traffic
class will be forwarded over the LSP. The FEC is thus mapped on the NHLFE
(step g). All the FEC to NHLFE mappings are stored in the FEC to NHLFE map
(FTN). The FTN is used by the ingress of an LSP to forward the packets
belonging to a certain FEC over the LSP.

Because the request is forwarded according to the local RIB of the intermediate
routers, the resulting LSP is called a hop-by-hop routed LSP. Another type of
LSP is called an explicitly routed LSP (ER-LSP).

A

C

D

B

Labelrequest
<netD>

Labelrequest
<netD>

Labelmapping
<301>

install ILM
 → 301

Labelmapping
<300>

Forward according
to RIB

Install
ILM &

NHLFE:
300→301 (D)

a
b

c

d

f
eg Install FTN

FEC
netD

Next hop outgoing outgoing
label interface

B 300 iface1

FEC to NHLFE
(FTN)

MPLS technology and applications 13

2.1.2.b Setting up an explicitly routed LSP

The real power of MPLS lies in the fact that paths can be set up with a great deal
of flexibility. An example is an Explicitly Routed LSP (ER-LSP). Explicitly
Routed means that some or all of the hops between the ingress and the egress of
the LSP can be specified. Figure 5 illustrates this, LSR A sends a Label Request
for netD and the Label Request explicitly states that the LSP should be routed
along node C (step a). Node B will receive this Label Request and will forward it
towards C although the shortest path towards netD is via node D (step b). When
LSR C receives this Label Request it will remove itself from the Hop List in the
Label Request and forwards the Label Request towards the destination. From
then on the LSP setup continues as detailed in Figure 4. It is important to note
that every node keeps state about the Label Request so that the Label Mappings
can be sent to the correct previous hop, i.e. the hop it received the corresponding
Label Request from.

Figure 5: Example of explicit label distribution

2.1.3 Separation of forwarding and routing

In this work we will explicitly make distinction between forwarding and routing.
Forwarding is the (data plane) operation where a packet is transferred over the
network by the routers inside the network. Routing is a (control plane) operation
that determines the paths that are used during forwarding.

In IP both the routing and the forwarding are based on the destination address.
MPLS separates the forwarding from the route calculation by using labels to
forward the packets. To distribute these labels over the domain and hence set up
an LSP, MPLS uses a Label Distribution Protocol. LSPs can be set up according

A

C

D

B

Labelrequest
<netD, C>

Labelmapping

a

f

b

Labelmapping

Labelrequest
<netD, C>

Label
request
<netD>

Labelmapping
c

d

e

Evaluating and improving failure convergence schemes in IP networks 14

to the IP routing tables or the hops to be traversed can be explicitly specified. It
is this separation of forwarding and routing in MPLS that enables most of the
important applications of MPLS.

Another, though smaller, benefit of this clear separation of the forwarding and
the routing/control parts of MPLS is that the discussion of them can easily be
done independently too. First we will investigate the MPLS forwarding in more
detail and then we will discuss the control architecture. However we finalise the
introduction section with a brief look at the history of MPLS.

2.1.4 History

MPLS started out as a technique for IP over Asynchronous Transfer Mode
(ATM [64, 65, 66, 67]) inter-working as a convergence of a number of “IP
switching” schemes. IP switching is a technique that uses ATM hardware to
forward IP packets. In contrast to ATM networks, in IP switching and MPLS
networks the ATM hardware is administrated by IP and MPLS signalling
protocols rather than ATM signalling.

There are, or rather were, a number of different IP switching implementations
[13, 68]: Cisco Systems Tag Switching [69], IBM’s Aggregated Route based IP
Switching (ARIS) [70], Toshiba’s Cell Switch Router (CSR) [71], Ipsilon Flow
Management Protocol (IFMP) [72] and NEC's Ipsofacto [20, 73]. In order to
standardise all these IP switching techniques a new IETF working group came to
life back in 1997. The MPLS working group has since then been working on
forming a common technology for IP switching [74].

MPLS contrasts with a number of other techniques for IP over ATM which are
overlay techniques. Examples of overlay techniques are Multi-Protocol Over
ATM (MPOA) [75, 76] and the work done in the IETF Internetworking Over
Non-broadcast multiple access (ION) working group [77]. In ATM overlay
networks there are two distinct networks: an ATM network and an IP network.
This leads to the disadvantage of having to administer the two networks and the
fact that the scalability is limited due to full meshed peering [15, 21, 78].

After this small overview of the history of MPLS we will address the forwarding
layer in MPLS.

2.2 The forwarding layer of MPLS
This section starts with a summary of the most important MPLS forwarding
concepts. After that it continues with a discussion about the other important
issues and terminology with respect to the MPLS forwarding.

MPLS technology and applications 15

2.2.1 MPLS forwarding concepts

As we have seen in section 2.1.1, the MPLS architecture formalises three
concepts with respect to the forwarding plane. First the Next Hop Label
Forwarding Entry (NHLFE) is an entry that contains all the information in order
to be able to forward a packet on a MPLS router. It contains the packet's next
hop and the outgoing label. The NHLFE may also contain the data link
encapsulation and the way to encode the label stack when transmitting the packet
(we will address the label stack in the next section).

The Incoming Label Map (ILM) defines a mapping between an incoming label
and one or more NHLFEs. It is used when forwarding labelled packets. If the
ILM maps a particular label to more than one NHLFE exactly one NHLFE must
be chosen before the packet is forwarded. Having the ILM map a label to more
than one NHLFE can be useful to do e.g. load balancing over a number of LSPs.
Since the ILM is used to forward labelled packets in a LSR it is typically used in
a core LSR.

Finally the FEC-to-NHLFE Map (FTN) maps a FEC to one (or more) NHLFEs.
It is used when forwarding packets that arrive unlabelled, but which are to be
labelled before being forwarded. The FTN map is used in the ingress Label Edge
Router.

2.2.2 Label merging

In order to reduce the number of outgoing labels, different incoming labels for
the same FEC can use the same outgoing label. The LSR then merges different
incoming labels to a single outgoing (label merging).

A link layer is capable of merging labels if more than one incoming label can be
mapped to a single outgoing label. A merge-capable LSR only needs to store
label information of every FEC. However some link layer technologies are not
capable of merging labels (some ATM and Frame Relay implementations). In
this case a one-to-one mapping between incoming and outgoing label is required.
This has scalability implications because individual LSP state is needed for every
ingress-egress pair traversing a given LSR (unless label stacking is used, see
section 2.2.6).

2.2.3 Label spaces

Another point of difference between some link layer technologies is the scope of
the labels. The MPLS architecture uses the term label space. Label spaces limit
the scope of a label which means that the label is only valid and defined for a
given label space. Two labels only match if both the label value and the label
space are equal. This has the consequence that the same label value can be

Evaluating and improving failure convergence schemes in IP networks 16

reused in a different label space. ATM and Frame Relay have a label space per
interface which means that label A on interface 1 will be interpreted differently
from label A on interface 2. On the other hand platform wide label spaces are not
tied to a specific interface but are valid on the whole platform (i.e. router or
host). Global label spaces have the advantage that if the incoming interface of an
LSP changes (e.g. during rerouting) no action needs to be taken. Per interface
label spaces reduces the number of used incoming labels per interface which is
useful if labels are a scarce resource like in some ATM and Frame Relay
implementations.

2.2.4 Penultimate-hop popping

Labels are used in MPLS to make forwarding decisions. However, no forwarding
decisions have to be made at the last hop of an LSP, it only needs to send the
packet towards the upper layer stack. This means that the next to the last hop,
also referred to as the penultimate hop, can pop the top label of the LSP. When
the penultimate hop pops the label and sends the packet without a label to the
egress node this is called penultimate-hop popping (PHP). Penultimate-hop
popping has the advantage that there is no label overhead over the last link of an
LSP. Another advantage of PHP is that it can simplify the MPLS forwarding
operations in some circumstances as we will explain when we discuss the MPLS
label operations and label stack in section 2.2.6.

2.2.5 Label encapsulation

It is apparent that “labels” constitute the centre of the MPLS architecture.
However, the properties of the labels differ from the link layer technology on
which MPLS is supported. Because of this close tie with the link layer
technology, MPLS is sometimes called a layer 2.5 technology, situated between
the link layer (layer 2) and the networking layer (layer 3) [79].

Two categories of data link layers can be distinguished, link layers that natively
support fixed length entities and switch upon them and others that do not have
such an entity [80]. Examples of such fields are the Virtual Circuit Identifier
(VCI) field or Virtual Path Identifier (VPI) field or both fields (VPI/VCI) of
ATM [35] (see Figure 6c). A second example is the Data Link Circuit Identifier
(DLCI) from Frame Relay (FR) [81, 82] (see Figure 6b).

The second category, link layer technologies that do not natively support labels,
encapsulate the MPLS labels by transmitting an additional header. This small
header, called the shim header, is inserted between the link layer header and the
networking header. The former way of encapsulating the MPLS labels is called
link layer specific encapsulation, whereas the latter is called generic MPLS
encapsulation. The shim header contains a label, three experimental bits, a

MPLS technology and applications 17

bottom of stack indicator (BoS) and a Time-To-Live (TTL) field (Figure 6a).
The label field (20 bits) is used to store the label value, the three experimental
(EXP) can be used to support DiffServ over MPLS (DiffServ will be covered in
detail in section 2.5.2) and/or Early Congestion Notification (ECN) [83] or other
experimental extensions to MPLS forwarding. The Bottom of Stack bit is used to
indicate the last shim header of the label stack (see section 2.2.6). Finally the
TTL field is used to support the IP time-to-live mechanism (we refer to section
2.2.7).

Figure 6: MPLS label encapsulation: a) generic MPLS encapsulation with
the shim header, b) encapsulation in the Frame Relay DLCI, c)
encapsulation in the ATM VPI/VCI

An example of a link layer technology that has a native label entity is ATM. In
ATM based MPLS a label is a VPI, VPI/VCI or a VCI identifier. In ATM
networks these identifiers are installed with User-to-Network Interface (UNI)
[84] or Private Network-Node Interface (PNNI) signalling [85]. MPLS does not
use ATM signalling because a label distribution protocol is used instead. When
link layer specific label encapsulation is used the label stack is still encoded in
the shim header but the shim header cannot be processed by the intermediate
LSRs (only at the ingress and the egress). Therefore, the top label of the label
stack is copied to the native label entity before the ATM or FR segment.

F

C

B

C

E

A

D

A

VPI C
/
P

HECVCI P

T
(c)

28 31 32 401 4

(b)
DLCI C

/
R

E

A

DLCI

(a)

EXPLABEL

BO
S TTL

1 6 7 12 168

1 20 322423

Evaluating and improving failure convergence schemes in IP networks 18

Similarly after the segment the current label value from the native label is copied
to the top label of the label stack.

2.2.6 Label operations and label stacks

We have seen that the ingress LSR of an LSP sets the outgoing label in the
packets before it forwards it. This label is then swapped by the next hop of the
LSP. The labels continue to be swapped until the packet reaches the egress of the
LSP where the label is removed and the packet is further processed.

The MPLS architecture defines a limited number of operations on MPLS labels:
to replace the top label with a new label (label swap), to remove the top label
(label pop) or to replace the top label and push a number of new labels [23]. The
label swap operation is used by the core routers to replace the incoming label
before forwarding a packet. The label pop operation is used by the egress of the
LSP to remove the label before processing it further. The third operation (replace
and push label) can be used by the ingress of an LSP to push a single label before
forwarding the packet. However, the above definition also allows that more than
one label is pushed. This means that multiple labels can be pushed on top of each
other leading to a label stack. A label stack can be used to aggregate multiple
LSPs in one top-level LSP (see Figure 7).

Figure 7: Using a label stack to aggregate LSPs

All operations on the label stack always occur on the top of the label stack so a
node does not have to investigate the whole label stack as part of the MPLS
forwarding operations. This also means that if an LSP is aggregated in another
LSP then only the aggregated LSP is visible until the LSP is de-aggregated.

Link
Layer

 IP …

LSP

Level 1

LSP

Level 2

LABEL EXP BOS
1

TTLLABEL EXP BOS
0

TTL

MPLS technology and applications 19

Figure 8: Aggregating LSPs in MPLS. The LSPs A-C-D-E-F and B-C-D-E-
G are aggregated in the LSP C-D-E.

For example in Figure 8 the LSPs A-C-D-E-F and B-C-D-E-G are aggregated in
the LSP C-D-E. We will now explain the forwarding over the aggregated LSP
B-C-D-E-G. Node B pushes the outgoing label for the LSP B-C-D-E-G on the
label stack and forwards it to node C. Node C removes the top label from the
label stack and adds two labels. The first label is the outgoing label for the
aggregated LSP B-C-D-E-G. Since the aggregated LSP is not visible over the
aggregating LSP C-D-E the label should be the incoming label for node E. The
second label that is pushed on the label stack is the outgoing label for the
aggregating LSP C-D-E. Afterwards node C forwards the packet towards node
D. Node D will inspect only the top label and swaps it with the outgoing label for
the LSP C-D-E. Node E then pops the top label because the aggregating LSP
ends here and swaps the incoming label with the outgoing label for the
aggregated LSP so that the packet can be further forwarded towards node G.

Note that node E has to perform two actions, first pop the label of the
aggregating LSP and then swap the label of the aggregated LSP. This is solved
by penultimate-hop popping (see section 2.2.4). When penultimate-hop popping
is used node D pops the label of the aggregating LSP because it is the second to
last hop for this LSP. The label stack at node E then only contains the incoming
label for the aggregated LSP. Node E then simple swaps this label before
forwarding the packet towards node G.

B

A F
C E

D

G

MPLS header
IP header

MPLS header
MPLS header

Evaluating and improving failure convergence schemes in IP networks 20

As explained label stacking can be used to reduce the label state in core nodes, it
is also used in MPLS VPNs (see section 2.6.3) and the local loop-back protection
switching approach (see section 3.3.4.e).

2.2.7 Supporting the IP Time-to-live field

In regular IP networks, the time-to-live (TTL) field in the IP header is
decremented at every hop. When the TTL reaches zero the packet is dropped.
This mechanism is used to prevent packets from being forwarded forever in case
of a network anomaly (e.g. a network loop). To support this mechanism in
MPLS the TTL information must be available to the LSRs. Since the shim
header contains a TTL field the LSRs that use generic MPLS encapsulation are
able to decrement the TTL just like in regular IP forwarding.

When MPLS is supported by a link layer technology that uses its own native
label entities, the LSR can only act on these native labels. Unfortunately, these
link layer specific MPLS labels do not have a TTL field. It is therefore
impossible to decrement the TTL at every hop. The solution is to compute the
total TTL decrement for the non-TTL capable segment (the switching segment)
at LSP setup time. When a packet arrives at the first hop of this segment the pre-
computed TTL decrement is subtracted from the current TTL. If the result is
positive then the TTL is written to the top entry of the label stack. A packet
travelling through the LSP will have the correct TTL before the non TTL-
capable segment and after that segment. The TTL will have a constant value in
the segment (the same value as just after the segment). If there is no information
about the hop count of the non-TTL capable segment the current TTL is
decreased with one and the resulting value is written to the label stack. In any
case appropriate actions must be taken on this result (e.g. dropping the packet if
the TTL reaches zero) [86].

2.3 Label distribution modes
In the previous sections we investigated some important properties of labels and
the label forwarding operations in MPLS. In this section we will examine how
these labels are distributed over the network. The MPLS architecture allows for
multiple methods for distributing labels. We already gave a basic overview of the
label distribution process in Figure 4. The subsequent sections will describe the
most important label distribution protocols for MPLS but we will introduce some
important terminology first [23].

2.3.1 Down stream versus upstream allocation

Labels only have a local scope which means that they are defined in one node, if
platform wide label spaces are used, or over one interface, if per interface label

MPLS technology and applications 21

spaces are used. This has the advantage that allocation of the labels does not
need to be controlled centrally.

For a given LSP, a core LSR has an upstream and a downstream neighbour. So
in order to forward a packet with label switching it needs an incoming label and
an outgoing label. With that in mind there are two possible approaches: the LSR
supplies its upstream neighbour with a label and receives a label from its
downstream neighbour or the other way around. When the LSR receives the
label from his downstream neighbour this is called downstream allocation.
MPLS typically uses downstream allocation.

2.3.2 Unsolicited distribution versus distribution on demand

As described in the previous section the labels are typically chosen (allocated) by
the downstream LSRs. When these labels are distributed spontaneously (without
request) this is called unsolicited label distribution. When the upstream LSR
always sends a request to its downstream neighbour in order to obtain a label this
is called distribution on demand.

Unsolicited label distribution has the advantage that it introduces less signalling
overhead. However, distribution on demand is far more powerful than
unsolicited distribution because it allows the ingress of the LSP to control certain
parameters of the LSP. For example we explained in Figure 5 how explicit
routedly LSP are set up with distribution on demand. We will examine more
parameters that can be controlled by the ingress of an LSP when we discuss the
different label distribution protocols.

2.3.3 Independent versus ordered control

When a regular IP router has calculated the shortest paths inside the network it
knows the next hop towards each FEC in the network and installs a routing table
entry for each of them. Although this process is driven by the routing protocol
each router decides independently when to install a routing table entry.

Similarly in MPLS, when using independent control an LSR makes an
independent decision to map and distribute a label when it recognises a new
FEC. In ordered control with downstream label allocation the label mapping
decision is co-ordinated by two simple rules: an LSR only maps a label to a
particular FEC if it is the egress for that LSP or if it has already received a label
binding from its next hop. This means that when ordered control is used together
with downstream label allocation that the labels are allocated from egress to
ingress. In Figure 4 and Figure 5 we illustrated ordered control.

Evaluating and improving failure convergence schemes in IP networks 22

2.3.4 Liberal retention versus conservative retention

Consider the situation where an upstream LSR has received and retained a label
mapping from its downstream peer. When the routing changes and the original
downstream peer is no longer the next hop for the FEC then there are two
possible actions the LSR can take. The LSR can release the label, this is called
conservative retention or it can keep the label for later use, which is called
liberal retention.

Conservative retention (release on change) has the advantage that it uses fewer
labels, liberal retention (no release on change) has the advantage that it allows
for faster reaction to routing changes because it may already have a label over
the new route.

We will return to the topic of retention modes when we discuss rerouting in
MPLS (section 3.3.3.a).

2.3.5 Label use method

Labels can be used as soon as a LSR receives them (use immediate) or the LSR
can only use a certain label if the corresponding LSP contains no loop (use loop
free). MPLS supports both loop prevention (prevent an LSP with a loop from
being set up, [34]) and loop detection mechanisms (detect if an LSP contains a
loop, [35]).

Figure 9: Loops in IP and MPLS. In IP when a packet enters a loop it will
travel the loop until it is discarded or until the loop is removed. In MPLS,
the effects of looping are typically limited where a packet traverses the
loop only once.

It is important to illustrate the difference between a loop at the IP level and a
loop at the MPLS level. Since the forwarding in IP is typically only based on the
destination there is no way to leave an IP loop. For example, node A will always
forward the packet towards node B whether it comes from inside or outside the

A C

B

A C

B

IP loop MPLS loop

MPLS technology and applications 23

loop (see Figure 9). The IP TTL mechanism is responsible to discard the packet
after a number of iterations over the loop. In MPLS it is possible to set up an
LSP which contains a loop. Unlike in IP this does not mean that the packets will
travel forever in this loop rather they will simply leave it after one iteration
because the forwarding is based on labels and not on the destination address.

MPLS loop prevention and detection are typically used in combination with
shortest path LSPs which are routed according the IP routing protocols. Loop
prevention and detection are not commonly used on explicitly routed LSPs. We
will assume that the labels are used immediately so without loop prevention and
detection.

2.4 The Label Distribution Protocols
In this section we will describe different protocols for distributing the labels over
the MPLS network. We will start with the basic Label Distribution Protocol
(LDP).

2.4.1 The Label Distribution Protocol (LDP)

The Label Distribution Protocol (LDP) [25, 26, 27] is the basic signalling
protocol proposed by the IETF MPLS working group for hop-by-hop routed
LSPs. In LDP labels are distributed for a given FEC. In LDP a FEC can be either
an IP prefix or an IP host address. LDP gives the user a great deal of freedom
how to set up the LSPs. LDP peers use TCP as the transport protocol for LDP
messages. This ensures that these messages are reliably delivered and need not
be refreshed periodically (LDP is therefore called a hard state protocol).

LDP discovery is a mechanism that uses Hello messages to enables potential
LDP peers to discover each other (most of the time neighbours). When two LDP
peers have discovered each other by exchanging Hello messages over a link they
have built up a Hello adjacency. The Hello adjacency is monitored by
exchanging Hello messages regularly.

The next step is to alter the formation of one or more Hello adjacencies between
two LDP routers is to set up a LDP session between them. LSP session
management allows LDP peers to negotiate about session parameters (e.g. on
demand or unsolicited distribution). After this negotiation phase a LDP session is
set up and the LDP messages can be exchanged (e.g. label request and label
mapping messages for the distribution of the labels). The LDP session is
monitored by requiring that LDP messages are regularly exchanged. If there are
no messages to be exchanged over a period of time then a KeepAlive message is
sent. The KeepAlive message is a dummy LDP message with the sole purpose of

Evaluating and improving failure convergence schemes in IP networks 24

making sure that the LDP session is not torn down due to a lack of LDP
messages.

Note that both the Hello and the KeepAlive messages are necessary because LDP
is a hard-state protocol which means that if the MPLS related state does not
change then there will be no signalling activity. This is obviously very efficient
in terms of signalling overhead but it has the drawback that failures in the
signalling layer are hard to detect. By requiring that Hello and LDP messages are
regularly exchanged one creates a minimum signalling activity that can be used
to monitor the adjacencies and LDP sessions.

LDP supports unsolicited and on demand distribution of labels, liberal and
conservative label retention, independent and ordered control and the immediate
or loop free use of labels (Figure 4 illustrates ordered control, downstream on
demand label distribution).

Information in LDP messages is encapsulated in Type-Length-Value (TLV)
structures. These TLVs are used for standard features but can also be used to
extend LDP with experimental and/or vendor-private mechanisms. Constrained
based Label Distribution Protocol (CR-LDP) is an extension to LDP and will be
covered in the next subsection.

2.4.2 Constrained based Label Distribution Protocol
(CR-LDP)

CR-LDP introduces a number of extensions to LDP in order to support MPLS
traffic engineering [28, 29]. CR-LDP only supports the downstream on demand
ordered label distribution. The additional functionality of CR-LDP compared to
LDP is the possibility to set up constrained based LSPs, the support for traffic
parameters, pre-emption and resource classes. We will now describe each of
them in turn.

2.4.2.a Constrained based routes

CR-LDP allows to set up LSPs that defer from the shortest path by explicitly
indicating the hops the LSP should traverse. There's a distinction between strict
and loose hops. A strict hop on an LSP means that the next hop along the LSP
should be that hop and that no additional hops may be present. A loose hop on an
LSP simply requires that the hop is present on the path the LSP traverses. Hops
are ordered which means that they should be traversed in the order they are
specified.

For example to set up an LSP from node A to E one can just specify the
destination E (Figure 10). This will result in a LSP from A over the shortest path
B-C-D towards E. It is also possible to specify the LSP with node F as loose hop.

MPLS technology and applications 25

That will result in the LSP A-B-F-G-D-E or LSP A-B-F-C-D-E. Loose hops and
strict hops can also be mixed. For example if we want to force the traffic over the
B-F-G-D segment one could specify the loose hop F followed by the strict hop
G. Another alternative is to specify all the hops on the LSP i.e. B-F-G-D-E. The
hops can be strict or loose in this case. When all the hops of the LSP are
specified, we call this a fully specified (strict or loose) ER-LSP.

Figure 10: Example topology, when no hops are specified an LSP from
node A to node E will be set up according to the shortest path.

CR-LDP supports the notion of abstract nodes. An abstract node is a group of
nodes whose internal topology is opaque to the ingress node of the LSP. An
abstract node can for example be denoted by an IP prefix or an Autonomous
System number (AS).

2.4.2.b Traffic parameters

The traffic parameters of an LSP are modelled with a peak and a committed rate.
The peak rate is the maximum rate at which traffic should be offered to the LSP
(the offered rate). If resource allocation within the MPLS domain depends on the
peak rate value then it should be enforced at the ingress of the MPLS domain.

The committed rate is the rate that the MPLS domain commits to the LSP. The
extent by which the offered rate may exceed the committed rate is determined by
the maximum excess burst size. There can also be a weight associated with the
LSP; this weight indicates the relative share of the available bandwidth the
excess bandwidth of the LSP receives.

Finally the frequency of an LSP indicates the granularity at which the committed
rate is made available. It constrains the variable delay that the network may
introduce and thus it constrains the amount of buffering that a LSR may use.
There are three possible granularities: unspecified, frequent and very frequent.
Very frequently means that no more than one packet may be buffered.
Frequently means only a few packets may be buffered and unspecified means
any amount of buffering is acceptable

B C D EA

F G

Evaluating and improving failure convergence schemes in IP networks 26

CR-LDP also provides support for DiffServ over MPLS, as will be described in
section 2.5.2.

2.4.2.c Pre-emption

An LSP can have two priorities associated with it: a setup priority and a hold
priority. The setup priority indicates the relative priority an LSP receives to
allocate resources (bandwidth) when set up. A LSP with a higher set up priority
can be set up in favour of an existing LSP with a lower priority (it can pre-empt
an existing LSP). The holding priority indicates how likely it is for an LSP to
keep his resources after been set up.

2.4.2.d Resource classes

In CR-LDP one can specify which of the resource classes an LSP can traverse. A
resource class is usually associated with a link so one can indicate which links
are acceptable to be traversed by an LSP. Effectively this information allows for
the network's topology to be pruned i.e. certain links cannot be traversed by the
LSP. For example a provider might want to prevent continental traffic from
traversing transcontinental links.

2.4.3 Extensions to RSVP for LSP tunnels (RSVP-TE)

The “Extensions to RSVP for LSP tunnels (RSVP-TE)” protocol [30] is an
extension to the Resource Reservation Protocol [31], a signalling protocol
originally developed for IntServ reservations [32]. First of all RSVP-TE extends
RSVP with the possibility to set up LSPs and adds Traffic Engineering (TE)
functionality [33].

2.4.3.a Path set-up

RSVP-TE is based on the RSVP protocol, which does not have support to set up
LSPs. RSVP-TE has been extended to support this by introducing a new LSP
session type and by defining two new objects: a label request object which is
encapsulated in the downstream direction on the RSVP PATH messages and a
label object, which is encapsulated in the upstream direction on the RSVP RESV
messages. Labels are allocated in the upstream direction by the downstream
nodes. In other words, RSVP implements a downstream on demand label
distribution protocol. RSVP does not have direct support to detect the failure of a
neighbouring node. To address this the Hello protocol has been developed, this
protocol allows RSVP to detect the liveliness of its neighbours. RSVP also has a
loop detection protocol to prevent setting-up LSPs that contain loops. This
makes RSVP more or less functionality wise equivalent to LDP in downstream
on demand mode with the important difference that RSVP is a soft-state
protocol, this means that the state with respect to the LSP has to be refreshed

MPLS technology and applications 27

periodically in the network. The advantage of a soft-state protocol is that the
protocol acts more naturally to network changes while it typically requires more
signalling overhead.

2.4.3.b Traffic Engineering

Other extensions to RSVP introduce the traffic engineering capabilities very
similar to CR-LDP's functionality. Like CR-LDP, RSVP-TE supports the notion
of explicitly routed paths whereby the (abstract) hops can be specified strict or
loose. The approach to bandwidth and resource allocation differs fundamentally
from the CR-LDP model. As mentioned before RSVP is a signalling protocol for
IntServ so support for IntServ in RSVP-TE is naturally inherited from the base
RSVP protocol. Like CR-LDP it is possible to indicate the setup and holding
priority of the LSP. The resource class procedures for RSVP-TE are more
powerful than those found in CR-LDP. In CR-LDP a link is eligible to be
traversed by an LSP if the resource class of the link is part of the resource classes
specified in the label request message. These lead to the procedure where any
link can be used as long as the link is part of the resource class collection
specified in the label request message. RSVP-TE also supports this include-any
relationships between links and LSPs but also supports exclude-any and include-
all relationships. It is not necessary to specify any of three relationships, but if
set they must match for the link to be taken into account.

2.4.4 Border Gateway Protocol

The Border Gateway Protocol-4 (BGP-4) [42] is used to distribute routes across
the Internet. These routes can be Inter-domain routes making BGP the sole Inter-
domain routing protocol. By piggybacking label information on the BGP route
UPDATE messages, BGP can be used to distribute the label mapped to that route
[87]. A simple example of the use of BGP as a label distribution protocol is
when two BGP peers are directly connected, then BGP can be used to distribute
labels between them. A more important use of BGP as a label distribution
protocol is the more common case where the BGP peers are not directly
connected but belong to an MPLS domain that supports another label distribution
protocol (e.g. LDP). BGP-4 and another label distribution protocol is used to
administer MPLS VPNs (see section 2.6.3).

2.5 MPLS and Quality of Service
Although MPLS is not a Quality of Service (QoS) framework, it supports
delivery of QoS. The following sections describe how the two major models for
QoS in IP (IntServ and DiffServ) are implemented with MPLS.

Evaluating and improving failure convergence schemes in IP networks 28

2.5.1 Integrated Services

The integrated services (IntServ) architecture has the goal to provide end-to-end
QOS (in the form of services) to applications. The IntServ QoS model has up to
now defined two service types: guaranteed service (guaranteed delay and
bandwidth [88]) and controlled load (QoS closely approximating that of an
unloaded network [89]). The architecture uses an explicit setup mechanism to
reserve resources in routers so that they can provide requested services to certain
flows. RSVP is an example of such a setup mechanism but the IntServ
architecture can accommodate other mechanisms. RSVP-TE as an extension of
RSVP has natural support for both IntServ service types. An LSP with IntServ
reservation is created just like any other IntServ reservation but additionally the
MPLS specific LABEL_REQUEST and LABEL objects are piggybacked on the
PATH and RESV message respectively.

CR-LDP does not have support for IntServ natively but it can support (a number
of) IntServ flows over an LSP by setting the appropriate traffic parameters of the
LSP. In order to guarantee the service received on the LSP, admission control
and policing on the ingress is required.

2.5.2 Differentiated Services

In order to solve the IntServ scalability problem, Differentiated Services
(DiffServ, [90, 91, 92, 93]) classifies packets into a limited number of classes
and therefore does not need per-flow state or per-flow processing. The identified
traffic is assigned a value, a DiffServ code point (DSCP, [94]). A DiffServ
Behaviour Aggregate (BA) is a collection of packets with the same DSCP
crossing a link in a particular direction. A Per-Hop-Behaviour (PHB), the
externally observable forwarding behaviour, is applied to a behaviour aggregate
[95].

The classification is usually based on multiple fields in the IP header (Multi-
Field, MF classification) at the edge and based on the DiffServ CodePoint
(Behaviour Aggregate, BA classification) in the core of the network (see Figure
11c).

An example PHB is Expedited Forwarding (EF, [96]) which offers low loss, low
delay and low jitter with an assured bandwidth. This means that the collection of
packets marked with the EF code-point traversing a link in a certain direction
(BA) will receive low loss, delay, jitter and a assured bandwidth. The Assured
Forwarding (AF, [97]) PHB group is a group of PHBs. A PHB of the AF group
is noted as AFxy, where x is the class and y is the drop precedence. Packets
belonging to a different AF class are forwarded separately. Usually more
resources are allocated to the lower classes. Packets within a class that have a

MPLS technology and applications 29

higher drop precedence will be dropped before packets with a lower drop
precedence.

An Ordered Aggregate (OA) is the set of Behavior Aggregates that share an
ordering constraint. This means that packets that belong to the same OA must
not be reordered. When looking at DiffServ over MPLS it immediately becomes
apparent that packets that belong to a certain OA must be mapped on the same
LSP, otherwise this ordering constraint cannot be enforced. This is trivial if only
one PHB is applied to the ordered aggregate. However, PHBs can be grouped in
a Per-hop-behavior SCheduling group (PSC). A PSC is the set of one or more
PHB(s) that are applied to a given OA. For example, AF1y is a PSC comprising
the AF11, AF12 and AF13 PHBs. Combining the notion of OA and PSC means
that in DiffServ over MPLS OA-PSC pairs will be mapped on LSPs. If the PSC
contains more than one PHB this means that it must be possible for an LSR to
enforce different PHBs to the packets that belong to the same LSP. This in turn
means that the LSR must have some information in the packet header to
determine the PHB to be applied, this information must be encapsulated in a way
that is accessible to the LSR and thus must be part of the label or shim header.
The next subsection will discuss how to encapsulate the PHB.

2.5.2.a Encapsulating the PHB

In IPv4 the “Type of Service” (ToS) field or in IPv6 “Traffic Class” field is used
to encapsulate the DSCP. With generic MPLS encapsulation there is a mapping
from the IP DSCP space to the EXP field of the shim header [98]. The DSCP
field uses the 6 most significant bits of the 8 bits of these IP header fields. Since
the DSCP field is 6 bits wide it can comprise 64 different values. However, the
EXP field of the shim header is only 3 bits wide so it can only comprise 8
different values. This means that the mapping from DSCP to EXP value cannot
be a one-to-one mapping. This is quite a problem because currently there are
more than eight defined DSCP values (Best Effort, 12 AF values and EF). If the
DiffServ domain uses less than 8 different DSCP values then the mapping
between DSCP and EXP can be fixed over the domain. If the domain uses more
than eight different code points then the mapping must be explicitly defined on a
per-LSP basis.

When the EXP value is used to indicate the set of PHBs applied to an OA (the
PSC) then we call this an EXP-Inferred-PSC LSP or E-LSP for short. This
means that the PSC is inferred from the EXP value in the shim header (see
Figure 11b).

Evaluating and improving failure convergence schemes in IP networks 30

Figure 11: BA classification in DiffServ: a) classification on the DSCP
value of the IP header, b) classification on the EXP bits of the shim
header, c) classification on the label and the EXP bits (or the ATM CLP or
FR DE bit)

This only works for LSRs that support shim headers but link layer specific labels
do not have an EXP field. The solution is to set up a distinct LSP for each FEC
and ordered aggregate (FEC, OA) pair and signal the PSC during the LSP setup.
When the PSC of an OA contains more than one PHB these different PHBs still
need to be enforced. The PHBs of the PSC only differ in drop precedence thus
we need to encapsulate the drop precedence in the link layer specific label. In
ATM only the Cell Loss Priority (CLP) bit can be used to encapsulate this
information. Similarly the Discard Eligibility (DE) bit of Frame Relay can be
used to encapsulated the drop precedence (shown in Figure 6). An LSP where

Interior

DS DS
Interior Interior

DS domain

a)

b)

c)

E-LSP

AF1y

AF2y

Classify

EXP to PHB

Classify

DSCP to PHB

L-LSP
AF2y

Classify
Label + EXP
(CLP, DE)

to PHB

L-LSP
AF1y

MPLS technology and applications 31

the PSC is inferred from the label value is called a Label-Only-Inferred-PSC
LSP or L-LSPs for short, meaning that the PSC is inferred from the label values
as opposed to the EXP field value (see Figure 11c).

The use of L-LSPs is not restricted to link layer specific label encapsulating
LSRs, it can also be used with generic MPLS encapsulation. The drop
precedence is then encapsulated in the EXP field of the shim header and the PSC
is still inferred from the label value.

2.5.2.b Allocation of bandwidth to L-LSP and E-LSPs

Bandwidth can be allocated to E-LSP and L-LSPs at setup time. When resources
are allocated to an L-LSP the bandwidth is allocated to the PSC of the LSP,
when bandwidth is allocated to an E-LSP then the bandwidth is associated to the
whole LSP i.e. the set of PSCs of the LSP. Signalling bandwidth requirements of
the LSPs can be useful in two ways. First of all, associating bandwidth to an LSP
can be used to admit the traffic to the LSP based on the availability of resources.
Secondly, the bandwidth allocation information can also be used to shift
resources from certain PSCs to others. It is important to note that allocating
resources to an L-LSP or E-LSP still honours the DiffServ principle that per-
flow resource treatment is not needed because the resources are associated with
the PSC classes.

2.6 Traffic Engineering
Traffic Engineering (TE) is generally defined as the performance optimisation of
operational networks. (Other definitions focus more on the role of traffic
engineering to offer efficient services to customers.) While TE is not strictly tied
to multi-service networks and QoS, TE is definitively more complex and mission
critical in multi-service networks. TE is probably considered as the most
important application of MPLS networks [16, 17, 1315,99].

The next sections will first address the applicability of TE and then detail how
these techniques are implemented in MPLS and how they relate to regular IP
implementations.

2.6.1 Applicability

The optimisation of operational networks is typically achieved by the avoidance
of congested routes, the resource utilisation of parallel links and routing policies
using affinities.

Evaluating and improving failure convergence schemes in IP networks 32

2.6.1.a Avoiding congested routes

When certain network segments are congested while others are under-utilised,
the network operator will want to route traffic away from the congested
segments. In regular IP this can be done by modifying static link metrics [100,
101, 102] or using dynamic metrics [103, 104] but this is difficult due to the
destination based forwarding of IP. In MPLS traffic can be routed away from the
congested segments by setting up (explicitly routed) LSPs. Traffic can be
mapped on an LSP not only based on the destination but virtually any
classification can be used. A small number of LSPs can be used to route traffic
away from the congested segments or a mesh of LSPs can be set up to distribute
the traffic evenly over the network.

2.6.1.b Resource utilisation of parallel paths

Regular IP only calculates and uses a single shortest path from point A to point
B. This limitation is addressed by Equal Cost Multi-Path (ECMP) extensions to
routing that takes paths of equal cost into account and spreads the traffic evenly
over the available paths with the same cost. Even more advanced is the Optimal
Multi-Path (OMP) extension where paths with different cost are used and the
traffic is spread according to the relative cost (a path with a higher cost gets a
lower share of the traffic). The cost metric of OMP can be dynamic i.e. it can be
based on the actual load and length of the path.

MPLS can be used to explicitly configure parallel paths. The calculation can be
based on the on-line (routing) mechanisms like ECMP [36] or OMP [105, 106]
or alternatively an off-line TE algorithm can compute the paths. Off-line LSP
calculations can be based on the measured and forecasted traffic between the
edge nodes of the networks (the traffic matrix) [107, 108, 109, 110, 111, 112].

2.6.1.c Routing policies

A network operator might want to exclude some types of traffic from certain
links or force traffic on certain links. In MPLS this can be achieved by using the
resource class procedures of RSVP-TE or CR-LDP. In IP traffic engineering
extensions for OSPF or IS-IS have been defined to cope with resource affinity
and routing policy procedures [104, 113].

2.6.2 Implementation considerations

MPLS traffic engineering allows gaining more network efficiency. But there’s
no such thing as a free lunch. Efficiency can be gained by introducing more
LSPs in the network but there’s a trade-off between the control granularity and
the operational complexity associated with a large number of LSPs. In order for
the traffic engineering to work properly it is necessary to obtain detailed

MPLS technology and applications 33

information about the behaviour of LSPs (LSP monitoring). This is not a trivial
task and can require significant resources. The assignment of resources to LSPs
and the mapping of traffic to LSPs is another task that can be both time
consuming (for the network operator or in terms of computing power) and prone
to errors due to inaccurate or outdated traffic matrices. Path calculation is
another additional task to perform in comparison with non-traffic engineered
networks. Finally, the signalling overhead introduced by traffic engineering can
cause additional overhead.

An alternative for a Traffic Engineered network is an over-provisioned network
that always has enough capacity to transport the offered load. Even in over-
provisioned networks monitoring is necessary to determine when to upgrade the
network capacity.

2.6.3 Virtual Private Networks

A Virtual Private Network (VPN) is a network using secure links over the public
IP infrastructure [18]. A VPN is a more cost-effective solution to a corporate
extranet than a private network that consists of private infrastructure. In order to
create the extranet the different sites have to be connected to each other through
the provider’s network (ISP network). The access points between a customer’s
site and the provider are called Customer Edge (CE) and Provider Edge (PE)
respectively. The internal routers are called Provider (P) routers (see Figure 12).
A VPN consists of number of sites that are connected through the ISP network.
A participating site can be part of more than one VPN (like site CE4). If two
VPNs have no sites in common then the VPNs can have overlapping address
spaces. Since the addresses can overlap the routers need to interpret the
addresses on a per-site basis by installing per-site forwarding tables in the PE
routers. MPLS VPNs are set up with the combination of BGP-4 and another
label distribution protocol (LDP, CR-LDP or RSVP-TE) (see section 2.4.4). The
PE routers distribute labels associated with VPN routes to each other with BGP-
4 [114, 115]. A VPN route is the combination of an IP prefix and a Router
Distinguisher (RD). The RD allows to distinguish between common prefixes of
the different VPNs. The other label distribution protocol is used to create a mesh
of LSPs between the PE routers. The VPN route labels and the labels distributed
by the internal label distribution protocol are used by the PE routers to forward
packets over the VPN. The internal LSRs (P routers) only operate on the top
label, the label distributed by the internal label distribution protocol, so they do
not need to be aware of the BGP routes.

Evaluating and improving failure convergence schemes in IP networks 34

Figure 12: Example of an MPLS VPN and the forwarding of packets
between the different interconnected sites.

Consider the example that a packet needs to be forwarded from CE2 towards
CE4 over VPN1. The ISP network consists of BGP peers on the edge (PE1 and
PE2) and interior LSRs (P1 and P2). A BGP node sends a packet to a certain
VPN by looking up the label it has received from its BGP next hop and pushes
this label on the label stack. For example PE1 pushes the label it has received
from PE2 for VPN1. PE1 then looks up the label received from the internal label
distribution protocol to PE2 and pushes this label on the label stack. The label
stack then contains the BGP label for the VPN route (the VPN label) and on top
of that the label for the BGP next hop (PE2). Then regular label switching is
used to forward the packet to PE2. At PE2 the top label is popped and the VPN
label pushed by PE1 is revealed. PE2 will then use this VPN label to look up the
information to forward the packet to the next hop on VPN1 i.e. CE4.

2.6.4 Resilience

Regular IP typically recovers from network failures by rerouting. The routing
protocol that is used to calculate the shortest paths in a network is able to detect
network failures (or is notified of) and takes them into account when finding new
routes after the failure. It typically takes some time before the routing protocol
converges, that is before the network reaches a stable state after the failure.

IP header
IP payload

IGP label
VPN label

ISP

CE2
VPN1

CE1
VPN1

CE3
VPN2

VPN2

VPN1

PE1 PE2

P1

P2Push VPN1 label Swap

Lookup VPN1 label
CE4

VPN1&2

MPLS technology and applications 35

When using MPLS, IP routing can also be used to restore the shortest path routed
LSPs. This rerouting in MPLS depends on the new paths calculated by the IP
routing protocol, this means that MPLS rerouting based on IP rerouting is slower
than IP rerouting.

However, MPLS allows the use of more advanced resilience schemes. Protection
switching is a scheme where a recovery path is pre-established. The recovery
path can be node or link disjunct from the working path. (The working path is
used as long as no failures are detected.) When a failure occurs the traffic is
switched from the working path to the recovery path (the protection switch). The
use of protection switching leads to a much lower convergence time. An
additional advantage of protection switching over rerouting is that resources can
be allocated in advance so that even after a failure the traffic over the LSP can
still be serviced according to the predefined traffic parameters. Rerouting
typically does not offer such guarantees unless the network is carefully planned.
The drawback of protection switching is that it requires recovery paths that are
pre-established leading to administrative and signalling overhead and a higher
resource usage if the resources are dedicated (i.e. they cannot be used when the
recovery path is not in use).

We will return to the subject of resilience extensively in the next chapters of this
work.

2.7 Generalised MPLS (G-MPLS)
The original MPLS architecture considers only LSRs that are capable of
recognising packet, cell or frame boundaries. However, the forwarding planes of
a lot of devices do not have the property that it can recognise packet or cell
boundaries, for example network equipment where the forwarding decision is
based on time slots, wavelengths, or physical ports. In order to support MPLS on
these devices the MPLS architecture is extended to explicitly support these
devices called Generalised MPLS (G-MPLS) [116]. Also the control plane needs
to be extended to encompass time-division (e.g. SONET and SDH [117]),
wavelength (optical lambda’s) [118] and spatial switching (e.g. incoming port or
fibre to outgoing port or fibre). Protocol specific formats and mechanisms are
specified for both RSVP-TE [119] and CR-LDP [120].

G-MPLS supports a generalised label request that contains how the LSP should
be encoded (LSP encoding type), how the LSP should be switched (switching
type) and an identification of the payload carried by the LSP (generalised
payload ID). For example in order to carry Ethernet over a WDM network with
Lambda switching capable LSRs the encoding type would be: Lambda, the
switching type: Lambda-Switch Capable and the payload ID: Ethernet.

Evaluating and improving failure convergence schemes in IP networks 36

G-MPLS also supports elaborate bandwidth encoding, the possibility to suggest a
label to the upstream node and bi-directional LSPs.

Another important feature of G-MPLS is that it is possible to separate the
control channel and the data channel. So the signalling packets can be carried
over another medium as the LSPs itself. This concept was introduced to support
link bundling [121] in MPLS. In G-MPLS, the separation of control and data
channel may be needed for other reasons. For example data channels that cannot
carry in-band control information.

Finally G-MPLS has a more extended notification mechanism, better
administration information and fault handling.

An important application domain for G-MPLS is optical lambda and fibre
switching to carry IP or MPLS traffic because of the huge bandwidth potential
these technologies offer.

2.8 Conclusions
The initial drive for MPLS was the performance gain achieved by using ATM
switches to forward IP packets. Performance is no longer perceived as an
advantage of MPLS over regular IP. MPLS does offer new functionality to IP
networks. By separating the forwarding and the signalling layer and through its
path oriented nature MPLS facilitates traffic engineering. More recently G-
MPLS offers MPLS-like functionality to a new class of equipment including
WDM based LSRs.

This evolution in MPLS also translates in the label distribution protocols for
MPLS. The LDP, first label distribution protocol standardised, offers support for
a lot of different label distribution modes but it does not offer any traffic
engineering functionality. Both CR-LDP and RSVP-TE address this limitation of
LDP by supporting traffic parameters, constrained routes, pre-emption and
resource affinity procedures. BGP can also be used as a label distribution
protocol typically to support MPLS VPNs. Finally, both G-MPLS extensions to
CR-LDP and RSVP-TE are being developed.

The remainder of this work will focus on convergence schemes for IP and
MPLS. MPLS supports protection switching which is not available to pure IP
networks. It is important to realise that, as we have illustrated in this chapter,
MPLS has more applications than protection switching, even though we will
focus on resilience in the remainder of this work.

Chapter 3

Failure convergence in IP networks

In this chapter we investigate a number of failure convergence techniques for
both IP and MPLS. We start by looking at the two major families of routing
protocols in IP that are used for routing within a single autonomous system.
These two families are the distance vector and the link-state routing protocols.
Afterwards we will look at the convergence schemes in MPLS. We start by
examining MPLS rerouting followed by a description of MPLS protection
switching. The next chapter will investigate Fast Topology-based Constrained
Rerouting (FTCR), a scheme developed by the author [3].

Before we start the discussion about the different convergence schemes we first
have a look at the different phases in failure convergence and failure reversion.
We start by giving a model of the generic cycles in failure convergence and
failure reversion followed by a more in depth investigation of failure detection
and failure notification.

This chapter will only describe the techniques and how they are able to converge
after a failure. In the last chapter we will investigate the convergence times, the
stability, scalability and backup requirements.

3.1 Failure recovery and reversion cycle
In this section we will describe a generic model to describe the different phases
of both rerouting and protection switching convergence schemes. The model is
loosely based on the models described in [122]. There are two models: one
model for the recovery cycle and one model for the reversion cycle (see Figure
13 and Figure 14). The recovery cycle describes the actions a convergence
scheme takes to handle a failure, the reversion cycle describes the actions taken
after a failure has been cleared. When a node restores the traffic back to the
preferred path after a failure has been cleared it is said that the node operates in
revertive mode.

3.1.1 Failure recovery cycle

The recovery cycle starts when a network impairment occurs (see Figure 13). A
network impairment can be a link failure, a node failure or the failure of a
specific part of the router (e.g. a line card or control component). Detecting an

Evaluating and improving failure convergence schemes in IP networks 38

impairment will always take some time. This fault detection time depends on the
failure detection scheme that is used. Actual values range from a few
milliseconds to a few seconds. When the fault has been detected the failure
detection scheme notifies the router(s) by sending a Failure Indication Signal
(FIS). The informed router might be a router directly attached to the failure or it
might be a more remote router. Therefore, the time between the failure detection
and the time that the router(s) receives the FIS, the notification time, can vary
significantly. When a router is notified of a failure it might postpone the
recovery actions. The reasons to wait are usually external factors e.g. to verify
that another mechanism does not repair the fault. During the hold-down time the
router keeps further actions pending and at the end of the interval it decides
whether or not to start the recovery operations. If the FIS is cleared then it will
probably not initiate the recovery operations. During the recovery operation time
the router initiates the recovery actions, these actions usually involve other
routers but thit is not always the case. When the recovery actions are complete
the traffic is converged and the recovery cycle is complete.

Figure 13: The failure recovery cycle describes the sequence of events
starting from the network impairment and ending with failure convergence.
The time between the individual events is important because they
determine the overall time it takes from the impairment to failure
convergence.

Network Impairment

Fault detected

Notification received

Start of recovery operation

Recovery operation complete

Fault detection time

Notification time

Hold-down time

Recovery operation time

Failure convergence in IP networks 39

When the recovery cycle is completed that does not mean that all the negative
effects of the failure have fully disappeared. For example, when the recovery
path is longer than the original working path it will take some time after the
convergence before packets start to arrive back at the destination. Another
example is when TCP traffic has been affected by a failure it will take some time
before the TCP streams flow at the same rate as prior to the failure [123].

In this chapter we will investigate different failure convergence schemes. A very
important property of these schemes is the time the convergence cycle takes.
Overall the recovery cycle needs to be as short as possible to reduce the network
downtime to a minimum but not at the cost of the stability and scalability of the
scheme.

3.1.2 Failure reversion cycle

The other cycle is the reversion cycle. When a fault is repaired it might be
preferable to reverse back to the original working path. The reversion cycle starts
when the network impairment is repaired.

Figure 14: The reversion cycle describes the sequence of events starting
from a fault clearance to the moment the reversion is complete.

After the fault clearing detection time, the time it takes to notice the fault
clearance, the detection mechanism notifies the router(s) that a fault has been
cleared. The notification time itself depends on the nature of the notification

Network impairment repaired

Fault cleared detected

Notification received

Start of reversion operation

Reversion operation complete

Fault clearing detection time

Notification time

Wait-to-restore time

Reversion operation time

Evaluating and improving failure convergence schemes in IP networks 40

mechanism and the distance between the cleared fault and the router that initiates
the reversion actions. When this router receives the notification it might wait for
pre-configured time before it starts the reversion operations. This wait-to-restore
time can be used to wait for external events. After the wait-to-restore time the
router will start the reversion operations. The reversion operations take place
during the recovery operation time and usually involve other routers too. Finally
when the recovery operations are completed the traffic is restored to the
preferred path.

The reversion cycle is not as time critical as the convergence cycle. During the
convergence cycle the network is recovering from the network impairment and
thus packet loss occurs. When the network has converged to a new path the
connectivity is restored. When the failure is cleared it might be preferable to
switch back to the preferred path but since connectivity is still available this
process is less time critical. More important than the speed of reversion is to
make sure no additional loss is introduced and that the packet reordering is kept
as low as possible.

3.2 Failure detection and notification
In this section we will look at the first phases of the recovery and reversion
cycles in more detail. We start this section with a description of different failure
detection mechanisms and then look at failure notification.

3.2.1 Failure detection schemes

3.2.1.a Hardware based

Some link-layer technologies support failure detection natively. This means for
example that when a cable breaks between two Network Interface Cards (NIC)
this is immediately noticed in the data-link or physical layer of ISO Open
Systems Interconnection (OSI) model [79]. Failure detection can be based on the
detection of the lack of an electrical or optical signal. In order for such a failure
detection mechanism to be useful there must be a way to notify the upper layer
of this failure because a failure usually requires actions by the upper layers (e.g.
convergence mechanisms).

Failure detection by the link-layer is very fast but it does not cover all possible
error cases. For example when a control component of a router breaks this will
not be noticed by such mechanisms. Another example is that when two routers
are connected via a switch and a cable breaks only one router will notice the
failure. The router behind the switch will not notice the failure. So while link-
layer failure detection offers the fastest failure detection it does not cover all
cases and other forms of failure detection are needed. In the next section we will

Failure convergence in IP networks 41

describe a generic failure detection mechanism that is used in many protocols
under various names, we will use the term heartbeat.

3.2.1.b A generic heartbeat mechanism

In this section we will describe a generic unidirectional mechanism that can be
used to monitor a link or a control protocol peer in a given direction. Consider
that we want to monitor the liveliness of a link. When a packet arrives on a link
it is obvious that the link is operational at that instant in the receiving direction.
But the reverse is not true, because no packet has arrived does not mean that the
link has failed. However when no packets are received for a considerable amount
of time one can suspect that a failure has occurred. But in order to prevent false
negative reports one cannot just declare that the link has failed after an arbitrary
time of inactivity. Such false negatives can be avoided if we can guarantee that at
least one heartbeat packet is sent over a certain period of time. The sender is then
responsible to send at least one packet within a pre-negotiated interval. Within
this interval at least one message must be sent; this interval is called the send
interval. If a sender agrees to send a packet at least every send interval the
receiver can conclude that if no packet was received during this send interval that
a failure has occurred. However in order to prevent false negatives due to
transmission delay, packet loss or a transmission error in the packet, the send
interval should be smaller than the interval used at the receiving side. Therefore,
the receiving side uses a different interval: the receive interval. The receive
interval is then the upper bound to detect a failure on the link. In the next section
we will examine in detail what the lower and upper bounds are for the failure
detection time.

The sender is required to send at least one heartbeat packet during the receive
interval (see Figure 15). When the receiver receives a packet it will reset its
receive timer associated with the receive interval. So when the receive interval is
chosen sufficiently larger than the send interval then under normal conditions a
router will always receive a packet within the receive interval and the receive
interval timer will not expire. However during fault conditions no packet will be
received and the receive timer will expire. When the receive timer expires a
failure is assumed.

Evaluating and improving failure convergence schemes in IP networks 42

Figure 15: Failure detection with the generic heartbeat protocol. Heartbeat
packets are sent every send interval. When no heartbeat packet is
received for a receive interval amount of time a failure is detected. The
actual detection time depends on when the last heartbeat packet was
received with respect to the receive interval.

The time when a failure is detected (T1) depends on when the last packet is sent
(Hn) with respect to the time when the failure actually occurs (T0). If the last
packet is sent just before the failure (T0 approaches Hn) then it will take almost a
complete receive interval before the failure is detected. However if the last
packet is sent almost a send interval time before the failure (T0 approaches Hn+1)
it will take less time to detect the failure. More specifically it will take up to a
send interval less time to detect the failure. This leads to the detection time
interval:

receive interval – send interval ≤ Tdetect = T1-T0≤ receive interval (1)

This generic heartbeat mechanism is unidirectional. Bidirectionality can easily be
achieved by running two instances of the protocol on each node. The node acts
as the receiver in one instance and as sender in the other instance. Actually the
fact that the mechanism is unidirectional should be considered a benefit because
this makes the mechanism more flexible. Certainly in the context of LSPs which

Packet

Send
interval

Packet Packet
(Hn)

Failure
(T0)

Detection time

Maximum detection time
Receive interval

Failure
detected

(T1)

Minimum detection time
Receive interval -

Send interval

(Hn+1)

Send
interval

Send
interval

Failure convergence in IP networks 43

are intrinsically unidirectional. The second drawback of the mechanism is that
the time to detect the failure cannot be decreased without increasing the
overhead. We see in (1) that the detection time depends on the length of the
receive interval, if the receive interval is decreased then the send interval needs
to be decreased too in order to prevent false positives. This in turn means that the
number of packets that are sent per second increases too and that the bandwidth
that is used by the heartbeat protocol increases as well. When the receive interval
is decreased without decreasing the send interval the protocol becomes less
reliable because packet drops and delay can lead to false positives. Obviously the
lower limit of the receive interval is the send interval but in practise the receive
interval is taken at least three times higher as the send interval.

Despite these drawbacks this generic heartbeat mechanism is used in a number
of protocols. As we will explain in section 3.3.2.b the link-state routing protocol
Open Shortest Path First (OSPF) [36, 124, 125, 126] uses a very similar
approach to detect failures. The send interval is called the Hello interval and the
receive interval is called the router dead interval. Another link-state routing
protocol called Intermediate System- Intermediate System (IS-IS) [37, 38] also
uses a very similar concept to detect failures. The send interval is called the
Hello interval, IS-IS does not use a receive interval but it states how much larger
the receive interval is than the send interval. This parameter is called the Hello
multiplier. Finally another example is the Hello mechanism of LDP (see section
2.4.1). LDP uses a slight variant because it only negotiates the receive interval,
which is called the Hello interval, and the sender is responsible to make sure that
a Hello packet is received in this interval.

In the next section we investigate how this mechanism can be improved by
decreasing the detection time while limiting the overhead and without sacrificing
the reliability.

3.2.1.c Decreasing bandwidth overhead

As we have seen in the previous subsection sending packets to monitor a link or
control protocol is possible if a send and receive interval are negotiated.
Decreasing the detection time can be done by decreasing the length of these
intervals but at the cost of decreased reliability and increased bandwidth usage.

For example the OSPF hello protocol uses intervals in the seconds range. This
means that HELLO packets are sent every few seconds. This does not induce a
very high overhead in terms of processing or bandwidth usage. However the
detection time is also quite high. The detection time can be decreased by
decreasing the length of the send and receive interval. But since the Hello

Evaluating and improving failure convergence schemes in IP networks 44

packets compete with other packets for link bandwidth there is obviously a
practical lower limit to these intervals.

Figure 16: The failure detection time depends on the send interval. When
the send interval is decreased, the detection time will also decrease but at
the cost of additional bandwidth that used to send the heartbeat packets.

Figure 16 illustrates the fact that the detection time can be decreased by
decreasing the send interval. A send interval of 10s corresponds with a standard
Hello Interval (i.e. the send interval) of OSPF. In this figure we consider that the
receive interval is four times higher than the send interval (like in OSPF).
According to formula (1) this corresponds to an average detection time of 35s.
The detection time can be decreased by decreasing the send interval and the
receiver interval. This is shown by the descending line on the figure. However
decreasing the send interval will influence the bandwidth used to send the
heartbeat packets. If we consider that every heartbeat packet occupies 100B at
the link layer then the ascending line shows the corresponding bandwidth used.
For example when one heartbeat packet is sent every 10s the bandwidth used is
10B/s, however when one heartbeat packet is sent every 1ms then 100000B/s are
used. The corresponding average detection time is then 3.5ms.

Failure detection vs. Bandwidth used

0

10000

20000

30000

40000

10000 1000 100 10 1

Send interval (ms)

A
ve

ra
ge

 d
et

ec
tio

n
tim

e
(m

s)

0

20000

40000

60000

80000

100000

B
an

dw
id

th
 u

se
d

(B
/s

)

Average
detection time
Bandwidth
Used

Failure convergence in IP networks 45

We will now describe how the generic heartbeat mechanism can be extended so
that we can decrease the convergence time without wasting useable bandwidth.
We start the discussion within the context of monitoring the status of a link
followed by an example of the monitoring of a control component.

When we only want to monitor the status of the link there is no need to send
specific packets since any packet is fine to assert that the link is operational. This
means that we can reset the receive timer at the receiving side every time we
receive any packet on the link instead of a specific monitoring packet. The
sending node should monitor the outgoing packets on the link, if a packet is sent
during the send interval the sender does not need to send a packet. However if no
packet is sent during the send interval then a dummy packet will be sent as
before. This means that the send and the receive interval can be decreased
without sacrificing useable bandwidth. When the link is heavily used, packets
will be sent regularly and the sending side decides that it does not need to send
packets and no bandwidth is used. If the link is not heavily used then the sending
side detects that no packets are sent during the send interval and will insert
dummy packets so that the receiving side still receives at least one packet during
its receive interval. We investigated this in more detail in [44] where the
mechanism is called link probe. Experiments revealed that detection times of
150ms-300ms can be achieved with proof-of-concept implementations.

We see that this technique has the valuable property that it does not use
bandwidth when the link is highly loaded but still offers fast failure detection.
This technique can also be used to monitor the status of a control component.
Instead of monitoring any packet that is sent over a link one needs to monitor the
control packets that are sent. This is what the LDP keepalive mechanism does,
when no LDP packet is sent for a configurable amount of time a keepalive packet
is sent. The keepalive packet has no real semantics but it is used to keep the LDP
session alive (see section 2.4.1).

If the mechanism is used to monitor control packets then it will be able to detect
a broader range of failures since it is able to detect control component, link and
node failures. However the amount of control packets is typically only a very
small percentage of the total amount of traffic so the gain achieved is quite small.
There is a trade-off between the amount and the types of failures that can be
detected and the bandwidth that is saved. Since there is always a need to detect
control component failures we cannot simply apply the mechanism solely to all
packets because that makes it is impossible to detect control component failures.

The solution which we also proposed in [44] is to use the link probe mechanism
as a fast link failure detection mechanism and to retain the existing protocol
specific failure detection, this is illustrated in Figure 17. Another reason why the

Evaluating and improving failure convergence schemes in IP networks 46

protocol specific mechanisms should be retained is that they typically serve other
purposes besides the detection of control failures.

Figure 17: Link probe can be used in conjunction with existing protocol
specific failure detection mechanisms.

Note that link probe offers little benefit if hardware-based failure detection is
available. However, in that case the protocol specific detection mechanisms
should be retained too.

3.2.2 Failure notification and failure clearance notification

In the previous sections we took a brief look at how failures can be detected. In
this section we will look at how information about a failure event can be
distributed. Failure notification is often needed to inform other nodes of a failure
because the node that has detected the failure cannot repair the failure solely by
itself. For example it might be necessary to notify the ingress of an LSP that a
failure has occurred somewhere on the path of the LSP. Another example is that
a router needs to notify its routing peers that a link has failed and that the current
routing tables need to be recalculated.

However failure notification is often implicit. When a router detects a link failure
it might send a notification message (explicit notification) or it might just stop
advertising that link (implicit notification). Implicit notification has as drawback
that the cause of failure is not known. For example when a router stops
advertising a link this might be caused by a link failure but it might also be that
the node has failed or even that the link in question has been disabled by the
administrator. Explicit notification can indicate the type of the failure although
that is not always the case.

OSPF

Hello

MPLS

Hello, KeepAlive

...

Iface 1 Iface 2 Iface N

Link Probe

Failure convergence in IP networks 47

Looking at MPLS, both LDP and RSVP-TE have an error notification
mechanism to indicate that the egress of the LSP is (no longer) reachable. But
both lack a specific encapsulation to notify what exactly is the type or the cause
of the failure. Still we call any message that is sent to indicate that failure has
occurred or that causes a recovery action a failure indication signal (FIS). This
means that a FIS can be for example a LDP notification message or RSVP-TE
Path Err message. FIS messages can be implemented using a distinct protocol or
they can be part of an existing protocol (as the previous examples show).

Failure notification and failure detection is often part of an Operations And
Maintenance (OAM) framework. The ATM forum glossary [127] defines OAM
as “A group of network management functions that provide network fault
indication, performance information, and data and diagnosis functions.”.
However an OAM framework for MPLS has not yet been standardised although
effort is underway [128, 129, 130].

As we pointed out some messages in (CR-)LDP and RSVP-TE can indicate
failure conditions. However for some convergence schemes these messages and
their semantics are inadequate [131, 132]. For example sometimes the ingress of
an LSP needs to be informed about a failure on the path of the LSP. In RSVP-TE
the Path-Err message could be used but this message is usually sent in response
to a Path message. Since a failure is not always associated with a Path message
this creates a semantic mismatch. Another problem is that the object used to
encapsulate information about the error condition, the Error-spec object, is not
sufficient to convey the necessary information. Expanding the Error-spec is of
course a possibility but since this leads to the problem of downward
compatibility, [132] concludes that a new notification mechanism is more
suitable and proposes the Reverse Notification Tree (RNT).

The reverse notification tree is a tree that is set up in the reverse direction of the
LSP. LSPs can be merged which leads to a multipoint-to-point tree. Since the
RNT follows the reverse direction this can lead to a point-to-multipoint RNT tree
(see Figure 18).

Evaluating and improving failure convergence schemes in IP networks 48

Figure 18: The Reverse Notification Tree (RNT) for the merged LSP A-D-
E-F, B-C-D-E-F, C-D-E-F. When the link EF fails, node E sends a FIS
upstream. Node D is then responsible to send a FIS to both node A and
node C.

The information in the FIS message sent over the RNT contains at least the
address of the failure detecting node. But every node is also responsible to verify
which LSPs are affected by the failure before sending the FIS further upstream.
For example when node E notices a failure on link EF it will send a FIS
upstream with its own address in the failure detecting node field. When node D
receives this FIS it is responsible to send this FIS upstream towards both A and
C because node D is a merge point of the LSP. The FIS messages are not sent
using a reliable protocol like TCP but rather the messages are repeated with a
pre-configured frequency (the FIS frequency). The failure detecting node
continues to send FIS messages until another timer expires (the FIS duration).
When this timer expires the detecting node stops sending FIS messages and it is
assumed that all the affected nodes are notified or that a high layer mechanism
has converged the network. Note that the RNT is only used to send failure
indications upstream. Downstream notifications are based on the MPLS
signalling protocol.

When a failure occurs a FIS often needs to be sent to inform other routers in the
network of the failure, similarly when a failure is cleared there needs to be a
mechanism to inform the routers that the failure is cleared. The signal itself is
usually called a Fault Recovery Signal (FRS). For example when a router detects
that a certain link is available again it will start to tell the other routers that this
link can be used again. Like FIS messages, FRS messages can be implemented
using a distinct protocol like RNT or they can be part of an existing protocol.

A D E

B C

LSP
RNT

F

Failure convergence in IP networks 49

Now that we have covered failure detection and failure notification we start
discussing the various failure convergence schemes for IP and MPLS networks.

3.3 Convergence schemes for IP and MPLS
In this section we describe different convergence schemes for IP and MPLS.
Convergence protocols are really atypical protocols, they cannot rely on
existence of routing tables because these protocols themselves are responsible to
install the routing tables.

The convergence schemes for IP are usually referred to as routing protocols. The
reason for this is that these schemes not only enable IP to converge from faults in
the network but also that they install the working routes in the network when the
network is first installed (cold boot). In this section we will only investigate
routing protocols which operate within one autonomous system. These routing
protocols are called Interior Gateway Protocols (IGP) in contrast with routing
protocols that operate between autonomous systems that are called Exterior
Gateway Protocols (EGP). We will investigate two important families of IGP
routing protocols i.e. distance vector and link-state routing protocols. Some of
the MPLS convergence schemes rely on the IP routing protocols. These schemes
are called MPLS rerouting schemes. MPLS protection switching does not use IP
routing to converge from network failures. Instead it relies on backup paths that
are pre-established. Finally we propose a new scheme called Fast Topologybased
Constrained Rerouting (FTCR), this scheme allows for fast convergence without
the limited coverage or the high number of backup paths that protection
switching typically introduces.

The IP routing protocols and MPLS signalling protocols are described in the
relevant IETF Request For Comments (RFCs). However these documents
usually only describe the external observable behaviour. Sometimes these
specifications are not enough to get detailed insight into the working of these
protocols. That is why we also looked at specific implementations of these
protocols to get further insight [46, 133]. Since the main goal of the investigation
is to gain insight into the working of these protocols with respect to convergence
we won’t examine for example the encapsulation of the various messages.

In this section we will start by examining the various intra-domain IP routing
protocols before we examine the MPLS convergence schemes. We will only
investigate intra-domain protocols, for information about inter-domain
convergence with BGP we refer to [134].

This section starts by investigating distance vector routing in general and the
Routing Information Protocol (RIP) in specific.

Evaluating and improving failure convergence schemes in IP networks 50

3.3.1 Distance vector routing

The first used interior gateway routing protocol of the Internet is simply called
the Routing Information Protocol (RIP) [39, 40, 41]. RIP is a “distance vector
routing” protocol based on a distributed implementation of the Bellman-Ford
shortest path algorithm [45]. The first version described in RFC 1058 [135]
documents the at that time current implementations for “routing”. The RFC most
notably describes the implementation of routed (route daemon) distributed with
the 4.3 Berkeley Software Distribution (BSD), a popular Unix implementation at
that time.

In the next section we will describe how distance vector routing protocols install
the working routes and afterwards we look at how these routing protocols can
converge after a failure. Subsequently we will address the timing and
synchronisation issues with respect to distance vector routing. That section is
followed by an explanation of the weaknesses of distance vector routing.

3.3.1.a Basic operation

Dynamic routing protocols like RIP initially require only local knowledge in
each router i.e. the address of the router and the links that are attached to it. The
routing protocol is responsible for the spreading of this local information across
the network. This local information in combination with the source of the
information can eventually be used to calculate the shortest paths in the network.
Distance vector routing protocols and link-state protocols use a different
approach to calculate these paths. Distance vector protocols achieve this goal by
spreading distance vectors across the network. A distance vector is a vector of
(node, cost) pairs. The cost associated with a node is the cost to reach it. Links
have an administrative cost associated with them. This cost can for example be
proportional to the monetary cost to use the link or it can be proportional to the
length, bandwidth or delay of the link. The routing protocol tries to minimise this
cost for a given path between two points in the network. In this example and
further on we assume that the cost for each link is one. So the problem statement
for finding a minimum cost path translates into finding a minimal hop count
path. In the next section we will describe how RIP as a distance vector protocol
achieves this goal. The RIP operations are first explained from the point where
the network starts up (cold boot) and then we will investigate what happens
when a link or node fails.

Failure convergence in IP networks 51

Figure 19: During the cold-boot of the RIP protocol, every router starts by
announcing its local state first. Illustrated here are how node A, B and D
announce their local state to each other.

When the network starts up each node will start to announce its local state.
Consider that node A is the first to start announcing this information. It will start
by constructing a simple distance vector with only its own address with a cost of
zero and sending this vector over its attached interfaces (see Figure 19). When
the directly attached nodes (node D and B) receive this distance vector they will
reply with a distance vector with their own local knowledge i.e. their own
addresses.

When a node has received non-local knowledge it will incorporate this
information in all future distance vectors. As illustrated in Figure 20 we see that
node B uses this recently learned information to spread a distance vector (A=1,
B=0) to its other attached interface BC. Notice that node B has incremented the
cost to reach node A with the cost of its local interface AB. This process is
further illustrated in Figure 20 where the learned knowledge from the operations
in Figure 19 are depicted in a box.

We see that node D sends the distance vector (A=1,B=2,C=1,D=0) towards node
E. Node D has received two different costs to reach node A i.e. (A=0) from A
and (A=2) from C. In order to minimise the overall cost a node will always use
and announce the lowest cost it has learned.

A D E

B C

A=0

A=0

B=0

D=0

Evaluating and improving failure convergence schemes in IP networks 52

Figure 20: RIP routers do not only announce their local state but also the
information that they have gathered during their operation. We show the
interaction between nodes B, C and D. The gathered information in the
routers before the illustrated interactions are shown in boxes.

All the nodes in the network will continue to announce their distance vectors and
adjusting them if they receive a lower cost to reach a certain node. At any given
time the distance vectors are also used to forward traffic in the network. For
example when we look at Figure 20 we see that the routing tables in node A (the
framed box) is only partially complete. But at a certain moment in time all the
routers will have the lowest cost associated with all other nodes in the network.
At this moment the spreading of distance vectors no longer changes the state in
the nodes and we say that the network has converged. The forwarding on the
routing tables i.e. the distance vector in the nodes is a simple operation. Up until
now we didn’t mention the fact that the nodes also store the incoming interface
of each of its retained entries in its distance vector. The incoming interface of the
entry in the distance vector is used as the outgoing interface to reach the
destination in the distance vector. For example Figure 21 shows the final routing
tables after the network has converged. We see that node A uses interface AD to
forward packets to node E because it has received the lowest cost to reach node
E from node D over interface AD.

C=0

A=1
B=0

A D E

B C A=2
B=1
C=0

A=1
B=2
C=1
D=0

D=0 E=0

A=0
B=1
D=1

A=1
B=0

A=1
D=0

Failure convergence in IP networks 53

Figure 21: These routing tables are the result of the distributed RIP
shortest path calculation in the network. Every node stores the cost and
the outgoing interface towards all the destinations in the network.

3.3.1.b Failure convergence in distance vector routing

Now that we have explained how RIP, as an example of a distance vector routing
protocol, can calculate the routing tables inside a network we will investigate
how this protocol can handle link and node failures. When a node detects a link
failure it will announce a new distance vector where the cost of the link is set to
infinity. When a node receives a distance vector with a cost of infinity for a
given destination it will never use it. This prevents new nodes from using the
failing link but this does not solve the problem of existing nodes forwarding
traffic towards the failing link because the new cost is always higher than the
current cost. This is solved by requiring that when a node has received and
retained an entry from another node he has to update to that node’s new cost at
all times (even if the cost is higher). So when a node announces the new cost of
infinity all the nodes that used the original cost from that node have to update to
the new cost of infinity. When there is another route to the destination this
distance vector entry will soon be replaced by an entry with a lower cost from
another node. When this happens the outgoing interface towards the affected

A D E

B C

A=0, *
B=1, AB
C=2, AB
D=1, AD
E=2, AD

A=1, DA
B=2, DC
C=1, DC
D=0, *
E=1, DE

A=2, ED
B=3, ED
C=2, ED
D=1, ED
E=0, *

A=1, BA
B=0, *
C=1, BC
D=2, BC
E=3, BC

A=2, CB
B=1, CB
C=0, *
D=1, CD
E=2, CD

Evaluating and improving failure convergence schemes in IP networks 54

destination changes and the traffic is routed around the failure. Note that this
may take a couple iterations of flooding distance vectors in the network before
this is achieved.

Figure 22: When a failure over a route is detected RIP will associate a cost
of infinity with this route. The original route (solid box) will soon be
replaced by another route (dashed box). For example node A associates a
cost of infinity to its route to D after the failure. But soon thereafter it learns
a new route from node B and uses that to reach D.

Referring back to the previous examples we illustrate the RIP recovery
operations when the link AD fails (see Figure 22). First node A and D detect the
failure and spread a new distance vector with the cost to reach node D and A
respectively set to infinity. Node B will receive the distance vector from node A.
Now consider for a moment that B uses node C to reach D (as in Figure 21). This
means that node B does not need to update its distance vector for destination D.
But B continues to send the same distance vector to its neighbours. When A
receives this distance vector from B it will update its own distance vector and set
the cost to reach D to 3. Node A now has a new route to reach node D that
circumvents the failure on link AD.

A D E

B C

A=0
B=1
C=2
D=1
E=2

A=1
B=2
C=1
D=0
E=1

A=2
B=3
C=2
D=1
E=0

A=1
B=0
C=1
D=2
E=3

A=2
B=1
C=0
D=1
E=2

A=2

A=∞D=∞

D=2

A=3

A=0
B=1
C=2
D=3
E=4

A=3
B=2
C=1
D=0
E=1

A=4
B=3
C=2
D=1
E=0

A=1
B=0
C=1
D=2
E=3

A=2
B=1
C=0
D=1
E=2

Failure convergence in IP networks 55

In the meanwhile node C has received the new distance vector from D.
Considering that node C uses node B to reach node A (again as in Figure 21),
node C does not need to update its distance vector. It will continue to send its
original distance vector to its neighbours including node D. When node D
receives the distance vector from node C it will adjust its distance vector to
reflect the new cost to reach A via node C. Finally node E will have to increase
its cost to reach node A because the originator of the original entry to reach node
A i.e. node D has increased its cost.

Up until now we have considered that node B and C did not forward traffic over
the failing link AD. Now let’s investigate what happens when they do use the
failing link to forward traffic. Both the case where they do and the case where
they do not use the failing link are possible because the cost of these routes is
equal (for example the cost B-A-D equals the cost B-C-D).

When B and C forward traffic to D and A respectively over the failing link then
the recovery operations are slightly different. Again A and D start by sending an
infinite cost to reach D and A respectively. Since B uses A to forward traffic
towards D it has to update its cost to reach D to infinity. Similarly node C will
update his cost to reach A to infinity. Subsequently B and C send each other their
distance vectors. Since B and C are respectively directly connected to A and D
they spread a low cost path towards these destinations. As a result B and C will
update their distance vectors to reach D and A via C and B respectively. Then
node B and C send their updated distance vector to A and D so that they also
have the correct path to D and A.

As we see in this case the convergence is a bit slower but the protocol is still able
to converge. It is however important to note that the convergence time is not
constant for a given network. This is a general problem with RIP and we will
give other examples later on. But first the next section describes how RIP
supports failure detection, node failures, multiple failures and the revertive
actions.

3.3.1.c Failure detection and distance vector updates

Distance vector routing protocols do not use an explicit failure detection
mechanism. External failure detection mechanisms can be used but they are
generally not present. Instead RIP relies on the regular transmission of the
distance vectors to monitor the routes and to be tolerant of packet loss. RIP
requires that the distance vectors are announced regularly in the network, if no
updates are received within the time-out interval the cost associated with these
routes is set to infinity. In order to prevent time-outs during normal conditions,
distance vector packets are sent every update interval. As such the time-out

Evaluating and improving failure convergence schemes in IP networks 56

mechanism can be seen as a specific implementation of the generic heartbeat
mechanism explained in section 3.2.1.b where the timers are associated with the
routes in the distance vector.

Now consider that a link fails, the nodes that are connected to the failing link
will be unable to announce their distance vectors to each other so eventually the
routers will set the cost of routes learned via each other to infinity and
forwarding over these routes will be avoided. The convergence will then proceed
as explained in the previous subsection.

Notice that the timers are associated with the routes in the routing tables rather
than directly associated with the RIP peers. So unlike the generic heartbeat
mechanism explained in section 3.2.1.b, RIP is not able to directly detect that a
link or peer has failed it will only detect that a route is no longer available.

As already explained a RIP router associates a time-out timer with every entry in
its routing table. The detection time of a route failure depends on the time-out
timer and the update interval. The lower these timers, the faster a faulting route is
detected. However there is a lower limit to this timer. Obviously the time-out
timer must be higher than the update timer plus the transmission delay of the
link. Moreover the time-out timer must preferably be high enough so that the
loss of a single distance vector packet does not lead to a false positive failure
detection. In RIP the standard value of the update timer is 30 seconds and the
time-out timer is 180 seconds. This means that up to six updates can be lost
before the route associated with the timer is declared unreachable.

We have seen that failure convergence can require a significant number of
distance vector exchanges. If the time between these distance vector exchanges is
always equal to the update timer (standard 30 seconds) then obviously this leads
to quite high convergence times. On the other hand, reducing the update timer
increases the bandwidth and processing overhead without any benefit in normal
working conditions. The solution is to trigger distance vector updates when a
router receives a new or modified distance vector. Triggered updates will speed
up the cold boot process and the convergence time while it does not increase the
overhead during normal conditions [135, 136].

Finally, in order to prevent synchronisation, the actual value of the update timer
varies between 15 and 45 seconds. This randomisation of the update time was
introduced in RIP version 2 after the observation that every 30 seconds certain
autonomous systems running RIP version 1 had peaks of congestion and packet
loss. These effects where caused by the fact that the routers in the autonomous
system started to get synchronised because of the fixed update time and triggered

Failure convergence in IP networks 57

updates. Requiring a sufficiently large randomisation of the update time solves
this problem.

3.3.1.d Node failures, multiple failures and reversion

In this section we address some of the aspects of convergence that we have not
covered. These are node failures, multiple failures and the reversion operations.

When a node i.e. a router fails inside the network that router is no longer able to
announce its distance vector to the other routers in the network. As a result all
the routes that the failing router announced will time-out in the attached routers.
The attached routers will start to announce a cost of infinity associated with these
routes. This results in the situation where there is no route to reach the failing
node with a cost lower than infinity. When this happens the failing node is
effectively pruned from the network and the network now converges by
calculating routes that circumvent the failing node.

We will now look how distance vector routing protocols converge from multiple
failures. We define a multiple failure event as the event where one or more
failures occur after a first failure but before the network has converged from the
first failure. So the event where a failure happens, the network converges from
that failure and the occurrence of a second failure does not count as a multiple
failure event but rather as two consecutive single failures events. Regardless,
multiple failures require no real special treatment by distance vector protocols.
All the affected routes will time-out and the network will calculate new routes
which circumvent the failure. Multiple failures can however lead to slow
convergence in the network with routing anomalies during the transient period.
This will be illustrated in the next section.

Finally we briefly address the reversion operations. When a link becomes
operational again the attached routers will start to announce their distance vector
over that link again. Other routers will pick up these updates and adjust their
distance vector if this results in shorter routes. The result is that the link will be
used again if that leads to shorter paths in the network, which is the correct
behaviour. When a node goes back up this should be seen as a collection of links
that are operational again and so the reversion operations are similar to the link
failure case.

In the next section we will investigate the primary drawback of distance vector
routing protocols namely slow convergence.

3.3.1.e Limitations and undesirable features

In the examples in the previous section we always took the cost of every link
equal to one, as discussed before the cost of link can be an expression of for

Evaluating and improving failure convergence schemes in IP networks 58

example the monetary cost or the delay, so a cost of one might not always be
appropriate. However setting a high value may lead to undesirable behaviour as
illustrated in the next example.

We use the same topology as in the previous examples but this time the cost of
link AD has a high value such as 10 (see Figure 23). Because of its high cost the
link will not be used to forward traffic in the network but when link CD fails link
AD needs to be used because no other path is available for certain destinations
(e.g. to reach node D from node A). Note that this might be exactly the reason
for which this link has such a high cost i.e. that the link is only used when no
other link is available. As we will see RIP will eventually route the traffic over
the link AD but it will take a significant number of iterations before the network
has converged.

Figure 23: Convergence in RIP can require a significant number of
iterations as illustrated by the bouncing effect. For example when a high
cost metric, like 10, is used for link AD. When link CD fails, node B and A
will need to count to 11 before link AB is used and D and E will finally be
reachable from A, B and C.

When the link CD fails node C will set the cost to reach node D to infinity.
When node B sends its distance vector to node C, node C will notice that node B

A D E

B C

A=0
B=1
C=2
D=3
E=2

A=3
B=2
C=1
D=0
E=1

A=4
B=3
C=2
D=1
E=0

A=1
B=0
C=1
D=2
E=3

A=2
B=1
C=0
D=∞
E=2

D=2

D=2

cost=10

Failure convergence in IP networks 59

has a shorter path towards D and will update its distance vector so that the cost to
reach D is now 3. When node C in his turn sends its distance vector to B, node B
has to update its cost to reach D too because it uses C to reach D. This cycle will
be broken only when the cost to reach D in node B has increased to 11. Node A
will then receive this cost from node B and will notice that it can reach node D
on a cheaper path by using the link AD. After that node A will send his new
distance vector to node B and node B will make the correct decision to reach
node D via node A. When node B sends this new distance vector to node C, node
C will also reach D via node B and node A and the network has finally
converged.

The previous example illustrates that convergence can take a substantial amount
of iterations because node B and C have to “count” till 10, i.e. the cost of the link
AD. This highly undesirable effect of distance vector routing protocols is called
the bouncing effect because the distance vector to reach D bounces between node
B and C until a certain value is reached.

Another undesirable feature of distance vector routing protocols is counting to
infinity. Consider now that not only link CD but also link AB fails. A similar
counting effect will happen where the cost to reach A, D and E in B and C will
increase with each iteration. This will in principle never stop. The solution to this
problem is to stop this counting to infinity at an arbitrary but sufficiently high
value. When the cost in node B and C has reached this value they will consider
the cost infinite and declare the associated destinations unreachable. This value
needs to be set high enough so that valid paths are not declared unreachable i.e.
this value must be higher than the longest possible path in the network.

Fortunately the bouncing effect and counting to infinity can be solved by a
simple split horizon test [40, 135]. The problems illustrated above stem from the
fact that the nodes announce the cost that they have learned from a given node to
that node itself. For example in the bouncing effect example node B announces
to node C the cost to reach D as the cost it learned from C plus one. Obviously
there is no reason for node B to announce to node C that it can reach a certain
destinations via node C itself. The split horizon test therefore forbids that a node
announces the routes that it has learned from a certain node to that node. This
prevents the bouncing effect and counting to infinity between two nodes. In the
bouncing effect example this would mean that node B will not announce to node
C that it can reach node D with a cost of 2. Node C will then announce a cost of
infinity to reach node D to node B and node B will have to update its distance
vector accordingly. Afterwards node B will announce to node A that the cost to
reach D is infinity. Node A will then favour link AD to reach D and will

Evaluating and improving failure convergence schemes in IP networks 60

announce this cost to node B. Node B will then announce this new cost to node C
and the network has converged.

The problem of counting to infinity can be solved with a more aggressive
variation of the split horizon test called split horizon with poisonous reverse
where the nodes announce all the destinations but will set the cost to infinity if
the destination is reached via that node. This will immediately set the cost to
infinity and will remain infinite if no other route is available thereby quickly
marking the destination unreachable.

Figure 24: Even with the split horizon with poisonous reverse three way
counting to infinity can occur. Nodes C,D and E will count to infinity before
they declare A and B unreachable.

However neither the basic split horizon test or the split horizon with poisonous
reverse can prevent all undesirable features of distance vector routing. Consider
for example the topology depicted in Figure 24. When link AD fails node D will
announce an infinite cost to reach A. Now consider that this update reaches C
before it reaches E and that at the same time node E refreshes its announcements.
Since node E uses poisonous reverse it will announce an infinite cost to reach A
to node D and it will announce its real cost (A=2) to node C. While this sequence
of events might seem unlikely it can happen when for example the update of the

A D E

B C

A=0
B=1
C=2
D=1
E=2

A=1
B=2
C=1
D=0
E=1

A=2
B=2
C=1
D=1
E=0

A=1
B=0
C=1
D=2
E=2

A=2
B=1
C=0
D=1
E=1

A=∞

A=2

A=∞

Failure convergence in IP networks 61

infinite cost of node D towards node E is lost due to a transmission error.
Regardless of the fact that the above situation is common or not, it does lead to a
new form of counting to infinity. Since node C has learned a cheaper way to
reach A it will increase the cost and announce the cost to node D and node D in
turn will increase the cost and announce the new route learned from node C.
When node D announces the new cost to reach node A to node E, node E will
update his distance vector and will announce this information to C. This process
will continue, leading to a three-way counting to infinity.

While it might be possible to invent new schemes that can solve three-way
counting to infinity it is general very difficult to prevent these anomalies in all
cases. This is an intrinsic weakness of distance vector routing protocols. The
fundamental problem is that Bellman-Ford is a distributed algorithm where every
node has only limited knowledge about the network where it know its attached
routers but has no knowledge about the topology of the network.

We have already seen that RIP is not a good choice for a convergence scheme in
complex networks because RIP only supports networks of the limited size and
because of the counting to infinity and bouncing effects. OSPF as an IP
convergence scheme. Other problems of RIP are the lack of support for external
routes and multiple metrics.

In the next section we will look at the routing protocols of the link-state family
that are more complex but do not suffer from these problems.

3.3.2 Link-state routing

In the previous section we have explained RIP, a routing protocol from the
distance vector routing protocol family. Distance vector routing protocols are
really only suitable for small networks. This can be illustrated by referring to the
large number of iterations needed to converge and the counting to infinity
problems. But it is probably best illustrated by mentioning that the value set to
infinity in RIP is 16. That means that networks with a diameter of more than 15
nodes cannot be supported. Another important drawback of RIP is that it can
only support static metrics so dynamic metrics like link load cannot be used. In
the remainder of this work we will only consider link-state routing protocols.

In this section we will introduce link-state routing protocols and we will
illustrate their working by examining the Open Shortest Path First (OSPF)
protocol [36]. Link-state routing protocols address the weaknesses of distance
vector routing protocols but at the cost of a higher complexity. We will start with
an overview of the basic operation of the OSPF protocol. Note that we will focus
on OSPF rather than on IS-IS which is also a widely used link-state routing
protocol. Research seems to be more focussed on OSPF (for example [12] covers

Evaluating and improving failure convergence schemes in IP networks 62

OSPF in detail and IS-IS just briefly), open implementations of OSPF are more
widely spread [46] and OSPF is specifically designed for IP. For a comparison
between IS-IS and OSPF we refer to [137, 138].

3.3.2.a Basic operation

We started the very first section on the basic operation of distance vector routing
protocols by stating that these protocols start by spreading the locally available
information in every router over the network. Exactly the same can be said about
link-state routing protocols: they also start by spreading local information. The
main difference is the way this information is stored and used. Distance vector
routing protocols only retain and forward information about the routes they
actually use i.e. the shortest route up to now. Link-state routing protocols on the
other hand store every entry that they receive together with the source of this
information. For example in Figure 25 node A starts by sending its locally
available information. This information is then stored and further forwarded by
every router in the network.

Figure 25: When the OSPF protocol starts up (cold boot) every router
announces its local state in a link-state packet. These link-state packets
are then flooded over the network. The link-state packet from node A and
its flooding are illustrated.

Not only the procedures for storing and spreading information differ between
link-state and distance vector routing but also the information itself. Link-state
routers do not spread distance vectors; they announce their attached links and the
cost to traverse this link. It is said that routers involved in a link-state routing
protocol spread link-state packets also called link-state advertisements (LSA). A
link-state advertisement contains a list of link identifiers and their associated
cost. Each newly received LSA must be acknowledged, if the LSA is not
acknowledged within the retransmit interval it will be retransmitted. The LSAs
are also refreshed regularly (standard every 30 minutes [36]).

A D E

B C

[(AB,1),(AD,1)]

Failure convergence in IP networks 63

Figure 26 shows the state in each router after the first link-state advertisement by
node A. Observe that every node has collected the same state information
[(AB,1),(AD,1)], this information is stored in the link-state database. This is in
clear contrast with distance vector routing where the routers only store their local
routes and associated costs. When node D also advertises its local information all
the link-state databases contain the following information:

[(AB,1),(AD,1),(DA,1)(DC,1),(DE,1)].

Subsequently every router in the network will advertise its local information.
When all the routers have advertised their local information the link-state
databases of the routers will contain an entry for every link in the network:

[(AB,1),(AD,1),(BA,1),(BC,1),(CB,1),
(CD,1),(DA,1),(DC,1),(DE,1),(ED,1)].

Figure 26: Every router stores information about every link in its link-state
database. Illustrated here are how the link-state databases contain the
information about node A’s links and the announcement by node D of its
local state.

It is obvious that this spreading of link-state information as such does not lead to
a distributed shortest path calculation like in the distance vector routing case.
However, the gathered information can be used indirectly to calculate the
shortest paths. From the link-state database the topology of the network can be
constructed. It is then possible to calculate the shortest paths with the Dijkstra
Shortest Path First (SPF) algorithm [45] on this topology (see Figure 27). The

A D E

B C

[(DA,1)(DC,1), (DE,1)]

AB=1
AD=1

AB=1
AD=1

AB=1
AD=1

AB=1
AD=1

AB=1
AD=1

Evaluating and improving failure convergence schemes in IP networks 64

Dijkstra algorithm will be used to calculate a shortest path tree with the router as
root of the tree. After the calculation, the shortest paths from the router towards
all the destinations in the network are known. After the calculation these paths
are installed in the routing tables.

Figure 27: The OSPF routers use the information in the link-state
database to induce the topology of the network. This topology and the
metric information is then used to calculate the shortest paths in the
network from the router towards all the destinations in the network. The
result of the shortest path calculation is stored in the local routing table.

A D E

B C

[(AB,1),(AD,1)
 (BA,1),(BC,1),
 (CB,1),(CD,1),
 (DA,1),(DC,1),
 (DE,1) (ED,1)]

Link Cost
AB 1
AD 1
BC 1
CD 1
DE 1

Destination Via Cost
B AB 1
D AD 1
C AB 2
E AD 2

Shortest path
first algorithm

Induced topology

Failure convergence in IP networks 65

Instead of working directly on the routing tables, link-state routing uses an
intermediate link-state database gathered from the link-state advertisements.
Although the databases and the algorithm used is the same in every router, the
result i.e. the routing tables are not the same because the routes are calculated
from a different source.

Calculating the shortest paths on the link-state database only takes a small
amount of time on current CPUs, for example [139] mentions hundreds of
milliseconds up to one second for a 300 node network. As all the routers have
the same database the calculated routes are coherent and loops do not occur
when the network has converged. For example in our network, node A has
calculated that in order to reach node E it has to forward the packet to node D.
Node D has also calculated the shortest path to node E and will forward it on its
local interface to node E.

In the next section we will investigate how link-state routing protocols are able
to recover from network failures.

3.3.2.b Failure convergence in link-state routing protocols

As explained link-state routing protocols use the topology information gathered
via link-state advertisements to calculate the shortest paths. When a link or node
fails in the network the topology view that the routing protocols have needs to be
updated to reflect the new current topology. This is achieved by sending new
link-state advertisements that withdraw the impairment from the induced
topology. We will explain this process in detail in the next section within the
context of a link failure, afterwards we will also explain how failures are
detected in OSPF.

When a node detects a link failure, that node will transmit a new record that
indicates that the link is down by setting the cost of the link to infinity. The
routers then flood this new link-state packet across the network and store it in
their link-state database. The new link-state databases will result in a new
topology view where the failing link is missing. The Dijkstra algorithm will
calculate new routes that do not use the failed link (see Figure 28). Finally when
the new routing tables are installed the packets will be forwarded along the new
routes that take the failure into account.

As we see the convergence operations in link-state routing protocols are
relatively simple: update the topology, rerun the shortest path algorithm on the
new topology and install the new routers. This makes link-state protocols like
OSPF converge much faster than distance-vector protocols. This does not mean
that during transient periods certain routing anomalies like routing loops cannot
occur. During such transient periods the routers have different versions of the

Evaluating and improving failure convergence schemes in IP networks 66

link-state database and thus have a different view of the network topology. As a
consequence the result of the shortest path computation on these topologies in
the different routers can be inconsistent which can lead to routing anomalies.

Figure 28: When a failure is detected over a link, the link is withdrawn from
the induced topology by announcing a cost of infinity associated with the
link. The shortest path calculations will not take the failing link into account
and the calculated routes will circumvent the failure. These new routes will
then be installed in the routing tables. The actions of node A are illustrated
for a failure on link AD.

A D E

B C

[(AB,1),(AD,∞)
 (BA,1),(BC,1),
 (CB,1),(CD,1),
 (DA,∞),(DC,1),
 (DE,1) (ED,1)]

Link Cost
AB 1
AD ∞
BC 1
CD 1
DE 1

Destination Via Cost
B AB 1
D AB 3
C AB 2
E AB 4

Shortest path
first algorithm

Induced topology

Failure convergence in IP networks 67

Failure convergence in link-state routing protocols is pretty straightforward but
how can we prevent that an old link-state packet that is still traversing the
network reinstalls a recently removed link? For example an older link state
packet from node A where the link AD still exists should never be used in
preference of the newer link state packet that removes AD from the topology.
This can be solved by adding an indication of the age to the link-state packets
(by adding a sequence number or a time stamp) and applying correct flooding
procedures. The routers should take care that an older link-state packet will never
replace a newer entry in the link-state database and that only the newest link-
state packets are forwarded. With these precautions older state will never replace
newer state in the network.

Failure detection
Another aspect of failure convergence is failure detection. In distance vector
routing a failure is detected by associating a timer with every entry in the routing
table, when the timer expires the route is deleted and later replaced with a new
route that takes the failure into account. OSPF also uses timers to detect failures
but the timers are not associated with the routes but rather with a small protocol
within OSPF. This protocol is called the hello protocol and it serves multiple
purposes including neighbour detection, to elect the designated router and to
check that links are operational. Here we will only address how the hello
protocol is used to check that links are operational, we refer to the section about
reversion below for more details.

Every router is required to send a hello packet during the hello interval. When a
router receives a hello packet it will reset its router dead interval timer
associated with the incoming interface. When the router dead interval is chosen
sufficiently larger than the hello interval then under normal conditions a router
will always receive a hello message and the router dead interval timer will not
expire. However, during fault conditions no hello messages will be received and
the router dead interval timer expires. When the router dead timer expires the
associated link is declared dead and a new link state packet with a cost of infinity
for that interface is sent.

Notice that the OSPF hello interval and router dead interval timers are very
similar to the RIP update and time-out timers. In fact both RIP and OSPF
implement a generic heartbeat mechanism as explained in section 3.2.1.b. The
major difference is that OSPF associates these timers with a specific link while
RIP associates the timers with the routes in the distance vector. There is also a
major difference in granularity of the number of update packets i.e. in the RIP
case the updates are proportionally to the network size while in OSPF the
updates are proportionally to the number of nodes on a link. This translates into

Evaluating and improving failure convergence schemes in IP networks 68

much lower standard timers. The hello interval timer is set to 10 seconds in
OSPF [140, 141] while the update timer is set to 30 seconds in RIP [40]. The
router dead interval timer is set to 40 seconds in OSPF [140, 142] while the time-
out timer in IP is set to 180 seconds [40]. This means that the detection of a
failure in RIP can take up to 180 seconds while this only takes up to 40 seconds
in OSPF (see formula (1) in section 3.2.1.b).

Up to now we have not put any emphasis on the fact that a link failure is always
detected by the two ends of the link. This has important consequences
nevertheless. In Figure 29 we see when link AD fails both nodes A and D send
new link-state packets. When node B receives the link-state update from node A
it will adjust its link-state database and rerun the shortest path algorithm. The
result of the shortest path algorithm will then be used to update its routing table.
Only a few moments later the link-state update from node D forwarded via node
C will arrive at node B. It is highly undesirable that these two link-state database
updates lead to two shortest path computations and routing table updates.
Shortest path computations and routing table updates are typically resource
demanding and can disrupt traffic, even traffic that is unaffected by the failure.
To reduce the frequency of shortest path computations and routing table updates
some OSPF implementations like Zebra introduce two additional counters: the
SPF delay and the SPF Hold-Down timer [46].

Figure 29: When a failure is detected the cost of the link is set to infinity
and the new link-state packet is spread over the network. Since there are
two endpoints of a link an updated link-state packet will be sent for each
direction of the link.

The SPF Delay timer is the minimum time between receipt of a new link-state
packet and the shortest path computation (see Figure 30). The SPF Hold-Down
timer is the minimum time between two subsequent SPF calculations. When a
new or updated link-state packet is received it is verified that no other shortest
path calculation is scheduled. If there is another calculation planned then no new

A D E

B C

DA=∞AD=∞

DA=∞

DA=∞

Failure convergence in IP networks 69

SPF computation is scheduled and the link-state packet is incorporated in the
link-state database (link-state packet b in Figure 30). Although unique link-state
packets do not always lead to new SPF calculations they are always incorporated
in the link-state database and subsequently used when calculating the new routes.
When there is no calculation planned the shortest path calculation is delayed by
the SPF delay (link-state packet a in Figure 30). However, if a previous
calculation was done less than Hold-Down timer seconds ago then the
calculation is delayed until Hold-Down seconds after the last calculation (link-
state packet c in Figure 30). Note that the Hold-Down timer should be larger than
the SPF delay for this scheme to have effect.

Figure 30: In order to reduce the number of SPF calculations two different
intervals are used. The SPF delay is the minimum time between the
receipt of a link-state packet and the resulting SPF calculation. The SPF
Hold-Down interval is the minimum time between two consecutive SPF
calculations.

Note that the hold-down time from the generic convergence cycle includes both
SPF Delay and the Hold-Down time. We will use ‘Hold-Down’ (with capitals) to
denote the OSPF specific delay while we use ‘hold-down’ for the generic delay.

Node failures and multiple failures
Node failures are detected indirectly by the hello protocol. When a node fails, all
of the directly attached routers will no longer receive Hello messages. After the
router dead interval these routers will advertise the links connected to the failing
node with a cost of infinity. When these new link-state packets are flooded over
the network the resulting topology based on the new link-state database will have

link state
packet b

link state
packet a

link state
packet c

SPF delay

SPF
calculation

SPF
calculation

SPF hold-down

SPF delay

Evaluating and improving failure convergence schemes in IP networks 70

all of the links of the failing node removed. The result is that the failing node is
pruned from the network topology. The subsequent run of the shortest path first
algorithm will calculate routes that no longer use the failing node and the
network will converge after all the routers have recalculated their routing tables.

Seen from the perspective of a link-state routing protocol a node failure is
nothing more than a number of simultaneous link failures. As explained in the
previous section this does not require specific extensions. Similarly supporting
multiple failures does not require extensions either. However, both node and
multiple failures can lead to routing anomalies over relatively long periods of
time since the failures are detected independently by the attached routers. We
illustrate this later when we discuss the stability of OSPF (section 5.4.3).

Reversion
The reversion operations in OSPF are very comparable to the recovery
operations. After the failure is cleared the cleared fault will be announced again
through link-state packets so that the routers can integrate the node or link again
in their link-state databases and subsequently use it in their shortest path
calculations.

The major difference between the reversion and recovery operations is due to the
first phase i.e. the fault clearance. This phase is quite different than the fault
detection. As we have seen a failure is usually detected with the Hello protocol.
We also mentioned that the Hello protocol is not only responsible for failure
detection but also for neighbour detection and designated router election. We
will explain these two functions in more detail because they have to be
performed before a new link can be announced by the OSPF protocol.

Before a link can be used by the OSPF protocol its two end points (the OSPF
routers) have to discover each other and establish bi-directional communication.
If the link medium is broadcast capable or non-broadcast multiple access
(NBMA) then a designated router needs to be elected. The designated router is
the router responsible for announcing the link-state packets for the shared
medium. In order to support fail-over a backup designated router is also elected.
Note that there is no full mesh of adjacencies, every router has only an adjacency
between the designated router and the backup designated router.

Another task that needs to be performed before between two new OSPF
neighbours is to synchronise their link-state databases. OSPF requires that the
link-state databases of adjacent routers are synchronised. This synchronisation
process begins as soon as the routers attempt to bring up the adjacency.

Failure convergence in IP networks 71

It is clear that forming an adjacency and synchronising the link-state databases
between two OSPF routers will take some time. This time obviously is a
component of the reversion time.

As mentioned before the other operations during reversion are very similar to the
convergence cycle. The major difference is the nature of the event (failure vs.
fault clearance) rather than the actions triggered by the event (link-state
advertisements, shortest path calculations and routing table updates). We will
now look at the convergence cycle and the reversion cycle of OSPF.

3.3.2.c Convergence and reversion cycle

Now that we have described link-state routing in general and OSPF in detail we
will look at how the different phases of the convergence and reversion fit into the
convergence and reversion cycles of section 3.1.

Convergence cycle
The convergence cycle begins with the detection of the impairment. Usually the
Hello protocol of OSPF is used to detect failures. As already mentioned in
section 3.2.1.b, the Hello protocol is a specific implementation of the generic
heartbeat mechanism with as the send timer the hello interval and as receive
timer the router dead interval. The detection time of a generic heartbeat
mechanism is given by:

Tdetect = [receive interval– send interval, receive interval]

which corresponds to:

Tdetect_hello = [router dead– hello interval, router dead]

for the Hello protocol.

Table 1 combines the different phases of the convergence cycle for OSPF.

Table 1: The convergence cycle for the OSPF routing protocol. The first
row uses the name of the parameters while in the second row these
parameters are substituted by the standard values according to the OSPF
version 2 RFC [36] and the Zebra OSPF implementation [46]

Fault
detection

Notification
time

Hold-down
time

Recovery
operation

[router dead-hello
interval, router dead]s

δ [SPF delay,
Hold-Down]s

SPF (ε)
update RIB (γ)

[30,40]s δ [5,10]s ε+γ

Evaluating and improving failure convergence schemes in IP networks 72

The notification time (δ) in OSPF determines how long it takes before the
updated link-state have crossed the network. The time depends on the speed of
the interfaces, the load on the network links and the load on the routers.

As we have seen in the previous section the hold-down time of the convergence
cycle depends when the last SPF occurred. The hold-down time is at least SPF
delay but can increase to Hold-Down.

Finally the recovery operations in OSPF encompass the SPF calculation itself
and the updating of the routing tables (RIBs). The calculation of the shortest
paths (ε) depends on the network size and connectivity, the speed of the
processor and the efficiency of the implementation. The time required to update
the routing tables (γ) depends on the size of the routing tables, the number of
entries that need to be changed and the implementation efficiency. Note that
routing tables usually are quite complex constructions typically optimised for
reading rather than writing. Also the fact that a longest prefix match must be
supported increases the complexity of updating the routing tables too.

This table does not really reflect it, but it is possible that convergence is not
achieved after one SPF calculation. This can be caused by large delays in the
transmission of the LSAs (large notification time) or because the large
differences in failure detection time between nodes. With the standard timers
there is a variation in the detection time of 10s while the hold-down time is just
5s. Therefore, it is possible that after 5s not every failure is detected and that the
resulting SPF does not cover all failures. The second SPF will usually cover all
failures although there is no theoretical limit on the number of SPF calculations
that are necessary.

Reversion cycle
The reversion cycle is very comparable to the convergence cycle (see Table 2).
The major difference is the failure detection and the clearing detection phases.

The operations during the clearing detection time encompass the time for the
neighbours to detect each other, the time to elect the designated router and the
backup designated router and the time to synchronise the link-state databases.

Again it can be the case that reversion is not achieved after one SPF. If that is the
case, the first SPF is followed by a second SPF, Hold-Down seconds later. More
SPF calculations may be needed, each of them will be performed Hold-Down
seconds after another.

Failure convergence in IP networks 73

Table 2: The reversion cycle for the OSPF routing protocol. The first row
uses the name of the parameters while in the second row these
parameters are substituted by the standard values according to the OSPF
version 2 RFC [36] and the Zebra OSPF implementation [46]

Clearing
detection

Notification
time

Wait-to-
restore

Reversion
operation

Bring up adjacency +
synchronise LSDB

δ [SPF delay,
Hold-Down]s

SPF (ε)
update RIB (γ)

κ δ [5, 10]s ε+γ

3.3.2.d Conclusion

We now have explained the two most important routing protocols for IP, in the
next section we will look at convergence in MPLS networks. We will start by
investigating MPLS rerouting which is a straightforward extension of IP
rerouting to MPLS.

3.3.3 MPLS rerouting

In the previous sections we explained rerouting in IP networks. In this section we
will look at rerouting in MPLS networks. The first thing to remark is that MPLS
rerouting uses IP routing to route the existing LSPs in the network. As we
already explained there are two types of LSPs, shortest path LSPs that are routed
according to the IP shortest paths and explicitly routed LSPs that are routed
according to an arbitrary specified path. In the first subsection we will
investigate how MPLS can set up and reroute LSPs according to the shortest
paths and in the second subsection we will investigate the issues surrounding the
rerouting of explicitly routed LSPs.

3.3.3.a Rerouting of shortest path LSPs

In this section we will investigate how shortest path LSPs are set up and rerouted
in MPLS. We start the discussion without going into the details of the specific
signalling protocols for MPLS. Subsequently we will address some of the
specific issues with respect to LDP and RSVP-TE. Comparing LDP and RSVP-
TE is interesting because LDP is a hard-state protocol while RSVP-TE is a soft-
state protocol and as we will see this has influence on the speed of convergence
(for a more in dept comparison between RSVP-TE and CR-LDP we refer to
[143]).

The set up of a shortest path LSP is initiated by the ingress by sending a label
request message towards the destination. Every router on the path forwards this

Evaluating and improving failure convergence schemes in IP networks 74

message over its outgoing interface determined by its local routing table. Once
the label request arrives at the destination, the egress will respond by sending a
label mapping message back towards to ingress. Every router then forwards this
packet on the reverse path back to the ingress. It is important to note that the
reverse path is used and not the shortest path from egress to ingress because
shortest paths in IP can be asymmetric [144].

For example in Figure 31 the working LSP denoted with the dashed line is set up
by node A by sending a label request towards node E, when node E receives the
label request it will send a label mapping back over the reverse path. The nodes
on the reverse path will then send label mappings to their upstream peers until
node A receives a label mapping from node B and the LSP is set up.

Figure 31: When node B detects that the next hop towards E has changed
from C to F it will set up a recovery LSP over the new next hop. When this
recovery LSP is set up the original LSP is rerouted.

We will now investigate the operations when a link fails. First of all the IP
routing protocols running on the nodes will converge and new routing tables will
be installed in the LSRs. For example when the link between node C and node D
fails, the IP routing protocol will converge and will install new routing tables in
the nodes. For node B this means that the next hop for the shortest path towards
node E changes from node C to node F. When the MPLS signalling protocol
notices this change it will send a label request via the new next hop towards the
destination E. Again the egress, node E, will reply with a label mapping. When
this label mapping is received at node B it will start switching the existing
incoming label on the incoming interface AB to the new outgoing label over the
interface BF. Node B will then use the new outgoing label towards node F and
the LSP is rerouted around the failing link. It is important to note that the
original LSP does not exist anymore in its original form because the rerouted
LSP uses the original labels up to the point to where the LSPs detour (node B).

B C D EA

F G

Original LSP
Rerouted LSP

Failure convergence in IP networks 75

Moreover when the routers operate in release-on-change label retention mode
(see section 2.3.4) node B and node C will release the original old outgoing
labels. When the original labels are retained node D can merge the labels of the
original working LSP and the rerouted LSP.

In next subsections we will investigate more closely how RSVP-TE and LDP
reroute LSPs.

MPLS rerouting with RSVP-TE
We won’t go into every detail regarding the rerouting of LSPs in RSVP-TE but
we will focus on an important issue and that is how the routers are able to detect
that the next hop has changed. RSVP-TE is a soft-state protocol which means
that the RSVP equivalent of the label request and label mapping messages, the
PATH and RESV messages respectively, need to be refreshed regularly in order
to maintain the state in the routers [31]. The fact that the LSP is set up according
to the shortest path implies that the forwarding of these messages is determined
by the routing tables. When a failure occurs the IP routing protocol will
introduce new routing tables and eventually the RSVP messages will be sent
over the new path.

First the PATH message will be sent over the new path and then the RESV
messages will take the reverse route setting up the recovery LSP. This is very
similar to the above generic explanation of the MPLS rerouting. An important
detail is that the set up of the recovery path is triggered by a refresh of the
original working path. The convergence time thus depends on the refresh
frequency. There is a trade-off between the convergence time and the scalability.
Since the PATH and RESV refreshes are needed on a per LSP level it is not
scalable to make the refresh period too short. On the other hand increasing the
refresh period in order to increase the scalability leads to an increased
convergence time. The standard value for the refresh period is R=30 seconds, in
order to prevent synchronisation a refresh message is sent somewhere during a
[0.5R, 1.5R] = [15,45] second time interval. The randomisation of the refresh
message is done for similar reasons as for the RIP routing protocol (see section
3.3.1.b). This means that the time between the OSPF convergence, indicated by
the installation of the updated routing tables, and the set up of the recovery LSP
can be up to 45 seconds.

Typically the convergence time is even higher because a hold-down timer is
used. When an LSP is refreshed, a check is made to verify that the next hop of
the LSP has changed. If the next hop has changed then refreshing the LSP is
briefly postponed to let the routing tables stabilise. A typical value of this hold-
down timer is 2s. Note that it might be the case that the routing tables are

Evaluating and improving failure convergence schemes in IP networks 76

updated fairly long ago. Since the LSP is refreshed every [0.5, 1.5]R seconds, the
time between the update of the routing tables and the current refresh may be up
to 45s. Even then a hold-down period is waited before the LSP is refreshed
because there is no knowledge about when the routing tables were updated.

One can conclude that the soft-state mechanism that RSVP uses to adjust to
network changes is an elegant solution to reroute an LSP but that this soft-state
mechanism also introduces a significant delay to the convergence time.

MPLS rerouting with LDP
As explained in the previous section, RSVP uses a soft-state mechanism to
reroute shortest path LSPs. LDP is a hard-state protocol so it does not use a
comparable mechanism. LDP solves this problem by integrating more closely
with the routing protocol. When the routing protocol has changed its routing
tables, LDP expects to be informed of these changes [25]. When a next hop
changes in the network, LDP will check which LSPs are affected by this change
and will reroute these LSPs to take the new route into account. The benefit of
this approach is that the convergence time is not delayed by a refresh period. The
obvious draw back is that there needs to be an interface between the LDP
signalling component and the routing protocol. This interface does not need to
depend on the type of the routing protocol. The routing protocol only needs to
inform the LDP component that the routing table has changed, the mechanism
that was used to calculate these changes is irrelevant to LDP. Alternatively if
there is no interface between the routing protocol and the LDP protocol then the
LDP protocol can poll the routing tables regularly to check if something has
changed. Even though this approach is less optimal than a direct communication
with the routing protocol it is more scalable than the soft-state approach used by
RSVP-TE. In RSVP-TE the frequency of the refresh messages affects the
processing overhead in every router along the path of the LSP. Polling the
routing tables in LDP only affects the local router and is only proportional to the
size of the routing table and not proportional to the number of LSPs in the
network. Regardless of the mechanism used, when the LSR detects that the next
hop has changed the operations are similar to those in the general description of
MPLS rerouting in the section 3.3.3.a.

Speeding up MPLS rerouting with RSVP-TE
We have seen how LDP requires a mechanism to actively detect the change of a
next hop on the path of an LSP because it cannot depend on soft-state
mechanisms. This mechanism can also be used by RSVP to speed up the LSP
rerouting without sacrificing scalability. When RSVP is notified of a change in
the routing tables it can force a refresh on all the affected LSPs and so the LSPs

Failure convergence in IP networks 77

will be rerouted immediately. This speeds up the convergence time significantly
without sacrificing scalability. This mode is called rerouting with triggered
refreshes sometimes also called RSVP fast reroute. We deliberately refrain from
using the latter term because it is too broad and it is often used for other
mechanisms too. When RSVP rerouting solely depends on soft-state refreshes
this is called pure soft-state rerouting.

3.3.3.b Explicitly routed LSPs

Rerouting shortest paths with MPLS is relatively easy because the route
calculation is done by the IP routing protocol. The only responsibility of the
LSRs is to notice changes in the routing tables and act upon these changes by
setting up and switching over to a new downstream LSP. Supporting explicitly
routed LSPs is more complex because these LSPs are not routed along the IP
shortest paths so IP routing cannot be used to determine the new path towards to
destination of the LSP. We now discuss rerouting ER-LSPs, we will start the
discussion with ER-LSPs with only loose hops.

ER-LSPs are set up by specifying a number of hops that all need to be traversed
by the LSP. When the LSP is set up, the ER-LSP is routed along these hops. IP
routing is used to determine the path between the individual hops in the hop
specification. When a failure occurs the path between these hops can change. If
the ER-LSP is affected it needs to be rerouted in order to circumvent the failure.
When a node detects that the route towards the next hop in the ER-LSP
specification has changed it will set up a new downstream LSP that circumvents
the failure. When this LSP is set up, the LSR will switch over to this new
downstream part and the ER-LSP is rerouted. This process is quite similar to
shortest path LSP rerouting with the exception that the route towards the next
hop in the explicit hop specification is changed instead of the route towards the
destination of the LSP.

Consider for example the explicitly routed LSP with loose hops A-B-F-G-D-E
(see Figure 32). When the link BF fails the routing tables will converge and the
outgoing interface in node B towards node F will change from the interface BF
to interface BC. At the same time the routing tables in nodes C, D and G have
also changed to take the failure into account. The label request message will then
be forwarded over the path B-C-D-G towards the next hop in the LSP
specification i.e. F. Node F receives the label request message with the explicit
hop specification F-G-D-E. The next hop in the explicit hop specification is G so
the label request message is further forwarded towards G. Similarly the label
request is further forwarded to nodes D and E. Node E will reply to the label
request message with a label mapping message that is forwarded along the
reverse path of the label request. When the label mapping message arrives at

Evaluating and improving failure convergence schemes in IP networks 78

node B the rerouted part of the ER-LSP: B-C-D-G-F-G-D-E is set up. At that
time node B will switch over to the rerouted downstream LSP and the end-to-end
LSP is rerouted to A-B-C-D-G-F-G-D-E. As we see this rerouted LSP contains
the loop D-G-F-G-D which is highly undesirable.

Figure 32: Rerouting an ER-LSP can lead to resource inefficiency such as
unnecessary long paths and paths with loops.

This scheme works fine when the hops in the ER-LSP specification are loose.
When the hops are strict this leads to problems because according to the
definition of a strict hop no additional hop may be present between the strict hop
and the previous hop. It is obvious from the above example that if hop F was
specified strict in the original LSP specification that the LSP could not be
rerouted.

There is another problem with rerouting ER-LSPs, consider for a moment that
link BF and link GD both fail simultaneously. No form of rerouting can set up a
rerouted LSP that obeys to the original LSP specification because the hops F and
G are no longer reachable. In order to address this problem an additional flag
can be used when setting up and ER-LSP. In RSVP-TE this flag is called local
protection desired and when this flag is set then the LSP will be routed even if
this means that the original hop specification is violated when doing so [30]. The
mechanism that determines the new path of the rerouted LSP is not specified. A
possible approach might be to remove the hops that are no longer reachable from
the hop specification and to use IP rerouting for those hops that are still
reachable. This will lead to recovery path A-B-C-D-E in the above scenario.

ER-LSPs with strict hops are more difficult to support since no additional hops
may be present between these hops. As explained the local protection desired
flag can be used to ignore the hop specification to reroute an LSP, this
mechanism can also be used to reroute ER-LSPs with strict hops. Note that strict
hops in an LSP specification are still useful even when the local protection

B C D EA

F G

Original LSP
Rerouted LSP

Failure convergence in IP networks 79

desired flag is set. The local protection desired flag only states that the hop
specification may be violated to repair the LSP. So the set up of the LSP will
still fail if an additional hop is found between two strict hops of the ER-LSP
specification. So using strict hops is still useful to verify that the path that is
specified during the LSP set up is valid.

3.3.3.c Convergence and reversion cycle

When looking at the convergence and reversion in MPLS it is important to make
a distinction between the pure soft-state rerouting as used by RSVP and the
triggered rerouting as used by LDP and potentially RSVP.

Convergence cycle
The first thing to observe is that with MPLS rerouting the failure detection and
notification depends on the IP routing protocol. The MPLS signalling daemon
does not detect failure nor does it calculate new routes in the network. Rather the
LSPs are set up according to the new routes calculated by the IP routing
protocol.

Table 3: The convergence cycle for soft-state and triggered MPLS
rerouting. Again the name and standard values of the parameters
according to [31, 162] are shown.

Fault
detection

Notification
time

Hold-down
time

Recovery
operation

RSVP
soft-state

IP
convergence

IP
convergence

hold-down +
[0,5-1,5]R

LSP setup (ζ)

RSVP
soft-state

IP
convergence

IP
convergence

2s +
[15-45]s

LSP setup (ζ)

MPLS
triggered

IP
convergence

IP
convergence

hold-down LSP setup (ζ)

MPLS
triggered

IP
convergence

IP
convergence

2s LSP setup (ζ)

The most interesting factor in the MPLS convergence cycle is the hold-down
time. In pure soft-state rerouting the hold-down time depends on the next refresh
messages of the LSP and a configured additional hold-down time. In RSVP the
refresh time is randomised around the refresh period. Triggered MPLS rerouting
of an LSP is performed under influence of the routing protocol. Potentially this
could lead to a zero hold-down time. However, most implementations still

Evaluating and improving failure convergence schemes in IP networks 80

maintain an additional hold-down period in order for the routing tables in the
network to stabilise. This is certainly necessary for distance vector routing
protocols since they work directly on the routing tables which means that
fluctuations occur during the convergence period. But even link-state routing
protocols can experience fluctuations in their routing tables just before the
routing tables converge.

The last operation in the convergence period obviously is the setup of the LSP
according to the new routing tables.

Reversion cycle
The reversion cycle in MPLS rerouting is identical to the convergence cycle seen
from the MPLS layer. Both MPLS convergence and reversion changes the path
of the affected LSPs induced by a change in the routing tables. Since the two
cycles are identical we will not illustrate the reversion cycle.

3.3.3.d Conclusion

So far we have only looked at rerouting approaches for MPLS where the routes
of the LSP are changed according to the IP routing tables when a failure occurs.
The convergence time is always limited by the IP routing speed. In the next
section we will look at a different approach to failure convergence called
protection switching where the recovery LSPs are set up in advance.

3.3.4 MPLS Protection Switching

In this section we look at protection switching in MPLS networks. We start by
explaining protection switching and its different modes. In the next section we
will look at some of the implementation issues of protection switching.

3.3.4.a Introduction

Protection switching techniques differ quite considerably from rerouting
schemes. The main difference is that during failure conditions the original
working LSP is not replaced by a newly calculated LSP but that it is replaced by
a pre-calculated and pre-established LSP (the recovery LSP). Recovery LSPs are
set up in advance, therefore protection switching is sometimes also called a
make-before-break technique. The LSR that switches over from the working
LSP to the recovery LSP during fault conditions is called the Protection Switch
LSR (PSL) (see Figure 34). The LSR that merges the recovery LSP back on the
working LSP downstream of the failure is called the Protection Merge LSR
(PML).

When the PSL detects a failure it will switch over from the working LSP to the
recovery LSP. For example when the link BC fails, node B (the PSL) will swap

Failure convergence in IP networks 81

the outgoing label on link BC with the outgoing label on link BF so that the
packets arriving on link AB are forwarded over link BF instead of link BC. The
PML does not have an active role in the protection switch operation, the PML is
only the topological location where the working LSP and the recovery LSP
merge. In Figure 33 the PML is node D a node distinct from the egress of the
LSP. This is only possible if the LSRs are merge capable. The role of the PML is
to merge the incoming labels from the working LSP and the recovery LSP to a
single outgoing label. If in a network the LSRs are not merge capable the PML
will always be the egress of the LSP and the working LSP and recovery LSP are
merged at the IP layer.

Figure 33: In MPLS protection switching the switching operation is
performed by the Protection Switch LSR (PSL). The Protection Merge LSR
(PML) is the location where working and recovery LSP merge back
together.

Notice that the recovery operations of protection switching, in contrast with
MPLS rerouting, do not rely on IP routing to calculate a new route. Since IP
routing is not used a distinct failure detection mechanism is needed. The
mechanisms described in section 3.2.1 can be used including hardware based
failure detection.

3.3.4.b Protection switching modes

There are two topological modes of protection switching: local repair and global
repair (also called path repair).

In local repair the PSL is the LSR immediately upstream of the failure. For
example in Figure 34 node B is the PSL if link BC or node C fails. Local repair
has the advantage that the failure notification time is minimal. Within local
repair there are two additional modes. Link protection protects a working LSP

B C D EA

F G

Working LSP
Recovery LSP

PSL PML

Evaluating and improving failure convergence schemes in IP networks 82

against a link failure and node protection also protects the LSP against a node
failure. In Figure 34 the recovery LSP to link protect the working LSP against a
failure on link BC is given by the nodes A-B-F-C-D. The recovery LSP to node
protect the LSP against the failure of node C is given by the hops A-B-G-H-D.

Figure 34: MPLS protection switching offers different types of failure
protection. Illustrated here are how the working LSP is protected against a
link failure on link BC, against a node failure on node C and globally.

Global repair tries to protect the working LSP against any link or node failure.
This is accomplished by setting up a recovery LSP that is as much node and link
disjoint as possible (in Figure 34 this results in the recovery LSP A-E-B-G-H-D).
Global repair can recover more failures on the working path than local protection
but at the cost of a slightly higher convergence time. Since the PSL is the ingress
of the LSP a failure indication signal needs to be sent to the ingress which
introduces additional latency. One can say that there’s a speed/coverage trade-off
between local protection and global protection.

Up to now we have considered that the recovery LSP is dedicated to one
working LSP. This is called one-to-one protection switching often denoted by
1:1. The main drawback of one-to-one protection switching is that it requires a
lot of LSPs especially in local repair mode. This situation can be improved by
reusing existing recovery LSPs to protect other working LSPs. For example
every LSP that uses link BC can benefit from the local protection of this link
over the path B-F-C (we will explain exactly how later on). In one-to-one

B C

E

D

G H

A

F

Working LSP
Link BC local protected
Node C local protected
LSP global protected

Failure convergence in IP networks 83

protection, a recovery LSP over that path cannot be reused by another working
LSP.

This drawback is addressed by facility protection switching denoted by N:1
where N LSPs are protected by one recovery LSP [122]. The obvious benefit of
this approach is that the number of recovery LSPs is reduced. A drawback is that
the recovery LSPs can no longer be determined on a per working LSP basis
because it is shared among a number of other working LSPs and so it might be
less than optimal for a given working LSP. Another drawback is that it is more
difficult to determine the resources (e.g. bandwidth) to be assigned to the
recovery LSP. Finally there is the N:M model where M recovery LSPs are used
to protect N working LSPs (where typically M<N).

Another model that is traditionally used is the 1+1 model where traffic is sent
over the working path and the recovery path at the same time. This has the
benefit that if the working path fails the PSL does not need to take any action (it
does not need to switch the traffic over to the recovery LSP because the traffic is
already forwarded over the recovery LSP). The PML has to decide if it forwards
traffic from the working LSP or the recovery LSP towards the destination.
Another benefit of this approach is that reversion is also very easy to implement,
when the working LSP is operational again the PML just forwards the traffic
from that LSP again. A problem with this approach is that the resources need to
be reserved bandwidth on both the working and recovery LSP simultaneously
which is avoidable with 1:1 protection.

In our opinion the 1+1 model does not fit well with the model of label switching
in MPLS (although [145] specifies it). 1+1 Protection switching requires changes
to the forwarding plane since the PML must monitor the working and recovery
LSPs and filter the duplicates before forwarding the packets over the outgoing
interface. Normal MPLS forwarding operations act on label values and do not
inspect the contents of the LSPs.

3.3.4.c Path calculation and set up

Since the recovery paths cannot be determined directly from the routing tables
there needs to be some kind of path calculation algorithm that determines the
paths that the recovery LSPs take. This is typically done by an off-line
mechanism because determining the recovery paths on-line is difficult. For
example a global recovery LSP needs to be as diversely routed (link and node
disjoint) as possible to be as effective as possible. Determining such a recovery
LSP on-line is not easy so off-line mechanisms are typically used. Similarly
determining M different recovery LSPs for N working LSPs is also usually
carried out by an off-line mechanism. Off-line mechanisms might require

Evaluating and improving failure convergence schemes in IP networks 84

significant processing power and they might also require a considerable amount
of time to run. A special case of an off-line mechanism is the manual input of the
recovery LSP by the network administrator.

However techniques which calculate recovery LSPs on-line have been developed
too [146]. In order to set up a recovery LSP on-line it is stated that the working
LSP should be protected when the LSP is set up. The individual LSRs on the
path of the LSP can then set up recovery LSPs based on the path that the
working LSP takes, topology information and by running what is called a
constraint shortest path first algorithm (CSPF) [146]. In the next section we will
explain how CSPF works in combination with MPLS, afterwards we return to
the topic of on-line recovery LSP set up.

In MPLS CSPF a single LSR calculates a recovery LSP by using a constrained
shortest path algorithm on distributed information and then setting up an ER-LSP
accordingly. The actual constraint in the calculation is for example that a certain
link cannot be used. The calculation of this path is only performed by a single
router in contrast with IP routing where all the routers calculate the shortest paths
in the domain. By setting up a fully specified ER-LSP the route calculation does
not need to be performed by other routers and the route does not need to be
installed in the routing tables. The CSPF model is beneficial for a number of
reasons. Since the calculations are done typically only at edge nodes (the ingress
of the ER-LSP) this model achieves higher scalability because the complexity is
lower and it is shifted to the edge of the network. Another advantage is that the
CSPF model matches certain problem spaces better than distributed calculation.
There is for example little reason to distribute the calculation of a single recovery
LSP for a given working LSP over the network.

Let us now illustrate how CSPF can be used to determine a recovery LSPs on-
line. For example suppose LSR A in Figure 34 wants to calculate a recovery LSP
that circumvents link BC. All it has to do is remove the link BC from the
topology information and calculate the shortest path from itself towards the
destination of the working LSP. This results in the same recovery LSP as the one
depicted in Figure 34: “Link BC local protected”. Calculating a node disjoint
recovery LSP can be done similarly by removing the node from the topology
information. Finally calculating a global recovery LSP can be achieved by
increasing the metrics of the links used by the working LSP so the recovery LSP
tries to avoid the working LSP.

The benefit of on-line calculated recovery LSPs is that they are more dynamic
than off-line calculated recovery LSPs. Consider for example that a fault occurs
on a recovery LSP. On-line mechanisms can easily re-calculate the recovery LSP

Failure convergence in IP networks 85

while this is more difficult, or even impossible due to manual intervention, with
off-line mechanisms.

3.3.4.d Preventing double booking

Protection switching pre-establishes the recovery LSPs before the failure occurs.
So the working path and the recovery path exist at the same time. The paths of
the working LSP and the recovery LSP can overlap. When resources are
allocated on the working LSP and on the recovery LSP it is highly undesirable
that these resources are double booked where they overlap.

Figure 35: Special care must be taken to prevent resource inefficiency
which can happen when resources are double booked on common
segments of the working and recovery LSPs. In this example both the
local protection LSP and the global protection LSP share common
segments with the working LSP.

Double booking means that although the recovery path and the working path
overlap and they will never be used at the same time the resources are still
allocated twice. It is clear that double booking must be avoided. We deliberately
use the generic term “resources” here but examples are labels, bandwidth and
buffer space.

In Figure 35 we see that the working LSP and the global recovery LSP overlap
over the link AB. Double booking should be prevented over that link. The figure
also shows a local protection LSP that is set up end-to-end. Local protection
LSPs can be supported by using end-to-end recovery LSPs or by using local
detour LSPs. When end-to-end LSPs are used it is critical that double booking is
avoided.

B C D

G H

A

F

Working LSP
Link BC local protected
LSP global protected

Evaluating and improving failure convergence schemes in IP networks 86

RSVP-TE prevents double booking with protection switching by using the RSVP
Shared Explicit (SE) reservation style to support protection without double
booking [31]. This reservation style dictates that a certain reservation is shared
between a number of explicitly specified senders. The senders should be
interpreted here as the ingress of the working and recovery LSPs. This
mechanism elegantly solves the problem of double booking.

As we have explained it is important to prevent double booking. However it is
equally important to note that reserved bandwidth can be reused if it is unused.
For example, when bandwidth is reserved on a recovery LSP then this bandwidth
can be used to carry other traffic during working conditions. The CR-LDP traffic
parameter weight can be used to determine the relative share an LSP gets of this
available bandwidth (see section 2.4.2.b).

3.3.4.e Bypass and loop-back tunnels

Facility recovery tries to reuse recovery LSPs for different working LSPs. This is
possible if the working LSPs have a segment in common that requires protection
and if there is an alternative route over that path. For example when we look at
Figure 36 it is obvious that the LSPs A-B-C-D-E and F-B-C-D-E can both be
node protected against a failure in node C or protected against failures on links
CB or CD by using the recovery LSP B-H-I-D. This kind of recovery LSP is also
called a bypass tunnel [122].

Figure 36: The two working LSPs can be protected over the segment B-C-
D by a single bypass tunnel that takes an alternative path over the
protected segment.

Working LSP 2
Working LSP 1

1:2 facility recovery LSP

B C

F

D

H I

A E

G

Failure convergence in IP networks 87

Now consider that this recovery LSP is used to recover both working LSPs and
that a failure occurs on link BC. It is not possible to switch the original incoming
label over to the outgoing label of the recovery LSP because the traffic would be
terminated at the egress of the recovery LSP i.e. node D. This can be solved by
tunnelling the original working LSPs in the recovery LSP. This is achieved by
stacking the outgoing label of a recovery LSP on the current label stack (see
section 2.2.6). This works when the recovery LSP only circumvents a single hop
on the original working LSP, when penultimate hop popping is used (see section
2.2.4) and when the PML uses platform wide label spaces (see section 2.2.3). Let
us illustrate this case first before we continue with the more generic solution.

Consider for a moment that the recovery LSP B-H-C is used instead of the
recovery LSP B-H-I-D. When a failure occurs on the link BC the incoming label
is swapped as normal with the original outgoing label for link BC but then the
outgoing label on link BH is also pushed on top. Node H will inspect the
incoming label and pop it since H is next to the last hop and penultimate-hop
popping is used. The label stack now contains the label that was originally used
on link BC. When node C operates with a platform wide label space it will
recognise the label and forward the packet towards the destination as usual.

So far we have encountered two restrictions, first the bypass tunnel can only
circumvent a single link and the merging node needs to operate with global label
spaces. These two restrictions stem from the same requirement that the PSL
(node B) needs to know the incoming label of the working LSP at the PML.
When the bypass tunnel only circumvents a single link and when global label
spaces are used then this incoming label at the PML is simply the outgoing label
of the PSL.

In the more generic case the PSL needs to have a way to find the incoming label
of the working LSPs at the PML (node D in the original example). In RSVP-TE
the route an LSP takes can be requested and the resulting report contains both the
hops that the LSP takes and the incoming labels along the LSP. This information
can then be used at the PSL to set the correct outgoing label before pushing the
label of the bypass tunnel to the label stack. For example when the bypass tunnel
B-H-I-D is used node B will swap the incoming label on interface AB to the
incoming label of node D on interface ID before pushing the label of the bypass
tunnel on the label stack.

Another type recovery LSP is called a (local) loop-back tunnel and it is
illustrated in Figure 37 [47]. The important benefit of a loop-back tunnel is that
multiple failures can be protected with one LSP. For example the loop-back
tunnel depicted in Figure 37 protects the working LSP against link failures on
link BC, CD and DE and similarly against node failures on node C and D. When

Evaluating and improving failure convergence schemes in IP networks 88

a failure occurs the traffic is switched over to the loop-back tunnel. For example
when the link DE fails node D will switch over to the loop-back tunnel and the
recovery path is D-C-B-G-H-I-E which means that the traffic travels back
upstream before it takes a disjoint path to the egress of the working LSP. The
drawback of this approach is that the latency on the recovery path is higher than
on a dedicated recovery LSP. When a dedicated recovery LSP is used to locally
protect link DE, then the recovery path is D-H-I-E, which is four hops shorter.
The main benefit of loop-back bypass tunnels is that they can reduce the number
of recovery LSPs.

Figure 37: This figure shows two alternatives for protecting the segment B-
C-D-E. The first alternative is to use a local loop-back LSP that is routed in
the reverse direction of the protected segment and then takes an
alternative path to the destination of the segment. The other alternative is
to locally protect every link and node and to merge all these recovery LSP
based on the destination.

Figure 37 also illustrates a highly merged LSP that is the result of protecting
every link on the path B-C-D-E. All the recovery LSPs have node E as the
destination so they can be merged based on the destination. This merged
recovery LSP uses the same number of labels as the loop-back tunnel. But the
merged recovery LSP offers shorter recovery paths and it does not require label
stacking and label discovery. The main drawback of this approach is that the
destination of all the recovery LSPs needs to be the same in order to be able to
merge them. For example consider the working LSP A-B-C-D-E-F, this LSP
cannot be protected by merging the same recovery LSPs because the destination

B C

F

D

G H

A E

I

Loop-back tunnel
Working LSP 1

Merged local recovery LSPs

Failure convergence in IP networks 89

of the protected LSPs is not the same. However when we use the same tunnelling
technique as used in the loop-back and bypass tunnels this recovery LSP can be
used to protect both working LSPs. Similarly, label stacking and label discovery
are not needed to support loop-back and bypass tunnels if they are extended
towards the egress of the working LSPs they protect. Of course this requires that
the egress of the working LSPs is the same.

This list of protection switching techniques for IP and MPLS networks is far
from complete. For example [147] proposes a scheme which uses virtual
protection cycles. Virtual protection cycles are hybrid backup paths situated
between a ring and a mesh. We only mention this effort briefly because it
requires additional forwarding treatment on the protection cycle.

3.3.4.f Convergence and reversion cycle

In this section we will discus the convergence and reversion cycle of MPLS
protection switching.

Convergence cycle
MPLS protection switching does not specify a failure detection scheme. So the
failure detection can be based on any of the techniques mentioned in section
3.2.1.

More interesting is the notification time which depends whether local or global
protection is used. When local protection is used then the notification time will
be minimal since the node that detects the failure will also perform the protection
switch. When global is used a notification message needs to be sent to the PSL
which is typically the ingress of the LSP. Obviously this will increase the
convergence time.

Protection switching does not need a hold-down timer if the failure detection
mechanism can be relied upon. We consider the failure detection reliable when a
failure event is always the proper trigger for the protection switch operation.
When the failure detection is not reliable a hold-down timer can be used to
ensure that the failure event remains valid over a period of time. Since we do not
make any assumptions about the failure detection we will assume that the failure
detection is reliable and so we do not include a hold-down time. When an
unreliable failure detection mechanism is used a proper hold-down timer might
be needed.

The final operation in the convergence period is the protection switch operation
itself. In order to perform the protection switch the recovery LSP of the affected
working LSP needs to be determined. When the recovery LSP is determined the
PSL replaces the outgoing label of the working LSP in the LIB with the outgoing

Evaluating and improving failure convergence schemes in IP networks 90

label of the recovery LSP. The time required to determine the proper recovery
LSP for a working LSP typically depends on the number of working and
recovery LSPs.

Table 4: The convergence cycle for protection switching in MPLS. The
notification time depends on whether local or global protection is used.

Fault
detection

Notification
time

Hold-down
time

Recovery
operation

* η 0s Update LIB (ι)

Reversion cycle
The reversion operations in MPLS protection switching are identical to the
convergence cycle. However before switching back to the preferred working
LSP one must make sure that the working LSP is available. Since the working
LSP was affected by a failure it might be necessary to set it back up before
switching over to it.

Table 5: The convergence cycle for protection switching in MPLS. The
notification time depends on whether local or global protection is used.

Clearing
detection

Notification
time

Wait-to-restore Reversion
operation

* η Verify working LSP
Set up working LSP if

necessary

Update LIB (ι)

3.3.4.g Conclusion

This concludes the section about MPLS protection switching. In this section we
have spent a considerable amount of space discussing different types of recovery
LSPs and the merging and tunnelling of them. A lot of attention went into
techniques to reduce the number of recovery LSPs in a network because a
recovery LSP only protects a working LSP to a limited extend. For example link
protection protects an LSP only against a single link failure. Even global
protection can be insufficient when multiple failures occur. These problems stem
from the fact that the recovery LSPs need to be calculated and set up in advance
for every failure scenario that needs to be covered (the coverage). To have full
failure coverage using protection switching requires a lot of LSPs.

Failure convergence in IP networks 91

3.4 Conclusion
In this chapter we discussed several convergence schemes. We started out by
giving a generic model for both the convergence cycle and reversion cycle.
Afterwards we discussed existing failure detection schemes which can be
software or hardware based. Software-based failure detection schemes typically
are able to detect more failures than hardware-based failure detection schemes
but they are much slower. Another drawback is that software based failure
detection schemes introduce bandwidth and processing overhead. The bandwidth
overhead can be reduced by relaxing the requirements on the liveness messages.
Instead of requiring that protocol specific liveness messages are sent to monitor
the status of the link it is also possible to monitor the status of the link with any
packet. This decreases the overhead of useable bandwidth but at the cost that
protocol specific failures cannot be detected anymore. Failure detection and
convergence schemes are in theory orthogonal with respect to each other
although for example OSPF typically uses the Hello protocol to detect failures.
Note that the Hello protocol has other functions besides failure detection.

The first convergence scheme that we discussed was RIP. RIP is a simple
protocol that uses distributed Bellmann-Ford algorithm to calculate the routing
tables in the network. The network learns the best routes in the network by
spreading distance vectors. The distance vectors can be regarded as routing
tables. By selecting the best routes at each node and by only spreading this
information the network eventually will converge to using the best routes only.
The major drawback of RIP is that it can take a lot of iterations before the
network has converged. Effects like counting to infinity and the bouncing effect
can partially be solved by using split horizon (with poisonous reverse) and
triggered updates. Even with these techniques anomalies can happen leading to
prolonged convergence times. Another drawback of RIP is that it can only
support networks of very limited size, that it only supports one metric, that
multipath is not supported and that external routes cannot be injected.

The limitations of RIP are well addressed by the routing protocols of the link-
state family most notably IS-IS and OSPF. Link-state routing protocols build up
a map of the network and calculate the shortest paths upon it. This map, the link-
state database, is populated by spreading link-state advertisements. By separating
the information spread over the network and the route calculation, link-state
protocols are able to achieve much higher stability and are able to support more
requirements (larger network sizes, multiple metrics, multipath, external routes).
However this comes at the cost of higher complexity. Despite the higher
complexity, the protocol and the implementations have matured so that link-state

Evaluating and improving failure convergence schemes in IP networks 92

routing protocols are the convergence scheme of choice for IP networks of
significant size.

We then discussed failure convergence in MPLS networks. The first approach
discussed was MPLS rerouting. MPLS rerouting depends on the IP routing
protocol to calculate the working routes and to adapt the routes when failures
occur. There are two variants of MPLS rerouting. Soft-state MPLS signalling
supported by RSVP-TE refreshes the state of the LSPs regularly where the path
of the LSPs is determined by the routing tables. When the routing tables change
under the influence of the routing protocol the path of the LSPs will also take to
new path after the next refresh. This main benefit of this approach is that the
MPLS signalling is loosely coupled with the routing protocol. The main
drawback is that the time between the update of the routing tables and the next
refresh can be quite high. This problem is addressed by triggered rerouting that
changes the path of the LSPs immediately after the changes are detected. This
does require that the MPLS signalling component is notified of the changes in
the routing tables. Both LDP and RSVP-TE support triggered MPLS rerouting.

MPLS offers an alternative convergence technique that is not available to IP
networks called Protection Switching (PS). Protection switching is make-before-
break scheme where the recovery LSPs are pre-established. This has the major
benefit that when failures occur the recovery LSPs do not need to be determined
and set up which decreases the convergence time significantly. There are two
major topological modes of protection switching. In local protection switching a
link or node is protected by a recovery LSP, while in global protection a path is
protected by a recovery LSP. Supporting all possible failure scenarios (full
coverage) requires a lot of recovery LSPs. Fortunately techniques exist to share
recovery LSPs between different sets of working LSPs. These techniques depend
on label stacking or merging labels on the destination. The calculation of the
paths of the recovery LSPs can be done on-line or off-line.

So far we focussed on the basic operation and the ability to react to fault
conditions of the convergence schemes. In the last chapter we will revisit our
convergence time analysis and we will also investigate the stability, scalability
and backup capacity requirements of each of the convergence schemes. But first
we introduce another convergence scheme. This convergence scheme,
specifically developed for MPLS, has been developed by the author.

Chapter 4

Fast Topology based Constrained Rerouting

(FTCR)

4.1 Introduction
As we have seen, convergence schemes have a lower limit on their convergence
time. Part of the convergence time is due to the time required to detect the
failure. More relevant to this work are the other parts of the convergence cycle:
the notification time, the hold-down time and the recovery operation time. These
steps are the prime differentiation factors of the convergence schemes. The
complexity and the length of these steps determine the convergence time. For
example although we did not quantify it yet it is clear that the convergence time
of OSPF will be higher than the convergence time of protection switching when
the same failure detection mechanism is used. Similarly it is clear that MPLS
rerouting will be slower to converge than OSPF rerouting since MPLS rerouting
depends on OSPF rerouting.

In this chapter we will describe a MPLS rerouting scheme that like regular
MPLS rerouting is designed to work in conjunction with OSPF. However the
convergence with Fast Topology based Constrained Rerouting (FTCR) does not
depend on OSPF. Instead of relying on OSPF for its convergence FTCR
implements it own independent convergence cycle. This allows for much faster
convergence then both OSPF and MPLS rerouting by using LSPs rather than
routing tables to achieve convergence.

FTCR is a rerouting scheme which means that the recovery LSPs are determined
when a fault is detected. In other words FTCR is not a make-before-break
scheme. This makes it easier to support all possible failure scenarios as opposed
to, for example protection switching, where it is difficult to support the full range
of failure scenarios including multiple failures. The benefit of protection
switching is that it can achieve much lower failure convergence times then OSPF
and MPLS rerouting. We will investigate the relative speed of convergence of
protection switching and FTCR in the next chapter.

Evaluating and improving failure convergence schemes in IP networks 94

FTCR is developed by the author with feedback from various people in the
IBCN research group. The idea of FTCR was first published in 2000 in [3] as a
new convergence scheme for MPLS networks. Note that the term FTCR had not
been adopted at that time. The acronym FTCR was first introduced in [4] which
describes a number of convergence schemes for MPLS in optical networks and
compares the capacity requirements of them. Porting different convergence
schemes for electrical MPLS, including FTCR, towards optical networks is
described in [5]. Data centric optical networks and their survivability is the
subject of [6]. In that article FTCR is proposed as a rerouting mechanism that
speeds up the time to convergence compared to IP rerouting. Finally, the
convergence times of the IP rerouting, MPLS rerouting and FTCR are compared
quantitatively in [8].

This chapter starts with a description of FTCR rerouting a SP-LSP, followed by
the FTCR architecture. Subsequently we will describe the modes of operation of
FTCR. We will then investigate two more complex failure scenarios. We start by
explaining how FTCR reroutes ER-LSPs followed by a description of how
FTCR supports multiple failures. After we discussed the failure scenarios we
look at reversion in FTCR. After discussing the failure convergence and the
reversion we give the overall operations of FTCR. We will use flowcharts to
describe the actions of FTCR in each of four different modes of operation FTCR
can operate in. The chapter ends by describing the prerequisites of FTCR and
drawing conclusions.

4.2 The basic operation of rerouting a shortest path
LSP

In this section we describe FTCR which uses explicit-routed LSPs to reduce the
convergence time by installing recovery LSPs before the routing protocol has
converged. We will illustrate this with a simple scenario where a fault occurs on
a shortest path LSP.

FTCR relies on the fact that if every hop of an LSP is explicitly specified then its
setup does not depend on the existence of (valid) routing tables. Because of this
property it is possible to set up a recovery LSP before the IP routing has
converged. But to be able to set up such a recovery LSP every hop on the path
needs to be determined. We cannot use the routing tables to find such a path
simply because they are not valid directly after a failure. Determining these hops
thus requires some kind of topology information. In networks that use a link-
state routing protocol every router has the topology information accessible in his
link-state database. The recovery path can then be calculated using the link-state
database. We call the part of the network that has failed the affected network

Fast Topology based Constrained Rerouting (FTCR) 95

part. By removing the affected network part from the topology in the link-state
database we get a correct view of the current topology after a failure is detected.
We cannot use the link-state database directly because the failure might not be
incorporated into the link-state database yet. We call the link-state database
where the affected network has been removed the adjusted link-state database.
The path of the recovery LSP can be determined by running the shortest path
first algorithm on the adjusted link-state database. To run the shortest path
algorithm we need not only topology information but also the cost metric of
every link but this information is also available in the link-state database. The
calculated path is then used to set up the recovery LSP towards the destination of
the original working LSP. When this recovery LSP is set up the traffic is
switched from the original working LSP to the recovery LSP like in regular
MPLS rerouting. The LSR that initiates the recovery actions is called the FTCR
switch LSR (FSL). This scheme is called Fast Topology based Constrained
Rerouting because topology information is used to calculate the recovery LSPs
that are constrained so that they circumvent the impairment and are used to speed
up MPLS rerouting. The next section illustrates this process with an example.

Figure 38: FTCR uses its local topology information and the information
about the failure event to calculate and set up a recovery LSP before the
routing tables have converged. In this example the recovery LSP B-F-G-D
is set up to circumvent the failure on link BC.

When LSR B detects the failure on link BC (see Figure 38) it will check which
LSPs are affected by this failure. In this case only the LSP A-B-C-D-E is
affected and needs to be rerouted. The LSP rerouting is done by removing the
link BC from the link-state database and running the SPF algorithm in node B on
the adjusted link-state database. Only node B calculates the recovery LSP. The
result of this computation is a path from node B to the egress of the LSP i.e. node
E. After this computation a new route is known for the affected LSP. Note that it
may be possible that such a route does not exist. If the new route does not exist

B C D EA

F G

Evaluating and improving failure convergence schemes in IP networks 96

then the LSR knows this and the existing LSP can be torn down. A notification
message can be sent and the reason of the failure can be included in the message.

Suppose there is at least one path from the detecting node towards the destination
according to the adjusted link-state database (as is the case in our example).
After the calculation the recovery LSP B-F-G-D-E needs to be installed as soon
as possible. Every hop on the path needs to be specified because the routing
tables have not yet stabilised. After the recovery LSP has been set up this ER-
LSP replaces the downstream part of the original LSP.

4.3 FTCR architecture
In the previous section we looked how FTCR can be used to reroute LSPs right
after a failure has been detected. In this section we will briefly look at how
FTCR needs to be integrated with the rest of the components in an LSR.

Figure 39: The FTCR architecture shows how the FTCR component
interacts with the other MPLS components in this simplified view of an
LSR.

Link-state database

(3) Request link-state
database (4) Link-state database

MPLS signalling

FTCR

LSP state
machine

(1) Failure
detected

(2) LSP
and failure (5) ER-Hops

(6) Set up ER-LSP

(7) ER-LSP up
(out label)

Label information
base

(8) New LSP

MPLS

ROUTING

Fast Topology based Constrained Rerouting (FTCR) 97

When a failure is detected the LSR is notified of this failure (1), the LSP state
machine will then look up if there are LSPs that are affected by the failure. If this
is the case it will dictate the FTCR component to determine a new route for these
LSPs that are affected (2). The FTCR component will request the topology
information from the link-state database (3-4) and will use that information to
calculate a new route for every affected LSP that takes the failure into account.
The new routes for each of the LSP is then returned to the LSP state machine (5)
so that it can set up the recovery LSPs (6-7). When the recovery LSPs are set up
the new labels are installed in the label information base (8) and the traffic is
restored. Note that only steps 2 through 5 are specific to FTCR.

4.4 Modes of operation
In this section we will look at the different modes of operation of FTCR. The
first subsection describes the FTCR Switch LSR (FSL) selection modes which
determines the topological location of the FSL on the LSP, the second subsection
describes the failure presume modes which determines the assumptions the FSL
makes about the types of failures.

4.4.1 FTCR Switch LSR selection modes

When we explained the basic operation of FTCR in section 4.1 we considered
that the node directly upstream of the failure initiates the FTCR recovery actions
(i.e. the FSL is the node directly upstream of the failure). This is only one
possibility and it is called failure-local repair because failures are repaired
locally. Failure-local repair has two main drawbacks. The first drawback is that it
is possible that the failure detecting node is not able to recover the LSP and the
second drawback is that failure-local repair can lead to loops (the doubling of a
link or node). Both of these drawbacks are addressed by two other modes:
ingress repair and nearest non-looping repair. The advantage of failure-local
repair however is that it does not require actions from other nodes which makes
it fast and it also does not depend on a notification mechanism.

In some cases the ingress of the LSP is a better or even the only choice for the
FSL, this is called ingress repair. Sometimes the ingress of the LSP, the node that
sets up the working LSP, is the only node that can calculate the recovery LSP.
This restriction can be caused by the lack of an FTCR component in the core
routers or the lack of information on how to reroute the LSP in the core routers
(see section 4.5). Ingress repair is also a good solution for gradual deployment of
FTCR in networks because only the edge routers need to be FTCR enabled.
Finally pushing the FTCR calculations towards the edges of the network can
increase the scalability of the network. The drawback of ingress repair is that a
Failure Indication Signal (FIS) needs to be sent to the ingress of the LSP to

Evaluating and improving failure convergence schemes in IP networks 98

notify the LSR of the failure. This increases the recovery time and the overhead
slightly compared to failure-local repair. We do not specify or mandate a specific
failure indication mechanism in combination with FTCR but for the sake of
discussion we assume that a Reverse Notification Tree is used (RNT, see section
3.2.2).

Figure 40: In failure-local repair mode the recovered LSP can contain
loops as illustrated here (A-B-C-B-E-F-D). This is addressed by the
nearest non-looping FSL selection mode. In this mode node C gives up
the role of FSL and sends a FIS upstream. Node B will receive the FIS
and will act as the FSL since the recovery LSP from node B (A-B-E-F-D)
does not contain any loops.

In the previous section we addressed the first problem of local repair namely the
inability of the failure detecting node to act as the FSL. The second problem of
failure-local repair is that it can lead to limited looping as illustrated in Figure
40.

Consider the working LSP A-B-C-D. When the link CD fails and node C acts as
the FSL in failure-local repair mode the recovery LSP C-B-E-F-D is calculated.
This results in the new working LSP A-B-C-B-E-F-D that contains the loop B-C-
B. Note that the creation of loops is not specific for FTCR. If we consider the
ER-LSP A-B-C-D, when MPLS rerouting is used to reroute this LSP the same
loop occurs. However in FTCR this problem can be addressed by the nearest
non-looping FSL selection mode. In this mode the FSL is the first hop upstream
of the failure detecting node that when acting as a FSL, the recovery path does
not contain loops. The nearest non-looping FSL can be the detecting node, the
ingress or a LSR residing somewhere between the ingress and the detecting
node.

The determination of the FSL when the failure is detected is again based on the
link-state database. The node that detects the failure starts by calculating a
recovery LSP. If that recovery LSP contains a loop according to the link-state
database then a FIS will be sent upstream towards the previous hop of the LSP.
This hop will receive the FIS and will start the recovery operations. The node

A B C D

E F

Fast Topology based Constrained Rerouting (FTCR) 99

will again calculate a recovery LSP and check it against its link-state database
for potential loops. If the recovery LSP does not contain a loop the recovery LSP
is installed, if the calculated recovery LSP does contain a loop then again a FIS
is sent upstream. This process is repeated until a node has calculated a recovery
path that does not contain a loop. Ultimately this node might be the ingress of the
LSP which is always capable of calculating a non-looping recovery LSP (unless
the ingress is unreachable and thus the network is no longer connected). Since
the FSL has topology information it is also possible to send the FIS directly
towards the nearest non-looping FSL instead of forwarding the FIS hop-by-hop
and testing for loops at every hop.

Note that selecting the FSL is a trade-off between convergence time and resource
efficiency. Placing the FSL at the detecting node reduces the convergence time
(no FIS needed) but it might lead to inefficient resource usage (i.e. loops).

4.4.2 Failure presume modes

Depending on the failure detection mechanism FTCR may not know what the
cause of a failure is. For example if the generic heartbeat mechanism is used
(section 3.2.1.b) to monitor a link and it detects that no packets has been received
during the normal receive interval it will conclude that a failure has occurred.
This assumption is correct but the cause of the failure is not known. It is possible
that the link has failed but it is also possible that the node at the other end of the
link is down and that it has taken down all its attached links. To handle node
failures properly during FTCR rerouting all the attached links of a router need to
be removed from the link-state database before calculating the new recovery
LSP.

Note that link-state routing protocols do not suffer from the problem that the type
of failure is not known. These routing protocols will distribute the information
about all failed links throughout the network. So if a node fails its attached links
will be declared dead and the routing protocol will route around all the affected
links to calculate the new working paths. The drawback of this approach is that
the flooding of this information takes time and thus increases the convergence
time.

Following from the fact that FTCR cannot always rely on the fact that the type of
the failure is known four different failure presume modes exist.

The first mode is called failure-type-known, this mode is the easiest to support, in
all cases the FSL is notified of the failure and its type. This also means that every
time the most efficient decision can be taken. If the type of failure is not known
the three other modes are applicable.

Evaluating and improving failure convergence schemes in IP networks 100

In assume-node-failure the detecting node always assumes that a node has failed.
This is a safe assumption because FTCR will always calculate correct working
paths but at the cost of being too conservative. It is possible that FTCR decides
that there is no recovery possible, based on the incorrect assumption that a node
has failed but that in reality a link has failed and that a recovery path is actually
possible. It is also possible that FTCR calculates longer recovery paths than
necessary. Consider for example that the link AB fails in assume-node-failure
mode, FSL A will calculate the recovery LSP A-E-F-G-C for the working LSP
A-B-C (see Figure 41). If the failure type was know or if the presume-link-
failure mode was used the recovery LSP would be A-D-B-C which is obviously
shorter. Assume-node-failure is suited when node failures are common.

Alternatively in assume-link-failure mode the FSL assumes that every failure is a
link failure. This can lead to incorrect recovery paths if a node fails. For example
when the node B fails in our previous example. If node A operates in assume-
link-failure it will assume that the link AB has failed and it will reroute the
working LSP over the path A-D-B-C which is obviously incorrect. Still assume-
link-failure can be suitable when link failures are far more common than node
failures.

Figure 41: In assume-node-failure mode the FSL presumes that all failures
are node failures. When node A detects a failure on link AB, connecting
node A with node B, node A will presume that all the links of node B have
failed. As a consequence the links DB and BC will not be used by the
recovery LSP and a longer path over the link AE is used.

Finally in assume-worst-case-working mode the detecting node assumes that a
node failure has occurred unless this does not lead to a recovery LSP. This mode
is particularly interesting when node failures are common and when a failure is
detected by the penultimate hop. In assume-node-failure mode this would
automatically lead to the assumption that the LSP cannot be recovered. For
example when node B detects a failure on its interface link BC. If node B

C

G

A

E F

B

D

Fast Topology based Constrained Rerouting (FTCR) 101

operates in assume-node-failure mode it will assume that rerouting the working
LSP is impossible since the egress of the LSP has failed. However in assume-
worst-case-working mode the FSL will still try to recover the LSP in this case by
assuming that the link has failed. If that fails because the egress node has indeed
failed no real harm is done. If on the other hand it was the link that failed and
another path between the detecting node and the egress exists then the recovery
LSP will be set up and the LSP is recovered.

Yet another idea might be to try a node disjoint path first and if that fails try a
link disjoint path for the recovery LSP. This scheme has the drawback that
detecting that an LSP set up has failed is slow. This can be solved by setting the
two alternatives in parallel and tear down the least preferred one if the two
succeed.

So far we have discussed the basic operation of FTCR, its architecture and its
different modes of operation. In the next section we will look at more
complicated forms of rerouting like multiple failures and the reversion
operations but first we will look at how ER-LSPs can be rerouted.

4.5 Rerouting Explicitly Routed LSPs
As we have seen FTCR can reroute shortest path LSPs by calculating a new path
from the FSL towards the destination using the adjusted link-state database. This
section describes the rerouting of Explicitly Routed LSPs.

4.5.1 Problem statement

We have seen that ER-LSPs are an important tool to implement traffic
engineering for load sharing, congestion avoidance and routing policies (see
section 2.6). The explicitly routed path taken by an ER-LSP usually does not
follow the shortest paths as calculated by the routing protocol. Hence the reason
to specify the hops that are to be traversed by the LSP. The actual path taken by
the ER-LSP can be calculated by an off-line mechanism or it can be a distributed
calculation. Rerouting an LSP can be considered as changing the original route
of the LSP in order to circumvent a failure. This is mostly in conflict with the
original specification of an ER-LSP. A trivial example of this is a fully specified
strict routed LSP. Still, rerouting an ER-LSP usually is preferable even though it
violates the hop specification. This is illustrated by the existence of the local
protection required flag of RSVP-TE (see section 3.3.3.b). In the next section we
will give four different approaches to FTCR rerouting of ER-LSPs.

Evaluating and improving failure convergence schemes in IP networks 102

4.5.2 Different approaches

There are four approaches to FTCR rerouting of ER-LSPs. We will describe
these four approaches in the context of a single link failure on a fully specified
strict ER-LSP. FTCR operates in presume-link-failure and failure-local-FSL
modes. A subsequent subsection will describe the issues with the other FTCR
modes, with partially specified ER-LSP and with ER-LSP with loose hops.

The calculation of the recovery LSP of an ER-LSP is preferably based on the
same algorithm that calculated the working ER-LSP. Of course the calculation
should be based on updated topology information (e.g. applied on the adjusted
link-state database). Calculating the recovery LSP with the same algorithm might
not be possible though. An obvious example is an ER-LSP that is specified
through user intervention. But even if the ER-LSP is algorithmically calculated,
it might not be possible to calculate the recovery ER-LSP at the FSL. First of all,
the algorithm might be computationally too expensive. It might for example be
based on analysis of the traffic matrix, forecasted demand, monitoring
information etc [107, 108, 109, 110, 111, 112]. Also certain information might
not be available at the FSL or the route calculation software might not be part of
the FSL node’s software. The solution to the latter two problems might be to use
the ingress FSL selection mode. Still it is not possible to assume that either the
original algorithm can be run or that it can be run in a sufficiently short time
interval. So other alternatives are needed.

A possible solution is to reroute the destination of the LSP over the shortest path
on the adjusted link-state database. Notice that the resulting action is the same as
with SP-LSP FTCR rerouting. The benefit of this approach is that the resulting
recovery LSP is easy to calculate and that the path from the detection node
towards the destination has a minimal cost. However this is not an ideal solution
to the problem if we take into account that ER-LSPs are a means for traffic
engineering. For example the whole purpose of the LSP might be to circumvent
the shortest path to balance the load more evenly over the network.

An alternative to using the shortest path to reroute the ER-LSP is to reuse the
original hop specification. This is only possible to a certain degree because the
network topology has changed. Certain hops may no longer be reachable while
others can only be reached over a longer path. But still a recovery path can
usually be found by removing the nodes that are no longer reachable and by
inserting hops where necessary to reach the hops in the original specification.
Remember that every hop on the recovery path needs to be specified because we
cannot rely on the availability of valid routing tables. This approach can lead to
very inefficient paths since we might traverse links twice: the first time to reach a

Fast Topology based Constrained Rerouting (FTCR) 103

hop in the original specification and the second time to reach the next hop in the
specification (we will give an example of this later on).

The fourth approach improves upon the third approach by eliminating loops in
the recovery path. This means that all sub-paths that are loops should be pruned
from the result of approach three. Similar to the third approach, unreachable hops
should be removed from the hop list and additional hops need to be inserted.
This approach tries to combine the goals of the previous two approaches by
creating a recovery path that tries to stay as close as possible to the original ER-
LSP without creating avoidable inefficiency in the network. A drawback of this
approach is that although it tries to stay close to the original path specification it
has no knowledge about the algorithm that is used to calculate the working path
so it might violate the original goal more than approach two.

Let us now illustrate the four approaches with an example (see Figure 42). We
consider that the algorithm that is used to calculate the working path calculation
tries to avoid the links on the shortest path. For an LSP from node A to node E
the algorithm will yield the ER-LSP A-F-G-C-H-I-E). Now consider that link AF
fails. We will investigate the results of the different FTCR rerouting approaches.

Figure 42: The different FTCR ER-LSP rerouting approaches illustrated.
Approach 1 and 4 result in the same recovery LSP. The recovery LSP
from approach 3 is not illustrated but the path is A-B-G-F-G-C-H-I-E.

The first approach uses the original algorithm to calculate the recovery LSP on
the adjusted link-state database which leads to the recovery LSP A-B-G-C-H-I-
E. The second approach calculates the shortest path from node A to node E so

A B C

F
G

D E

H I

Recovery LSP approach 1,4
Working ER-LSP

Recovery LSP approach 2

Evaluating and improving failure convergence schemes in IP networks 104

the recovery LSP is A-B-C-D-E. The third approach tries to reuse the original
ER-LSP specification as much as possible. The first hop in the specification,
node F, is no longer directly reachable so we need to insert additional hops in the
original specification to create the fully specified ER-LSP. These hops are B-G
and so the resulting recovery LSP is A-B-G-F-G-C-H-I-E. (The nodes in
boldface are the inserted hops in the hop list.). We see that the recovery LSP
from the third approach contains the loop G-F-G. The fourth approach optimises
this recovery LSP by removing the loop so the result is the recovery LSP A-B-G-
C-H-I-E.

The first approach is always preferable but, as we explained, might not be
applicable all the time. The fourth approach might be preferable over the second
approach and especially the third. The second approach routes the traffic in the
example over the links C-D-E which is probably not ideal given that the working
LSP was explicitly routed away from this link (notice that the link AB cannot be
avoided). The third approach can create substantial longer paths. The first and
the fourth approach have the same result in this example but this might not be the
case if a different algorithm is used to calculate the working paths.

4.6 Support for Multiple failures
4.6.1 From explicit routed LSPs to multiple failures

Routing protocols typically offer good support for multiple failures. They are
able to handle multiple failures by spreading information about all the failures
and by calculating the new shortest path accordingly. Supporting multiple
failures with protection switching is more difficult. Since all the recovery LSPs
need to be pre-established it is difficult to support all failure scenarios. This is
particularly true for multiple failures. When a failure happens on the working
LSP a recovery LSP is selected and the traffic is switched over to the recovery
LSP. In order to support multiple failures the recovery LSP needs to be protected
by another unaffected recovery LSP. We will now investigate how FTCR
supports multiple failures.

In the previous section we described the rerouting of ER-LSPs within the context
of ER-LSP that are specified as a means for traffic engineering. Another aspect
of ER-LSP rerouting is the support for multiple failures in FTCR. FTCR reroutes
an LSP by setting up a recovery ER-LSP, if another failure occurs on the
recovery LSP, FTCR needs to recover that recovery ER-LSP. This requires ER-
LSP rerouting as explained in the previous section. However in order to support
multiple failures with FTCR additional functionality is needed.

Fast Topology based Constrained Rerouting (FTCR) 105

When a link fails, the FSL will then send an ER-LSP request towards the
destination to recover the LSP. The FSL calculates this path on its local link-
state database. Consider that another failure occurs shortly after the first failure,
the FSL of the first failure does not have information about the second failure
and does not take it into account when rerouting the LSP. If the second failure
occurs on the path of the recovery LSP then that recovery LSP is obviously
affected by it and cannot be used. This can be handled by the FSL of the second
failure by rerouting the ER-LSP request. So in order for FTCR to cope with
multiple failures we need to support ER-LSP rerouting and ER-LSP request
rerouting. Note that we need to support ER-LSP request rerouting to properly
handle the occasion where a FSL detects a failure and a second failure happens
immediately afterwards on the path of the recovery LSP even before the recovery
LSP has been set up. If a failure occurs after the recovery LSP has been set up
the second failure will be recovered with an ER-LSP reroute.

As described above the FSL should not only reroute existing LSPs on failure
events but they should also reroute the ER-LSP requests. If a FSL receives an
LSP request routed over his directly downstream affected part he will need to
reroute that request over a new path calculated using his adjusted link-state
database. The four different approaches of ER-LSP rerouting (see section 4.5.2)
are again applicable to ER-LSP request rerouting. However the same approach
should be used for both LSP and LSP request rerouting. Note that LSP request
rerouting also solves the problem of setting up an LSP during a failure condition.

An example
We will now illustrate how multiple failures are handled in FTCR. We reuse the
same topology as in the ER-LSP rerouting example in the previous subsection.
As routing approach for the working path we take the shortest path first
algorithm. The working LSP is an LSP from node A to node E (A-B-C-D-E).
Now consider that both link AB and link CD fail, we will now examine the
different timings i.e. link AB fails before link CD and visa versa. We start by
examining what happens when the upstream link fails before downstream link
i.e. when link AB fails before link CD.

When link AB fails node A will send a request for the recovery ER-LSP A-F-C-
D-E to circumvent the failure on link AB (see Figure 43). Now when the link CD
fails there are three sub-cases (example 1-1 and 1-2). If the recovery ER-LSP
from node A has been set up when the second failure occurs, node C (the FSL
for the second failure) will reroute this recovery ER-LSP. This results in the
recovery ER-LSP C-G-H-E and the resulting LSP will be A-F-C-G-H-E.

Evaluating and improving failure convergence schemes in IP networks 106

Figure 43: Multiple failures are supported in FTCR by having more than
one FSL, one per failure. Illustrated here is that node A and B are FSL for
the failures on link AB and CD respectively. Here node C needs to reroute
the label request of node A in order to circumvent the failure on link CD.

In the other sub-case the ER-LSP from node A has not been set up when the
second failure occurs. When the request from node A reaches node C, it has been
notified of the second failure. Node C acts as an FSL for the second failure and
uses its adjusted link-state database to calculate a new path for the ER-LSP
request. In this example this will lead to ER-LSP request reroute over the nodes
C-G-H-E leading to the same recovery LSP A-F-C-G-H-E as in the first sub-case
(example 1-2).

The third sub-case is where node C receives the label request from node A and
the link CD has failed but the failure is not yet detected. Node C will then send
the label request over link CD and it will be lost. The label request will remain
pending since it will not be acknowledged with a label mapping. When the
failure is detected node C will reroute the label request from node A along G-H-
E which results in same the recovery LSP as in the other sub-cases (A-F-C-G-H-
E). This process is called pending request rerouting and we will return to this
topic after the example.

Now let us examine what happens when the downstream failure happens before
the upstream failure. In this second case we examine the event when link AB
fails after link CD. When link CD fails node C will reroute the working LSP to
A-B-C-G-H-E. This is a regular FTCR LSP reroute. Now there are again two
sub-cases regarding the timing of the second failure (example 2-1 and 2-2).
When the link-state database of node A already took the failure of link CD into
account when link AB fails then node A can properly circumvent both failures.
In the example this means that node A will set up the recovery LSP A-F-C-G-H-
E. If this is not the case we have to rely on node C to reroute the ER-LSP request
of node A properly. In this case node A will try to reroute the original LSP over

B C

F

D E

G H

A

Label request
<F-C-D-E>

Label request reroute
<G-H-E>

Fast Topology based Constrained Rerouting (FTCR) 107

the path A-F-C-D-E. When this request reaches node C it will reroute the request
over C-G-H-E and the resulting recovery LSP is again A-F-C-G-H-E. Note that
if FSL C uses approach three to reroute ER-LSPs that the recovery LSP will be
A-F-C-G-H-E-D-E. Note that in this example both FSLs are located on the
working LSP but this is not always the case.

We have given an example of rerouting multiple failures with FTCR. Rerouting
an LSP when multiple failures occur works in general because there is always a
node acting as the FSL for a failure that will either reroute the current LSPs or
will reroute the ER-LSP requests. Yet there is a small period between the failure
event and its detection where the recovery still can fail. This is also true when
setting up an LSP just after a failure but before it is detected so it is not really
FTCR specific. It is however related to recovering from multiple failures so we
will address how this problem can be solved by FTCR.

4.6.2 Rerouting pending label requests

When a recovery LSP request is sent over a failure that has not been detected the
ER-LSP will not be set up and the request remains pending. When the FSL is
notified of the failure, the FSL needs to reroute the pending LSP request by
calculating a new route for it. This is called pending label request rerouting and it
was illustrated previously in the example. In the example we explained a label
request remains pending because the request was sent over a faulty link. It is also
possible that the label request remains pending because the label mapping is lost
when it propagates back from the egress towards the FSL of the yet to be
detected failure. These two scenarios are illustrated in Figure 44.

When a node is notified of a failure on a link over which a label request is
pending it will need to reroute that pending request. The rerouting of a pending
request is again based on the failure information and the topology information
(for more detailed information about pending request rerouting we refer to
section 4.8.1).

Now, let us have a look at the result of a rerouted pending label request. As
stated before pending label requests happen between the time a failure occurs
and the time the failure is detected. In this time interval the LSP request is sent
over an incorrect path. When the failure is detected this situation is corrected and
the request is rerouted over the correct path. As far as the actual result of the
pending request reroute is concerned this rerouted label request is equivalent to a
rerouted label request that would have happened if the label request arrived after
the failure has been detected. The only difference is a difference in timing since
pending label requests can only be rerouted after the failure is detected. In further

Evaluating and improving failure convergence schemes in IP networks 108

discussions we do not make a distinction between label request rerouting and
pending label request rerouting unless specifically stated.

Figure 44: Pending label request rerouting. When a failure happens shortly
after a label request has been sent, the failure can affect the LSP set up:
a) the label request can be lost, b) the label mapping can be lost.

4.6.3 Generalising

So far we have covered a number of cases of rerouting multiple failures in FTCR
(two cases with each two sub-cases). We will now formalise these cases and
investigate if there are any significant cases that have not been covered and in
which FTCR multiple failure rerouting specified so far may not suffice. Note that
we will investigate failure-local repair only, the discussion for ingress repair and
nearest non-looping is postponed till later.

The notation used in the rest of this subsection is summarised in Table 6. The
first two symbols are used to describe the failure event and the detection by a
node of this failure respectively. The detection by a node of a failure might be
direct via a failure detection mechanism or indirect via a FIS message or via link-
state updates. The table further shows a symbol for a label request and for the

Label
request

Label
mapping

Label
request

fa
ilu

re
de

te
ct

ed
Label

request

Label
mapping

Label
mapping

Label
requestfa

ilu
re

de
te

ct
ed

a) b)

Fast Topology based Constrained Rerouting (FTCR) 109

rerouting of a label request. Finally the symbol L is used to indicate that the LSP
has been restored. The symbol always applies to the last label request.

Table 6: This tables shows the notation used for the different events
during FTCR rerouting with multiple failures.

Notation Description

F1 Failure 1

dA1 Node A detects failure 1

LRA1 Node A requests an LSP to circumvent failure 1

RCLRA1 Node C reroutes the label request from node A

L LSP set up and traffic restored

Figure 45: This figure illustrates some of the notation introduced in Table 6
for the example given before where node C needs to reroute the label
request of node A to circumvent the failure on link CD.

Figure 45 uses this notation to illustrate some of the events of the first case and
the second sub-case where the recovery LSP from node A is requested and the
request is subsequently rerouted by node C to circumvent the second failure on
link CD.

The first two examples and their sub-cases are noted in Table 7. The second
column contains the events that happen during each of the examples and the third
column gives a simplified explanation of the actions that are taken accordingly.

1 2
dA1 dC2

LRA1

RCLRA1

B C

F

D E

G H

A

Evaluating and improving failure convergence schemes in IP networks 110

Table 7: Events and actions for multiple failure recovery in FTCR for the
previous examples. The Events column contains the external events like
failures and the resulting actions by the LSRs while the Actions column
only contains the (simplified) actions by the LSRs.

Events Actions

Ex1-1 F1 dA1 LRA1 L
F2 dC2 LRC2 L

FTCR reroute in A,
FTCR ER reroute in C

Ex1-2 F1 dA1 LRA

F2 dC2 RCLRA1 L
FTCR reroute in A,
FTCR request reroute in C

Ex2-1 F2 dC2 LRC2 L dA2

F1 dA1 LRA1,2 L
FTCR reroute in C,
FTCR reroute (2 failures) in A

Ex2-2 F2 dC2 LRC2 L
F1 dA1 LRA1

RCLRA1 L

(FTCR reroute in C)
FTCR reroute in A,
FTCR request reroute in C

Now Table 8 simplifies Table 7 further by only looking at the FTCR actions and
splitting them up in two columns.

Table 8: The recovery actions by the LSRs as a result of the failure
scenarios FTCR action sequences for the examples

Action 1 Action 2

Ex1-1 Reroute in A Reroute in C

Ex1-2 Reroute in A Request reroute in C

Ex2-1 Reroute in C Reroute in A

Ex2-2 Reroute in A Request reroute in C

The first observation is that the “Action 1” column always contains a simple
reroute (R). The reason for this statement is simple, since this action is
performed first, it is a reaction to a failure event. This means that it can only be a
normal reroute operation since the alternative, request rerouting, is a reaction to
incoming label request (this is a temporal constraint that dictates that the first
action should be a simple reroute). The second observation is that the recovery
actions done by node A are all regular rerouting. This observation can be

Fast Topology based Constrained Rerouting (FTCR) 111

explained by looking at the position of node A in the network. Since node A is
the most upstream FSL in the network this means the node A will not receive
incoming label requests from a downstream FSL that needs to be rerouted (this is
a topological constraint that states that the most upstream FSL performs only
regular rerouting). When we combine these two observations we conclude that
all the possible event sequences are given by Table 9.

Table 9: This table gives all the distinct action sequences for the different
failure scenarios with two failures.

Action 1 Action 2

Reroute in A Reroute in C

Reroute in C Reroute in A

Reroute in A Request reroute in C

We have given the possible event combinations for two failures. What happens
when more than two failures occur? This leads to a significant number of action
sequences. But the temporal and topological constraints still apply so LSP
rerouting and request rerouting are sufficient to support SP and ER-LSP
rerouting even with more than two failures. For example when three failures
occur on an LSP then the three FSLs will either reroute the working LSP or the
recovery LSP (or its request).

4.6.4 Nearest non-looping and ingress repair

We conclude this section by investigating multiple failures in ingress repair and
nearest non-looping repair modes.

In the previous sections we described how ER-LSP, ER-LSP rerouting request
and LSP request rerouting are used to support multiple failure recovery in FTCR.
So far we only covered the failure-local repair mode. Ingress repair and non-
looping repair modes are more complex to support because they require that a
FIS is sent upstream towards the ingress of the LSP. The problem is not the
forwarding of the FIS itself because this is also required to support the rerouting
of single failures in FTCR. The problem is that the reverse path that the FIS
takes towards the FSL can be affected by a failure.

For example if you look at the example in Figure 46 and consider that link DE
fails before link BC with ingress repair. When node D detects a failure on the
link DE it will sent a FIS towards the ingress of the LSP (node A) since it is
running in ingress repair mode. Node C will forward the FIS further upstream

Evaluating and improving failure convergence schemes in IP networks 112

towards node A. Now consider that at the time node C receives the FIS from
node D, link BC already has failed. If node C forwards the FIS over link BC the
FIS will be lost, the ingress will not be notified of the failure and the LSP will
not be recovered.

Figure 46: When a failure is detected in ingress repair mode (and
sometimes in nearest non-looping mode) a FIS is sent upstream. When
multiple failures occur it is possible that the path that the FIS takes
upstream is affected by another failure. In order to circumvent this failure
the path taken by the FIS may need to be adjusted and explicitly specified.
This is illustrated for the FIS originated by node D and send towards node
A. Node C needs to adjust the path of the FIS to circumvent the failure on
link BC. At the same time node B also sends a FIS (denoted FIS’) for the
failure on link AB.

In order to forward FIS messages properly during failure conditions we need yet
another form of FTCR rerouting called FIS rerouting. It is obvious that the FIS
should be forwarded over the path G-F-B-A. This path can again be calculated
on the link-state database of the FSL i.e. node C. In order for this to work it is
required that the path of the FIS can be explicitly specified. Just forwarding the
FIS over the correct outgoing interface is not enough because the next hop or
another upstream node might send the FIS back. For example when node C
detects that the FIS towards node A needs to be rerouted, it is not sufficient to
forward the FIS over the interface CG because node G can send the FIS back.
Therefor node C forwards the FIS according to the explicit path G-F-B-A (see
Figure 46).

Notice that the RNT (see section 3.2.2) does not support explicit routes in the
FIS messages. However the Notification message, the actual FIS message sent
over the RNT, that is proposed in [132] can easily be extended to encompass an
explicit route object (ERO). The ERO can then be used to pin the route of the

C D

F
G

EB
FIS(A)

FIS (G-F-B-A)

FIS (F-B-A)

FIS (B-A)

FIS
Reroute

A
FIS’(A)

FIS(A)

Fast Topology based Constrained Rerouting (FTCR) 113

FIS messages during multiple failure events (as illustrated in Figure 46). This
would mean that the RNT changes when multiple failures occur on the working
path.

Notice that if a path towards the ingress does not exist then the ingress cannot be
notified of the failure of the LSP and the LSP cannot be recovered. But if such a
path does not exist then that means that the network is no longer connected so
recovering the LSP is no longer possible at all.

As final note we remark that similarly to pending request rerouting, it might be
beneficial to re-send a FIS when a failure is notified directly after a FIS has been
sent. For example when node C has forwarded the FIS of node D towards A over
the interface BC and immediately afterwards detects a failure on that interface.
In the event a RNT is used this is done automatically because the originator of a
FIS message i.e. node D regularly resends the FIS.

Now that SP-LSP and ER-LSP rerouting and rerouting multiple failures have
been covered we will look at the reversion operations of FTCR in the next
section.

4.7 Support for Revertive mode
We start the discussion about reversion operations in FTCR in the context of a
single failure on a shortest path LSP and extend the discussion to include
explicitly routed LSPs and multiple failures after that. Note that the term FTCR
switch LSR (FSL) can be used to denote routers that switch from working paths
to recovery paths but also for routers that switch from recovery path back to the
original working path. So the term FSL is still applicable in this section.

4.7.1 Single failure on a shortest path LSP

The reversion operations start when the fault on the original working LSP clears.
The switch from the recovery LSP back to the original working LSP can only
happen when the original LSP has been restored. Most probably the original LSP
has been torn down because of the failure on its path. FTCR does not mandate
that the part of the LSP downstream of a failure will be torn down but it most
probably will be torn down. For example in RSVP-TE the LSP will be torn down
due to lack of refreshes and in CR-LDP the LSP will be torn down because of
the lack of HELLO or KEEPALIVE messages. Since the original LSP has been
torn down we need to set it back up and in order to set it back up we need the
specification of that LSP.

Once we have received the failure clearance through the receipt of a FRS we can
try to set up the original LSP. However when a failure has been cleared that does

Evaluating and improving failure convergence schemes in IP networks 114

not mean that the routing tables have been restored. The set up of shortest path
LSPs depends on valid routing tables. It is recommended that a timer postpones
the set up of the original LSP after the failure has been cleared. This wait-to-
restore timer should be high enough to encompass for the convergence time of
the IP routing tables. When the FTCR is notified of the new routing tables that
are the result of the clearance of the fault then this is the trigger for the reversion
operations. If this is not the case then a high enough wait-to-restore timer should
be used. The value should be at least as high as the maximum convergence time.
Notice that the reversion is usually not as time critical as recovering from a
failing working path.

It is not mandatory that a wait-to-restore timer is used. When the failure
clearance is given the FSL can try to set up the LSP immediately but this will
likely fail the first time. Repeated tries will eventually succeed. There is a small
chance that the LSP has been set up along a suboptimal path due to routing
anomalies possible during the convergence time interval. After the anomalies
have been corrected MPLS rerouting will adjust the path of the LSP to the
shortest path. This additional rerouting can lead to extra packet reordering and
can be avoided by using the wait-to-restore timer. One can take it one step
further and try to set up working LSPs continuously while the recovery LSP is
used. Again the same problems apply so the only application is when no failure
clearance signal is available. In the further discussion we will consider that a
wait-to-restore time depends on the trigger received from the routing protocol.
Note that in this case strictly speaking there is no wait-to-restore timer but a
wait-to-restore trigger. We will speak of a wait-to-restore timer nevertheless and
we assume that this case covers both the wait-to-restore timer and wait-to-restore
trigger cases.

When FTCR has rerouted around a single failure then a single FSL can revert
back to the original LSP. Once the original working LSP has been set up the
traffic can be switched back to the original working LSP at this FSL. This
normally will not introduce packet loss certainly when a proper wait-to-restore
timer is used. It can introduce packet reordering for example when the original
LSP is shorter then the recovery LSP. When the traffic is switched back to the
original working LSP the recovery LSP can be torn down. The resulting LSP
end-to-end is then routed along the shortest path and cannot be distinguished
from a normal shortest path LSP anymore.

In the next subsection we will describe the reversion operations for a single
failure on an ER-LSP, multiple failures are handled after that.

Fast Topology based Constrained Rerouting (FTCR) 115

4.7.2 Single failure on an explicitly routed LSP

When FTCR reroutes an LSP it replaces the downstream part of the original LSP
by an ER-LSP that circumvents the failure. In revertive mode this downstream
part needs to be restored. To be able to restore the downstream part of an ER-
LSP the ER hops need to be stored when the ER-LSP is rerouted. This is not
needed for shortest path LSPs because they are only determined by their
destination. Another difference is that the wait-to-restore timer is not needed to
reverse a fully specified ER-LSP because setting up a fully specified ER-LSP
does not depend on valid routing tables. Notice that this is the basic mechanism
on which FTCR operates. However this does not mean that the wait-to-restore
can be removed for every ER-LSP, only the fully specified ones. When rerouting
a SP-LSP, FTCR always uses a fully specified ER-LSP as the recovery path.
Now when reverting an ER-LSP we cannot rely on the fact that the working ER-
LSP is fully specified so the optimisation to skip the wait-to-restore is not
generally applicable. Furthermore removing the wait-to-restore timer can cause
instability (we discuss the stability of FTCR in the next chapter section 5.5.4).
Still it is possible to use this optimisation when the FSL knows that all the ER-
LSPs are fully specified. The FSL can test whether or not the ER-LSP is fully
specified by examining the ER hop list and the link-state database. If according
to the link-state database every hop in the ER hops specification is directly
connected to its predecessor then the LSP is fully specified and the wait-to-
restore timer can be skipped otherwise the wait-to-restore timer should be used.
The practical use of this optimisation can be questioned because the reversion
operations are in general not so time critical.

4.7.3 Multiple failures on a shortest path LSP

When more than one failure occurred on the working path there is typically more
than one FSL. Because the FSLs act independently there is no communication or
synchronisation between them. Similarly in revertive mode no co-ordination
between the FSLs is needed. This does not imply that packet loss or additional
packet reordering is introduced. We will illustrate this with an example in the
next paragraph (see Figure 47).

We consider that the original working LSP A-B-C-D has been recovered twice,
once to circumvent a failure on link AB (failure 1) and a second time to
circumvent a failure on link CD (failure 2). The resulting recovery LSP is then
A-E-B-C-F-G-D.

We will examine the case where the downstream failure (failure 2) is cleared
first. When node C receives the clearance for the failure 2, it will start the wait-
to-restore timer and when the timer expires it will set up a shortest path LSP

Evaluating and improving failure convergence schemes in IP networks 116

towards node D. When this LSP has been set up it will switch over the traffic to
this LSP. The resulting LSP at this moment is A-E-B-C-D. Then node A receives
the failure clearance for failure 1. After the wait-to-restore timer it will send a
request for a shortest path LSP towards the destination. This will result in the
shortest path LSP end-to-end i.e. A-B-C-D.

Figure 47: This figure shows the recovery LSP after the working LSP has
been recovered from two failures. When the faults are cleared the working
LSP will be restored through the reversion operations.

Now we will investigate what happens when the upstream failure (failure 1) is
cleared first. First node A receives the clearance for failure 1, after the wait-to-
restore timer it will set up a shortest path LSP towards node D. When node C
receives this request it will forward the request over the shortest path F-G-D
because the failure on link CD has not cleared yet. This results in the LSP A-B-
C-F-G-D. Now when node C receives the failure clearance for the link CD it will
restore the original downstream part of the LSP by sending a request for a
shortest path LSP towards the destination. When that LSP is set up node C will
switch over to the newly established LSP. The resulting LSP is then A-B-C-D.

In these two cases FTCR in revertive mode operates fine, but what happens
when the partially reversed LSP, i.e. the LSP that has been set up to take into
account the clearance of a first fault, is not routed over the second FSL? Again
we illustrate this with an example (see Figure 48).

The shortest path LSP from node A to node D is A-B-C-D. When the link
between node A and B fails the LSP is rerouted over A-E-B-C-D. When the link
between node C and node D fails the LSP is routed over the nodes A-E-B-C-F-
G-D (Notice that we consider the failure local FSL selection mode).

Now consider that the failure on link AB is cleared, after the wait-to-restore time
node A will set up a shortest path LSP towards the destination node D. This LSP
will not be routed along node C, instead it will be routed along the path A-B-H-I-
D. This path is the result of shortest path routing, since the wait-to-restore timer
has expired the routing tables have incorporated the link AB back in the network.

B C

E
F G

DA 1 2

Fast Topology based Constrained Rerouting (FTCR) 117

Figure 48: This figure illustrates the recovery LSP for the working LSP
after two failures have occurred. When the fault 1 clears the LSP is
partially reversed back to the original working shortest path. As illustrated
here that may mean that this partially reversed LSP no longer is routed
over the downstream FSL.

Now when the failure on link CD clears node C will not reroute the LSP because
it is no longer routed through that node. Instead normal MPLS rerouting will
reroute the LSP along the shortest path A-B-C-D. As in the previous two cases
there are two reversion actions but in this case only one is performed by an FSL
(node A) the other one is performed by regular MPLS rerouting under influence
of the changed next hop in node B.

4.7.4 Multiple failures on an explicitly routed LSP

In revertive mode shortest path LSPs constitute a more complex scenario to
support than fully specified explicitly routed LSPs. As explained in the previous
section there is no need for the wait-to-restore timer when dealing with a fully
specified ER-LSPs. Also the event where the partially reversed LSP is set up
according to a path that does not contain the downstream FSL is less common
with fully specified ER-LSPs. It is however still possible that a FSL is not on the
recovery path for example when the FSL is disconnected from the rest of the
network.

Regardless of the small differences the reversion operations for multiple failures
on explicitly routed LSPs are similar to these for reversion of multiple failure on
shortest path LSPs.

B C

E
F G

D

H I

A 1 2

Original LSP
Recovery LSP
Partially
Reversed

Evaluating and improving failure convergence schemes in IP networks 118

4.7.5 Ingress repair and nearest non-looping repair

We conclude the section about the reversion operations in FTCR with ingress
repair and nearest non-looping repair. In the ingress FSL selection mode the
ingress is always the FSL. When a failure recovery signal is received by a node it
should send the FRS upstream towards the ingress of the LSP. It is possible that
certain nodes need to consult their link-state database to find a route towards the
ingress (FIS/FRS rerouting) when other failures are not yet cleared. When the
ingress receives the FRS it will take the fault clearance into account and after the
wait-to-restore timer it will send a new LSP request towards the destination. The
LSP will most probably not be routed over a failing link because the link-state
database has been updated during the wait-to-restore time. However if the label
request is routed over a fault then the regular request rerouting mechanism will
cope with it. Similar observations are valid for nearest non-looping FSL.

So far we described FTCR in individual situations this might give the idea that
supporting the different modes under different failure and reversion conditions is
very complicated. However in the next section we will give the general FTCR
operations within a single router for all these cases.

4.8 FTCR operations
We started the FTCR section by describing the basic operation of FTCR,
afterwards we have described all the necessary extensions to support ER-LSPs
and multiple failure rerouting and reversion. Now we will investigate the overall
operation of FTCR i.e. how does a single node support LSP rerouting, LSP
request rerouting, FIS rerouting and the respective reversion operations?

The FTCR router can be in four different operational modes. This is illustrated in
Figure 49 with a flow chart [148, 149]. The first mode is the normal mode where
no special actions are taken and the router acts as a normal LSR. When a failure
is detected the router enters the FTCR recovery mode and starts to recover all the
affected LSPs. When all the affected LSPs are recovered the router enters the
failure detected mode. In this mode the router will reroute LSP requests and FIS
messages to prevent these messages from being sent towards the failure. When
eventually the failure clears the router enters FTCR revertive mode and will start
the revertive actions for every LSP that has been FTCR recovered before. When
all the LSPs have been restored to their original state, from the point of view of
that particular router, the router will enter normal mode again.

Note that Figure 49 illustrates that FTCR reacts immediately to a FIS entering
the failure detected mode but in contrast waits for the down-down timer after a
FRS before entering the revertive mode. In the next chapter, section 5.4.6 we

Fast Topology based Constrained Rerouting (FTCR) 119

will illustrate that this property imposes both fast recovery and good stability
properties to FTCR.

Figure 49: An FTCR router can be in four different modes of operation: the
normal mode, the FTCR recovery mode, the failure detected mode and
the FTCR revertive mode.

We will now investigate each of these modes in more detail, with the exception
of the normal mode which does not need any further explanation.

FTCR recovery
mode

The router recovers the affected LSPs, pending
 label requests and FIS are rerouted.

Failure detected
mode

The router reroutes LSP requests
and FIS messages.

FTCR revertive
mode

The FTCR recovered LSPs are
restored to their original state.

Normal mode The router acts as a normal LSR again.

The router acts as a normal LSR.Normal mode

Receive
FIS

Receive
FRS

The router is notified of a failure
(local or remote)

The router is notified that a failure has cleared
(local or remote)

Hold-down

Evaluating and improving failure convergence schemes in IP networks 120

4.8.1 The recovery mode

Figure 50: In the FTCR recovery mode the LSR recovers the affected
LSPs and the affected pending label requests and then enters the failure
detected mode.

The FTCR recovery mode defines all the actions that need to be performed when
a failure is detected (see Figure 50). When a failure is detected the affected LSP
needs to be rerouted but also the pending label requests. In the rest of this section
we will explain these operations in more detail. When the recovery actions are
completed the router enters the failure detected mode.

4.8.1.a Rerouting the affected LSPs

To recover an LSP the router starts checking if the LSR is the FSL for that LSP
(see Figure 51). When the node uses the ingress FSL selection mode and the
LSR is not the ingress of the LSP a FIS is sent towards to ingress of the LSP and
the next affected LSP is processed. If the LSR operates in nearest non-looping
mode or failure-local mode or if the LSR is the ingress of the LSP then the
recovery path is calculated (see Figure 52).

The recovery path calculation starts by retrieving the topology information as
reported by the link-state database. Depending on the failure presume mode the
local copy of the topology is pruned to take into account the current failure (or
more correctly the presumed failure). Depending on the type of the affected LSP
a new path is calculated on the adjusted link-state database. If the affected LSP is
a shortest path LSP then the regular shortest path first algorithm is used. If the
affected LSP is an explicitly routed LSP then the calculation depends on the

FTCR reroute affected LSPs

FTCR reroute affected
pending label requests

Failure detected mode

FTCR recovery mode

Fast Topology based Constrained Rerouting (FTCR) 121

approach taken (see section 4.5.2). Note that the shortest path tree on the
adjusted network only needs be calculated once by the Dijkstra algorithm.

After the recovery path has been calculated further operations depend again on
the FSL selection mode (we return to Figure 51). In nearest non-looping FSL
mode a simple loop detection mechanism is triggered. If the outgoing link of the
recovery LSP is the same as the incoming link of the affected LSP a loop is
detected and a FIS is sent towards the new FSL. Note that the previous hop of
the affected LSP is also the next hop of the locally calculated recovery LSP in
this case.

In failure local repair mode or when no loop is detected the original LSP is
stored. The original LSP specification needs to be stored so it can be retrieved in
revertive mode. The router will then send a label request for the recovery LSP.
When the recovery LSP is set up (the router receives a label mapping for the
LSP) it will install the recovery LSP as the new working LSP and the traffic on
the affected LSP is switched over.

When all the affected LSPs have been recovered the router will continue to
reroute the pending label requests.

Evaluating and improving failure convergence schemes in IP networks 122

Figure 51: The recovery of an LSP depends on the FSL selection mode.
Note that the original LSP specification needs to be stored so that it can
be used in the reversion operations.

Set up and switch over to recovery ER-LSP

Store original working path

FTCR reroute affected LSPs

Nearest non-looping
repair mode and recovery LSP

contains a loop

Iterate over every affected LSP

Calculate recovery path

Node is ingress?

YesNo

Send FIS

No

Ingress repair
Yes

Yes

Affected LSPs FTCR rerouted

More affected LSPs?
Yes

No

Fast Topology based Constrained Rerouting (FTCR) 123

Figure 52: FTCR route calculation depends on the failure presume mode,
the type of the LSP and the ER-LSP routing approach for ER-LSPs.

Assume
node failure

Assume
worst case

working
Failure

type known
Assume

link failure
Prune
node

Prune
failure

Prune
link

Prune
node/link

Failure presume mode?

Retrieve LSDB

Calculate recovery path

Recovery is SP-LSP?

SPF towards destination

ER rerouting
 approach?

Use original algorithm Remove unreachable hops
from the hop list

Calculate explicit paths
between all available hops

Approach4Eliminate loops

Recovery path calculated

No

Yes

Yes

2

1 3,4

No

Evaluating and improving failure convergence schemes in IP networks 124

4.8.1.b Rerouting a pending label request

Rerouting a pending label request is very similar to rerouting a label request. The
pending label request is first cancelled to inform the downstream LSRs of the
fact that the original LSP request is no longer needed. Note that not all
downstream routers will be reachable. However those that are not reachable did
not receive the label request in the first place so this does not pose a problem.
Subsequently the pending request is rerouted just like an incoming label request.
Rerouting a label request will be explained in the next section, when we cover
the failure detected mode.

Figure 53: Rerouting a pending label request is done by cancelling the
pending label request and then rerouting that label request as if it just
arrived.

4.8.2 The failure detected mode

The failure detected mode differs from the normal mode in two aspects. The first
aspect is that some label request message may need to be rerouted as they are
received i.e. a new path has to be found because the path normally taken is
routed over the failure (see Figure 54). The second aspect is that FIS message
also may need to be rerouted since it may not be possible to forward the message
according to the normal path because that path runs over the failure (see Figure
55).

4.8.2.a LSP request rerouting

The first step when receiving a label request during failure detected mode is to
verify whether or not the label request is routed over a failure. If this is not the
case the request can be forwarded as usual. If the request cannot be forwarded

Cancel pending label request

Reroute pending label request

Reroute label request

Pending label request rerouted

Fast Topology based Constrained Rerouting (FTCR) 125

then the action depends on the FSL selection mode. In ingress repair mode a FIS
is sent towards the ingress so that the ingress can send a new label request that
takes the failure into account. In the two other modes a new path is calculated to
forward the LSP request. In nearest non-looping mode a check is made to verify
that the new route does not contain a loop. If the path does contain a loop then a
FIS is sent upstream (the previous hop of the label request). If the path does not
contain a loop or the FSL mode is failure local repair then the LSP request is sent
over the newly calculated path.

Figure 54: FTCR label request rerouting again depends on the FSL
selection mode. If the router is not the FSL for the LSP a FIS is sent
upstream towards the FSL. Otherwise the label request is rerouted by
calculating a new path on the adjusted link-state database.

Nearest non-looping
repair mode and recovery LSP

contains a loop?

FTCR request rerouting

Reroute label request

No

Ingress repair
Yes

Send FIS

Calculate recovery path

No

Yes

FTCR request rerouted

Evaluating and improving failure convergence schemes in IP networks 126

4.8.2.b FIS forwarding and rerouting

In failure detected mode the FSL must monitor the incoming FIS messages. Note
that even though the FIS rerouting is explained in this section this does not mean
that the transmission of the FIS messages that are generated during the FTCR
recovery mode are postponed till the failure detected mode.

Forwarding a FIS towards the FSL is normally done via the reverse path of the
LSP. This can obviously fail when multiple failures occur in ingress or non-
looping repair mode. In these modes it is possible that a router receives a FIS but
is unable to forward it over the normal path because of a local failure.

Figure 55: Forwarding a FIS depends on whether or not the next hop is
reachable. If the next hop is reachable the FIS is sent like a normal packet
if this is not the case a new route is calculated and the FIS is sent with an
explicit path.

Yes No

Is the previous hop of the LSP
reachable?

FTCR forward FIS

Ingress repair

Send FIS

FIS forwarded

Calculate path
to ingress

Calculate path
to previous hop

Yes

Fast Topology based Constrained Rerouting (FTCR) 127

When the FSL receives a FIS it will check if the normal next hop of the FIS is
reachable (see Figure 55). If the next hop is reachable then the FIS is forwarded
as usual. If the next hop is not reachable then a new route to the destination of
the FIS is calculated. The destination of the FIS is the ingress of the LSP in
ingress repair mode and is the previous hop in nearest non-looping mode. Actual
calculation is again based on the adjusted link-state database using the shortest
path first algorithm. After the calculation the FIS is sent with an explicit route
towards the destination. Note that not all FIS mechanisms support explicit routes.
If this is not case then supporting multiple failures with that FIS mechanism is
not possible in ingress and nearest non-looping repair.

Note that when the destination of the FIS receives the FIS it will enter the FTCR
failure detected mode as explained in Figure 49.

4.8.3 The revertive mode

An LSR enters the FTCR revertive mode after the wait-to-restore timer expires.

Figure 56: FTCR reverses an LSP by retrieving the original LSP
specification and setting up the LSP. A wait-to-restore delay between the
moment the FRS is received and the start of the LSP set up is used to
make sure the routing tables have converged.

Affected LSPs FTCR reversed

More affected LSPs?

Set up and switch over to
original working ER-LSP

FTCR revertive mode

Iterate over every recovered LSP
for the cleared failure

Retrieve path original working LSP

Yes

No

Evaluating and improving failure convergence schemes in IP networks 128

The wait-to-restore timer is started when a FRS is received (see Figure 49). In
the revertive mode the FSL should revert all the LSPs that have been recovered
back to their original specification. The procedures of the reversion operations
are detailed in this section.

Again the operations depend on the FSL selection mode, in ingress repair the
FRS is forwarded towards the ingress of the LSP. Otherwise every affected LSP
is reverted. Restoring an LSP starts by fetching the original LSP specification.
Before the revertive mode is entered and the original LSP can be set up it is
important to wait for the wait-to-restore timer. The wait-to-restore timer
guarantees that the routing tables have converged and that partially specified ER-
LSPs and SP-LSPs can be set up. When the wait-to-restore timer expires a
request for the original LSP is sent and when the LSP is set up, the traffic is
switched back from the recovery LSP to the working LSP.

When all the LSPs have been restored to their normal working path the router
returns to normal mode.

4.9 Prerequisites for FTCR
In this section we will look at the requirements of FTCR. Every failure
convergence scheme has certain requirements. FTCR has a few typical
requirements. The requirements of FTCR depend on the FSL selection mode and
whether or not ER-LSP and multiple failures need to be supported. In this
section we will sum up the different requirements of FTCR and describe the
reason for each of these requirements. When a certain requirement is not met that
does not necessarily mean that FTCR does not operate but it might mean that a
certain feature or mode of FTCR is not available. In section 4.9.5 we will give a
matrix of the requirements of the different FTCR modes. But we start this
section by describing the most important requirements of FTCR in more detail.

4.9.1 MPLS and explicitly routed LSP support

FTCR is a rerouting scheme specifically for MPLS, it cannot operate without the
possibility to set up recovery LSPs. It is theoretically possible to invent a similar
approach that does not use recovery LSPs. In this scheme the FSL intercepts all
IP packets that would be forwarded over the failing link and it inserts a source
route in every IP header calculated on the adjusted link-state database. This
convergence scheme would introduce a severe performance and overhead
penalty to the forwarding path of the rerouted packets. Another problem is that
IP source routing is usually disabled due to security issues.

As stated before FTCR requires LSP support, moreover it requires fully specified
ER-LSP support. Not all MPLS signalling protocols support ER-LSP set up,

Fast Topology based Constrained Rerouting (FTCR) 129

most notably LDP. The other major signalling protocols CR-LDP and RSVP-TE
do support ER-LSPs. To compare FTCR with the other MPLS convergence
schemes, MPLS rerouting only requires SP-LSPs support and protection
switching requires ER-LSP support.

4.9.2 Link-state database

Another important requirement of FTCR is the ability to access a link-state
database. Link-state routing protocols like OSPF and IS-IS maintain a link-state
database but distance vector protocols like RIP and IGRP do not. That implies
that distance vector routing protocols cannot be used to support FTCR. FTCR
does not only require that a link-state database is maintained on the MPLS
domain but also that an interface exists to access that link-state database.

The requirement to have access to a link-state database must be relaxed though.
FTCR does not require that the link-state database is up-to-date all the time.
When a failure occurs it will take some time before the link-state databases in the
network have converged. Even in the node that detects the failure it can take
some time before the failure is incorporated in the link-state database. FTCR
does not require that recent failures already have been taken into account when it
requests the link-state database. If the link-state already has been adjusted to take
the failure into account then FTCR can run the shortest path algorithm directly
on this link-state database. If this is not the case it will make a copy of the link-
state database, remove the failure from the database and run the shortest path
algorithm on the copy. It is important to note that FTCR does not alter the link-
state database used by the routing protocol directly because this will leave the
link-state database in an inconsistent state for the routing protocol.

FTCR uses the link-state database only for topology information. It does not use
the route calculation component of the link-state routing protocol. This means
that it can support non-shortest path LSPs. This also means that the IP routing
tables are not required for the recovery actions. Some network operators prefer
that any connectivity in the network is explicitly configured through LSPs and
that no routing tables are available. In this scenario all the LSPs are fully
specified. Since FTCR only requires the topology information in the link-state
database and not the availability of routing tables this model is supported with
FTCR. Note that the routing tables still contain the locally available information
i.e. the local interfaces.

Another observation is that FTCR’s topology requirements can be fulfilled by
other means than a link-state database. A mechanism specific to FTCR could be
developed for the sole purpose of learning and spreading topology information
inside the network (see [150, 151, 152, 153] for references about topology

Evaluating and improving failure convergence schemes in IP networks 130

gathering techniques). Since link-state routing protocols are quite ubiquitous and
fulfil the requirements completely this path has not been investigated.

Although the requirement of a link-state database is somewhat relaxed this
requirement might be prohibitive in some set-ups. The requirement of FTCR to
have access to a link-state database is quite typical for FTCR but on the other
hand some router platforms only support certain features in combination with
certain routing protocols too.

4.9.3 Extensions to MPLS signalling

FTCR does not rely on MPLS signalling extensions. FTCR can however benefit
from signalling extensions to indicate the type of recovery mechanism to be used
on a per LSP or even per sub-LSP level. If these signalling extensions are absent
then the recovery mechanism can be configured on a platform wide or per
interface basis. For example a node can be configured to recover all the LSPs
with FTCR, or it can be configured to recover all the LSPs over a specific
interface with FTCR or to not use FTCR at all. If more flexibility is needed then
the recovery mechanism needs to be signalled when the LSP is established.

4.9.4 Failure detection and extended failure indication signal

Every convergence scheme requires that failures are acted upon one way or the
other. So a failure detection mechanism implicit or explicit of some sort is
always needed. Some schemes like OSPF define their own mechanism. FTCR
does not define a failure detection and failure notification scheme itself. For
example FTCR can use the failure detection scheme implemented by OSPF for
failure detection and it can use the MPLS signalling protocol messages to send
FIS messages. However in order to support multiple failures in ingress or nearest
non-looping mode, one has to require that the route of the FIS messages can be
explicitly specified and not every FIS mechanism supports that. If the FIS
mechanism does not support explicit routing then either failure local repair
should be used or multiple failures cannot be supported in these modes.

4.9.5 FTCR requirements matrix

In this section we will look at all the requirements of FTCR and investigate in
which modes these are needed. We investigate the requirements where we only
support SP-LSP rerouting, where we support ER-LSP rerouting and where we
support multiple failure rerouting in each of the three FSL selection modes:
Failure Local Repair (F), Nearest non-looping Repair (N) and Ingress Repair (I)
(see Table 10).

As we described in sections 4.9.1 and 4.9.2 FTCR requires ER-LSP and link-
state database (LSDB) support. FIS notification is only needed when the FSL is

Fast Topology based Constrained Rerouting (FTCR) 131

not directly affected by the failure. This means that failure notification is
required in nearest non-looping repair and ingress repair. FIS rerouting is needed
to support multiple failures in nearest non-looping and ingress repair because the
path from the fault-detecting node to the FSL may need to be avoided because of
another failure. Request rerouting is needed to support multiple failures in failure
local and nearest non-looping repair modes. Request rerouting is not needed in
ingress repair mode because the ingress of an LSP will never intercept a label
request of an upstream router since it is the most upstream router of the LSP
(topological constraint). The next observation is that loop detection is only
needed to support nearest non-looping repair. ER-LSP rerouting is of course
needed in ER-LSP reroute mode but also to be able to reroute the explicitly
routed recovery LSP when multiple failures occur. The last two requirements in
Table 10 i.e. pending request rerouting and reversion operations need a more in
depth investigation.

Table 10: The matrix summarises the relationship between the FTCR
functionality in the different FSL selection modes (top row) and the
requirements (first column).

SP-LSP
rerouting

ER-LSP
rerouting

Multiple Failure
rerouting

F N I F N I F N I

ER-LSP X X X X X X X X X

LSDB X X X X X X X X X

FIS notification X X X X X X

FIS rerouting X X

ER-LSP reroute X X X X X X

Request reroute X X

Loop detection X X X

Pending RR O O O O O O X X X

Reversion X X X O O O O O O

O: Optional
X: Mandatory

Evaluating and improving failure convergence schemes in IP networks 132

Pending request rerouting is optional when repairing single failures. Repairing a
pending label request means that a label request has been sent over a path that
contains a failure. This is possible because the failure was not detected at the
time the label request was sent. Since the path of the LSP request contains a
failure the LSP will not be set up and the request remains pending. Note that this
is possible with all failure convergence schemes. In FTCR it is however possible
to correct the pending label request and reroute the request over a path that
circumvents the failure. It is not mandatory to reroute label request to support
single failures modes but it will speed up the convergence if it is supported.

Rerouting pending label requests in the face of multiple failures is different from
pending request routing as described in the previous paragraph. In case of a
single failure the label request is the result of an ordinary LSP set up but when
multiple failures occur the label request can be the result of a recovery action.
Such a pending label request can happen when an FSL sends a label request for a
recovery LSP over a path where a second failure has occurred but has not been
detected yet. If the label request from the upstream is not rerouted by the
downstream FSL when the failure is detected then the convergence time will be
in the same order as normal MPLS rerouting and thus the benefits of FTCR are
lost. From that reasoning pending request rerouting is mandatory in multiple
failure scenarios to support fast convergence.

So far recovering single failures on shortest path LSPs had the least
requirements. However it does have a specific requirement that is only
mandatory in this mode. Reversion is mandatory to support if only SP-LSP can
be rerouted. When FTCR can only reroute shortest path LSPs it cannot reroute
the recovery ER-LSPs. So the recovery LSPs need to reversed back to the
shortest paths as soon as the shortest path is available again in order to recover
other potential failures in the future. Note that these failures do not count as
multiple failures according to our definition in section 3.3.1.d.

If reversion is not supported that would mean that the recovery ER-LSPs will
never be reversed back to the shortest path. That in turn would lead to the
situation where a certain failure can only be recovered from once. When all
possible failures have occurred once, the network has no resilience anymore.

4.10 Convergence and reversion cycle
As we did with the other convergence mechanisms in the previous chapter we
will also look at the convergence and reversion cycles for FTCR.

Fast Topology based Constrained Rerouting (FTCR) 133

4.10.1 Convergence cycle

Like protection switching, FTCR does not require a specific failure detection
mechanism. The notification time depends on the FSL selection mode. In failure
local repair the notification time will be minimal since the failure is repaired by
the node that detects the failure. In ingress mode the notification depends on the
distance between the failure and the ingress. In nearest non-looping FSL
selection mode the failure notification time is increased by the subsequent loop
detection algorithm run on all the nodes between the failure detection node and
the FSL.

Similar to protection switching no hold-down time is used when a reliable failure
detection mechanism is used. (See section 3.3.4.f for a discussion about
unreliable failure detection and hold-down timers in protection switching.)

FTCR recovery operation calculates the recovery LSPs based on the adjusted
link-state database. The time required depends on the network size and the
efficiency of the implementation. When the recovery LSPs are calculated they
will be set up. Note that Dijkstra calculates a shortest path tree, so the Dijkstra
shortest path algorithm only needs to be calculated once, not for every recovery
LSP.

Table 11: illustrates the convergence cycle of FTCR. The notification time
depends on the FSL selection mode.

Fault
detection

Notification
time

Hold-down
time

Recovery
operation

* η 0s Calc. recovery LSP (θ)
LSP setup (ζ)

4.10.2 Reversion cycle

The reversion cycle of FTCR differs from the convergence cycle mainly because
FTCR needs a wait-to-restore timer in order to make sure that the IP routing
tables have converged before the preferred working path is set up.

Another important difference between convergence and reversion in FTCR is
that during reversion no LSPs need to be calculated since the working LSPs were
stored before they were rerouted so they can be set up according to their stored
specification.

Evaluating and improving failure convergence schemes in IP networks 134

Table 12: illustrates the reversion cycle of FTCR. The notification time
again depends on the FSL selection mode.

Clearing
detection

Notification
time

Wait-to-
restore

Reversion
operation

* η IP
convergence

LSP setup (ζ)

4.11 Conclusion
This concludes the chapter about FTCR. As we have seen, FTCR is a
convergence technique for MPLS that speeds up convergence by setting up the
recovery LSPs even before the IP routing tables have converged.

It is possible to set up a recovery LSP even when the routing tables are not valid
if every hop of the recovery LSP is specified. This recovery LSP can be
calculated on the link-state database taking the failure information into account.

FTCR also supports rerouting ER-LSPs and multiple failures. Multiple failures
are supported by having one recovery operation per failure per affected LSP.
Since there is always one LSR responsible for one downstream failure. That LSR
will either do the recovery operation itself or notify the FSL that a recovery
action needs to be performed. Supporting multiple failures not only requires
rerouting of LSPs but also of LSP requests. But even with LSP and LSP request
rerouting FTCR may not be able to offer faster convergence than the IP routing
protocol. This happens when an LSP request is rerouted over a fault that has not
been detected. The result is that the LSP request remains pending. However as
soon as the failure is detected the LSP request can be rerouted over a valid path.
This process is called pending label request rerouting and it is the final step
required to offer fast FTCR convergence during multiple failure events.

FTCR is a convergence scheme specifically developed for MPLS that optimises
MPLS rerouting instead of relying completely on IP convergence. This makes
FTCR faster to converge after a failure than both OSPF and MPLS rerouting.
However during reversion FTCR synchronises back with OSPF by depending on
routing tables to set the working LSPs back up. In the next chapter we will see
that this has important consequences for FTCR’s stability.

In the next chapter we will compare FTCR with the other convergence schemes
that we covered so far. We will look at the convergence times, the stability and
scalability and backup requirements. In the chapter after that we will look at
some of the recent proposed improvements to the existing convergence schemes
and how FTCR relates to these advancements.

Chapter 5

Evaluating convergence schemes

5.1 Introduction
In this chapter we will evaluate the convergence schemes OSPF, MPLS
rerouting, FTCR and protection switching in different ways.

In the first two sections we will describe the experimentation and measurement
platform (the testbed) that we use to determine the convergence times of the
different convergence techniques. We use the testbed to experimentally measure
the convergence times and to increase our insight into the convergence
mechanisms. The first section starts with an introduction of the testbed and the
measurement techniques. We will pay special attention to the error analysis of
the measurements. The second section starts with the description of the
individual tests, the experimentation parameters, the results and the conclusions
that can be drawn from them.

In the third and fourth section of this chapter we will investigate two less
tangible properties of convergence techniques i.e. stability and scalability.

In the final section we will investigate another important property of
convergence techniques: the backup requirements. The backup requirement of a
convergence technique is the amount of bandwidth that must be available in the
network to be able to recover a certain capacitated demand in the network during
failure conditions. As we will see the amount of backup capacity depends on the
convergence technique used to recover the working demand.

As always we will summarise the most important findings of this chapter in the
conclusions section.

The results of this chapter were published in several publications as indicated in
section 4.1. The design of the software platform that is used for the experiments
was published in [7].

Evaluating and improving failure convergence schemes in IP networks 136

5.2 The Test network
In this section we investigate the time of convergence for the different
convergence schemes we have described so far: OSPF, soft-state MPLS
rerouting, triggered MPLS rerouting, protection switching and FTCR.

We will take two approaches towards determining the time of convergence of the
convergence mechanisms. We will compare the theoretical analysis of Chapter 3
and Chapter 4 with the convergence time determined inside a test network.

Using two independent approaches to determine the convergence time has
several benefits over determining the convergence time with only one technique.
For example the theoretical analysis needs to be conform to the measurements
and the other way around. The convergence times determined experimentally
also allow us to get an idea of the time values of parameters which are not fixed
(the parameters denoted with Greek letters). However these values should be
interpreted within the limitations of the experiments which are conducted inside
a test network.

5.2.1 Experimentation platform

In this section we will describe how the convergence times of the different
convergence schemes are measured. We will describe the experimentation
platform used to conduct the experiments and how the measurement platform is
used to measure the convergence times.

5.2.1.a Router platform

When conducting experiments in a test network there are typically two choices
for the router equipment to use. The first alternative is to use commonly
available commercial router platforms. The main benefit of this approach is that
these routers create a good reference because they are well known and have
proved their interoperability and track record. The main drawbacks are that they
are quite expensive and that it is very hard to extend their functionality. Since we
want to evaluate FTCR this option was not chosen.

An alternative to using commercial routers is to use routers based on the PC
architecture: PC based routers. PC based routers are flexible and cheap in
comparison to commercial routers. The main drawback is that PC routers
typically do not come as an integrated product. This means that the software for
the required router functionality needs to be installed and configured. Some
functionality is also not readily available for the PC router platform and may
need to be developed. Of course the fact that functionality can be added very
easily is the main strength of the PC router.

Evaluating convergence schemes 137

In [154] we discuss a hybrid between the two alternatives where the control
component of the router is based on the PC architecture but where the
forwarding is done by a very fast lookup engine called the Internet Fast
Translator (IFT). Previously we also published a different hybrid design based
on a PC control architecture and a ATM switch which is capable of unicast and
multicast MPLS [20].

In our experiments we have chosen for a pure PC router platform. The platform
used for the experiments consists of a collection of 10 Linux PC based routers
arranged according to the topology depicted in Figure 57.

Figure 57: The topology of the PC router network used for the
experiments. The routers are connected with each other via the test
network but they are also connected to a control network.

The test network connects the routers point-to-point to each other. The routers
are also connected to a control network. The control network is used to install
and configure the routers but also to orchestrate the tests. Special care has to be
taken that test traffic does not use the control network.

Unlike commercial routers, which are the combination of dedicated routing
hardware and software, a PC router is really just a normal PC usually equipped
with additional network interface cards (typically four). This means that all the
software needs to be selected and installed. In the next section we will describe
the software platform based on the Linux operating system.

5.2.1.b Software platform

In this section we will give a fairly high level overview of the software
components used in the experiments. We refer to Appendix A for the details

C D

A B E F

G H I

Control network

Evaluating and improving failure convergence schemes in IP networks 138

about each component. In this section we will look at four components. We start
by introducing the operation system, afterwards the routing daemon and the
MPLS signalling daemon and finally the control architecture.

Operating System
We selected GNU/Linux operating system [48, 49] usually simply referred to as
Linux. Linux is a freely available UNIX-type operating system. Originally
developed only for the Intel PC architecture but currently ported to both small
embedded systems and high-end mainframe systems. Linux supports a wide
range of Network Interface Cards (NIC), has a high performance network stack
and has advanced queuing and scheduling capabilities.

Linux is distributed under the conditions of the GNU (GNU is Not Unix) [50]
General Public License (GPL [51]) which means that the full source code is
available to its users. This allows anyone to find out how the system works and
to trace and to remove any bugs. But more importantly this gives the user the
ability to add functionality to the Linux kernel. A prime example in the light of
this work is the support for MPLS as provided by [155]. In his work James R.
Leu implemented an MPLS stack for Linux loosely based on the IPv4 stack.

Note that Linux is not the only free and open Unix implementation available.
The most notable alternatives are the operating systems of the BSD family
(OpenBSD [156], FreeBSD [157] and NetBSD [158]). Linux was chosen over
any of the BSD alternatives because of the author’s and the research group’s
familiarity with Linux and the availability of a MPLS implementation for Linux.

We will now investigate some of the key properties of Linux. A Linux system
typically consists of the Linux kernel and a number of user space programs and
daemons. The kernel is the abstraction layer used to shield the system resources
from the user space programs. User space is a term specifically used to denote
that a certain program is not part of the Linux kernel but rather runs under the
provisions of the kernel.

A daemon is a program that does certain jobs in the background. Daemons
typically do not interact with the user directly nor do they output directly to the
screen but rather add log entries to their own log files or to the system-wide log
files. Examples of daemons are a web server, a firewall, a network proxy, a
routing protocol daemon and a MPLS signalling daemon. It is important to note
that a daemon does not run in kernel space although they sometimes are more
closely tied (and dependent on) the kernel.

Linux is a true pre-emptive multi-tasking operation system kernel. All processes
run entirely independently of each other in a separate address space. Pre-emptive
multi-tasking means that the kernel can take away the processor from a certain

Evaluating convergence schemes 139

user space process. Pre-emptive multi-tasking is more advanced than co-
operative multi-tasking where a process has to explicitly yield the processor.
Most modern operation systems are pre-emptive multi-tasking. In Linux only the
user space processes are pre-emptive, the kernel itself is not pre-emptive. This
means that the kernel will complete a certain operation unless it yields the
processor itself. Certain kernel operations can be relatively long and during these
operations the kernel does not perform any other work which can lead quite high
response times. For example [159] cites response times to an audio application of
more than 20ms during disk writes. Certain kernel operations take even more
time, [160] cites 50ms for setting device parameters up to 500ms for scrolling on
a frame buffer console. Linux is not a hard real-time operating system which
means that it cannot guarantee real-time bounds on scheduling delays. Although
real-time variants of Linux exist, for example RTLinux [161], these should
actually be regarded as distinct operating system kernels. As such the MPLS
functionality is not easily ported over to them. As a consequence we are not able
to use a real-time operating system. We will see that this has its consequences
later on.
The most important modification to the Linux kernel used in the experiments is
the addition of the MPLS stack.

Routing daemon
We selected the GNU Zebra routing platform [46]. Zebra is a suite of routing
protocols that manages TCP/IP based routing protocols. It supports the BGP-4
protocol as well as RIPv1, RIPv2 and OSPFv2. Zebra software offers true
modularity in the sense that it has a process for each routing protocol. The
availability of the source code has proved to be very useful, not necessarily to
modify the source but rather to complement the information in the relevant RFCs
on the routing protocols. We verified the Zebra OSPF implementation with
respect to the RFC specification in [153]. We selected Zebra as the routing
daemon because it is the most important and most active open source routing
platform.

The only modification done to Zebra is that the precision of the time stamping in
the log files has been improved from second to millisecond granularity.

MPLS signalling daemon
Unlike the operating system and routing protocol software components, where
high quality implementations that supported all the requirements were available,
there was no such MPLS signalling daemon. There was an LDP daemon
developed in house and the LDP daemon from the MPLS-Linux project [155]
but both where LDP-only daemons that did not support explicitly routed LSPs.

Evaluating and improving failure convergence schemes in IP networks 140

At that moment there was also a port of the ISI Intserv RSVP implementation
[162] to Linux by Alexey Kuznetsov [163]. But that RSVP daemon does not
support MPLS. There was also the Nistswitch version 2.0 daemon for FreeBSD
by USC [164] supporting MPLS and explicitly routed LSP but only under
FreeBSD.

So there were several daemons but neither of them offered ER-LSP support
under Linux. It was decided to opt for a RSVP-TE daemon rather than an CR-
LDP daemon because of the increasing popularity of RSVP-TE over CR-LDP
and the fact that the author was more familiar with CR-LDP so working towards
a RSVP-TE solution would be a good exercise to get more familiar with RSVP-
TE. Note that implementing a RSVP-TE daemon from scratch was not
considered an option so the existing daemons had to be reused.

It was decided to combine the IntServ RSVP daemon for Linux and the MPLS
daemon for FreeBSD so that the MPLS and ER-LSP functionality of the
Nistswitch daemon would be available under Linux. This was possible since they
are both based on the ISI RSVP implementation. The MPLS specific code in the
Nistswitch daemon was obviously written for FreeBSD. This does not create a
problem for the bulk of the code since both Linux and FreeBSD are Unix-like
operating systems. Only the part where the daemon interacts with the kernel to
install the MPLS forwarding state needed to be rewritten because it is kernel
specific. Fortunately MPLS support for the Linux kernel code was available
through the MPLS-Linux project [155]. The kernel specific code in the daemon
needed to be rewritten to use the MPLS-Linux MPLS code under Linux. After
the integration of the two daemons and the kernel code support for DiffServ over
MPLS was also added.

The resulting daemon in combination with the necessary kernel and user space
patches supports the setup of shortest path and explicitly routed E-LSPs and L-
LSPs (see section 2.5.2). The daemon in return was publicly released through the
“RSVP-TE daemon for DiffServ over MPLS under Linux” [133] project. The
author has been leading the open-source effort since summer 2001 and a
considerable number of participants from vendors, research institutes and
universities all over the world have joined the project. Appendix B, first
published in [7], describes the architecture of the daemon and the benefits and
drawbacks of open-sourcing a project like this in more detail.

Control architecture
As illustrated in Figure 57, each node of the test network is not only connected to
its routing peers but also to a control network. The control network’s purpose is
to have an out-of-band administration and management channel to operate and

Evaluating convergence schemes 141

administrate the test network. For example, a typical scenario in the experiments
disables an interface of the test network and then measures the time it takes the
test network to route around the failure (the disabled interface). In order to
conduct such an experiment a control channel must exist to disable the interface
of the test network and at the same time remain connected to the control network.

In order to conduct a single test scenario several operations need to be performed
on the routers in the test network. Most of these operations are typically
performed interactively from the Command Line Interface (CLI). A lot of these
operations need to be performed on every router in the test network. For example
before conducting an MPLS experiment the MPLS signalling daemons need to
be started on every router. Given that we want to repeat the experiments
numerous times it is clear that manually configuring and running each
experiment is not realistic and very prone to error. To address these issues an
experiment automation framework has been developed based on Expect [165].
Appendix C describes this framework in more detail. Note that the experiment
automation framework uses the control network to connect to the routers in the
test network.

In the next section we will describe the measurement platform that is used to
measure the convergence times in the test network.

5.2.2 Measurement platform

In this section we will describe a few techniques that are typically used to
conduct experiments inside a network. We will start by explaining how ping can
be used to get a crude estimation of the convergence time. After that we will
look at other alternatives which are more suitable in the context of precise
convergence time measurements in MPLS networks. Subsequently we will
compare the alternative and adopt a single measurement scheme. In the final
section we will investigate the precision of the implementation of this scheme.

5.2.2.a Using Ping

Basic connectivity tests in IP are often conducted with the ‘ping’ tool [166]. Ping
sends ICMP REQUEST packets to a certain destination. The destination replies
by sending an ICMP RESPONSE back to the sender [11, 167]. The sender on
receipt of the response knows the two-way delay, the number of hops between
source and destination (from the TTL decrement) and a rough estimate on the
packet loss. The ping tool can be used to get a crude estimation of the
convergence time in IP by pinging a destination in the network and then
introducing a fault. During the time of convergence the ICMP REQUEST
messages will not reach the destination and/or the ICMP RESPONSE message
will not be able to reach the sender. The maximum time between two

Evaluating and improving failure convergence schemes in IP networks 142

consecutive successful ICMP request/response pairs (pings) or the number of
lost pings are an indication for the time of convergence. Using ping as a
measurement technique has a number of drawbacks especially within the context
of MPLS.

A first problem with using ping is the low rate of the ICMP packets, only one
packet per second. The rate of the ping packets determines the absolute error on
the measurement and an absolute error of one second is definitely not an accurate
measurement in this context. Increasing the rate easily solves this problem and
some of the more advanced ping implementations support this.

A more fundamental problem is that ICMP based measurements are intrinsically
bi-directional and LSPs are unidirectional. This means that you cannot measure
the time to recover a single LSP but rather the time required to recover a single
LSP and the reverse IP path or two LSPs bundled in together in the two opposite
directions. The fact that routes in IP networks can be asymmetric introduces
more problems. So we can conclude that unidirectional or one-way
measurements are necessary.

5.2.2.b One-way measurements

A general problem with time measurements over a different number of nodes is
time synchronisation [168]. For instance consider that we want to measure the
time it takes a node to perform a protection switch over an LSP measured from
the time the failure occurs (see Figure 58). The factors that contribute to this time
are (1) the time to detect the failure, (2) the time it takes for the FIS to reach the
PSL and (3) the time to determine and perform the correct protection switch
action.

Figure 58: The different phases of convergence with protection switching.
Measuring the time between the failure event and the protection switch
operation at the FSL requires clock synchronisation at node C and node B.

PSL

3) Perform PS

C

A D E

F G

2) Send FIS 1) Detect failure

B

Evaluating convergence schemes 143

Consider that we simulate a link failure on link CD by disabling the interface on
node C. When we disable the interface on node C at instance t1 and measure the
time t2 when the protection switch is performed at the PSL (node B) then the
time to converge is given by t2 – t1. Since we measure time instances on two
distinct machines the clocks on the machines need to be synchronised.

There are two main solutions to synchronise clocks on routers. One solution is to
use a Global Positioning System (GPS) which allows a router to retrieve precise
location and time information from a set of satellites. The timing information
offers a 340ns precision 95% of the time for the Standard Positioning Service
(SPS) [169]. The main drawback of the use of GPS is that it requires extra
hardware and that sometimes the location of the routers can prohibit its use.

The other solution is to use the Network Time Protocol (NTP) [170]. NTP is
network protocol used to synchronise clients or servers to other servers or
reference time sources. The drawback of NTP is that there’s an error introduced
by the transfer delay of the NTP packets. Another drawback is that the individual
clocks still drift relative to each other so regular synchronisation is necessary.
Still NTP delivers millisecond precision in LAN segments. Despite the fact that
time synchronisation can be achieved it still is desirable to not rely on it if
possible.

We now return to the example in Figure 58. There are additional drawbacks to
measuring the time between the network impairment and the resulting
convergence action (i.e. the link failure and the protection switch operation). The
first drawback is that it is difficult to verify that the convergence action is
correct. Verifying the correctness requires that the new outgoing label and
interface after the protection switch are the outgoing label and interface of the
recovery LSP and that the recovery LSP is properly set up. When another
convergence scheme is used, for example IP routing, then the verification of the
convergence will be different which is obviously a drawback. This leads to the
third drawback of this measurement scheme. Not only does the verification of
correct convergence differ for each convergence scheme but also the manner in
which the convergence time is measured. For example the analogue for
measuring the convergence time of IP routing requires monitoring the routing
table in node B (the PSL in Figure 58). When FTCR is used in ingress FSL
selection mode then this scheme requires that we measure when the recovery
LSP is set up and switched over to.

Of course a measurement scheme that can measure the convergence time and the
correctness of every convergence scheme the same way is preferable over a
scheme that must be adapted ad hoc for each recovery scheme.

Evaluating and improving failure convergence schemes in IP networks 144

To conclude, as we have seen measuring the start (the network impairment) and
the final convergence operation (e.g. protection switch) has numerous
disadvantages: it requires time synchronisation, it is difficult to verify that
convergence has occurred and it is not generic since it needs adaptation for every
convergence scheme.

In the next section we describe a measurement scheme that does not require time
synchronisation and that can be used to measure the different convergence times
for all the schemes under investigation without modification.

5.2.2.c One-way measurements without time synchronisation

We discussed two measurement techniques: using ping and measuring the start
and the end of the convergence cycle. The approach adopted here can be
described as a high-speed unidirectional version of ping.

The measurement approach relies on frequently sending sequence numbered
packets from a given source to a destination. After a random delay a network
impairment is introduced. During the time of convergence the packets sent from
the source towards the destination will be lost because the network has not
converged yet. The convergence time can then be determined by measuring the
number of packets missed at the receiver side. The number of missed packets is
determined by looking at the gap in sequence numbers. The convergence time
can then in turn be determined by multiplying that number by the rate at which
the packets were sent.

convergence time = loss count * (1 / rate) (2)

This scheme is unidirectional because packets are only sent in one direction.
Moreover the scheme does not rely on time synchronisation because determining
the missed packets does not require any timing at all. The correctness of the
measured convergence time does depend on the rate at which the packets are sent
at the sender and received at the destination, which should be constant over the
experiment. The scheme is applicable to every convergence scheme and it can
measure the time of convergence between a given source and destination without
modification.

It is important to note that this scheme measures the time of the recovery cycle as
defined in section 3.1.1. In that section we stated that the recovery cycle ends
when the last recovery action is finished. However that does not mean that all the
negative effects of the network impairment have been resolved after the last
recovery action. This is illustrated in the next paragraph.

When a failure occurs, packets that already have traversed the failing link or
node will continue to flow to the destination (Figure 59a). After the last packet

Evaluating convergence schemes 145

has been received at the destination no more packets will be received until the
network has converged and the packets flow over the new path to the destination
(see Figure 59b).

Figure 59: The forwarding of the test packets before and after the network
has converged illustrated here with protection switching. a) When the
failure occurs but before the network has converged only packets that
have traversed the failing link will continue to reach the destination. b)
When the network has converged, the packets start to arrive at the
destination again over the recovery path.

The packet loss as measured by this scheme is only a measure for the
convergence time since it does not take into account the difference in latency
between the working path and recovery path. It does take the distance between
the failure and the PSL into account which is important because it represents the
amount of traffic that is lost because it was sent over the original working path
after the failure but before the protection switch operation.

As an alternative for determining the packet loss as a measure for the
convergence time it is also possible to measure the maximum delay between two

C

A B D E

F G

PSL

Perform PS C

A D E

F G

a)

b)

Evaluating and improving failure convergence schemes in IP networks 146

consecutive packets at the receiving side. During the convergence period this
delay will be very high since no packets will be received until the network has
converged and the packets start to arrive at the destination again. This measure is
a good indication for the convergence time from the user point of view. The
measured time frame can be seen as the service interruption time from a user
point view (f.i. consider that the test packets are video packets for a stream that a
user is watching at the destination node). Measuring the maximum delay at the
receiving side also measures the difference in delay between the working and the
recovery path and thus has a higher dependency on the network topology. In the
above example there is an additional delay introduced by the increased length of
the recovery path from the PSL to the destination (one additional hop and link).
Note that in some occasions the additional latency and length may be negative
because the recovery path is shorter than the working path.

The main drawback of measuring the number of missed packets or the maximum
delay is that the reversion time cannot be measured. These schemes will only
measure the disrupted traffic when the path is changed from the recovery path
back to the preferred path. Measuring the disruption during reversion is an
interesting experiment, if however the actual reversion time needs to be
measured then the individual events need to be measured.

5.2.2.d Comparing the alternatives

Table 13 compares three different measurement approaches to determine the
convergence time. The first approach, explained in the previous section,
determines the convergence time by measuring the time of the first and last step
in the convergence cycle. The second approach measures the delay between the
consecutive test packets and determines the convergence time by using the
maximum delay value. The third approach determines the convergence time by
multiplying the packet loss with the reciprocal of the rate.

Note that we do not include ping in this comparison because ping is bi-
directional and thus not useful in the context of MPLS.

Measuring the time of the first and the last event of the convergence cycle has
the drawback that the measurement implementation needs to be adapted for
every scenario. Another drawback is that this scheme requires time
synchronisation and that verification of successful convergence is weak. The
major benefit of this approach is that it can measure the reversion time.

Measuring the maximum delay or the packet loss do not suffer from the
drawbacks that measuring the individual events does. However measuring the
maximum delay has the drawback that the delay must be low enough during
working conditions and that the rate of the measurement packets must be precise

Evaluating convergence schemes 147

enough. Similarly, measuring the packet loss requires that there is no packet loss
during working conditions and that the rate is precise enough.

Table 13: comparison of the different convergence time measurement
schemes.

Measuring
events

Max
delay

Packet
loss

Generic no yes yes

Failure detected
by

local
detection

high
delay

packet
loss

Requirements time sync. low delay/
fixed rate

no loss/
fixed rate

Convergence
verification

weak strong strong

Convergence time
determined by

timing events max
delay

packet
loss * rate

Reversion time
determined by

timing events n/a n/a

5.2.2.e The adopted measurement platform

We have adopted the packet loss based convergence time measurement
technique for conducting the convergence time measurements. Measuring the
convergence events was deemed too error prone since it needs to be adjusted for
every convergence scheme and there is little proof of convergence. Measuring
the packet loss was chosen over measuring the maximum delay because this
model was easier to support with the chosen measurement hardware. As a final
note we like to remark that we have compared the results of measuring the
maximum delay and the packet loss with a software-based solution. The results
were in line with each other but the absolute errors on the measurements were
too large for the measurements on the faster convergence schemes. As a result a
hardware-based approach was investigated.

First we will describe the role of the measurement hardware and exact setup of
the convergence measurements before we examine the precision of the adopted
measurement scheme given the intrinsic limitations of real experiments.

Evaluating and improving failure convergence schemes in IP networks 148

Measurement setup
We use the Smartbits 2000 (SMB2000) [52] hardware measurement platform.
The Smartbits is equipped with Fast Ethernet Smartcards [171]. Smartcards
generates, monitors, and captures data at or beyond wire speed. We send data
using the “Continuous Mode” where a constant stream of packets is sent at a user
selected inter-packet gap. At the end of the experiment the statistics are gathered.
The statistics come in the form of the following counters: packets successfully
transmitted, valid packets received and the latency and a latency distribution of
the packets. Time measurements on the Smartbits 2000 have a precision of 100ns
[172] which is more than sufficient for our experiments.

The experiments are controlled via an application that uses the SmartLib [173,
174]. This application sends a stream of test packets sent with a configurable rate
during a configurable amount of time. After the experiment, statistics both from
the sending Smartcard and the receiving Smartcard are collected. This allows us
to determine the packet loss and the latency distribution of the packets during the
experiment.

When the Smartbits is attached to a network as illustrated in Figure 60 it allows
to collect statistics of the test traffic sent over the network. We will use this setup
to determine the convergence time of the various convergence schemes.
However before the experiments are conducted it is important that the
requirements of this measurement scheme are validated.

Figure 60: The test network and the test equipment used to conduct the
convergence time experiments.

C D

A B E F

G H I

Smartbits
2000

Evaluating convergence schemes 149

As we have seen in Table 13 the measurement scheme requires that there is no
packet loss in the network and that the rate is constant over the experiment. This
can easily be verified by running multiple initial tests over the network. Note that
meeting these requirements depends on the rate at which the test packets are sent.
For example when the packets are sent near to or even above the link rate the
requirement that there is no packet loss can obviously not be met.

After the verification that the requirements are met, the experiments can be
conducted. Each experiment starts by sending test packets then introducing a
network impairment and then collecting the statistics after a suitable long time. It
is important that the time during which the packets are sent is longer than the
convergence time plus the random time that is waited before the impairment is
introduced. In other words it is important that the test packets start to arrive at
the destination again after the convergence.

Although care is taken to achieve an as high as possible precision, no experiment
is without error. In the next section we will describe the precision of our
measurement approach.

5.2.2.f Measurement precision

This section describes the precision of the measurement technique. There are two
sources of inaccuracy. The first source is the finite granularity of the
measurements and the second is the less than perfect rate at which the test
packets are sent.

From Figure 61 we see that the reciprocate of rate (the delay between two test
packets) determines the granularity of the measurement. We also see that the
measured value can be off by one (both higher and lower) compared to the real
value of the convergence period.

Experiment Measured Real
value value

A . x x . . . 2 ~2
B . . x . . . 1 ~2
C . x x x . . 3 ~2

Figure 61: Illustrated here is the imprecision on the measured
convergence period introduced by the finite rate of the test packets. The
circle represents the convergence period, the dots individual test packets
and the x’s lost test packets.

Evaluating and improving failure convergence schemes in IP networks 150

In order to keep the error on the measured convergence period as low as possible
the rate needs to be as high as possible. However in real life experiments the rate
of the test packets is finite due to the limited bandwidth of the network and the
limited forwarding capability of the routers. Also the fact that during working
conditions no packets may be lost limits the rate too.

Taking into account the fact that the reciprocal of the rate determines the
precision of the convergence time, formula (2) needs to be rewritten as:

convergence time = (loss count ± 1) * (1 / rate) (3)

taking the absolute error on the measurement i.e. 1 / rate into account.

The absolute error on the measurements should be as low as possible because it
determines the precision of the measurement. However the usefulness of the
measurement is determined by the proportion of the absolute error compared to
the measured value i.e. the relative error on the measurement. The relative error
is commonly expressed in a percentage of the measured value (the percentage
error). In Figure 61 the relative error is very high i.e. 50% which is prohibitive.
However the figure does not reflect the values in the experiments where the
relative error is much lower (ranging from 0.01% up to 5.6%).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Lost

Send .

Convergence X X X X X X X X X X X X

Received 1 2 3 4 5 6 19 20 21 22 14

Send

Convergence X X X X X X X X X X X X

Received 1 2 19 20 21 22 18

Send

Convergence X X X X X X X X X X X X

Received 1 2 3 4 5 6 19 20 21 22 14

Send

Convergence X X X X X X X X X X X X

Received 1 2 3 4 5 6 20 21 22 9

Figure 62: This figure shows the influence of delayed test packets on the
measured convergence time. The first sequence represents a perfect test
packet stream, the convergence period and the measured packet loss.
The second, third and fourth sequences show the influence of a delayed
test packet on the measured packet loss for different positions of the
delayed packet with respect to the convergence period.

Evaluating convergence schemes 151

This scheme also requires that the rate of the packets is constant. This means that
the test packets should be sent at a constant rate but also that they are forwarded
with a constant delay over the network. When for example a packet is buffered
on a router the instantaneous rate downstream of that node drops. Put in another
way, high burstiness or jitter of the test stream introduces an error on the
measurements if the burst coincides with the convergence period.

As illustrated above sending packets at a lower rate results in a lower number of
missed packets. Similarly sending packets at a higher rate results in more lost
packets. When a test packet is delayed by a router then the subsequent packets
will be buffered. This means that although the source sends the packets at a
fixed rate the packets can also be forwarded at a higher rate.

Now we will determine the probability and the error introduced by an incorrect
rate during the convergence period. Unfortunately it is impossible to determine
the rate at which the packets are sent during the convergence period because the
packets are lost during that period. We can however determine the latency
distribution during working conditions.

Table 14: The cumulative latency distribution averaged over 100
experiments. In every experiment 50.000 packets were sent. The large
majority of the packets receive a latency between 0.2 and 0.5ms.

Cumulative Latency distribution

<0.2 <0.5 <1 <2.5 <5 <10 <25 ms

0 99,32 99,40 99,62 99,89 99,99 100 %

Table 14 clearly illustrates that the majority of the packets receive a low delay.
99.4% of the packets receive a delay that is lower than the absolute error of 1ms
corresponding with the measurement rate of 1000 packets per second. The
problem is the remaining 0.6% of the packets. The reason that some of the
packets are significantly delayed compared to others can be found in the fact that
Linux does not offer guaranteed scheduling delays (see section 5.2.1.b). These
packets can experience a much higher delay, as a matter of fact the highest delay
measured is 11.5ms. This translates into an absolute error of 11.5ms. This is
acceptable for some experiments because the resulting percentage error is low
enough.

However there are other experiments where the absolute error translates into a
percentage error in the order of a few ten percents which is not acceptable. For
example when the convergence period is 50ms and the absolute error introduced

Evaluating and improving failure convergence schemes in IP networks 152

due to a large delay is 10ms then the percentage error is 20%. This percentage
error is obviously too high. However when the convergence period is only 50ms
the chance that a delayed packet coincides with the convergence period is very
small. Moreover when the delayed packet falls entirely inside the convergence
period it does not have an influence on the measured convergence time (as
illustrated in the third example in Figure 62). So only a delayed packet
coinciding with the outmost 20ms of the convergence period (10ms on both sides
of the interval) can affect the measured convergence time. When we take into
account that the probability to have a delayed packet is low (0.01%) this means
that the chance that an experiment is affected is low (0.2% when packets are sent
every ms). So we can expect that any errors due to large delays will not influence
the average measured convergence time too much.

We are however also interested in the minimum and maximum convergence
time. A delayed packet can influence both the minimum and the maximum
delay. However since the probability is so small it might not happen at all or if it
does it will be easily detected as an anomaly in the series of measured values.

5.3 Investigating convergence times
Now that we have introduced the test network and the measurement scheme we
are ready to discuss the convergence time measurements themselves.

Every experiment follows the same pattern. Test traffic starts to flow from
source to destination (one packet per ms). Then after a random interval a link
failure is introduced. The test traffic continues to flow to allow for convergence.
After the convergence statistics are gathered.

In the remainder of this section we will give the test description, the test
parameters, the test results and the conclusion for each experiment. When we
give the conclusions we try to pinpoint the limitations of the experiments. We
start by investigating OSPF convergence.

5.3.1 OSPF convergence

Description of test
In this test we will measure the time required for the network to converge after a
single link failure. We will compare two variants of OSPF one where the failure
is detected through the Hello protocol and one where the failure detection is
immediate.

Immediate failure detection is implemented by disabling the interface on the
local router. This will cause the Linux kernel to send a netlink message to the
OSPF daemon. The OSPF daemon then immediately acts on the failure without

Evaluating convergence schemes 153

relying on the Hello protocol. Note that this netlink message can also be ignored
by the OSPF daemon so that it relies on the Hello protocol to detect failures.

Test parameters
Table 15 summarises the experimentation parameters. Every experimentation run
consists of 100 individual experiments (Table 15a). During the experiment every
1ms a test packet is sent (Table 15b). As seen before the number of missed
packets indicates the convergence time. Standard OSPF parameters are used, i.e.
10s for the hello interval and 40s for the router dead interval (Table 15c-d). The
SPF delay is set to 5s (Table 15e). Note that the Hold-Down timer is set to 10s
but the experiments are spaced sufficiently far apart that the time between two
SPF calculations never exceeds 5s (see Figure 30).

Table 15: Parameters used in the OSPF convergence experiments

Parameter Value
a Number of measurements 100
b Measurement interval 1ms
c OSPF hello interval 10s
d OSPF router dead interval 40s
e OSPF SPF delay 5s

The topology and the network set up shown in Figure 63 have already been
described in Figure 60. In this experiment and the following experiments we will
simulate a link failure by disabling the interface BC on router B. The
convergence time is measured by determining how many test packets, that are
sent with a fixed frequency from A towards E, are lost.

Figure 63: During the OSPF convergence experiments the link BC is
brought down. We measure the convergence time by determining how
much test packets that are sent between node A and E are lost during
convergence.

C

A B D E

F G

Evaluating and improving failure convergence schemes in IP networks 154

Test results
Figure 64 shows the results of the two experiments. It is immediately apparent
by looking at the graphs that the difference between the two experiments, the
failure detection, has a large impact on the convergence time. Note that the
standard deviations on the convergence times are depicted on the average bar for
both the OSPF protocol with Hello Protocol failure detection and the OSPF
protocol with immediate failure detection. However the standard deviation of the
latter is so small that it is not visible.

Figure 64: The measured convergence times for OSFP with the Hello
protocol as failure detection mechanims and OSPF with immediate failure
detection.

We will now investigate the experimentally determined convergence times in
more detail by comparing them with the theoretical convergence time analysis
performed in Chapter 3 and Chapter 4. The second row of Table 16 shows the
theoretical convergence time for the OSPF protocol as described in section
3.3.2.c. The third and fourth rows give the theoretical convergence for the two
experiments where the parameters are substituted with the values from Table 15.

Measured convergence time

0

10000

20000

30000

40000

50000

(m
s)

OSPF hello 35082 44871 39365,10

OSPF no hello 5013 5027 5018,45

Min Max Avg

Evaluating convergence schemes 155

Table 16: Theoretical convergence times for OSPF

Fault
detection

Notification
time

Hold-down
time

Recovery
operation

[router dead-hello
interval, router dead]s

δ [SPF delay,
hold-down]s

SPF (ε)
update RIB (γ)

OSPF+
Hello

[30, 40]s δ 5s ε+γ

OSPF κ δ 5s ε+γ

We start by investigating the fault detection time. The fault detection time for the
first experiment is determined by reformulating formula (1) of section 3.2.1.b.

Tdetect = [receive interval– send interval, receive interval] (4)

If we substitute the Router Dead and the Hello Interval (see Table 15) we get:

TdetectHello = [30, 40]s (5)

Note that the actual value of the detection time depends on the timing of the last
Hello packet with respect to the failure. If the last packet is sent just before the
failure then it will take almost a complete router dead interval before the failure
is detected i.e. 40s. However if the last packet is sent almost a hello interval time
before the failure it will take up to a hello interval less time to detect the failure
i.e. 30s. Since the time that the failure is introduced in the network is randomised
we can expect to see more or less the full range of the detection interval
(TdetectHello).

We can determine the detection interval and verify formula (4) by comparing the
convergence times of the two experiments. Since the two experiments are
identical except for the failure detection scheme the detection time of the Hello
protocol can be determined by subtracting the convergence time without failure
detection from the convergence time with the hello protocol:

TdetectHello – κ = COSPF+Hello – COSPF (6)

We thereby assume that the detection time with immediate failure detection (κ)
is very small compared to the detection time with the Hello protocol.

Note that we will denote convergence times by a capital C with the protocol
subscripted.

Formula (6) does not really reflect it but convergence times therein are actually
intervals which is of course correct since TdetectHello is an interval too. To

Evaluating and improving failure convergence schemes in IP networks 156

determine TdetectHello we will use the average value for the COSPF and the entire
range of the COSPF+Hello interval. This means that we consider that the COSPF

values are constant which is not entirely true. This assumption introduces an
error of about 10ms. Taking this into account leads to the experimentally
measured interval for the failure detection with the Hello protocol:

T’detectHello = [30064, 39853]ms ± 10ms (7)

Note that we will denote experimental measured values with a single accent.

We see that (7) approximates (5) well. The errors introduced here are due to the
fact that we probe the 10s hello interval with 100 individual experiments. We
cannot expect that the full range of possible values are exposed this way.
However we see that 98% of the theoretical interval is confirmed by the
experiments. This should be considered sufficient to experimentally validate (5)
given that the parameters are in the second range and that the maximum offset is
in the order of 200ms. Another source of inaccuracy is introduced by the
absolute error on the measured convergence time and the fact that the
convergence times of OSPF with immediate failure detection are not fixed.

We will now focus on the second experiment because its standard deviation is
much lower which makes it a lot easier and more precise to determine the length
of the other phases of the convergence cycle. Both the failure detection time, the
notification time and the convergence operations time are expected to be low.
The failure detection time should be low because immediate failure detection is
used. In this experiment this means that the OSPF protocol is notified
immediately when the link is disabled. The notification time is also low because
router B does not depend on the receipt of external LSAs to perform the recovery
operations. Finally the recovery operations, the SPF calculation and the update of
the RIB are expected to be small too since the network is small (about 10 routes).
This means that the SPF delay should dominate the convergence time, from
Figure 64 we see that this is the case:

C’OSPF = [5013, 5027]ms ± 1ms (8)

This means that the time to detect the failure plus the time to calculate and install
the routing tables is somewhere between 13 and 27ms.

Although the SPF delay dominates the convergence time it is not feasible to
eliminate the SPF delay since it is an important stability feature of OSPF. We
will investigate the OSPF stability in section 5.4.3.

A final observation is that the standard deviation with immediate failure
detection is two orders of magnitude lower than when the Hello protocol is used
to detect failures (13ms vs. 2628ms respectively). The high standard deviation is

Evaluating convergence schemes 157

caused by the large range over which the detection time can differ between the
individual experiments.

Conclusion
The failure detection with the Hello protocol makes up the major part of the
OSPF convergence. If immediate failure detection is used then the major part of
the convergence time is taken by the SPF delay. This is only true when the
network and the number of routes are relatively small otherwise the LSA
transmission time, the SPF calculation and the RIP update time become
significant too. Also, under these circumstances one SPF may not cover all the
LSA updates so the convergence time is delayed with 10s, the Hold-Down time,
per additional SPF. Finally, the theoretical convergence times and the
experimental convergence times are consistent with each other in this
experiment.

5.3.2 MPLS rerouting with RSVP-TE

In this experiment we will look at convergence in MPLS networks. More
specifically we will compare soft-state MPLS rerouting with triggered MPLS
rerouting.

Description of test
In this test we will measure the time required for the MPLS network to converge
after a single link failure on a single LSP. First we set up an LSP and map the
test traffic on it. Then we will introduce a link failure on this LSP. The MPLS
daemons rely on the OSPF protocol with immediate failure detection to detect
this failure and calculate new routing tables. In the first experiment we will use
pure soft-state rerouting and in the second experiment we will use triggered
rerouting. We will use RSVP-TE as the MPLS daemon since LDP does not
support soft-state rerouting.

Test parameters

Table 17: Parameters used in the MPLS experiments

Parameter Value
a Number of measurements 100
b Measurement interval 1ms
c OSPF SPF delay 5s
d RSVP refresh period (R) 30s
e RSVP hold-down 2s

Evaluating and improving failure convergence schemes in IP networks 158

We reuse the same experimentation parameters as in the first experiment where
applicable. More specifically the same OSPF parameters are used and the same
link failure is simulated. A standard RSVP refresh period (R) of 30s is used to
determine how often an LSP is refreshed ([0.5R, 1.5R]) [31]. The RSVP hold-
down period (2s) determines how long the MPLS daemon waits before rerouting
the LSP after the routing tables have changed.

Test results
Figure 65 clearly shows a huge difference in the maximum convergence time
between soft-state MPLS rerouting and triggered MPLS rerouting. We will now
investigate the convergence times in more detail.

Figure 65: The measured convergence times for MPLS soft-state and
triggered rerouting.

We start by giving the theoretical convergence times for the two convergence
schemes (Table 18).

Measured convergence time

0

10000

20000

30000

40000

50000

(m
s)

Softstate RSVP 7031 46803 30348,00

Triggered RSVP 7030 7033 7031,43

Min Max Avg

Evaluating convergence schemes 159

Table 18: The theoretical convergence times for soft-state and triggered
MPLS rerouting.

Fault
detection

Notification
time

Hold-down
time

Recovery
operation

RSVP
soft-state

IP
convergence

IP
convergence

Hold-down +
[0,5-1,5]R

LSP setup (ζ)

RSVP
soft-state

IP
convergence

IP
convergence

2s +
[15-45]s

LSP setup (ζ)

RSVP
triggered

IP
convergence

IP
convergence

Hold-down LSP setup (ζ)

RSVP
triggered

IP
convergence

IP
convergence

2s LSP setup (ζ)

We see that both soft-state and triggered MPLS rerouting depend on the IP
convergence protocol. Since the IP convergence is the same in the two
experiments it is the trigger for the MPLS convergence that differs significantly.
In soft-state rerouting the trigger is given by a request to refresh an existing LSP
while in triggered MPLS rerouting the convergence is triggered by the IP
convergence. Note that in both cases a hold-down timer of 2s is used.

By subtracting the convergence times we can determine the delay introduced by
the RSVP refresh period.

C’
RSVP_SOFT_STATE – C’

RSVP_TRGGERED = [1, 39770]ms ± 1ms (9)

The first observation is that in the best case soft-state rerouting does not
introduce an additional delay to the convergence time. In this case the LSP is
refreshed exactly at the same time the routing tables are changed. The daemon
will then wait 2s (the hold-down time) before rerouting the LSP. This results in
exactly the same behaviour as with triggered rerouting. However the worst case
behaviour is completely different. From the experiments it is clear that the
convergence time can be almost 40s higher. This happens when the LSP has
been refreshed just before the routing tables are updated and subsequently a large
refresh period is used. Remember that the refresh period is randomised over the
interval [0.5, 1.5]R = [15, 45]s. So theoretically the additional convergence of
soft-state rerouting compared to triggered rerouting can be up to 45s. In this
experiment we only observe an additional delay of 40s. This is caused by the
imperfect randomisation of the refresh period in the implementation. We only
observed the following refresh periods {20, 23, 25, 26, 30, 38, 40, 42}s over 100
experiments which is a quite crude approximation of the theoretical interval.

Evaluating and improving failure convergence schemes in IP networks 160

The convergence time of triggered MPLS rerouting is much more predictable
and in general much lower than with soft-state rerouting. We will investigate the
convergence time of triggered MPLS rerouting in the next experiment where we
compare the convergence time of triggered MPLS rerouting with OSPF.

Conclusion
Both soft-state and triggered MPLS depend on IP convergence. Soft-state
rerouting should be avoided if possible because it can add a significant delay to
the convergence time. The maximum delay depends on the length of the refresh
period. It is possible to reduce the refresh period but this will increase the
signalling overhead and will limit the scalability.

Triggered rerouting has a very predictable convergence time (only 3ms
difference between the minimum and the maximum convergence time) and its
convergence time is typically much lower.

5.3.3 Comparing OSPF with MPLS rerouting

Description of test
In this test we will compare the convergence time of OSPF with triggered MPLS
rerouting to gain further insight in the convergence time of triggered MPLS
rerouting.

Test parameters
This is not really a new test but rather a comparison of the results from the first
and the second experiment so no new test parameters are introduced.

Figure 66: The experimental convergence times for OSPF and triggered
MPLS rerouting.

Measured convergence time

0

2000

4000

6000

8000

(m
s)

OSPF no hello 5013 5027 5018,45

Triggered RSVP 7030 7033 7031,43

Min Max Avg

Evaluating convergence schemes 161

Test results
As we see in Figure 66, MPLS rerouting is about 2s slower than OSPF rerouting.
This is caused by the MPLS hold-down timer of 2s seconds. The timer is used to
let the routing tables stabilise before rerouting the LSP. So although the hold-
down timer is not beneficial for the convergence time it does increase the
stability of the MPLS rerouting. One conclusion might be that the hold-down
timer should be reduced to a few milliseconds. However when for example RIP
is used the ideal hold-down timer is very hard to determine. Even when OSPF is
used in conjunction with MPLS it is difficult to predict the optimal hold-down
timer. And finally it is important to note that the hold-down timer is much more
important in revertive mode than when converging so an asymmetric hold-down
timer might be more appropriate.

Conclusion
The hold-down timer increases the convergence time of triggered MPLS
rerouting significantly. In order to reduce the convergence time it is advisable to
tune the hold-down timer. However this is not an easy task because it depends on
the time it takes the IP routing protocol to stabilise all its routing tables on the
path of the LSP which in turn depends on the routing protocol and the load and
the size of network. Note that the hold-down timer is of most importance when
reverting back to the working path. We will return to the subject of hold-down
timers in MPLS when we discuss the stability of MPLS rerouting in section
5.4.4.

5.3.4 Comparing FTCR with Protection Switching

Description of test
In this test we will compare the convergence time of FTCR in failure local FSL
selection mode with local protection switching.

Test parameters

Table 19: The experimentation parameters used in FTCR and protection
switching convergence

Parameter Value
a Number of measurements 100
b Measurement interval 1ms
c FTCR failure local FSL
d FTCR presume link failure
e Local protection

Evaluating and improving failure convergence schemes in IP networks 162

Comparing the local modes of the convergence schemes is fair since in both
modes there is no failure notification necessary. Note that we could also compare
global protection switching and ingress repair FTCR which typically translates
into the same notification time. Since we are not interested in the notification
time we choose the relevant local repair modes.

Test results
From Figure 67 we clearly see that the convergence time of FTCR is slower
than that of protection switching. This is not surprising since FTCR has to
calculate, set up and switch over to the recovery LSP after the failure has been
detected while protection switching only has to switch over to an already
established recovery LSP (see Table 20).

 Figure 67: Experimental results for the convergence time of FTCR and
local protection switching.

Before we analyse the results we would also like to mention that one
measurement in the FTCR experimentation run was removed. As we see, the
adjusted values range between 28ms and 31ms. However we measured one
convergence time of more than 40ms. This value was removed from the series to
calculate the average, minimum and maximum convergence times. Note that this
individual experiment was affected by a significantly delayed packet as we have
described in section 5.2.2.f.

The first observation that we make is that the time to detect the failure and the
time to switch over to the pre-established recovery LSP is about 20 ms. We will

Measured convergence time

0
5

10
15
20
25
30
35

(m
s)

FTCR 28 31 29,60

PS 18 20 18,59

Min Max Avg

Evaluating convergence schemes 163

not try to further analyse the convergence time of protection switching but rather
take this value as given since it is highly implementation dependent.

Table 20: Theoretical convergence times for FTCR and protection
switching.

Fault
detection

Notification
time

Hold-down
time

Recovery
operation

FTCR κ η 0s Calc. recovery LSP (θ)
LSP setup (ζ)

PS κ η 0s Update LIB (ι)

The additional convergence time of FTCR compared to protection switching is
the result of the recovery LSP calculation and setup. By investigating the
convergence times of FTCR and PS we get an estimation of the LSP calculation
(θ) and setup (ζ) time.

ζ + θ – ι = CFTCR – CPS (10)

ζ’ + θ’ – ι’ = C’FTCR – C’
PS = [10, 11]ms ± 1ms (11)

The LIB update time (ι) can be considered small compared to the LSP setup time
since the LSP setup time encompasses multiple LIB update times in the different
routers along the LSP. Profiling the FSL shows that the calculation takes up less
than 1ms. We can therefore conclude that the LSP setup time dominates the
difference in convergence time between FTCR and PS in our experiment.
However as the network grows larger the SPF calculation can become significant
too.

Conclusion
FTCR is slower than PS because the recovery LSPs have to be calculated and set
up after the failure has been detected. In our small test network the bulk of this
additional time is due to the LSP setup time rather than the SPF calculation time.
In larger networks both the SPF time and the LSP set up time will increase
thereby increasing the difference in convergence time between PS and FTCR.
We will return to this aspect in the last chapter when we discuss how FTCR can
be improved.

5.3.5 Conclusions

In this section we look at all the convergence schemes simultaneously (see
Figure 68). Looking at these results, the convergence schemes can be classified

Evaluating and improving failure convergence schemes in IP networks 164

in three classes. Protection switching and FTCR are the fastest schemes, OSPF
and triggered MPLS rerouting are slower but have a quite predictable
convergence time and finally pure soft-state MPLS rerouting which is potentially
very slow and has a very high standard deviation.

Figure 68: Convergence time of all the convergence schemes. a) The
graph at the top uses a linear scale while b) the graph at the bottom uses
a logarithmic scale.

1

10

100

1000

10000

100000

OSPF no hello 5013 5027 5018,45

Softstate RSVP 7031 46803 30348,00

Triggered RSVP 7030 7033 7031,43

FTCR 28 31 29,60

PS 18 20 18,59

Min Max Avg

Measured convergence time

0

10000

20000

30000

40000

50000

(m
s)

b)

a)

Evaluating convergence schemes 165

The three classes are clearly illustrated in Figure 68a where soft-state MPLS
rerouting has very high values compared to OSPF and triggered MPLS rerouting
and the values from FTCR and PS are so low that they are not even visible with
the scale used in this graph. Figure 68b which uses a logarithmic scale does show
all the convergence times.

The slowest convergence scheme, soft-state MPLS rerouting, should be avoided
if possible. It should only be used when it is impossible for the MPLS daemon to
be notified of changes in the routing tables. Even then it might be possible to
probe the routing tables which will be much faster than pure soft-state rerouting.
So even though soft-state rerouting is an elegant solution to MPLS rerouting it
cannot be used when the convergence times are of any importance.

OSPF and MPLS triggered rerouting have a comparable convergence time.
MPLS rerouting is slightly slower because a hold-down timer is used to delay the
rerouting of the LSPs a bit so that the routing tables can stabilise. Tuning the
hold-down timer is recommended and can decrease the convergence time.

Finally, protection switching and FTCR are the fastest schemes. PS is faster than
FTCR because the recovery LSPs are pre-established while FTCR calculates and
sets up the recovery LSPs as part of the recovery operations. When the network
is small then the additional convergence time of FTCR compared to PS is small.
However as the network size increases the convergence time of FTCR will
increase due to the increased time required to set up and calculate the recovery
LSPs while the convergence time for PS will remain more or less constant.

5.4 Investigating stability
5.4.1 Introduction

So far we focussed on the time to converge after a failure. We first investigated
the theoretical convergence time and then we investigated the convergence times
in the ideal circumstances of a test network. We must however be careful not to
draw incorrect conclusions from these experiments because of the ideal
circumstances and the limited size of the network in which they were conducted.
For example one may come to the premature conclusion that the hold-down
timers can be eliminated. This is obviously incorrect because they increase the
stability of the convergence schemes. In this section we will investigate the
stability features of the convergence schemes and have a critical look at their
function and applicability. As we will see the stability features often have a
negative effect on the convergence time. So there is typically a trade-off between
convergence time and stability. That does not mean that the convergence time
cannot be improved while retaining the same stability level.

Evaluating and improving failure convergence schemes in IP networks 166

5.4.2 Failure detection

We start the discussion about the stability of the convergence techniques with the
first phase of the convergence cycle: the fault detection. We discuss the OSPF
Hello Protocol and hardware-based failure detection.

5.4.2.a The OSPF hello protocol

As we have seen the Hello Interval of the Hello protocol is several times smaller
than the router dead interval. This means that more than one hello packet must be
lost before a failure event is triggered. Consider for a moment that the hello
interval and the router dead interval are equal this would mean that the loss of a
single hello packet would lead to a failure event. This obviously leads to much
faster failure detection. The drawback is that losing a single hello packet may not
be a good measure for detecting a failure since the packet may be lost due to high
link load or a transmission error. This leads to a stability/convergence time trade-
off. Decreasing the router dead interval decreases the convergence time but it
decreases the stability too. The standard values of OSPF i.e. a 10s hello interval
and a 40s router dead interval may be too high in contemporary networks with
high speed interfaces with low error rates and networks that are over-provisioned
even during busy periods.

In Diffserv networks it is also possible to treat the Hello packets with high
priority thereby reducing the loss probability which in turn allows for smaller
hello and router dead intervals. Yet another way to increase stability of the Hello
protocol is to treat every packet received on the interface as an implicit Hello
[175, 176] (see section 3.2.1.c). This means that the router dead timer is reset
whenever a packet is received over an interface. While this decreases the
possibility of detecting a false positive failure during high link load it is possible
to have false negatives.

Consider that the OSPF control stack of router A crashes. This router will no
longer send Hello messages. Router B which has a Hello adjacency with router
A will not detect this failure if implicit Hello’s are used since any packet
received from the interface will reset the router dead timer. The implicit Hellos
thus fail to detect the failure of the OSPF protocol stack on router A. This will
have very negative effects, for example node B will retransmit LSAs
continuously to node A because the LSAs are not acknowledged by A.

In conclusion, while high Router Dead and Hello Interval timers do increase the
stability it takes some investigation to optimise the stability/convergence time
trade-off for each interface in the network.

Evaluating convergence schemes 167

5.4.2.b Hardware based failure detection

The stability of this form of failure detection depends on the reliability of the
mechanism (note that we introduced reliable failure detection already in section
3.3.4.f). The mechanism is considered reliable when a failure event coming from
the mechanism is always the right trigger for a convergence operation. If the
failure detection mechanism is not reliable then it may be advisable to take some
counter measures. An example might be to introduce a (small) hold-down timer
to verify that the failure indication remains valid during the hold-down period.

For example if Packet Over SONET (POS) is used as link-layer the failure
detection is very fast. But reacting immediately to the failure indication is not
always advisable. If the traffic is protected by the SONET layer a hold-down
timer should be used ([177] suggests 60ms). The hold-down timer allows the
SONET layer to recover the traffic before the IP or MPLS layer will notice and
react to the failure. When the SONET layer cannot recover the fault, the failure
indication signal will propagate to the IP or MPLS layer and their convergence
schemes can recover the traffic. More multi-layer aspects of MPLS resilience
were presented in [6, 178, 179, 180].

5.4.3 OSPF stability

In this section we will investigate which features of the OSPF protocol increase
the stability and which have a negative effect on the stability. We will also
investigate how this affects the convergence time.

5.4.3.a SPF delay and Hold-Down

We already discussed how the Hello Protocol tries to shield OSPF from
detecting false positive failures. Another important stability feature of OSPF are
the hold-down timers i.e. the SPF delay and the SPF Hold-Down timer. The
purpose of these timers is to reduce the number of SPF calculations. The number
of SPF calculations should be limited because a SPF calculation is a disruptive
operation which can last up from 1ms in a small network (as in our experiments)
up to a few hundreds of milliseconds in large networks [139]. During the SPF
calculation the OSPF protocol stack can be unresponsive so that for example
Hello packets are not sent or severely delayed. On some router platforms the SPF
calculation also interferes with the forwarding.

SPF calculations are triggered by link-state updates. So in order to reduce the
number of SPF calculations one should aim to incorporate as many link-state
updates as possible. It is thereby important to note that a single failure leads to
more than one link-state update. When a link fails the two endpoints of the link
send a link-state update, when a node fails all the attached nodes send a link-state

Evaluating and improving failure convergence schemes in IP networks 168

update (see section 3.3.2.b). Moreover more than one failure can occur
simultaneously leading to even more link-state updates.

Another situation where the OSPF hold-down timers are beneficial is the
situation where a link or node fluctuates rapidly between an operational and
down status. In this situation the hold-down timers prevent that the routing tables
fluctuate too frequently as a result of the fluctuations of the link or node.
Especially the SPF Hold-Down period is important because it takes the time
since the last SPF calculation into account. Fluctuations like this can be
addressed by using an exponential hold-down timer [177]. This means that the
hold-down timer is not constant but it increases when SPF calculations are
frequent and it decreases to a pre-set minimal when no SPF calculations have
occurred in a while. This does reduce the frequency of the SPF calculations
gradually during fluctuations. However it also increases the packet loss when the
status of the link goes back down.

Even though delaying the SPF calculation is important to catch as much link-
state updates as possible the SPF can obviously not be postponed indefinitely. As
we have seen the Zebra OSPF implementation delays the SPF calculation
somewhere between 5s (SPF Delay) and 10s (SPF Hold-Down) [46]. The above
scheme of having two different hold-down timers to the SPF delay seems like a
good trade-off between convergence time and stability. During stable periods the
SPF calculation is performed quicker (5s) than during periods of instability
(10s). It is however easy to illustrate that it is sub-optimal in even common
situations. We will illustrate this with an example.

An example

Figure 69: When a node fails, the attached routers will detect that their link
attached to that node has failed. However the detection time varies from
node to node. Illustrated above is how node E detects the failure 10s after
node B. This can lead to temporarily incorrect shortest paths.

A

G

D

E F

B

C
t0: LSAB

t0+10s: LSAE

Evaluating convergence schemes 169

Consider that node C fails. Node B, D and node E will eventually detect that the
adjacency that they have built with node C fails. However the time at which they
detect the failure varies from node to node. With the standard Hello Interval and
Router Dead timers the difference can be up to 10s (the detection variation is
equal to the Hello Interval, see section 3.3.1.c).

Consider that node B is the first to detect the failure. It will then spread a link-
state advertisement at t0 with the distance from B to C over link BC set to
infinity. Note that node B always presumes that the link rather than the node has
failed (comparable to FTCR’s presume link failure mode). Node failures are
handled properly by link-state protocols because the other attached router will
also send link-state updates. However as we just mentioned, these updates can be
dispersed over time. Consider that this is the case, that for example nodes E and
D detect the failure 10s later than node B. When node A receives the link-state
advertisement from node B it will wait SPF Delay i.e. 5s before the SPF
calculation. However this will not be enough to take the link-state updates from
node D and E into account since they occur 10s later. As a result a wrong SPF
tree will be calculated (e.g. the shortest path from A to D will be A-B-E-C-D).
To make matters worse the next SPF calculation at node A will only be
performed after the Hold-Down delay (10s).

In the above example we have seen that LSAs arrive at different times causing
routing anomalies and delays in the convergence. In the example this was caused
by the fact that the LSAs were sent at different times due to the difference in
detection time. Another cause for a large variation of the arrival times of the
LSAs is large delays in the transmission of the LSAs in the network. This in turn
can be caused by low speed links, networks of large size and congestion in the
network. Significant delays in the LSAs can lead to SPF calculations that take
the new LSAs into account in one part of the network while in another part of the
network the LSAs have not yet been taken into account This can lead to routing
anomalies. Again the solution is to increase the hold-down timers but at the cost
of slower convergence.

The above illustrates that determining the correct SPF Delay and Hold-Down
timers is difficult. There is not only a stability/convergence time trade-off but
also the level of disruption a SPF calculation causes, needs to be taken into
account. To complicate matters even more the Hello Interval should be taken
into account when determining the optimal hold-down timers. Finally the
transmission delay of the LSAs must be considered.

Evaluating and improving failure convergence schemes in IP networks 170

5.4.3.b Link-state advertisement storms

As we have seen in the previous section the SPF hold-down timers protect the
network against too frequent SPF calculations. We have seen that determining
the optimal length of these timers is hard. We will now investigate situations in
which OSPF implementations are stressed to the limit or even can melt-down
[181].

OSPF is not able to withstand a large number of simultaneous or near-
simultaneous link-state advertisements (an LSA storm) [175, 176]. An LSA
storm can be caused by a failure in the transport network that carries a large
number of links. It can also be caused by the simultaneous failure on a number of
nodes (e.g. a failure in a hosting complex). Yet another trigger from an LSA
storm might be the (near) synchronisation of LSA refresh instants or the network
is brought back up after software and or hardware revisions.

Perhaps more important than the reasons for the LSA storms are the
consequences. LSA storms impose a high load on the OSPF protocol stack
causing packets to be delayed or even dropped. This causes Hello packets to be
missed and the Router Dead timer to be triggered. This will lead to more LSAs
since link-state advertisements will be sent by the endpoints to declare the link
dead. The delay in the processing of the OSPF protocol packets will also cause
that some of them will not be acknowledged on time. Both LSAs and database
description packets need to be acknowledged. If they are not acknowledged on
time they will be retransmitted. The retransmission of these packets causes even
more OSPF protocol traffic. If the original LSA storm is large enough then the
secondary effects (retransmissions and adjacencies declared dead) can
indefinitely sustain the overload in the OSPF protocol stacks. In this case manual
intervention might be necessary.

Current solutions proposed to handle LSA storms include prioritising Hello
packets and acknowledgements and adding congestion control to OSPF [176,
182].

5.4.3.c Conclusion

We have seen that even though OSPF is a mature routing protocol, instability
can still occur. Properly tuned Hello Interval, Router Dead interval, SPF Delay
and Hold-Down timers will vastly improve the stability. However increasing
these timers typically has a negative effect on the convergence time. Besides,
finding the optimal values is difficult and depends on a large number of factors.
Recent research proposes new stability enhancing measures to cope with large
LSA storms by prioritising certain OSPF protocol packets and by adding
congestion control to OSPF.

Evaluating convergence schemes 171

5.4.4 MPLS rerouting stability

In this next section we will investigate the stability of MPLS rerouting. The
stability of MPLS rerouting depends largely on the stability of routing protocol
used to determine the paths of the LSPs. After the routing tables have changed a
hold-down timer is used to make sure that the routing tables are stable. In the
experiments in section 5.3.2 we used a hold-down timer of 2s. As we have seen
in the example in the previous section about OSPF stability this might not be
enough to ensure stability of the routing tables. So using a hold-down will
increase the stability but will not guarantee it in all circumstances.

Adding a hold-down timer is not the only stability enhancing technique that is
used in MPLS rerouting, as we have seen in section 2.3.5 both loop detection and
loop prevention techniques exist. These techniques prevent that an LSP is used
that contains a loop.

MPLS adds more robustness because of the separation of control and forwarding
(see section 2.3). Let us revisit the example in the OSPF stability section (see
Figure 69). We have seen that incorrect routing tables can occur. In that example
node A has calculated an incorrect routing table because it had not received the
link-state advertisement from node E yet. As a result, the shortest path from node
A to node D will be A-B-E-C-D which is obviously incorrect since node C has
failed. Consider now that triggered MPLS rerouting is used. The MPLS daemon
on node A will be notified of the new routing tables. After the hold-down period
node A will reroute the LSP A-B-C-D along the path A-B-E-C-D. The LSP setup
will fail because node C will not process the label request (see Figure 70).

Figure 70: When routing anomalies occur the processing of label requests
(LR) can fail. This figure illustrates that the LSP will not be set up because
node C is down. We refer to Figure 69 for the circumstances under which
this anomaly can occur.

A

G

D

E F

B

C
LR <D>

LR <D>

LR <D>

Evaluating and improving failure convergence schemes in IP networks 172

Eventually node A will calculate the correct routing tables (after it has received
the LSA from node E and D). It will then trigger node A again and the LSP will
be set up over the correct path. The stability improvement comes from the fact
that the traffic that was disrupted by the node failure was not switched over to an
incorrect LSP.

The above example illustrates that the path of an LSP is validated before traffic
is switched over to it. It is clear this improves the stability. However the
convergence time does not improve. On the contrary the convergence time in
MPLS is slightly higher than in OSPF since the label request messages have to
propagate towards the egress and then the label mapping messages have to
propagate back from the egress to the ingress. This additional delay compared to
OSPF is typically small but might be significant in large networks or networks
with high propagation delays.

Finally we look at the differences between CR-LDP and RSVP-TE that are
important with respect to stability. CR-LDP uses the reliable communication of
TCP as transport protocol. RSVP-TE on the other hand uses raw IP which is not
reliable [143]. In both cases retransmissions occur when a signalling packet is
lost. CR-LDP relies on TCP for its retransmissions while in RSVP-TE the soft-
state mechanism will cause the retransmission. The retransmission with CR-LDP
will occur much faster than with RSVP-TE.

In general soft-state protocols are considered more fault tolerant than hard-state
protocols. Because RSVP-TE runs over an unreliable, connectionless transport, it
lends itself well to a system that must survive hardware failures or software
malfunctions by switching over to backup resources (fault tolerance). Any
control state that is lost during this failover will be recovered by the next state
refresh. On the other hand CR-LDP uses reliable delivery of control messages
which makes it hard to support failover. Fault tolerance for LDP is currently
being standardised [183].

5.4.5 Protection Switching stability

Protection switching uses pre-established recovery LSPs to recover the working
LSPs during fault conditions. The fact that the recovery LSPs are pre-established
induce both benefits and drawbacks from a stability point-of-view. One benefit is
that the computation of the recovery LSP is done in advance which means that
PS does not have to take measures to co-ordinate and limit the SPF calculations
like in OSPF. The fact that the recovery LSPs are set up in advance means that
the potential instability of the routing tables after the failure does not have to be
taken into account.

Evaluating convergence schemes 173

The main weakness of PS with respect to stability is the support for multiple
failures. When multiple failures occur there is no guarantee that the recovery
LSP is not affected. To cover this case the PSL needs to be informed of both
faults on the working paths and faults on the recovery paths. When multiple
failures occur more or less simultaneously it is possible that the working traffic
needs to be switched over to a number of recovery LSPs before the final
recovery LSP is found. Supporting these scenarios requires a large number of
recovery LSPs. So full coverage is very difficult to achieve especially in the light
of multiple failures. Also care must be taken that the PSL is able to detect that a
recovery operation has failed.

5.4.6 FTCR stability

FTCR combines some properties of OSPF rerouting and MPLS rerouting and has
some specific properties too. We will start by describing the stability of FTCR
compared to OSPF then we look at how FTCR relates to MPLS rerouting in
terms of stability.

5.4.6.a Comparing FTCR and OSPF stability

The major convergence speed improvement of FTCR compared to OSPF is
attributed to the fact FTCR does not use the SPF Delay and Hold-Down timers.
In FTCR, rerouting an affected path is quasi instantaneous. We will now
investigate if this affects the stability.

As we have seen OSPF requires hold-down timers in order to reduce the number
of SPF calculations and to capture as much LSA as possible for each SPF
calculation. This explains why OSPF needs hold-down timers. FTCR does not
need these timers because there is always a single node, the FSL, that is
responsible for a given failure with respect to an affected LSP. For example
when a link fails, the failure will be detected by the two endpoints but only the
upstream node will be responsible to recover the LSPs routed downstream over
the fault. Similarly when a node fails, only one node is responsible to repair a
given LSP. In FTCR the recovery actions are not distributed but rather
centralised in the different FSLs. This means that there is no need to co-ordinate
the recovery actions. OSPF requires hold-down timers because the recovery
operations are distributed. Furthermore, in OSPF all the operations are
distributed: the failure detection, the failure notification as well as the recovery
operations.

We now investigate the stability of FTCR in more detail. We start by looking at
the stability in the different FSL selection modes, then we look at multiple
failures followed by a look at the stability when fluctuations occur and finally
how FTCR relates to LSA storms.

Evaluating and improving failure convergence schemes in IP networks 174

FSL selection modes
We have seen that the topological location of the FSL depends on the FSL
selection mode. In ingress repair mode and potentially in nearest non-looping
FSL selection mode a FIS needs to be sent from the failure detecting node
towards the FSL. However sending a FIS towards the FSL is not the same as
distributing the recovery actions. In this case the recovery operation is not
performed by the failure detection node but it is still centralised in a single node
i.e. the FSL.

Multiple failures
Multiple failures seem like an exception to the statement that the recovery
operations are performed by a single node. When multiple failures occur there
can indeed be more than one FSL (in failure-local and nearest non-looping FSL
selection mode). However there is still only one FSL responsible for each failure
for a given LSP. Under these circumstances the different FSLs do not need to
explicitly co-ordinate with each other although they might interact implicitly
through (request) rerouting.

For example consider that two failures occur and that the upstream failure occurs
first. If the upstream FSL reroutes an LSP over the second failure then the
second FSL will simply reroute the LSP (or the LSP request). There is no co-
ordination required. The upstream does not need to be informed of the fact that
the downstream FSL has rerouted its LSP.

Fluctuations
So far we addressed why FTCR does not need hold-down timers when one or
more failures occur. There are two more situations where the hold-down timers
are beneficial in OSPF. First of all during reversion it is important to make sure
that the preferred working path is operational before reversing the traffic. In
revertive mode FTCR relies on IP routing so it does use, implicitly, the hold-
down delays.

Secondly when a link or node status fluctuates between up and down status it is
important to prevent too frequent route flapping in the network. The hold-down
timers of OSPF help to prevent too frequent SPF calculations and thus too
frequent routing table updates. We will now investigate how FTCR performs in
this situation.

The first remark is that the link failure detection mechanism should try to avoid
this unstable behaviour in the first place. But even if this happens FTCR still
reacts in a stable way to these events. Let us first repeat how OSPF reacts to this.
When the link goes down OSPF will delay the SPF calculation. When the timers
expire the new routing tables will be calculated and installed. When the link goes

Evaluating convergence schemes 175

back up the traffic will be reversed back to the preferred working path after the
hold-down period. When the link goes back down OSPF will, after the hold-
down, switch the traffic back over again etc.

Figure 71: Timing during link up and link down fluctuations in OSPF and
FTCR

This is the worst case scenario for OSPF since the link fluctuation is slower than
the OSPF delay and the routing tables still fluctuate despite these timers. If the
frequency is higher than the hold-down OSPF period then the amount of
fluctuations will be limited to maximum once per hold-down period.

Figure 71 illustrates how fluctuations are handled in OSPF and FTCR. In FTCR
there is no hold-down timer when recovering the LSPs but there is a wait-to-
restore timer during the reversion operations. FTCR waits for OSPF during
reversion so the wait-to-restore timer of FTCR is the same as the OSPF hold-
down timer.

A C

B
Hold-down

A C

B
Hold-down

Fault
cleared

Failure

A C

B
Instantaneous

A C

B
Wait-to-restore

Fault
cleared

OSPF

FTCR

Failure

Evaluating and improving failure convergence schemes in IP networks 176

The frequency of the fluctuations in FTCR is the same as with OSPF. Both
OSPF and FTCR recover and reverse back maximum once per period of
fluctuation see Figure 72. The important benefit of FTCR over OSPF in this
situation is that in FTCR the traffic is recovered immediately after a failure while
in OSPF every time the link fails the traffic stays on the affected link for a hold-
down period of time.

Figure 72: The fluctuation period of FTCR and OSPF are equal. However
FTCR reacts faster to a failure thereby reducing the disruption due to lost
packets.

Both [139] and [177] propose that OSPF should react fast to bad news (fault) and
slow to good news (fault clearance). As we see this behaviour is already part of
FTCR but this is not the case for OSPF. For example [184] mentions
convergence times of 30s and reversion times of 8s for experiments on the Qwest
backbone [185].

An exponential hold-down timer can also be used in OSPF and FTCR to further
reduce the fluctuations. In OSPF this decreases the frequency of the fluctuations
but also increases the packet loss, in FTCR this reduces the frequency of the

Link
Down

OSPF
hold-down

Link
Up

Link
Down

OSPF
hold-down

OSPF
recovered

OSPF & FTCR
reversed

fluctuation
period

FTCR
recovered

FTCR
wait-to-restore

Evaluating convergence schemes 177

fluctuations without increasing the packet loss. We will return to the topic of
exponential backoff timers in section 6.3.2.

LSA storms
We have seen that LSA storms can happen in OSPF networks. The easiest way
to prevent these (to a certain extent) is to increase the hold-down and
retransmission timers. This obviously increases the convergence times of OSPF
but when FTCR is used to recover the traffic this does not have a negative effect.

5.4.6.b Comparing FTCR and MPLS rerouting stability

In section 5.4.4 we have seen that triggered MPLS rerouting uses a hold-down
timer. The reason for the hold-down timer is to allow the routing tables to
stabilise before the recovery LSP is set up. Since FTCR does not use the routing
tables to set up the recovery LSPs there is no reason to introduce a hold-down
timer like with MPLS rerouting.

An important aspect of FTCR’s stability is given by the fact that LSPs are used
to reroute the traffic. LSPs are only set up if the path that is calculated by the
FSL is actually valid. When we discussed the MPLS rerouting stability we
illustrated how the setup of an LSP will fail when the routing tables in the
network are invalid. Similarly if the hop specification of the ER-LSP is invalid,
the LSP will not be set up either. Note that the FSL will be notified of the failure
and that an appropriate action can be taken. Possible actions include the
calculating of a different path, retrying to set up the same ER-LSP or to wait for
IP convergence and MPLS rerouting the working LSP. Note that this can happen
when multiple failure FTCR rerouting is not supported (see section 4.9.5).

Like in MPLS rerouting, loop prevention and loop detection can also increase the
stability. Note that loop prevention and loop detection should not be used in
conjunction with failure-local repair since loops can occur in that mode (see
section 4.4.1 for an example).

5.4.6.c Conclusion

We have seen that eliminating the hold-down time during convergence in FTCR
does not lead to instability. The reason for this is two-fold, firstly FTCR does not
calculate the recovery paths distributed so implicit co-ordination through timers
like in OSPF is not necessary, the second reason is that during reversion there is
still a wait-to-restore timer which prevents instability during fluctuations.

We have also seen that during LSP set up the correctness of path is verified
(availability of the path and potentially the loop-freeness). This also improves
the stability.

Evaluating and improving failure convergence schemes in IP networks 178

When all traffic in the network is protected by FTCR it is possible to increase the
OSPF timers without sacrificing the convergence times. This will have a positive
influence on the stability of the network.

Now that we have investigated the stability of the convergence schemes we will
have a look at the scalability.

5.5 Investigating scalability
In this section we will investigate the scalability of the convergence schemes,
more specifically we will investigate scalability with respect to the network size
(in terms of links, nodes and connectivity) and with respect to the number of
LSPs.

5.5.1 OSPF scalability

The OSPF scalability is limited because the link-state database must be stored
and maintained in the network. The link-state database is maintained by flooding
link-state advertisements over the network. As the network grows larger the
bandwidth used for this flooding will increase and the burden on the OSPF
protocol stack to process and forward these packets will increase too. The link-
state database needs to be stored in every OSPF router, increasing the network
size requires more memory. When two routers bring up an adjacency their link-
state database needs to be synchronised. The complexity of this operation again
depends on the size of the link-state database. Finally the time required for the
SPF calculations also depends on the size of the link-state database. Even in
high-end router platforms, the SPF calculation can take a long time in large
networks. The complexity of a SPF is, depending on the implementation,
O(n.log(n)) or O(n2) [139]. Note that some implementation are O(n) when the
link metrics are limited to 63 [60]. On the other hand, processor speed, memory
sizes and link speed increase steadily over the years.

Note that the link-state database keeps track of every route known to OSPF. This
includes not only the internal routes but also the external routes (towards other
networks). If there is only one default gateway towards the external networks
this does not cause a problem because the gateway can be represented by a
default route. If however multiple gateways are available and the routes to the
individual external networks need to be optimised with respect to these gateways
then the external routes (or the most frequently used external routes) need to be
injected into the OSPF domain. Care must be taken that not all existing routes
are injected since that will introduce too much burden on the OSPF protocol.

The primary scalability feature of OSPF is that the OSPF network can be split up
in sub-areas. All the areas are connected to the backbone area (also called the

Evaluating convergence schemes 179

area 0). Each area behaves like an independent network and the shortest paths are
only calculated within the individual areas and between areas. This typically
leads to less than optimal routing. Some routers, the Area Border Routers
(ABR), belong to both an area and the backbone area. The ABR routers maintain
a link-state database for each area they belong to. The ABR routers summarise
the areas they belong to. These summaries expose the networks in the area but
not the internal topology. This form of hierarchical routing increases the
maximum size of the OSPF network but it also increases the administrative
overhead.

Determining the maximum size of an OSPF network is difficult and depends on
the software and the hardware configuration. Concrete numbers in the literature
differ but the limit seems to be somewhere between 50 and 1200 routers. For
example [53] proposes 70-100 routers per area as a rule of thumb.

5.5.2 MPLS rerouting scalability

MPLS rerouting depends on OSPF so the scalability of OSPF is a first limitation.
Another limitation is the number of LSPs that can be supported. With a hard-
state signalling protocol like LDP and CR-LDP the number of LSPs that can be
supported depends on the size of the LIB and the associated signalling state.
Soft-state signalling like RSVP-TE does not scale as well because the state
inside the network needs to be refreshed regularly. When the number of LSPs
increases the soft-state overhead can consume a significant amount of bandwidth
and signalling resources. For example with 10.000 LSPs on a link and the
standard refresh period of 30 seconds, this consumes over 600kb per second of
link bandwidth [143]. This issue can be addressed by using refresh reduction
[54]. Refresh reduction relies on refreshing many LSPs in a single RSVP
message. This, together with the ability to indicate that nothing has changed
reduces the refresh granularity so that it is closer to a per LSR than to a per LSP
level which leads to a significant improvement of the scalability. RSVP-TE
scalability tends to be a bit lower than LDP scalability even with refresh
reduction although they are in the same order when state reduction is used.

Despite the maximum number of LSPs there is another issue when rerouting
LSPs. When a lot of LSPs need to be rerouted this will create a lot of signalling
activity. Robust MPLS signalling implementations should be able to handle this
although the convergence time may increase as a result of the queuing or even
dropping of the signalling messages. RSVP-TE signalling messages are sent over
raw IP while LDP sends them over TCP. RSVP-TE messages that are lost will
eventually be retransmitted due to the soft-state nature of RSVP but the time
before retransmission is much higher than with LDP since it uses TCP.

Evaluating and improving failure convergence schemes in IP networks 180

5.5.3 Protection Switching scalability

The scalability of protection switching mainly depends on the maximum number
of LSPs that can be set up simultaneously. This is also true for MPLS rerouting
but in PS there are typically more LSPs for a given set of working LSPs. This is
because PS is make-before-break scheme where the recovery LSPs are pre-
established. Depending on the form of PS and the level of reliability that is
required the number of recovery LSPs can be much higher than the number of
working LSPs.

The benefit of PS over MPLS rerouting is that a fault that affects many LSPs
does not lead to a storm of signalling activity. So the speed of the signalling
components in PS is not as critical as in MPLS rerouting. That does not mean
that a fault that affects a large number of LSPs cannot stress the PS
implementation. When this happens a recovery LSP must be found for every
working LSP which might take some time. This obviously depends on the
implementation.

5.5.4 FTCR scalability

FTCR requires that a link-state database is maintained in the network. The
scalability can therefore be compared to that of OSPF. The scalability of FCTR
also depends on the maximum number of LSPs that can be supported and the
signalling activity when a large number of LSPs are affected. In that respect the
scalability can be compared to that of MPLS rerouting. Note that MPLS
rerouting also depends on OSPF so the conclusion is that the FTCR scalability is
comparable to that of MPLS rerouting.

5.6 Comparing the backup capacity requirements
In order to have a network with high reliability, spare capacity needs to be
present to reroute traffic during fault conditions. In this section we compare the
additional cost that is required to reroute traffic after a single failure for each of
the convergence schemes covered above.

5.6.1 Simulation model

We assume a network model where all links are bi-directional but the capacity
and the link weight can be asymmetric. The demand for a path in the network
can be asymmetric too. We assume that link capacities can take any positive
value despite discrete link capacities in reality. A discrete capacity model is not
necessary to assess the capacity requirements of the different recovery models.
Moreover using a discrete capacity model would obscure the comparison. We
also assume a linear cost model i.e. the cost of the link is proportional to the link

Evaluating convergence schemes 181

capacity and link length. The total cost of the capacitated network is the sum of
the link capacity costs.

The investigated convergence schemes are rerouting, local protection switching
and FTCR in failure-local repair mode. There is no reason to discriminate
between OSPF rerouting and RSVP-TE soft-state or triggered rerouting because
the topological rerouting and hence the capacity requirements are the same. The
differences between these three schemes are the technology and the convergence
speed but these topics were already covered in the previous sections so there is
no reason to discriminate between them in this section.

The overall objective of the study is to dimension the capacity of the network so
that during normal operation all demands should be fulfilled and that in case of a
single link or node failure all affected traffic (except traffic entering or leaving
the network via a failing node) can be rerouted by the convergence scheme. The
routing of the traffic that is not affected by the failure remains unaltered. We
route the traffic during the working conditions according to the shortest path.

We consider both link and node failures and we assume that the type of failure is
known. We compare the capacity requirements of the three convergence schemes
on a realistic network. The study is based on the e.spire network [55] the
topology consists of 44 nodes and 57 links, the link weights are assigned roughly
proportional to the estimated distance.

The demand matrices were generated randomly. In order to make larger cities
more important each node was assigned a weight. The demand between two
nodes depends on the weight of the nodes. Nodes that are part of large city
infrastructure have a larger weight leading to a larger demand to and from them.
By rounding these random values to integer numbers, a light load will result in
sparser demand matrices (i.e., more zero-elements). The demand is routed
according to the shortest path over the network. We give the results as the
average for ten random demand matrices. More results where published in [4, 5,
6, 55].

5.6.2 Simulation results

Figure 73 shows that the cost of a network with spare capacity is more than
doubled compared to a network without any extra spare capacity (the additional
cost is more than 100%). Protection switching is the most expensive mechanism
and rerouting is the cheapest one with FTCR somewhere in between. This can
intuitively be explained as follows. Protection switching has to reroute affected
traffic locally, which is obviously worse than rerouting which has global scope
and thus potentially spreads out the rerouted traffic over the network. FTCR has
upstream the local nature of protection switching but downstream the global

Evaluating and improving failure convergence schemes in IP networks 182

nature of rerouting giving it the capacity requirements between the two. Note
that if ingress repair FTCR is used then the capacity requirements are similar to
those of rerouting because of the global scope.

Figure 73: Additional cost of a reliable network compared to an
unprotected network (%) in function of the traffic load.

Figure 74: The different paths of the rerouted LSP, the local protection
recovery LSP and the FTCR rerouted LSP when a failure happens on link
BC of the shortest path from A to D (A-B-C-D).

H

D

G

EA

CB

F

Rerouted LSP
Recovery LSP
FTCR rerouted LSP

0%

50%

100%

150%

200%

250%
A

dd
iti

on
al

 c
os

t f
or

su

rv
iv

ab
ili

ty
 %

Lightly loaded
Heavily loaded

Lightly loaded 128% 184% 148%

Heavily loaded 126% 196% 152%

Rerouting Protection
Swithcing

FTCR

Evaluating convergence schemes 183

Figure 74 illustrates how the shortest path LSP from A to E is repaired over
different paths depending on the recovery mechanism. Rerouting is able to use
the most optimal recovery path from node A. FTCR has a slightly less optimal
path from the FSL (node B) towards the destination E. Protection Switching uses
a less optimal recovery path because it is routed back to the working path.

Figure 73 also shows the effect of the load (given by the demand matrix) on the
extra capacity requirement. We see a slight increase in relative additional cost for
survivability. It is important to note that the order of the different convergence
schemes remains the same. We should be careful however in drawing general
conclusions from this particular case study. Additional simulations [55] show
that varying the topology (large and small e.spire network and a large and small
Qwest network) does not change these conclusions. Moreover using random
topologies and varying the link weights and varying the link density (i.e. the
probability that a link exists between two nodes) yields the same results.

Figure 75: Additional cost of a reliable network compared to an
unprotected network (%) in function of the traffic pattern.

Finally, we investigated the influence of highly asymmetric traffic that
terminates or originates in one node (Error! Reference source not found.). Still
the same conclusions are valid but we observe that (i) the additional cost for
survivability is lower for symmetrical traffic and (ii) FTCR is significantly
cheaper when traffic is originated from a single source rather than terminates in a
single destination. Rerouting and protection switching do not have this property

0%

100%

200%

300%

A
dd

iti
on

al
 c

os
t f

or

su
rv

iv
ab

ili
ty

 %

Symmetric To single destination From single source

Symmetric 178% 242% 200%

To single destination 205% 301% 263%

From single source 205% 299% 248%

Rerouting Protection
Swithcing

FTCR

Evaluating and improving failure convergence schemes in IP networks 184

and have almost the same cost for traffic terminating or originating in a single
node. This can be explained by FTCR’s asymmetric nature while rerouting and
protection switching are symmetrical techniques. FTCR has a significantly
higher cost when all traffic is terminated in a single node because the FSL
reroutes all traffic over a single path leading to a highly concentrated traffic
pattern downstream of this node.

In these simulations we considered the extra capacity that is required to reroute
traffic during fault conditions. Even protecting against single faults requires
significant extra capacity. Protection switching requires the most extra capacity,
followed by FTCR and by rerouting that is the most cost effective.

5.7 Conclusions
The chapter started out by describing the experimentation platform and
experiments performed therein. The main goal of these experiments is twofold:
first of all to prove that FTCR as a proof-of-concept implementation is able to
recover traffic during failure conditions and secondly to get a more precise view
on the convergence times of the convergence schemes.

As we have seen in the experiments FTCR is indeed able to recover working
traffic. Moreover FTCR is faster than MPLS rerouting and OSPF routing. Soft-
state rerouting is very slow and should be avoided if possible. Local protection
switching proved to be the fastest convergence scheme. MPLS rerouting is
slightly slower than OSPF rerouting because a hold-down timer is used to make
sure that the routing tables are stable before the recovery LSP is set up. Failure
detection with the Hello protocol, especially with the standard timers, is very
slow and hardware-based failure detection (here simulated through immediate
failure detection) should be used if possible.

Experiments in a test networks of limited size, like those that we conducted, have
the intrinsic drawback that the conclusions are only valid within the limits of the
test network. The most important limitations are the limited size and the fact that
the network links are lightly loaded and have a small delay. Also the number of
routes and LSPs is very small in comparison to large operational networks.
Therefore we investigated the stability and the scalability of the convergence
schemes too.

OSPF deployments are limited in size because the flooding, the size of the link-
state database, the duration of the SPF calculations and the size of the routing
tables is directly dependant on the number of routes in the network. Care should
be taken that the network is not too large and that not too many routes are

Evaluating convergence schemes 185

injected in the routing tables. The primary scalability feature of OSPF is that it is
possible to split up the OSPF domain in multiple areas.

Since FTCR does not use a hold-down timer it is important to explain that this
does not jeopardise the stability. We have seen that during fluctuations FTCR
has the same fluctuation frequency as OSPF. FTCR also has the good property
that it reacts fast to failure events and much slower to failure clearance events,
unlike OSPF which reacts symmetrically to failure and failure clearance events.
The stability of FTCR is also attributed to the fact that a single FSL recovers
traffic without co-ordination and by using LSPs. MPLS rerouting is for similar
reasons more stable than OSPF. Protection switching is very stable since its
recovery actions are limited to switch over actions to pre-established recovery
LSPs. It does require that the failure detection is somewhat stable and it is also
recommended that a wait-to-restore timer is used before switching back from the
recovery LSP to the working LSP.

Since MPLS rerouting depends on IP routing, its scalability depends on the
routing protocol. Furthermore the scalability of MPLS rerouting also depends on
the number of LSPs that can be supported simultaneously and the speed of the
MPLS signalling daemons. FTCR depends for its scalability on the link-state
routing protocol and on the scalability of the MPLS signalling daemon. Finally,
Protection switching primarily depends on the number of LSP that can be
supported simultaneously. The speed of the MPLS signalling daemon is less
important since the recovery LSPs are pre-established.

We also investigated the backup requirements. IP rerouting needs the least
backup requirements, followed by failure-local FTCR and local protection
switching. Rerouting needs the least backup capacity because it has global scope
and thus can potentially spread out the rerouted traffic over the network.
Protection switching uses most backup capacity because it has to reroute affected
traffic locally. Failure-local FTCR has upstream the local nature of protection
switching but downstream the global nature of rerouting so its capacity
requirements reside between the two. FTCR in ingress repair mode has the same
capacity requirements as rerouting.

Figure 76 summarises the properties of the convergence schemes with respect to
the criteria covered in this chapter. Protection switching has the fastest
convergence times, followed by FTCR which is also very fast especially in small
networks. IP routing is significantly slower. MPLS rerouting is even more slower
especially when soft-state rerouting is used.

The stability of IP routing can be affected by LSA storms, routing anomalies and
symmetric hold-down timers. MPLS rerouting is more stable since it uses LSPs

Evaluating and improving failure convergence schemes in IP networks 186

to recover the traffic and because an additional hold-down timer is used. FTCR
is even more stable because an asymmetric hold-down timer is used, because
only one FSL is responsible for a given failure and because LSPs are used to
recover traffic. Finally protection switching is also stable because the recovery
operations are very simple.

IP rerouting MPLS
rerouting FTCR PS

Convergence
time – –(–) +(+) ++

Stability – 0 + +

Scalability ++ + + –

Capacity
requirements ++ ++ +(+) –

Figure 76: Comparison of the different convergence schemes with respect
to the criteria covered in this chapter.

IP routing is the most scalable technique because it is only limited by the size of
the link state database. The scalability of MPLS rerouting is more limited
because it depends not only on the size of the link-state database but also on the
number of LSPs and the signalling activity during recovery. The same reasoning
applies to FTCR. The scalability of protection switching is limited due to the fact
that protecting against all possible failure scenarios requires an exponential
number of LSPs. Its scalability can be considered good if, for example, only
single failures need to be protected against.

Finally the backup requirements depend on the scope of the recovery operations.
Therefor IP routing has the best backup requirements together with MPLS
rerouting. Immediately followed by FTCR in ingress repair mode. Failure-local
FTCR requires more backup resources and finally protection switching requires
the most resources.

In the final chapter of this work we will look at recent advances in failure
convergence in large networks. We will mainly focus on link-state routing and
FTCR.

Chapter 6

Improving convergence schemes

6.1 Introduction
In this chapter we will look at techniques that can be used to speed up the time of
convergence especially in large networks. An important part of this chapter
describes the recent advances in link-state routing. We will explain these
techniques and how they speed up link-state routing. In the section following
that, we look at how these techniques can be used in combination with FTCR.
We will also look at the final limitations for fast convergence in large networks
and how FTCR can be used to further speed up the convergence in these
networks. This section obviously ends by drawing conclusions. We will start this
section with an explanation of the increased importance of the failure detection
times.

6.2 Failure detection
Fast protection switching requires fast failure detection because the recovery
operations of protection switching are very short. If the failure detection were
slow the real advantage of protection switching i.e. fast convergence is
diminished because of the slow failure detection. Obviously the fastest failure
detection is hardware-based failure detection. A router platform that supports
MPLS protection switching typically also supports hardware-based failure
detection. However that does not mean that the support for hardware-based
failure detection should be limited to protection switching only. For example
link-state routing can also improve its convergence times by using hardware-
based failure detection. The Hello protocol will then still be used, for example to
detect control plane failures and to elect the designated routers. However the
Hello Interval and Router Dead timers can somewhat be relaxed since most of
the failures can be detected through the hardware-based failure detection (we
mentioned this before in section 3.2.1.c)

6.3 Recent advances in link-state routing
In this section we will cover the more recent advances in link-state routing, in the
next section we will look at how these techniques relate to FTCR.

Evaluating and improving failure convergence schemes in IP networks 188

We start with a brief history of link-state routing implementations [56]. The first
phase, which started around 1990, was really focussed on getting the
implementation to work correctly. During the second phase, which started
around 1994, there was some interest in speeding up convergence. However
convergence speed was more seen as a marketing advantage than as an important
field of research. The speed improvements were typically gained by sacrificing
stability. From 1995 on, IP networks began to get very large and mission critical.
Network outages for prolonged periods started to be very disastrous so stability
was the prime concern. Stability was achieved through robust software and
hardware implementations and by using large timers. This was obviously
detrimental for the convergence speed. More recently there is a renewed interest
in improving the convergence times of link-state routing. The driver is that
interactive applications like VoIP [186, 187] really demand fast convergence
times in order not to disrupt the service during fault conditions. Another driver
is that some technologies like MPLS protection switching are actively being
promoted by claiming that IP convergence is too slow.

In this section we will cover some techniques that are used to speed up IP
convergence with link-state routing. We start by investigating what can be
improved on the shortest path calculations and the resulting routing table
updates.

6.3.1 SPF optimisations

We have seen that the shortest path calculations can be both disruptive and can
take up a significant amount of time. This can be addressed by using an
algorithm that scales much better than Dijkstra. The Dijkstra algorithm re-
computes all routes every time the topology changes. However one can expect
that, especially in large networks where the SPF calculation is critical, that not
all the routes are affected by the topology change. This can easily be illustrated
with an example (see Figure 77). When for example link CE breaks the routes
between node A and B, E, F, G and D do not change. The Dijkstra algorithm
does not take this into account and simply recalculates every route in the
network.

More recent algorithms [57, 58, 59], Incremental SPF algorithms (I-SPF), reuse
the data structures from earlier calculations and only re-compute the affected
routes. Their average case complexity is O(log(n)) compared to O(n.log(n)) or
O(n2) for the Dijkstra algorithm. Reference [139] reports speed improvements of
up to 10.000 times. However the gain in computation time depends on the
location of the failure. When a failure occurs in the centre of a network a lot of
shortest paths will be affected and the shortest path computations will still
require of lot of processing.

Improving convergence schemes 189

Figure 77: The Dijkstra algorithm recalculates all the routes when the
topology changes. This can be very inefficient. For example when link CE
breaks none of the routes in node A change and the SPF calculation in
node A by the Dijkstra algorithm is superfluous.

Another example of the inefficiency of running Dijkstra at every topology
change is when a new leaf node is added to the network. For example consider
that a new node, node H, is added to the network by connecting it to node A. The
addition of this node will not alter the shortest path routing so it is sufficient to
add a routing table entry for node H. This process is called Partial Route
Computation (PRC) [177].

6.3.2 Exponential backoff

We already mentioned that exponential timers can help to increase the stability.
For example when link fluctuations occur it is important not to calculate the
shortest paths too frequently since this will lead to unstable behaviour.
Increasing the hold-down timers during frequent calculation will lead to a
decrease of the SPF calculation frequency.

Exponential timers can also be applied to decrease the convergence time. By
making the hold-down timers adaptive it is possible to decrease the initial hold-
down time without jeopardising the stability. With static hold-down timers there
is a trade-off between stability and convergence time. With exponential timers
the length of the timers increases fast enough so that stability is retained during
periods of fluctuations.

Exponential timers are not only applicable to the hold-down before SPF
calculations, they can also be applied to PRC and LSA advertisement delays.
Exponential backoff timers applied to LSA advertisements are especially good to
prevent LSA storms.

A

G

D

E F

B

C

Evaluating and improving failure convergence schemes in IP networks 190

6.3.3 Improved convergence times

By using exponential backoff timers, incremental SPF and partial route
computation it is possible to achieve sub-second convergence with link-state
routing protocols even in large networks [177]. Sub-100 millisecond
convergence times in large networks are currently not achievable with link-state
routing.

This is because the shortest path computation cost, even with incremental SPF,
can be too high. Another reason that sub-100 millisecond convergence times are
not achievable is that the flooding delay is too high. In link-state routing the
convergence depends on the flooding of the updated link-state advertisements
after the failure is detected. When the network is very large the delay introduced
by the processing and the transmission of the LSAs can be quite high. The first
reason is that the distance that the LSA needs to cross is high. Packets cannot
travel faster than the speed of light, in a trans-European or US backbones, the
transfer delay only can be in the order of tens of milliseconds. Moreover every
LSA needs to be processed by every router to ensure proper flooding (the
packets need to be forwarded over the proper interfaces, packets may not live
forever) this introduces additional latency. For example in Figure 78, we
consider that the shortest path between node A and E crosses the nodes B1 ... Bn.
When link BnE fails the link-state advertisements from Bn or E need to reach
node A before it can recompute the new routing tables. When we consider that
the distance or the number of hops between B1 and Bn (or D1 and Dn) is very
high, the time required for these LSAs to reach A will also be very high.

Figure 78: Transmission and process delays of link-state advertisements
can be very high in large networks. In this example we consider that there
are a large number of nodes (n-2) between B1 and Bn and D1 and Dn.

The fact that the shortest paths need to be calculated and that the delay on the
LSAs can be very high prohibits sub-100 millisecond convergence times in large
networks. Very fast convergence times in large networks is only possible if the

A

B1

DnD1C

E

Bn

Improving convergence schemes 191

recovery actions are based on local actions on pre-computed and pre-established
paths. MPLS local protection switching is such a technique, as we have seen
there is no failure indication delay and since the paths are pre-computed and pre-
established the recovery operations are performed very fast. Local protection
switching is believed to offer convergence times in the order of tens of
milliseconds [188].

6.4 Improving FTCR
In the previous section we have discussed techniques to speed up the
convergence of OSPF. In this section we will investigate if these techniques are
also applicable to FTCR. We will also propose other mechanisms to speed up
FTCR.

6.4.1 Exponential backoff timers

Using exponential backoff timers in link-state routing protocols makes it
possible to set the initial values of the timers to much lower values which
typically translates into faster convergence times without jeopardising the
stability.

As we have seen, FTCR does not use the SPF hold-down timers of the link-state
routing protocol during convergence so FTCR does not benefit from exponential
backoff on the SPF and PRC delay timers during convergence.

During reversion FTCR does rely on OSPF so exponential backoff timers can
speed up the reversion of FTCR as it does for link-state routing. However
reversion is not as time critical as convergence so the gain is considered small.
Moreover care must be taken that the wait-to-restore is not too fast in order not
to disrupt the traffic that has been recovered.

Exponential backoff timers can also be applied to link-state advertisements.
Since FTCR does not use link-state advertisements, FTCR does not directly
benefit from exponential backoff applied to them. However when the link-state
advertisements are spread faster over the network this can lead to less multiple
failure events.

6.4.2 Incremental SPF

Incremental SPF is a technique which speeds up the shortest path calculations.
Since FTCR uses the same link-state database and the same shortest path
algorithm as link-state routing, incremental SPF is equally useful for FTCR to
calculate the shortest path tree in the FSL.

Evaluating and improving failure convergence schemes in IP networks 192

6.4.3 Propagation delays in large networks

As we have seen in section 6.3.3 sub-second convergence times with link-state
routing are achievable even in large networks. However faster convergence is
difficult to achieve because of the (potentially) large shortest path computation
times and the transmission and process delay of the LSAs. In Figure 78 we have
seen that receiving the LSAs takes up a lot of time. A similar reasoning is true
for FTCR. We will illustrate this with the different FSL selection modes of
FTCR.

In ingress repair mode the FIS from Bn needs to reach node A before it can set up
the recovery LSP. Sending the FIS from Bn to node A is believed to be slightly
faster than flooding the LSA because there is less processing overhead involved
in sending a FIS compared to flooding an LSA. The FIS only needs to be
forwarded towards the destination while flooding an LSA requires several
checks to prevent the LSAs from living forever. However FTCR does have a
significant drawback when compared to link-state routing in this respect. When
node A receives the FIS it will set the recovery LSP. This means that a label
request message is sent from node A to node E traversing all the nodes in
between. In turn node E will send a label mapping towards node A. This means
that in order to set the recovery LSP the network is almost traversed three times:
once for the FIS and two times to set up the LSP.

In failure-local repair node Bn is the FSL. As always in failure-local repair there
is no notification time. However node Bn will set up the recovery LSP, which
will lead to a set up delay that is in the order of four times the delay between
node A and node E. The delay of the recovery LSP will also be significantly
higher than on the working LSP, almost two times higher. Note that the topology
of Figure 78 triggers such bad behaviour, a more meshed topology renders much
better results. For example if a link exists between Bn and Dn then the set up time
of the recovery LSP will be very short and the additional latency on the recovery
LSP will be negligible.

Nearest non-looping repair does not perform very well either in the topology of
Figure 78. When node Bn detects that it cannot set up the recovery LSP it will
send a FIS upstream. Depending on the implementation, the FIS will be sent to
the previous hop or directly towards node A. In any case, the performance will
be at best that of ingress repair. Like with failure-local repair adding the link
BnDn solves these problems.

We have seen that using LSPs to recover traffic is more stable than updating
routing tables distributed and uncoordinated. However when the delays in the
network are high the two-way set up procedure of downstream-on-demand label

Improving convergence schemes 193

distribution (see section 2.3) of CR-LDP or RSVP-TE introduces a high cost. On
the other hand, reference [184] shows that routing loops can exist for periods as
long as 1.5s in a network where the LSA propagation delays are about 300ms.

Note that in both link-state routing and FTCR the delays can be improved by
giving the control packets preference over data packets. For example by using
DiffServ and marking them with EF [96, 176].

Nevertheless, it is clear that sub-100 millisecond convergence times in very large
networks are not achievable by both link-state routing and FTCR. The remaining
time consuming phases in FTCR convergence are the computation and the setup
of the recovery LSPs. They both can be addressed within the framework of
FTCR, this will be discussed in the next section.

6.4.4 Pre-computation and pre-establishing recovery LSPs

In this section we will discuss how the convergence times of FTCR can be
improved by pre-computing and pre-establishing the recovery LSPs. Obviously
when the recovery LSPs are pre-established they need to be pre-computed too.
However when the recovery LSPs are pre-computed that does not mean that they
should be pre-established. We start by explaining how the recovery LSP can be
pre-computed.

Calculating the recovery LSPs with FTCR before a failure happens can be
considered as a calculate-before-break scheme. The calculations should be
performed in the background and should not interfere with any operational work
that needs to be performed by the router.

In FTCR with failure-local FSL selection mode, it is quite easy to calculate all
possible recovery LSPs for the given set of working LSPs at a certain moment.
For every working LSP a recovery LSP is calculated by removing the outgoing
interface from the link-state database and by calculating a new downstream path
for the LSP. This is possible because there is always only one FSL for a given
LSP and a given failure. In ingress repair mode, a LSR needs to calculate a
recovery LSP for each possible failure on each LSP that it has set up. This will
result in the same number of calculations but the calculations will be
concentrated in the ingress of the LSPs (typically the edge nodes). Nearest non-
looping repair is more difficult to support because it is difficult for a node to
determine for which LSPs and associated failures it can be the nearest non-
looping FSL.

When a failure is detected it is easy to look up the correct recovery paths for all
affected working LSPs if the pre-computed recovery LSPs are stored per
anticipated fault. When a failure happens that does not affect any of the working
LSPs of a given router then obviously no recovery actions need to be performed.

Evaluating and improving failure convergence schemes in IP networks 194

However when the link-state advertisements arrive at that router they will be
incorporated into the link-state database. As a result the pre-computed recovery
LSPs can be invalid. A first approach to resolve this issue is to discard all the
pre-computed recovery LSPs. A more refined approach is to check which
recovery LSPs are affected and only discard those pre-computed paths that are
affected. A similar algorithm to that of incremental SPF can be used.

Finally when a failure occurs for which a given router is not the FSL and
immediately later a failure happens for which the router is the FSL, the link-state
database and hence the pre-computed recovery LSPs will not reflect the recent
changes. This is solved with FTCR multiple failure rerouting as described before
(see section 4.6). As a matter of fact this is not specific for FTCR in calculate-
before-break mode.

One could take FTCR calculate-before-break one step further and not only
calculate the recovery LSPs beforehand but also establish them. This is called
FTCR make-before-break. When the recovery LSPs are pre-established this will
obviously lead to faster convergence times then either FTCR rerouting or FTCR
calculate-before-break. However depending on the size of the network and the
scalability of MPLS components it may not be possible to set up all possible
recovery LSPs. Also it is very important that the recovery LSPs are merged as
much as possible and that double booking is prevented (see section 3.3.4.e and
section 3.3.4.d respectively). It is recommended that the recovery LSPs are in
turn not protected because this would lead to an exponential number of recovery
LSPs. Note that it can be signalled that an LSP should not be protected (e.g. by
clearing the local protection desired flag used by RSVP-TE).

FTCR with make-before-break resembles protection switching fairly well.
Especially protection switching where the recovery LSP are calculated on-line
(see section 3.3.4.c). Therefore it is important to point out the differences
between them.

Protection switching with online path calculation calculates the recovery paths
during the working path setup. FTCR starts to calculate the recovery in the
background after the working LSPs are set up. In FTCR the working LSP will be
set up before the recovery LSPs while in protection switching the working LSPs
and the recovery LSPs will be set up intermixed.

A more important difference is the support for multiple failures. When a failure
happens in FTCR make-before-break, the traffic is restored by using the pre-
established recovery LSP. When another failure occurs on the path of the
recovery LSP immediately thereafter, the second failure will be handled by
rerouting the recovery LSP. The convergence will be slower than recovering a

Improving convergence schemes 195

single failure with FTCR make-before-break but it will be faster than MPLS
rerouting. With protection switching it is very difficult to support multiple
failures since this would lead to an exponential number of recovery LSPs. To
support multiple failures the working LSPs need to be protected but also the
recovery LSPs themselves. Note that we do not consider two failures that occur
on the working LSP while the recovery LSP remains unaffected as a multiple
failure event (see section 3.3.1.d).

As we mentioned before it might not be possible or desirable to support all the
working LSPs with make-before-break FTCR. Note that in this case protecting
all the working LSPs is also not possible or desirable.

6.5 Conclusion
We started by pointing out that hardware-based failure detection is very
important for fast convergence. Afterwards we investigated new advancements
in link-state routing. Recently there has been a renewed interest in speeding up
link-state routing convergence due to the increased importance of interactive
services like VoIP and the increasing interest in MPLS protection switching.
Speeding up link-state routing can be achieved by making the SPF calculations
more efficient by introducing incremental SPF and by avoiding unnecessary SPF
calculations when only leaf changes happen in the network through PRC. By
using exponential backoff timers on hold-down timers for SPF and PRC and
LSA updates it is possible to make the minimum timers much lower which
results in faster convergence without affecting the stability. With these measures
sub-second convergence times in large networks can be achieved. Lower
convergence times are only possible with local recovery operations on pre-
calculated paths.

FTCR can also use incremental-SPF to reduce the SPF tree computation which is
used to determine the recovery LSPs. Faster LSA propagation times will lead to
less multiple failure events because the link-state databases are updated much
faster. With these measures the convergence times of FTCR and link-state
routing are comparable. However FTCR uses a downstream-on-demand label
distribution to set up the recovery LSPs and this can introduce additional latency
in large networks compared to link-state routing. On the other hand with link-
state routing, routing anomalies can occur which increases the convergence time
too.

As we have seen it is only possible to achieve the lowest convergence times in
large networks when the recovery actions are based on pre-computed and pre-
established recovery paths. FTCR can be extended to support both calculate-

Evaluating and improving failure convergence schemes in IP networks 196

before-break and make-before-break. FTCR has then more flexible support for
multiple failures compared to protection switching.

Chapter 7

Concluding remarks

We have seen that MPLS has a number of important applications. Traffic
engineering, VPNs and protection switching are probably the most prominent of
these. With the exception of protection switching these techniques can also be
offered in a pure IP network. Despite this fact MPLS has achieved both a
significant level of support from equipment vendors and a number of significant
deployments.

MPLS offers a path-oriented entity, the LSP, to IP networks. This makes MPLS
a favoured technology for some network operators because it brings the well-
known “connection-oriented” paradigm to IP networks. At the same time MPLS
also causes serious resistance by another group of people, typically network
research people with a background in IP. They argue that MPLS destroys the
connection-less nature of IP networks. We do not take a standpoint in this
discussion but it does make discussing or presenting a MPLS related topic at a
conference an interesting experience.

The main subject of this work is network resilience and not MPLS. We discussed
several convergence schemes for IP and MPLS. The convergence can be split up
in two groups: the first group, the routing schemes, determine and perform the
recovery actions at the moment a failure occurs. The other group of convergence
schemes uses a make-before-break approach where recovery LSPs are set up
before a failure occurs. This group of convergence schemes is called protection
switching. A lot of research has been conducted to develop protection switching
techniques that take the specifics of MPLS into account. For example the number
of recovery LSPs in protection switching can be reduced by merging different
recovery LSPs or by using label stacking. This in contrast with MPLS rerouting
where little advantage is taken of MPLS specific functionality. FTCR on the
other hand does take into account the new functionality that MPLS has to offer.

FTCR is a convergence technique that really takes advantage of the path oriented
functionality of MPLS in IP networks. As we have seen MPLS rerouting simply
sets up LSPs according to the routing tables in the network. It thereby mimics IP
routing by using the LIBs to forward traffic instead of the RIBs that are used in
IP forwarding. FTCR really takes advantage of MPLS by setting up the recovery
LSPs before IP routing converges.

Evaluating and improving failure convergence schemes in IP networks 198

FTCR is also able to offer a high degree of flexibility because it allows for
different FSL selection modes (ingress, nearest non-looping and failure-local
repair) and different failure presume modes (presume link failure, presume node
failure, presume failure type known). The algorithm that is used to recover ER-
LSPs can also be chosen. We have given four different approaches but there are
certainly other possibilities too. Perhaps the most important source of flexibility
of FTCR is the fact that it can support rerouting where the paths are set up and
established on demand but it can also support pre-established and pre-computed
recovery LSPs. Therefor FTCR can be seen as a technique that combines the best
properties of rerouting and protection switching in one convergence scheme.

One can envisage that these different levels of convergence can be used in
networks with service differentiation like DiffServ networks. The more premium
services can then be protected by FTCR make-before-break or calculate-before
break while the best-effort services can be protected with FTCR rerouting.

Appendix A

Testbed configuration parameters

This small appendix gives the exact hardware and software configuration used to
conduct the experiments. While this information will not concern most readers
the information is provided so that the experiments can be verified
independently.

Hardware

PC routers: AMD K6 550Mhz CPUs with 64Mb, 100Mbit Ethernet adapters
from VIA Technologies (VT3043, Rhine chipset revision 6)

Smartbits 2000 with ML-7710 100/10Mbit Ethernet interfaces

Software

Linux kernel 2.4.19 with MPLS-Linux version 1.172

RSVP-TE daemon 0.70-rc2 modified to support FTCR

OSPF with immediate failure detection Zebra version 0.93b

OSPF failure detection with Hello protocol Zebra version 0.92a

Layer 2 forwarding parameters

Static ARP addresses

Route cache flush delay 0s (/proc/sys/net/ipv4/route/min_delay = 0)

Appendix B

RSVP-TE daemon for DiffServ over MPLS

under Linux

B.1 Introduction
The RSVP-TE daemon for DiffServ over MPLS under Linux project supports
the important Internet Engineering Task Force (IETF) standards for the set up of
MultiProtocol Label Switching [23] tunnels with DiffServ [91] support under
Linux by using the ReSource reserVation Protocol [30]. These tunnels support
scalable Quality of Service (QoS) in IP networks. While the project might be
very specialised for the typical Linux user, it is used by ISPs, network operators
and research institutes all over the world. For some of them this project is a
"killer application" making them look at Linux for the first time.

The project reuses the code of a few existing projects (some of them abandoned)
and created a useable RSVP MPLS daemon for Linux. The project deliberately
uses an open, bazaar model with frequent releases to leverage on the ever-
growing user base.

This appendix will elaborate on the architecture and used components both in
user and kernel space (netfilter, netlink, scheduling and queuing, MPLS).

The appendix concludes by investigating the pros and cons of open sourcing a
research project like this that is traditionally developed in house or in a closed
group. The comparison is based on a use case: the public demonstration of
MPLS technology as proof-of-concept. We compare the closed model used in
the Ithaci project with the open source project code that was used in the Tequila
demo. The author was responsible for the MPLS signalling software in both
demos.

The first section describes the features of the daemon, how the daemon was
merged from different projects and the resulting architecture. The section ends
with a description of how a packet is forwarded through the forwarding plane.

Evaluating and improving failure convergence schemes in IP networks 202

The RSVP-TE daemon architecture
First of all the daemon supports the set up of Label Switched Paths (LSPs) in the
network according to the IP routing tables or by explicitly specifying the hops to
be traversed (shortest path LSPs and Explicitly Routed-LSPs). There is an RSVP
API (RAPI), an API to aid developers to build custom applications that interact
with the RSVP daemon. There is support for DiffServ allowing to differentiate
the forwarding behaviour based on the value in the EXP field of the MPLS
header. There is also support for IntServ where resources are explicitly allocated
on a per-LSP level. Traffic can be very flexibly mapped on the LSPs based on
the destination address, protocol, destination ports and port ranges of the IP
packets. There is also the ability to trace an LSP, comparable to IP’s traceroute.
It checks the route taken by an LSP by probing the routers along the path.
Resilience is also supported with LSP rerouting and LSP protection switching.

Merged components
The daemon is based upon the Nistswitch version 2.0 daemon for Free BSD by
USC (Figure 79: RSVP-MPLS BSD [164]) and a port of an IntServ RSVP
daemon to Linux by Alexey Kuznetsov (Figure 79: RSVP Linux [163]). Both
daemons are based on the same code base (ISI RSVP implementation, Figure 79:
RSVP BSD [162]) but they forked a while ago. This effort combines the
daemons again so that the MPLS support found in the Nistswitch version is now
available on Linux. Moreover support for DiffServ over MPLS (DS/MPLS) is
also added (Figure 79: DiffServ extension).

The MPLS Linux kernel code is based upon mpls-linux by James R. Leu (Figure
79: MPLS Linux). Our release originally added kernel support for DiffServ over
MPLS support, the use of multiple routing tables and LSP byte and packet
counters. However the more recent version 1.1 branch adds this functionality so
we are using an unpatched version now.

Figure 79 illustrates the merge process. We started by extracting the MPLS
extensions from the Nistswitch version and applying these extensions to
Alexey’s Linux RSVP daemon. We then added support to daemon for James
Lieu’s Linux MPLS patches. Finally we added our own support for DiffServ
over MPLS and flexible traffic mappings.

Other small patches are required to iptables (DSCP based matching) and tc
(support for the MPLS protocol).

RSVP-TE daemon for DiffServ over MPLS under Linux 203

Figure 79: Software Merge Map of the RSVP-TE daemon. The BSD MPLS
extension patch is the result of determining the difference of the source
code of the original BSD RSVP daemons (-) this patch can be applied to
Linux RSVP daemon because it is based on the same source code base.
Adding MPLS and DiffServ functionality results in a RSVP-TE daemon for
Linux (and BSD).

The overall architecture
The overall architecture (Figure 80) depends on a number of components both in
user space and kernel space. The important parts of the kernel that are used are
netfiler to classify the packets, QoS and fair queuing to support differentiating
between flows and of course MPLS support.

The prime user space component is the RSVP daemon that is responsible for the
RSVP signalling and the maintenance of the MPLS state. The daemon is
responsible for the allocating and installation of the MPLS labels during LSP set
up and freeing and removing labels on LSP tear down.

Original

Patch

New code

DiffServ
extension

RSVP-MPLS
 Linux & BSD

RSVP-TE
DS/MPLS

Linux & BSD

+

RSVP-MPLS
BSD

RSVP
BSD

RSVP
Linux

_

BSD MPLS
extensions

+
RSVP-MPLS

BSD
RSVP Linux

BSD MPLS
extensions

MPLS Linux

+

RSVP-MPLS
Linux & BSD

Evaluating and improving failure convergence schemes in IP networks 204

Figure 80: DiffServ over MPLS using RSVP-TE under Linux overall
architecture

Two components use the RAPI: “rtest” and “rapirecv”. rtest is an application that
takes LSP requests and issues them to the daemon. rapirecv is an application that
receives label requests at the egress and dictates the daemon to send a response
back to the ingress. rtest2 and rapirecv_auto (not shown in the figure) are
extended version of rtest and rapirecv respectively that support the automatic set
up of a (large) number of LSPs.

Map MPLS
EXP to IP
DSCP

Map IP DSCP to
MPLS EXP

RSVP
daemon

RAPI
client
(rtest)

Ingress Core

RSVP
daemon

Linux kernel
MPLS

Egress

IP rule: select routing
table based on
FWMARK

Classification
Netfilter

Routing tables
Attach

label/EXP

Swap label
Apply PHB

Pop label

RSVP
daemon

Linux kernel
MPLS

RAPI
client

(rapirecv)

tunnel

Linux kernel
MPLS

netfilter
policy routing
routing tables

Inspect incoming
label, write new
outgoing label

Remove
incoming
label,
send to
IP stack

Signaling
Install state
Forwaring

Linux
kernel

QoS and fair
queueing

ds_config

Take incoming
EXP and map
to tcindex

Linux kernel
MPLS

Set
outgoing
label

Installs the
necessary
queues

RSVP-TE daemon for DiffServ over MPLS under Linux 205

“Tunnel” is an application that maps traffic on an existing LSP. Mapping can be
based on destination address, protocol, destination ports and port ranges (TCP
and UDP). So basically anything that netfilter supports. Tunnel sends status
packets requests (mstat packets) to the RSVP daemon in order to receive
information about the installed state in the daemon (existing sessions, labels,
reservations etc.).

The forwarding path explained
In the ingress the packets are classified with netfilter. Packets are filtered on the
OUTPUT and PREROUTING chain of the mangle table. The mangle table is
needed because the fwmark needs to be set. The OUTPUT and PREROUTING
chains are used in order to filter on both locally generated and incoming traffic.
Based on the value of the fwmark a routing table is selected (using policy
routing). In the resulting routing table there is a MPLS tunnel interface acting as
the default gateway. The tunnel interface encapsulates the packets on the LSP by
attaching the correct outgoing label. The incoming DSCP is mapped to the EXP
field in the MPLS header. A limitation of this architecture is that netfilter can
only write (mark) on the mangle table and that only a single mark operation is
possible. So while we can map traffic on the LSP also setting the DSCP at the
same node is impossible. The solution is to set the DSCP before the traffic enters
the ingress LSP.

In the core node the MPLS stack inspects the incoming label and sets the new
outgoing label and next hop. At the DiffServ level the current EXP value of the
packet is inspected. There is a mapping from this EXP value to a tcindex. The
tcindex in turn determines the correct outgoing queue so the correct forwarding
behavior (PHB) can be applied.

Finally in the egress the incoming EXP field is mapped to the DSCP field and
then the MPLS header is stripped off and the packet is sent to the IP layer.

B.2 The open source community
This section covers some less technical issues related to the consequences (both
positive and negative) of publishing a work as an open source project.

Motivation
The decision to open-source the project was motivated by a number of factors
(given in a random order). A first reason was to prevent others from having to
integrate the daemons all over again or to write RSVP-TE code from scratch.
And while you prevent others from doing that you can find developers and users
willing to debug and develop the system. Starting an open-source project was

Evaluating and improving failure convergence schemes in IP networks 206

also seen as nice way to create some publicity for our department “INTEC”, the
European project “Tequila” and we as developers. Another reason was that
dissemination of information should be an important task of research institutes.
And finally we wanted to give back to the community and strengthen the
networking offering of Linux.

Now let us have a look at how we can reflect on these factors a year after the
start of the project. I believe that the project has indeed prevented others from
building from scratch or integrating a new daemon. The project has attracted a
number of external developers and quite a few users. These users have helped to
track down numerous bugs and developers have contributed important code parts
and a signification number of bug fixes. The project also led to a number of new
opportunities although it is difficult to assert which opportunities were caused by
the project and which were not.

A look at the pros and cons
I will sum up some of the advantages of open-sourcing a project as opposed to
working quietly on your own. I will start with the disadvantages. First of all
maintaining a web site and mailing list is a non-trivial task. In my particular case
I am more or less forced to maintain a public and a private tree which obviously
increases the overhead. Also certain types of questions on the mailing list tend to
involve quite a bit of work. For instance bug reports often involve looking
through debug backtraces, daemon log files and kernel state. Probably the most
annoying things are people asking questions that already have been addressed in
a mailing list thread or in the FAQ.

On the positive side, one of most often mentioned benefits is that extra users lead
to finding bugs more quickly. This is undoubtedly true. Some bugs are only
triggered by specific configurations. When somebody stumbles on an error
before you, you can fix the bug when you want to, often before it is on your
critical path. Complex software systems also have the property that fixing a
certain problem can also fix another, on first sight unrelated, problem. This can
lead to the situation where you fix a bug for a user and as a side-effect fix a bug
you have been chasing down unsuccessfully till now.

Programming in an open environment tends to influence your coding style too.
You rely less on hacks because you know that a hack may cause problems on
other configurations and if that happens your users will report that back to you.
An open-source project also requires that you keep at least a minimal set of
documentation (installation instructions, change log and FAQ).

RSVP-TE daemon for DiffServ over MPLS under Linux 207

Finally there are the external developers. I have been lucky enough to have
received a good deal of bug fixes but also important functionality enhancements
from external developers.

Case study
We will now investigate the pros and cons of open sourcing a research project
like this that is traditionally developed in house or in a closed group. The
comparison is based on a use case of the public demonstration of MPLS
technology as proof-of-concept. Both of the demonstrations were part of the
experimentation activity of European Commission sponsored projects. We
compare the closed model used in the ACTS Ithaci project [20] with the open
source project code that was used in the IST Tequila project’s demo [107]. The
author was responsible for the MPLS signalling software in both demos.

The European projects like Ithaci and Tequila are run by a consortium that
typically consists of research institutes, private companies and universities.
Within a limited time period they try to tackle a specific problem space. In the
case of Ithaci this was IP switching and MPLS with a special focus on multicast.
In the case of Tequila this is Traffic Engineering and QoS in large scale
networks. The projects are typically split up in a number of work packages. The
work conducted in these packages can vary but both projects took a similar
approach. The first package handled the administration and management tasks,
the second package the theoretical research, the third package involves the
development of the experimentation platform and the last package the integration
and experimentation itself. The European Commission representatives and the
auditors usually encourage the projects to conduct a public demonstration of the
developed system.

The focus of the Ithaci demonstration was a testbed where unicast and multicast
MPLS was run simultaneously on the same routers. During the Ithaci project we
used a closed source approach even between the partners of the consortium. The
MPLS stack was written by one partner and made available to us. The code was
a small kernel patch and binary module. We were responsible for the unicast
LDP (Label Distribution Protocol) signaling daemon. We tested our daemon in
our own network prior to the integration meeting. During the integration meeting
we took the components from every partner and installed and integrated them in
to a large network. The integration was the preparation step before the actual
demonstration. During the integration of the demo numerous bugs were
discovered and we basically needed a whole week to straight things out. This is
not surprising and we were well prepared and the demo was very successful. It
however does contrast with the approach taken in the Tequila project.

Evaluating and improving failure convergence schemes in IP networks 208

For the Tequila demo we were, among other things, responsible for the MPLS
signalling daemon. Because the daemon was open-source, it had already received
diverse and thorough testing. Not only the daemon itself but also the installation
instructions (which are not trivial and involve patching the kernel, tc and
iptables). Some partners already got to test the daemon at their premises before
the actual integration meeting. This did not create any additional overhead for us
because it was sufficient to point our projects’ URL. Integrating the RSVP
daemon in the final experimentation platform only revealed two bugs. Both of
them were related to the embedding of the applications rtest and tunnel software
in a Genertic Adaptation Layer (GAL). (The GAL is used to make abstraction of
the router used, the GAL supports Linux routers, Cisco and an experimental
router based on a fast hardware based translator (IFT) and Linux [154].)

It is an oversimplification to state that the significant lower number of bugs
discovered in the signalling daemon during integration meeting of the Tequila
project is solely caused by the public availability of its source code. However
distributed testing of code will lead to bugs being found earlier and to more bugs
being exposed.

Appendix C

An experiment automation framework

C.1 Introduction
This appendix describes the experimentation framework that is used to conduct
the experiments described in section 5.3. As we have explained in Chapter 5, it is
quasi impossible to manually orchestrate the more than 600 individual
measurements. Therefore we developed a measurement automation framework.
Note that this appendix is not a critical part of this work but it is provided as an
aid in verifying the experimentation results obtained therein. Together with
Appendix A and the parameters given in section 5.3 we believe that our results
are reproducible.

The framework is based on the expect tool. ‘Expect’ is a tool to automate
applications that are usually performed interactively. From the expect web site
[165]:

Expect is a tool for automating interactive applications such as
telnet, ftp, passwd, fsck, rlogin, tip, etc. Expect really makes
this stuff trivial. Expect is also useful for testing these same
applications. ... Expect can make easy all sorts of tasks that are
prohibitively difficult with anything else. You will find that
Expect is an absolutely invaluable tool - using it, you will be
able to automate tasks that you've never even thought of before
- and you'll be able to do this automation quickly and easily.

We will now illustrate how Expect is used in combination with shell scripts to
automate the experiments. We illustrate by using the FTCR convergence time
experiment as an example (see section 5.3.4).

C.2 An example
To explain the example we will first give the pseudo code. We will then give the
script which is used to run the experiment. Afterwards we will explain the
Expect primitives that are used in the example.

Evaluating and improving failure convergence schemes in IP networks 210

Pseudo code
Within a FTCR experiment we set up an LSP and map the test traffic to the LSP.
Then the Smartbits is instructed to start sending the test traffic and to collect the
statistics. Then a random time is waited before the link failure is simulated.
Subsequently the link is put back up but only after sufficient time has elapsed to
let FTCR recover the LSP and the Smartbits to stop sending traffic. Finally the
routing daemons are restarted.

do numtest times

Set up LSP

Map test traffic on LSP

Start sending and measuring test traffic (50s)

Wait [30,40]s

Tear down link

Wait 30s

Link up

unmap traffic

Restart routing daemons

wait [100, 104]s

done

Note that the measurement stops before the link is brought back up (and hence
before the test traffic is unmapped from the LSP). Also notice that the time
between the start of the measurements and the time the link is brought down is
randomised. This randomisation is less important in the FTCR experiment but
important in the OSPF with Hello failure detection and the soft-state MPLS
rerouting experiments in order to get the full range of possible convergence
times.

Bash Script code
This section illustrates how the pseudo code is translated in a bash script that
uses some expect primitives. The expect primitives can easily be recognised
because the start with ‘./rsvp_expect’ followed by the command. For
example:

./rsvp_expect r rsvpd

The r(un) command will first kill any instances of the argument (rsvpd) and
then run the argument on every machine of the test network. The above code line
will restart the rsvpd daemon on every machine of the network.

An experiment automation framework 211

The ‘waitrand x y’ command waits for a random time between x seconds and
maximum x+y seconds with a 1ms granularity.

Note that in bash comments start with ‘#’ and output statements with ‘echo’.

C=0

while expr $C '<' $1

do

echo Run === $C ===

echo [1] restart rsvpd and setup LSP

stop the daemon (rsvpd) on all machines,

start the daemon on all machines

./rsvp_expect r rsvpd

prepare to receive PATH messages at the egress LER

./rsvp_expect a

sleep 1

send label request from ingress LER to egress LER

./rsvp_expect i

sleep 1

echo [2] map traffic

create a mapping for the test traffic

A=`./rsvp_expect m | grep LSPID`

check the output of the map instruction

A=`echo $A | cut -d' ' -f1`

when the output contains “Wrong” something went wrong

if expr $A : Wrong

then

echo "LSP not set up!"

retry LSP set up

continue

fi

echo [2] Start Smartbits

start sending traffic for 50s, packet every 1ms

log to ftcr$C ($C is the number of the experiment)

./smartapp/smartapp 50 1 ftcr$C &

echo [3] Wait for Smartbits

Evaluating and improving failure convergence schemes in IP networks 212

sleep 20

wait between [10, 10+10]s

waitrand 10 10

echo [4] tear down link

./rsvp_expect d

sleep 30

echo [5] link up

set link back up

./rsvp_expect u

echo [6] unmap traffic

unmap traffic

./rsvp_expect I

stop sending PATH messages

./rsvp_expect s

stop receiving and responding to PATH messages

./rsvp_expect A

echo [7] Wait for rerouting

restart the routing daemons

./rsvp_expect rospf

waitrand 100 4

C=`expr $C + 1`

increment C

done

Expect primitives
r program kill old instances of program and run program

d Put down interface (simulate link failure)

m Map test traffic on LSP

I Unmap traffic from test LSP

a Start rapirecv_auto (see Appendix B)

A Stop rapirecv_auto

i Set up test LSP

s Tear down test LSP

An experiment automation framework 213

rospf (set interface back up and) Restart OSPF

Smartapp
Smartapp is an application controlling the Smartbits measurement component.
There are three arguments to its invocation. The first one sets the time in seconds
of the experiments, the seconds argument sets the inter-packet delay and the last
argument sets the log file to which the results are logged. The results contain the
packets sent at the sending side and the packets lost at the receiving side. It also
contains the delay distribution of the packets.

References

All online references have been checked for their availability in April 2003. We
consider that the IETF RFCs and the ATM forum documents have a stable URL
so they have not been specifically rechecked during that month. Also the URL to
the expired IETF drafts have not been rechecked. However all the references to
them use the same draft archive [189] which has provided very complete and
reliable over the recent years. All IETF drafts that have not expired have been
updated to their most recent version during the same month.

[1] Prof. Dr. Guido Geerts, Drs. Ton Den Boon, “Van Dale groot
woordenboek der Nederlandse taal”, dertiende herziene uitgave, 1999
Utrecht/Antwerpen.

[2] P. Van Heuven, S. Van den Berghe, F. De Turck, P. Demeester, “Wiley
encyclopedia of technology (MPLS section)”, Wiley and Sons, ISBN 0-
471-36972-1, December 2002.

[3] P. Van Heuven, S. De Maesschalck, D. Colle, S. Van den Berghe, M.
Pickavet, P. Demeester, “Recovery in IP based networks using MPLS”,
IEEE workshop on IP-oriented Operations & Management IPOM'2000,
Pages 70–78, September 2000.

[4] D. Colle, P. Van Heuven, C. Develder, S. Van den Berghe, I. Lievens, M.
Pickavet, P. Demeester, “MPLS recovery mechanisms for IP-over-WDM
networks”, Photonic Network Communications, Kluwer Academic
Publishers, Vol. 3, Nr. 1/2, Pages 23–40, January 2001.

[5] D. Colle, S. De Maesschalck, C. Develder, P. Van Heuven, A. Groebbens,
J. Cheyns, I. Lievens, M. Pickavet, P. Lagasse, P. Demeester, “Data
centric Optical Networks and Their Survivability”, IEEE journal of
selected areas in communications, Vol. 20, Nr.1, January 2002, Pages 6–
21.

[6] D. Colle, A. Groebbens, P. Van Heuven, S. De Maesschalck, M. Pickavet,
P. Demeester, “Porting MPLS-recovery techniques to the MPlS
paradigm”, (Invited paper) Optical Networks Magazine, Special Issue on

References 216

Protection and Survivability, Vol. 2, Nr. 4, Pages 29–47, July/August
2001.

[7] P. Van Heuven, J. Coppens, S. Van den Berghe, P. Demeester, “RSVP-
TE daemon for DiffServ over MPLS under Linux”, Linux Kongress,
Pages 141–155, 5–6 September 2002, Cologne, Germany.

[8] P. Van Heuven, J. Coppens, S. Van den Berghe, D. Colle, P. Demeester,
“Quantitative and Theoretical Analysis of Recovery Convergence in IP
networks”, SoftCom 2002, p 209-213, 8–11 October 2002, Split, Kroatia.

[9] J. Postel, “Internet Protocol”, IETF RFC 791,
http://www.ietf.org/rfc/rfc791.txt, September 1981.

[10] T. Socolofsky, C. Kale, “A TCP/IP Tutorial”, IETF RFC 1180,
http://www.ietf.org/rfc/rfc1180.txt, January 1991.

[11] F. Baker, “Requirements for IP Version 4 Routers”, IETF RFC 1812,
http://www.ietf.org/rfc/rfc1812.txt, June 1995.

[12] C. Huitema, “Routing in the Internet”, New Jersey: Prentice Hall, 1995.

[13] A. Viswanathan et al., “Evolution of Multiprotocol Label Switching”,
IEEE communications magazine, May 1988.

[14] S. Nakazawa, H. Tamura, K. Kawahara, Y. Oie, “Performance analysis of
IP datagram transmission delay in MPLS: impact of both the number and
the bandwidth of LSPs of layer 2”, IEEE International Conference on
Communications, ICC 2001, Volume: 4, Pages 1006-1010, 2001.

[15] G. Armitage, MPLS: The magic behind the myths, IEEE communications
magazine, vol. 38, no. 1, Pages 124–131, 2000.

[16] J. Boyle et al., “Applicability Statement for Traffic Engineering with
MPLS”, IETF RFC 3346, http://www.ietf.org/rfc/rfc3346.txt,
August 2002.

[17] G. Swallow, “MPLS Advantages for Traffic Engineering”, IEEE
Communications Magazine, December 1999.

[18] J. Guichard and I. Pepelnjak, MPLS and VPN Architectures: A Practical
Guide to Understanding, Designing and Deploying MPLS and MPLS-
Enabled VPNs, Indianapolis: Cisco Press, 2000.

References 217

[19] H. Lee, J. H. Wang, B. Kang, K. Jun, “End-to-end QoS architecture for
VPNs: MPLS VPN deployment in a backbone network”, Proceedings of
International Workshops on Parallel Processing, Pages 479–483, 2000.

[20] I. Andrikopoulos, G. Pavlou, P. Georgatsos, N. Karatzas, K.
Kavidopoulos, J. Rothig, S. Schaller, D. Ooms, P. Van Heuven,
“Experiments and enhancement for IP and ATM integration: The IthACI
project”, IEEE Communications Magazine, Vol. 39, Nr. 5, Pages 146–
155, 2001.

[21] P. Dumortier, “Towards a New IP over ATM Routing Paradigm”,
Proceedings of the ISS ’97 World Telecommunications Congress,
Toronto, September 1997, also published as selected paper in IEEE
Communications Magazine, Pages 82–86, Januari 1998.

[22] N. Ghani, S. Dixit, T.S. Wang, “WDM optical networks: A reality check
on IP-over-WDM integration”, IEEE communications magazine, Pages
72–84, March 2000.

[23] E. Rosen, A. Viswanathan, R. Callon, “Multiprotocol Label Switching
Architecture”, IETF RFC 3031, http://www.ietf.org/rfc/rfc3031.txt,
January 2001.

[24] T. D. Nadeau, “Multiprotocol Label Switching (MPLS) Forward
Equivalency Class-To-Next Hop Label Forwarding Entry Management
Information Base”, IETF draft, http://www.ietf.org/internet-drafts/draft-
ietf-mpls-ftn-mib-05.txt, November 2002.

[25] L. Andersson, P. Doolan, N. Feldman, A. Fredette, B. Thomas, “LDP
Specification”, IETF RFC 3036, http://www.ietf.org/rfc/rfc3036.txt,
January 2001.

[26] C. Boscher et al., “LDP state machine”, IETF RFC 3215,
http://www.ietf.org/rfc/rfc3215.txt, January 2002.

[27] B. Thomas, E. Gray, ”LDP Applicability”, IETF RFC 3037,
http://www.ietf.org/rfc/rfc3037.txt, January 2002.

[28] B. Jamoussi et al., “Constraint-Based LSP Setup using LDP”, IETF RFC
3212, http://www.ietf.org/rfc/rfc3212.txt, January 2002.

[29] J. Ash, “Applicability Statement for CR-LDP”, IETF RFC 3213,
http://www.ietf.org/rfc/rfc3213.txt, January 2002.

References 218

[30] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, G. Swallow,
“RSVP-TE: Extensions to RSVP for LSP Tunnels”, IETF RFC 3209,
http://www.ietf.org/rfc/rfc3209.txt, December 2001.

[31] R. Braden et al., “Resource ReSerVation Protocol (RSVP)- Version 1
Functional Specification”, IETF RFC 2205,
http://www.ietf.org/rfc/rfc2205.txt, September 1997.

[32] J. Wroclawski, "The Use of RSVP with IETF Integrated Services", IETF
RFC 2210, http://www.ietf.org/rfc/rfc2210.txt, September 1997.

[33] D. Awduche et al., “Applicability Statement for Extensions to RSVP for
LSP-Tunnels”, IETF RFC 3210, http://www.ietf.org/rfc/rfc3210,
December 2001.

[34] Y. Ohba et al., “MPLS Loop Prevention Mechanism”, IETF RFC 3063,
http://www.ietf.org/rfc/rfc3063.txt, February 2001.

[35] B. Davie et al.,“MPLS using LDP and ATM VC Switching”, IETF RFC
3035, http://www.ietf.org/rfc/rfc3035.txt, January 2001.

[36] J. Moy, “OSPF Version 2”, IETF RFC 2328,
http://www.ietf.org/rfc/rfc2328.txt, April 1998.

[37] “Information technology, Telecommunications and information exchange
between systems, intermediate system-to- intermediate system routing
information exchange protocol for use in conjunction with ISO 8473”,
ISO 10589, 1990.

[38] R. Callon, “Use of OSI IS-IS for Routing in TCP/IP and Dual
Environments”, Digital Equipment Corporation, IETF RFC 1195,
http://www.ietf.org/rfc/rfc1195.txt, December 1990.

[39] J. Halpern, “RIPv1 Applicability Statement for Historic Status”, IETF
RFC 1923, http://www.ietf.org/rfc/rfc1923.txt, March 1996.

[40] G. Malkin, “RIP Version 2”, IETF RFC 2453,
http://www.ietf.org/rfc/rfc2453.txt, November 1998.

[41] G. Malkin, “RIP Version 2 Protocol Analysis”, IETF RFC 1721,
http://www.ietf.org/rfc/rfc1721.txt, November 1994.

[42] T. Rekhter, Y. Li, “A Border Gateway Protocol 4”, IETF RFC 1771,
http://www.ietf.org/rfc/rfc1771.txt, March 1995.

References 219

[43] V. Sharma, Fiffi Hellstrand, “Framework for MPLS-based Recovery”,
IETF RFC 3469, http://www.ietf.org/rfc/rfc3469.txt, February 2003.

[44] J. Coppens, “Evaluatie van herstel in IP en MPLS netwerken” (dutch),
master thesis, June 2001.

[45] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, “Network flows: theory,
algorithms and applications”, Prentice Hall, 1993.

[46] Kunihiro, “GNU Zebra”, [Online], http://www.zebra.org, web site, April
2003.

[47] D. Haskin, R. Krishnan, “A Method for Setting an Alternative Label
Switched Paths to Handle Fast Reroute”, exprired IETF Draft,
http://www.watersprings.org/pub/id/draft-haskin-mpls-fast-reroute-05.txt,
November 2000.

[48] “What is Linux?”, [Web site], http://www.linux.org/info/index.html,
April 2003.

[49] “Introduction to Linux and Linux.com”, [Web site],
http://linux.com/article.pl?sid=02/03/09/1727250, April 2003.

[50] “GNU's Not Unix!”, [Web site], http://www.gnu.org, April 2003.

[51] Free Software Foundations, “GNU General Public License”, [Online],
http://www.gnu.org/copyleft/gpl.html, April 2003.

[52] Spirent Communications, “Industry Standard Network Performance
Analysis System SmartBits® 2000”, [Online],
http://www.spirentcom.com/documents/47.pdf, April 2003.

[53] J. P. Vasseur, “Area size” question on OSPF mailing list, [Online],
http://www.cs-ipv6.lancs.ac.uk/ipv6/mail-archive/ospf/1997-
11/0021.html, April 2003.

[54] L. Berger, et al., “RSVP Refresh Overhead Reduction Extensions”, IETF
RFC 2961, http://www.ietf.org/rfc/rfc2961.txt, April 2001.

[55] D. Colle, “Design and Evolution of Data-centric Optical Networks”, PhD
Thesis, Ghent University, INTEC-IBCN, 2001–2002.

[56] D. Katz , “Why are we scared of SPF? IGP Scaling and Stability”, Nanog
25 meeting, June 2002, [Online], http://www.nanog.org/mtg-
0206/katz.html, April 2003.

References 220

[57] P. Franciosa, D. Frigioni, R. Giaccio, “Semi-dynamic shortest paths and
breath-first search in digraph”, In Proceedinds of the 14th Annual
Symposium on Theoretical Aspects of Computer Science, Pages 113–
124, March 1997.

[58] D. Frigioni, A. Marchetti-Spaccamela, U. Nanni, “Incremental algorithms
for single-source shortest path trees”, In Proceedings of Foundations of
Software Technology and Theoretical Computer Science, Pages 113–124,
December 1994.

[59] Paolo Narvaez, Kai-Yeung Siu, Hong-Yi Tzeng, “New dynamic SPT
algorithm based on a ball-and string model”, In Proceedings of the IEEE
Infocom, 1999.

[60] C. Filsfils, “IGP Fast Convergence, ISIS Case Study”, Ripe meeting 41,
January 2002, [Online], http://www.ripe.net/ripe/meetings/archive/ripe-
41/presentations/eof-isis/index.html, April 2003.

[61] “Merriam-Webster Online, The language center”, [Online],
http://www.m-w.com, April 2003.

[62] S. De Maesschalck, D. Colle, A. Groebbens, C. Develder, I. Lievens, P.
Lagasse, M. Pickavet, P. Demeester, F. Saluta, M. Quagliotti, “Intelligent
optical networking for multilayer survivability”, IEEE Communications
Magazine, Vol. 40, Nr. 1, January 2002, Pages 42–49.

[63] A. Groebbens, D. Colle, S. De Maesschalck, M. Pickavet, P. Demeester,
“Spare capacity cuts in multi-protocol lambda switching networks using
Backup Trees”, Proceedings of the Sixth Informs Telecom Conference,
Boca Raton, Florida, USA, Pages 51-52, March 10-13 2002.

[64] U. Black, “ATM: Foundation for Broadband Networks”, Prentice Hall
Series, 1995.

[65] M. De Prycker, “Asynchronous Transfer Mode - Solution for Broadband
ISDN”, 3rd Ed., Prentice Hall, 1995.

[66] R. Handel, M.N. Huber, S. Schroder, “ATM Networks - Concepts,
Protocol`s, Applications”, Addison-Wesley, 1994.

[67] S. Keshav, “An Engineering Approach to Computer Networking - ATM
Networks, the Internet and the Telephone Network”, Addison-Wesley,
1997.

References 221

[68] B. Davie, P. Doolan, Y. Rekhter, “Switching in IP Networks”, Morgan
Kaufmann, 1998.

[69] Y. Rekhter, “Tag Switching Architecture – Overview”, IETF RFC 2105,
http://www.ietf.org/rfc/rfc2105.txt, February 1997.

[70] N. Feldman, “ARIS Specification”, expired IETF draft,
http://www.watersprings.org/pub/id/draft-feldman-aris-spec-00.txt, March
1997.

[71] Y. Katsube et. at., “Toshiba's Router Architecture Extensions for ATM :
Overview”, http://www.ietf.org/rfc/rfc2098.txt, February 1997

[72] P. Newman et al., “Ipsilon Flow Management Protocol Specification for
IPv4”, IETF RFC 1953, May 1996.

[73] A.Acharya et al., “IPSOFACTO: IP Switching Over Fast ATM Cell
Transport”, expired IETF draft, http://www.watersprings.org/pub/id/draft-
acharya-ipsw-fast-cell-00.txt, July 1997.

[74] G. Swallow, L. Andersson, “The IETF MPLS working group charter”,
http://www.ietf.org/html.charters/mpls-charter.html, last modified
September 2002.

[75] ATM forum technical committee, “Multi-Protocol over ATM version
1.0”, ftp://ftp.atmforum.com/pub/approved-specs/af-mpoa-0087.000.pdf,
July 1997.

[76] R. Jain, “Multiprotocol over ATM”, Tutorial, http://www.cis.ohio-
state.edu/~jain/atm/atm_mpoa.htm

[77] A, Mallis, “Internetworking Over NBMA IETF working group charter”,
http://www.ietf.org/html.charters/OLD/ion-charter.html, June 2000.

[78] T. Li, “MPLS and the Evolving Internet Architecture”, IEEE
communications magazine, Pages 38–41, December 1999.

[79] “Data Networks and Open Systems Communications: Open Systems
Interconnection – model and notation”, ITU-T Rec. G.805, March 2000.

[80] E. Rosen et al., “MPLS Label Stack Encoding”, IETF RFC 3032
http://www.ietf.org/rfc/rfc3032.txt, January 2001.

[81] “The frame Relay Forum, [Website], http://www.frforum.com/, April
2003.

References 222

[82] A. Conta et al., “Use of Label Switching on Frame Relay Networks
Specification”, IETF RFC 3034, http://www.ietf.org/rfc/rfc3034.txt,
January 2001.

[83] K. Ramakrishnan, S. Floyd, “A Proposal to add Explicit Congestion
Notification (ECN) to IP”, IETF RFC 2481,
http://www.ietf.org/ietf/rfc2481, January 1999.

[84] ATM forum technical committee, “ATM User Network Interface (UNI)
Signalling Specification version 4.1”,
ftp://ftp.atmforum.com/pub/approved-specs/af-sig-0061.001.pdf, April
2002.

[85] ATM forum technical committee, “Private Network-Network Interface
Specification v.1.1”, ftp://ftp.atmforum.com/pub/approved-specs/af-pnni-
0055.002.pdf, April 2002.

[86] P. Agarwal, “Time-to-live (TTL) Processing in MPLS Networks (Updates
RFC 3032)”, IETF RFC 3443, http://www.ietf.org/rfc/rfc3443.txt,
January 2003.

[87] Y. Rekhter et al., “Carrying Label Information in BGP-4”, IETF RFC
3107, www.ietf.org/rfc/rfc3107.txt, May 2001.

[88] J. Wroclawski et al., “Specification of the Controlled-Load Network
Element Service”, IETF RFC 2211, http://www.ietf.org/rfc/rfc2211.txt,
September 1997.

[89] S. Shenker, C. Partridge, R. Guerin, “Specification of Guaranteed Quality
of Service”, IETF RFC 2212, http://www.ietf.org/rfc2212.txt, September
1997.

[90] V. Jacobson, “An Architecture for Differentiated Services”, Talk at IRTF
End-to-end Working Group, July 1997, [Online],
ftp://ftp.ee.lbl.gov/talks/vj-e2e-jul97.pdf, April 2003.

[91] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, “An
Architecture for Differentiated Services”, IETF RFC 2475,
http://www.ietf.org/rfc/rfc2475.txt, December 1998.

[92] K. Nichols, V. Jacobson, L. Zhang, “A Two-bit Differentiated Services
Architecture for the Internet”, IETF RFC 2638,
http://www.ietf.org/rfc/rfc2638.txt, July 1999.

References 223

[93] D. Grossman, “New Terminology and Clarifications for Diffserv”, IETF
RFC 3260, http://www.ietf.org/rfc3260.txt, April 2002

[94] K. Nichols, S. Blake, F. Baker, D. Black, “Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers”, IETF RFC
2474, http://www.ietf.org/rfc/rfc2474.txt, December 1998.

[95] S. Brim et al.,“Per Hop Behavior Identification Codes”, IETF RFC 2836,
http://www.ietf.org/rfc/rfc2836.txt, May 2000.

[96] V. Jacobson, K. Nichols, K. Poduri, “An Expedited Forwarding PHB”,
IETF RFC 2598, http://www.ietf.org/rfc/rfc2598.txt, June 1999.

[97] J. Heinanen, F. Baker, W. Weiss, J. Wroclawski, “Assured Forwarding
PHB Group”, IETF RFC 2597, http://www.ietf.org/rfc/rfc2597.txt, June
1999.

[98] F. Le Faucheur, et al.,”Multi-Protocol Label Switching (MPLS) Support
of Differentiated Services”, IETF RFC 3270,
http://www.ietf.org/rfc/rfc3270.txt, May 2002.

[99] D. Awduche, “MPLS and Traffic Engineering in IP Networks”, IEEE
Communications Magazine, December 1999.

[100] B. Fortz, M. Thorup, “Internet Traffic Engineering by Optimizing OSPF
Weights”, IEEE INFOCOM, 2000.

[101] J. Harmatos, “A heuristic algorithm for solving the static weight
optimisation problem in OSPF networks”, Global Telecommunications
Conference, IEEE GLOBECOM, Volume 3, Pages 1605–1609, 2001.

[102] B. Fortz, M. Thorup, “Optimizing OSPF/IS-IS weights in a changing
world”, Selected Areas in Communications, IEEE Journal on, Volume 20
Issue: 4, Pages 756 –767, May 2002.

[103] A. Iwata, Traffic Engineering Extensions to OSPF Summary LSA,
expired IETF draft, http://www.watersprings.org/pub/id/draft-fujita-ospf-
te-summary-00.txt, March 2000.

[104] D. Katz et al., “Traffic Engineering Extensions to OSPF”, IETF draft,
http://www.ietf.org/internet-drafts/draft-katz-yeung-ospf-traffic-09.txt,
October 2002.

References 224

[105] C. Villamizar, “OMP tutorial”, [Website],
http://www.fictitious.org/omp/tutorial.html, April 2003.

[106] C. Villamizar, “OSPF Optimized Multipath (OSPF-OMP)”, expired IETF
draft, http://www.watersprings.org/pub/id/draft-ietf-ospf-omp-02.txt,
February 1999.

[107] Tequila consortium, “Tequila: Traffic Engineering for Quality of Service
in Internets at large scale”, [web site], http://www.ist-tequila.org, April
2003.

[108] P. Van Heuven (ed.), “IP-QoS State of the Art Overview, Requirements
and Assumptions”, TEQUILA Internal Report 1.1, August 2000.

[109] D. Goderis (ed.), D1.1: Functional Architecture Definition and Top Level
Design, CEC no. 101/Alcatel/b1, July 2001.

[110] P. Trimintzios (ed.), D1.2: Protocol and Algorithm Specification,
TEQUILA Consortium Deliverable, CEC no. 102/UniS/b1, January 2001.

[111] P. Van Heuven (ed.), D1.3: Intermediate-Results based Protocol and
Algorithm Specification, TEQUILA Consortium Deliverable, CEC no.
103/IMEC/b1, October 2001.

[112] P. Van Heuven (ed.), D1.4: Final Protocol and Algorithm Specification,
TEQUILA Consortium Deliverable, CEC no. 104/IMEC/b1, April 2002.

[113] G. Apostopoulos et al., “QoS Routing Mechanisms and OSPF
Extensions”, IETF RFC 2676, http://www.ietf.org/rfc/rfc2676.txt, August
1999.

[114] E. Rosen et al., “BGP/MPLS VPNs”, IETF RFC 2547,
http://www.ietf.org/rfc/rfc2547.txt, March 1999.

[115] E. Rosen et al., “BGP/MPLS VPNs”, IETF draft,
http://www.ietf.org/internet-drafts/draft-ietf-ppvpn-rfc2547bis-03.txt,
October 2002.

[116] E. Mannie, “Generalized Multi-Protocol Label Switching (GMPLS)
Architecture”, IETF draft, http://www.ietf.org/internet-drafts/draft-ietf-
ccamp-gmpls-architecture-05.txt, March 2003.

[117] Eric Mannie, D. Papadimitriou, “Generalized Multi-Protocol Label
Switching Extensions for SONET and SDH Control”, IETF draft,

References 225

http://www.ietf.org/internet-drafts/draft-ietf-ccamp-gmpls-sonet-sdh-
08.txt, February 2003.

[118] D. Papadimitriou, “Generalized MPLS Signalling Extensions for G.709
Optical Transport Networks Control”, IETF draft,
http://www.ietf.org/internet-drafts/draft-ietf-ccamp-gmpls-g709-03.txt,
November 2002.

[119] L. Berger, “Generalized MPLS Signaling - RSVP-TE Extensions“, IETF
RFC 3473, http://www.ietf.org/rfc/rfc3473.txt, January 2003.

[120] P. Ashwood-Smith, L. Berger, “Generalized MPLS Signaling - CR-LDP
Extensions”, IETF RFC 3472, http://www.ietf.org/rfc/rfc3472.txt, August
2002.

[121] K. Kompella et al., “Link Bundling in MPLS Traffic Engineering”, IETF
draft, http://www.ietf.org/internet-drafts/draft-ietf-mpls-bundle-04.txt,
July 2002.

[122] Vishal Sharma, Fiffi Hellstrand, “Framework for MPLS-based
Recovery”, IETF RFC 3469, http://www.ietf.org/rfc/rfc3469.txt, February
2003.

[123] C. Develder, D. Colle, P. Van Heuven, S. Van den Berghe, M. Pickavet,
P. Demeester, “Influence of recovery time on TCP behaviour”, MPLS
world congress 2001, Paris, France, February 6–9, 2001.

[124] J.Moy, OSPF protocol analysis, IETF RFC 1245,
ftp://ftp.ietf.org/rfc/rfc1245.txt, July 1991.

[125] J.Moy, Experience with the OSPF protocol, IETF RFC 1246,
ftp://ftp.ietf.org/rfc/rfc1246.txt, July 1991.

[126] J. Moy, “OSPF: Anatomy of an Internet Routing Protocol”, Addison-
Wesley, 1998.

[127] “The ATM forum glossary”,
http://www.atmforum.com/aboutatm/glossary.html, November 2002.

[128] P. Willis, “What are the requirements for MPLS OAM?”,
http://www.ietf.org/proceedings/01dec/slides/mplsoam-4/sld016.htm,
December 2002.

References 226

[129] H. Ohta, “Assignment of the 'OAM Alert Label' for Multiprotocol Label
Switching Architecture (MPLS) Operation and Maintenance (OAM)
Functions”, IETF RFC 3429, http://www.ietf.org/rfc/rfc3429.txt,
November 2002.

[130] D. Allan, “A Framework for MPLS User Plane OAM”, IETF draft,
http://www.ietf.org/internet-drafts/draft-allan-mpls-oam-frmwk-04.txt,
February 2003.

[131] K. Owens et al., “A Path protection/Restoration Mechanism for MPLS
networks”, http://www.watersprings.org/pub/id/draft-chang-mpls-path-
protection-03.txt, 2003.

[132] K. Owens et al., "Extensions to RSVP-TE for MPLS Path Protection",
http://www.watersprings.org/pub/id/draft-chang-mpls-rsvpte-path-
protection-ext-02.txt, July 2001.

[133] P. Van Heuven, S. Van den Berghe, J. Coppens, P. Demeester, “RSVP-
TE daemon for DiffServ over MPLS under Linux”, open source project,
[Website], http://dsmpls.atlantis.rug.ac.be, April 2003.

[134] C. Labovitz et al., “Delayed Internet Routing Convergence”, IEEE/ACM
transactions on networking, Vol. 9, No. 3, June 2001.

[135] C. Hedrick, “Routing Information Protocol”, IETF RFC 1058,
http://www.ietf.org/rfc/rfc1058.txt, June 1988.

[136] S. Sherry, G. Meyer, “Protocol Analysis for Triggered RIP”, IETF RFC
2092, http://www.ietf.org/rfc2092.txt, January 1997.

[137] R. Perlman, “A comparison between two routing protocols: OSPF and IS-
IS”, IEEE Network , Volume: 5 Issue: 5 , Page(s): 18 –24, Sept. 1991.

[138] O. Sharon, “Dissemination of routing information in broadcast networks:
OSPF versus IS-IS”, IEEE Network , Volume: 15 Issue: 1 , Pages: 56 –
65, Jan.-Feb. 2001.

[139] C. Alaettinoglu, V. Jacobson, H. Yu, “Towards mili-second IGP
convergence”, expired IETF draft,
http://www.watersprings.org/pub/id/draft-alaettinoglu-isis-convergence-
00.txt, November 2000.

[140] Cisco Systems, “OSPF Design Guide”,
http://www.cisco.com/warp/public/104/2.html, December 2002.

References 227

[141] Juniper Networks, “JUNOS 5.0 Internet Software Configuration Guide:
Routing and Routing Protocols, Hello-Interval”,
http://www.juniper.net/techpubs/software/junos50/swconfig50-
routing/html/ospf-summary13.html#1014246, February 2003.

[142] Juniper Networks, “JUNOS 5.0 Internet Software Configuration
Guide:Routing and Routing Protocols, Dead-Interval”,
http://www.juniper.net/techpubs/software/junos50/swconfig50-
routing/html/ospf-summary6.html#1014092, February 2003.

[143] P. Brittain, A. Farrel, “MPLS Traffic Engineering: A Choice Of
Signalling Protocols”, January 2000.

[144] V. Paxson, “End-to-End Routing Behavior in the Internet”, IEEE/ACM
Trans on Networking, vol 5,no 5, October 1997.

[145] K. Owens et al.,“A path protection/restoration mechanism for MPLS
networks”, expired IETF draft, http://www.watersprings.org/pub/id/draft-
chang-mpls-path-protection-03.txt, July 2001.

[146] P. Pan, “Fast Reroute Extensions to RSVP-TE for LSP Tunnels”,
http://www.ietf.org/internet-drafts/draft-ietf-mpls-rsvp-lsp-fastreroute-
02.txt, February 2003.

[147] D. Stamatelakis, W.D. Grover, “IP layer restoration and network planning
based on virtual protection cycles “, Selected Areas in Communications,
IEEE Journal on , Volume: 18 Issue: 10 , Page(s): 1938 –1949, Oct. 2000.

[148] JTC 1/SC 7, “Information processing -- Documentation symbols and
conventions for data, program and system flowcharts, program network
charts and system resources charts”, ISO 5807:1985, May 1999.

[149] R. L. Oakman, “The Computer Triangle”, section 5.2, “Flowchart
symbols”, [Online],
http://www.wiley.com/college/busin/icmis/oakman/outline/chap05/slides/
symbols.htm, April 2003.

[150] A. Shaikh, M. Goyal, A. Greenberg, R. Rajan, K. K. Ramakrishnan, “An
OPSF Topology Server: Design and Experience”, IEEE journal on
selected areas in communications, vol. 20, no.4, May 2002.

References 228

[151] R. Siamwalla, R. Sharma, S. Keshav, “Discovering internet topology”,
July 1998, [Online],
http://www.cs.cornell.edu/skeshav/papers/discovery.pdf, April 2003.

[152] R. Govindan, H. Tangmunarunkit, “Heuristics for Internet map
discovery”, Proc. IEEE INFOCOM, Pages1371-1386, Mar. 2000.

[153] E. Van Breusegem, “Ontdekking van de toestand en de topologie van een
netwerk” (dutch), master thesis, June 2001.

[154] C. Duret, F. Rischette, J. Lattmann, V. Laspreses, P. Van Heuven, S. Van
den Berghe and P. Demeester; “High Router Flexibility and Performance
by Combining Dedicated Lookup Hardware (IFT), Off-the-Shelf
Switches and Linux”, Networking 2002, Pisa, Italy, 19-24 May 2002.
[Online], http://www.ist-tequila.org/publications/routers-
networking2002.pdf, April 2003.

[155] James Lieu (maintainer), “MPLS for Linux”, [Web site],
http://sourceforge.net/projects/mpls-linux, April 2003.

[156] “OpenBSD: Free, Functional and Secure”, [Web site],
http://www.openbsd.com, April 2003.

[157] “FreeBSD: The power to serve”, [Web site], http://www.freebsd.org,
April 2003.

[158] “NetBSD: of course it runs NetBSD”, [Web site], http://www.netbsd.org,
April 2003.

[159] “Audio-latency test results”, [Web site],
http://kpreempt.sourceforge.net/benno/linux-2.4.6/3x256.html, April
2003.

[160] “Linux scheduling latency”, [Web site],
http://www.zip.com.au/~akpm/linux/schedlat.html, April 2003.

[161] FSMLabs, “FSMLabs RTLinux”, [Web site],
http://www.fsmlabs.com/community/, April 2003.

[162] Information Science Institute, “RSVP ReSerVation Protocol”, [Web site],
http://www.isi.edu/div7/rsvp, April 2003.

[163] A. Kuznetsov, “RSVP download repository” [Online],
ftp://ftp.inr.ac.ru/ip-routing/rsvp, April 2003.

References 229

[164] NIST Internetworking Technology Group (ITG), “The NIST Switch
home page”,[Web site], http://snad.ncsl.nist.gov/itg/nistswitch, April
2003.

[165] D. Libes, “The expect home page”, [Web site], http://expect.nist.gov,
April 2003.

[166] M. Muuss, “The Story of the PING Program”, [Online],
http://ftp.arl.mil/~mike/ping.html, April 2003.

[167] J. Postel, “Internet Control Message Protocol DARPA Internet Program
Protocol Specification”, IETF RFC, http://www.ietf.org/rfc/rfc792.txt,
September 1981.

[168] V. Paxson et al.,“Framework for IP Performance Metrics”, IETF RFC,
http://www.ietf.org/rfc/rfc2330.txt, May 1998.

[169] US Naval Observatory, “Global Positioning System Overview”,
November 2002, [Online], http://tycho.usno.navy.mil/gps.html, April
2003.

[170] D. L. Mills, “Network Time Protocol (Version 3) Specification,
Implementation and Analysis”, IETF RFC,
http://www.ietf.org/rfc/rfc1305.txt, March 1992.

[171] Spirent Communications, “GX-1405B, GX-1405Bs, SX-7210, SX-7410B
10/100/1000 Mbps Ethernet SmartCards”, [Online],
http://www.spirentcom.com/documents/605.pdf, April 2003.

[172] Spirent Communications, “SmartBits 2000 Chassis”, [Online],
http://www.spirentcom.com/analysis/product_product.cfm?PL=33&PS=1
6&PR=139&P=240, April 2003.

[173] Spirent Communications, “Software Developer s Kit Software
Developer’s Kit SmartLib”, [Online],
http://www.spirentcom.com/documents/603.pdf, April 2003.

[174] Spirent Communications, “Smartlib command reference, Programming
Library Version 3.20”, May 2002.

[175] G. L. Choudhury, A. S. Maunder, V. D. Sapozhnikova, , “Faster link-state
IGP convergence and improved network scalability and stability”, Local
Computer Networks, LCN 2001, 26th Annual IEEE Conference on,
Proceedings Page(s): 149 –158, 2001.

References 230

[176] G. L. Choudury et al., “Explicit Marking and Prioritized Treatment of
Specific OSPF Packets for Faster Convergence and Improved Network
Scalability and Stability”, IETF draft, http://www.ietf.org/internet-
drafts/draft-ietf-ospf-scalability-02.txt, November 2002.

[177] C. Filsfils, “Deploying Tight-SLA services on an IP Backbone: ISIS Fast
Convergence and Differentiated Services Design”, Nanog 25 meeting,
June 2002, [Online], http://www.nanog.org/mtg-0206/filsfils.html, April
2003.

[178] P. Van Heuven, P. Demeester, “Defining the rationale for moving
restoration and protection up to the MPLS layer”, MPLS Forum, June 12-
13, 2000, Dublin, Ireland.

[179] P. Van Heuven, P. Demeester, “Defining the rationale for moving
restoration and protedtion up to the MPLS layer”, The Second Vision in
Business summit on MPLS, June 14-16, 2000, Dublin, Ireland.

[180] D. Colle, C. Develder, P. Van Heuven, S. Demaesschalck, A. Groebbens,
M. Pickavet, P. Demeester, “Resilience in IP-over-WDM networks”,
(Invited paper) Proceedings of the 5th Working Conference on Optical
Network Design and Modelling (ONDM 2001), 5-7 February 2001,
Vienna, Austria.

[181] D. Pappalardo, “AT&T, costumers grapple with ATM net outage”,
Network World, February 26, 2001 [Online],
http://www.nwfusion.com/news/2001/0226attatm.html, April 2003.

[182] J. Ash, et.al., “Proposed Mechanisms for Congestion Control Failure
Recovery in OSPF & ISIS Networks”, expired IETF draft,
http://www.watersprings.org/pub/id/draft-ash-ospf-isis-congestion-
control-02.txt, June 2002.

[183] A. Farrel et al., “Fault Tolerance for the Label Distribution Protocol
(LDP)”, Internet draft, http://www.ietf.org/internet-drafts/draft-ietf-mpls-
ldp-ft-06.txt, September 2002.

[184] C. Alaettinoglu, S. Casner, “Detailed Analysis of ISIS Routing Protocol
on the Qwest Backbone: A recipe for subsecond ISIS convergence”,
Presentation, February 2002, [Online],
http://www.packetdesign.com/news/presentations/2002/qwest.pdf, April
2003.

References 231

[185] Qwest Communication International Inc., “Qwest North American
Broadband Network”, [Online],
http://www.qwest.com/about/qwest/network/northamerican.html, April
2003.

[186] M. Handley et al., “SIP: Session Initiation Protocol”, IETF RFC,
http://www.ietf.org/rfc/rfc2543.txt, March 1999.

[187] International Telecommunication Union, “Recommendation H.323”,
November 2000.

[188] S. Rao, S. Ahmed, R. Southern, “Fast Reroute, A high availability
addition to MPLS”, Nanog 26 meeting, [Online],
http://www.nanog.org/mtg-0210/ppt/shankar.ppt, April 2003.

[189] Watersprings.org, “Internet-Draft Archive”, [Online],
http://www.watersprings.org/pub/id/index-all.html, April 2003.

