61 research outputs found

    Potential and limits of InSAR to characterize interseismic deformation independently of GPS data: Application to the southern San Andreas Fault system

    Get PDF
    The evaluation of long-wavelength deformation associated with interseismic strain accumulation traditionally relies on spatially sparse GPS measurements, or on high spatial-resolution InSAR velocity fields aligned to a GPS-based model. In this approach the InSAR contributes only short-wavelength deformation and the two data sets are dependent, thereby challenging the evaluation of the InSAR uncertainties and the justification of atmospheric corrections. Here we present an analysis using 7 years of Envisat InSAR data to characterize interseismic deformation along the southern San Andreas Fault (SAF) and the San Jacinto Fault (SJF) in southern California, where the SAF bifurcates onto the Mission Creek (MCF) and the Banning (BF) fault strands. We outline the processing steps for using InSAR alone to characterize both the short- and long-wavelength deformation, and evaluate the velocity field uncertainties with independent continuous GPS data. InSAR line-of-sight (LOS) and continuous GPS velocities agree within ∼1–2 mm/yr in the study area, suggesting that multiyear InSAR time series can be used to characterize interseismic deformation with a higher spatial resolution than GPS. We investigate with dislocation models the ability of this mean LOS velocity field to constrain fault slip rates and show that a single viewing geometry can help distinguish between different slip-rate scenarios on the SAF and SJF (∼35 km apart) but multiple viewing geometries are needed to differentiate slip on the MCF and BF (<12 km apart). Our results demonstrate that interseismic models of strain accumulation used for seismic hazards assessment would benefit from the consideration of InSAR mean velocity maps

    Refining the shallow slip deficit

    Get PDF
    Geodetic slip inversions for three major (M_w > 7) strike-slip earthquakes (1992 Landers, 1999 Hector Mine and 2010 El Mayor–Cucapah) show a 15–60 per cent reduction in slip near the surface (depth < 2 km) relative to the slip at deeper depths (4–6 km). This significant difference between surface coseismic slip and slip at depth has been termed the shallow slip deficit (SSD). The large magnitude of this deficit has been an enigma since it cannot be explained by shallow creep during the interseismic period or by triggered slip from nearby earthquakes. One potential explanation for the SSD is that the previous geodetic inversions lack data coverage close to surface rupture such that the shallow portions of the slip models are poorly resolved and generally underestimated. In this study, we improve the static coseismic slip inversion for these three earthquakes, especially at shallow depths, by: (1) including data capturing the near-fault deformation from optical imagery and SAR azimuth offsets; (2) refining the interferometric synthetic aperture radar processing with non-boxcar phase filtering, model-dependent range corrections, more complete phase unwrapping by SNAPHU (Statistical Non-linear Approach for Phase Unwrapping) assuming a maximum discontinuity and an on-fault correlation mask; (3) using more detailed, geologically constrained fault geometries and (4) incorporating additional campaign global positioning system (GPS) data. The refined slip models result in much smaller SSDs of 3–19 per cent. We suspect that the remaining minor SSD for these earthquakes likely reflects a combination of our elastic model's inability to fully account for near-surface deformation, which will render our estimates of shallow slip minima, and potentially small amounts of interseismic fault creep or triggered slip, which could ‘make up’ a small percentages of the coseismic SSD during the interseismic period. Our results indicate that it is imperative that slip inversions include accurate measurements of near-fault surface deformation to reliably constrain spatial patterns of slip during major strike-slip earthquakes

    Measuring and modelling the earthquake deformation cycle at continental dip-slip faults

    Get PDF
    In order for an earthquake to become a natural disaster, it needs to be significantly large, close to vulnerable populations or both. The largest earthquakes in the world occur in subduction zones, where cool, shallowly dipping fault planes enable brittle failure over a large area. However, these earthquakes often occur far away from major cities, reducing their impact. Similar, low angle fault planes can be found in continental fold and thrust belts, where sub-horizontal decollements offer large potential rupture areas. These seismic sources are often much closer to major urban centres than off-shore subduction zone sources. It is therefore essential to understand the processes that control how strain is accommodated and released in such settings. Much of our current understanding of the earthquake cycle comes from studying strike-slip faults. Can our knowledge of strike-slip faults be transferred over to dip-slip faults, and in particular, fold and thrust belts? Previous work has suggested that there may be significant differences between strike-slip and dip-slip settings, and therefore further study of the earthquake cycle in dip-slip environments is required. The recent launch of Sentinel-1, and the extensive Synthetic Aperture Radar (SAR) archive of the European Space Agency (ESA), offer an opportunity to obtain measurements of strain in dip-slip environments that can contribute to our understanding. In this thesis, I use geodetic measurements to contribute to our understanding of the earthquake cycle. Enhanced surface deformation rates following earthquakes (so called postseismic deformation) show temporal and spatial variation. Such variation can be used to investigate the material properties of faults and the surrounding medium. I collate measurements of postseismic velocity following contintental earthquakes to examine the temporal evolution of strain following an earthquake over multiple timescales. The compilation show a simple relationship, with velocity inversely proportional to time since the earthquake. This relationship holds for all fault types, with no significant difference between dip-slip and strike-slip environments. Such lack of difference implies that, at least in terms of the temporal evolution of near field postseismic deformation, both environments behave similarly. I compare these measurements with the predictions of various models that are routinely used to explain postseismic deformation. I find that the results are best explained using either rate-strengthening afterslip or power-law creep in a shear zone with high stress exponent. Such a relationship indicates that fault zone processes dominate the near-field surface deformation field from hours after an earthquake to decades later. This implies that using such measurements to determine the strength of the bulk lithosphere should only be done with caution. I then collate geodetic measurements from throughout the earthquake cycle in the Nepal Himalaya to constrain the geometry and frictional properties of the fault system. I use InSAR to measure postseismic deformation following the 2015 Mw~7.8 Gorkha earthquake and combine this with Global Navigation Satellite System (GNSS) displacements to infer the predominance of down-dip afterslip. I then combine these measurements with coseismic and interseismic geodetic data to determine fault geometries which are capable of simultaneously explaining all three data sets. Unfortunately, the geodetic data alone cannot determine the most appropriate geometry. It is therefore necessary to combine such measurements with other relevant data, along with the expertise to understand the uncertainties in each data set. Such combined measurements ought to be understood using physically consistent models. I developed a mechanically coupled coseismic-postseismic inversion, based on rate and state friction. The model simultaneously inverts the coseismic and postseismic surface deformation field to determine the range of frictional properties and coseismic slip which can explain the data within uncertainties. I applied this model to the geodetic data compilation in Nepal and obtained a range of values for the rate-and-state 'a' parameter between 0.8 - 1.6 x 10^-3, depending on the geometry used. Whilst the Nepal Himalaya is well instrumented, many continental collision zones suffer from a severe lack of data. The Sulaiman fold and thrust belt is one such region, with very sparse GNSS data, but significant seismicity. I apply InSAR to part of the Sulaiman fold and thrust belt near Sibi to examine the evolution of strain throughout the seismic cycle. I tie together observations from ERS, Envisat and Sentinel-1 to produce a time series of displacements over 25 years long which covers an earthquake which occurred in 1997. Using this time series, I investigate the contributions of different parts of the earthquake cycle to the development of topography. I find that postseismic deformation plays a clear role in the construction of short wavelength folds, and that the combination of coseismic and postseismic deformation can reproduce the topography over a variety of lengthscales. The shape of the frontal section of the fold and thrust belt, including the gradient of the topography, is roughly reproduced in a single earthquake cycle. This suggests that fold and thrust belts can maintain their taper in a single earthquake cycle, rather than through earthquakes occurring at different points throughout the belt. I find that approximately 1000 earthquakes like the 1997 event, along with associated postseismic deformation, can reproduce the topography seen today to first order. Such a result may aid our use of topography as a long-term record of earthquake cycle deformation. I finish by drawing these various findings together and commenting on common themes. Afterslip plays an important role in the earthquake cycle, contributing to the surface deformation field in multiple locations, over multiple timescales, and generating topography. This afterslip can be explained using a rate-strengthening friction law with a*sigma between 0.2 and 1.54 MPa. Combining this rate dependence with the static coefficient of friction determined from other methods, such as critical taper analysis, would enable a more complete picture of fault friction to be determined. Fault geometry in fold and thrust belts may control the size of potential ruptures, with junctions and changes in dip angle potentially arresting ruptures. In order to fully determine the role of fault geometry and friction in controlling the earthquake cycle in dip-slip settings, I suggest a more thorough exploitation of the wealth of InSAR data which is now available. These data then need to be combined with measurements from other fields, and models produced which are consistent within the uncertainties of each data set. I suggest that measurements of topography and insights from structural geology may help with understanding the long term and short term processes governing earthquake patterns in an area. As both observations and models are developed, interdisciplinary teams may be able to better constrain the key controls on earthquake hazard in continental dip-slip settings

    Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data

    Get PDF
    6p.International audienceDespite remarkable successes achieved by Differential InSAR, estimations of low tectonic strain rates remain challenging in areas where deformation and topography are correlated, mainly because of the topography‐related atmospheric phase screen (APS). In areas of high relief, empirical removal of the stratified component of the APS may lead to biased estimations of tectonic deformation rates. Here we describe a method to correct interferograms from the effects of the spatial and temporal variations in tropospheric stratification by computing tropospheric delay maps coincident with SAR acquisitions using the ERA‐ Interim global meteorological model. The modeled phase delay is integrated along vertical profiles at the ERA‐I grid nodes and interpolated at the spatial sampling of the interferograms above the elevation of each image pixel. This approach is validated on unwrapped interferograms. We show that the removal of the atmospheric signal before phase unwrapping reduces the risk of unwrapping errors in areas of rough topography

    Southern San Andreas-San Jacinto fault system slip rates estimated from earthquake cycle models constrained by GPS and interferometric synthetic aperture radar observations

    Get PDF
    We use ground geodetic and interferometric synthetic aperture radar satellite observations across the southern San Andreas (SAF)-San Jacinto (SJF) fault systems to constrain their slip rates and the viscosity structure of the lower crust and upper mantle on the basis of periodic earthquake cycle, Maxwell viscoelastic, finite element models. Key questions for this system are the SAF and SJF slip rates, the slip partitioning between the two main branches of the SJF, and the dip of the SAF. The best-fitting models generally have a high-viscosity lower crust (η = 10^(21) Pa s) overlying a lower-viscosity upper mantle (η = 10^(19) Pa s). We find considerable trade-offs between the relative time into the current earthquake cycle of the San Jacinto fault and the upper mantle viscosity. With reasonable assumptions for the relative time in the earthquake cycle, the partition of slip is fairly robust at around 24–26 mm/a for the San Jacinto fault system and 16–18 mm/a for the San Andreas fault. Models for two subprofiles across the SAF-SJF systems suggest that slip may transfer from the western (Coyote Creek) branch to the eastern (Clark-Superstition hills) branch of the SJF from NW to SE. Across the entire system our best-fitting model gives slip rates of 2 ± 3, 12 ± 9, 12 ± 9, and 17 ± 3 mm/a for the Elsinore, Coyote Creek, Clark, and San Andreas faults, respectively, where the large uncertainties in the slip rates for the SJF branches reflect the large uncertainty in the slip rate partitioning within the SJF system

    Measuring and Modeling Viscoelastic Relaxation of the Lithosphere with Application to the Northern Volcanic Zone, Iceland

    Get PDF
    Viscoelastic relaxation of the stress perturbation caused by an earthquake or diking event can produce measurable ground deformation over 100 km away from the source. We consider the role of viscoelastic relaxation in two different contexts. First, we explore the role that post-seismic relaxation may play in loading a fault over the entire seismic cycle. Viscous relaxation recycles the stress that is shed by the co-seismic fault, acting to reload the fault with stresses in a non-linear fashion. Under conditions of rapid post-seismic relaxation and slow tectonic loading, stress recycling via viscoelastic relaxation can lead to clustering of earthquakes in time. The second context in which we consider viscoelastic relaxation involves the lithospheric response to a mid-ocean ridge rifting episode in Northern Iceland. The diking and subsequent relaxation act as a natural rock mechanics experiment, and in measuring and modeling the post-rifting response we aim to constrain the rheological properties of the Icelandic lithosphere. In order to use post-seismic or post-rifting relaxation to probe properties of the lithosphere, we must be able to precisely measure surface deformation. To that end, we have developed a couple of new interferometric synthetic aperture radar (InSAR) processing approaches: (1) Automatically producing multiple interferograms in a common coordinate system and (2) removing displacements caused by ocean tidal loading from InSAR observations. Both of these developments are essential as we begin to consider the systematic use of tens to hundreds of interferograms

    Refining the shallow slip deficit

    Get PDF
    Geodetic slip inversions for three major (M_w > 7) strike-slip earthquakes (1992 Landers, 1999 Hector Mine and 2010 El Mayor–Cucapah) show a 15–60 per cent reduction in slip near the surface (depth < 2 km) relative to the slip at deeper depths (4–6 km). This significant difference between surface coseismic slip and slip at depth has been termed the shallow slip deficit (SSD). The large magnitude of this deficit has been an enigma since it cannot be explained by shallow creep during the interseismic period or by triggered slip from nearby earthquakes. One potential explanation for the SSD is that the previous geodetic inversions lack data coverage close to surface rupture such that the shallow portions of the slip models are poorly resolved and generally underestimated. In this study, we improve the static coseismic slip inversion for these three earthquakes, especially at shallow depths, by: (1) including data capturing the near-fault deformation from optical imagery and SAR azimuth offsets; (2) refining the interferometric synthetic aperture radar processing with non-boxcar phase filtering, model-dependent range corrections, more complete phase unwrapping by SNAPHU (Statistical Non-linear Approach for Phase Unwrapping) assuming a maximum discontinuity and an on-fault correlation mask; (3) using more detailed, geologically constrained fault geometries and (4) incorporating additional campaign global positioning system (GPS) data. The refined slip models result in much smaller SSDs of 3–19 per cent. We suspect that the remaining minor SSD for these earthquakes likely reflects a combination of our elastic model's inability to fully account for near-surface deformation, which will render our estimates of shallow slip minima, and potentially small amounts of interseismic fault creep or triggered slip, which could ‘make up’ a small percentages of the coseismic SSD during the interseismic period. Our results indicate that it is imperative that slip inversions include accurate measurements of near-fault surface deformation to reliably constrain spatial patterns of slip during major strike-slip earthquakes

    3-D Satellite Interferometry for Interseismic Velocity Fields

    Get PDF
    The global interseismic strain rate map is being accomplished rapidly with measurements of the space-based geodetic technique of InSAR. High-resolution measurements of crustal deformation from InSAR can provide crucial constraints on a region's active tectonics, geodynamics, and seismic hazard. However, space-based InSAR usually only provides good constraints on horizontal displacement in the east-west direction, with the north-south component typically provided by low-resolution GNSS measurements. Sentinel-1, on the other hand, has the potential to provide measurements that are sensitive to north-south motion, through exploitation of the burst overlap areas produced by the TOPS acquisition mode. However, the significant noise contributions from decorrelation and propagation through the ionosphere make it challenging to detect surface displacements associated with interseismic deformation needing millimeters per year accuracy. The ionospheric phase advance is a significant nuisance term that can bias InSAR measurements. Although methods have been developed to mitigate the effect, they are not always routinely applied when processing C-band SAR images, for which the effect is generally expected to be small. Nevertheless, the effect can be significant, especially when analyzing low deformation gradients over large areas using time-series analysis. Here, the work in Chapter 3 presents a time-series approach to ionospheric noise mitigation, which improves on existing methods. Firstly, I estimate the ionospheric contribution for each individual acquisition from multiple interferograms, which reduces noise. Secondly, this work improved the identification of unwrapping errors, which can bias the estimation. Thirdly, I introduce a new filtering approach, which gives better results, particularly at image edges and areas with variable density of coherent measurements. Furthermore, the approach is applicable when estimating along-track motion in burst overlap areas. The results show that applying the correction improves velocity accuracy significantly for both conventional line-of-sight and burst overlap interferometry techniques. The application of measuring long-term tectonic signals that concentrate in the north-south component with millimeters per year accuracy is essential to constrain interseismic strain globally. In Chapter 4, I also demonstrate a time-series approach with the burst overlap interferometry appropriate for extracting subtle long-term displacements. The approach includes mitigation of ionospheric noise, and I investigate different filtering approaches to optimize the reduction of decorrelation noise. I present the mean ground velocity in the azimuth direction from data acquired between 2014 and 2019 along the West-Lut Fault, a north-south striking fault in eastern Iran. The chi-square statistic defines a good agreement between the results and independent GNSS measurements. Moreover, the denser coverage of the technique allows to detect the variation in strain accumulation between northern and southern segments of the fault, with our modeling indicating a variation of slip rate from 9.2±0.5 mm/yr in the south to 4.3±0.5 mm/yr in the north. With current efforts to use InSAR to constrain strain rates globally, along-track measurements can fill a crucial gap in north-south sensitivity. With the achievement of that the burst overlap InSAR technique can measure azimuth motions across a slowly deforming area where the surface displacements are concentrated in the north-south component, this results in that, in the TOPS burst overlap region, the number of observations for a ground displacement can reach 3-4 times with different observational components. Measurement redundancy allows for the decomposition of observed velocities into three-dimensional components. In Chapter 5, I apply InSAR observations to estimate a deformation across the Chaman fault in both line-of-sight and along-track components using images from ascending and descending passes. I demonstrate an inversion to estimate the decomposed velocities. The algorithm employs a sparse GNSS network across the region to transform InSAR velocities to the GNSS reference frame. The results show that constraining the long-wavelength signal across the InSAR observations using GNSS data can mitigate the long-wavelength ionospheric disturbance that remains in the observations. The variation in slip rates across the Chaman fault is depicted by two transect profiles. The mean velocity profile at latitude 31˚N, where the Chaman fault is the only tectonic structure to accommodate strain, is consistent with 10.4±0.4 mm/yr of slip rate derived from the interseismic modeling. The optimal fault slip rate to fit with the mean velocity of the southern profile at latitude 29˚N is 5.5±0.8 mm/yr across the Chaman fault and 15.5±0.9 mm/yr across the parallel fault (the Ghazaband fault). I also demonstrate the benefits of high temporal sampling of InSAR observations with TOPS acquisition mode to study time-dependent surface deformation. I present the evolution of fault creeps, including seismic and aseismic fault slip along the Chaman fault during 2014-2018
    corecore