6,218 research outputs found

    Generation of eigenstates using the phase-estimation algorithm

    Get PDF
    The phase estimation algorithm is so named because it allows the estimation of the eigenvalues associated with an operator. However it has been proposed that the algorithm can also be used to generate eigenstates. Here we extend this proposal for small quantum systems, identifying the conditions under which the phase estimation algorithm can successfully generate eigenstates. We then propose an implementation scheme based on an ion trap quantum computer. This scheme allows us to illustrate two simple examples, one in which the algorithm effectively generates eigenstates, and one in which it does not.Comment: 5 pages, 3 Figures, RevTeX4 Introduction expanded, typos correcte

    Witnessing eigenstates for quantum simulation of Hamiltonian spectra

    Get PDF
    The efficient calculation of Hamiltonian spectra, a problem often intractable on classical machines, can find application in many fields, from physics to chemistry. Here, we introduce the concept of an "eigenstate witness" and through it provide a new quantum approach which combines variational methods and phase estimation to approximate eigenvalues for both ground and excited states. This protocol is experimentally verified on a programmable silicon quantum photonic chip, a mass-manufacturable platform, which embeds entangled state generation, arbitrary controlled-unitary operations, and projective measurements. Both ground and excited states are experimentally found with fidelities >99%, and their eigenvalues are estimated with 32-bits of precision. We also investigate and discuss the scalability of the approach and study its performance through numerical simulations of more complex Hamiltonians. This result shows promising progress towards quantum chemistry on quantum computers.Comment: 9 pages, 4 figures, plus Supplementary Material [New version with minor typos corrected.

    Postprocessing can speed up general quantum search algorithms

    Full text link
    A general quantum search algorithm aims to evolve a quantum system from a known source state s|s\rangle to an unknown target state t|t\rangle. It uses a diffusion operator DsD_{s} having source state as one of its eigenstates and ItI_{t}, where IψI_{\psi} denotes the selective phase inversion of ψ|\psi\rangle state. It evolves s|s\rangle to a particular state w|w\rangle, call it w-state, in O(B/α)O(B/\alpha) time steps where α\alpha is ts|\langle t|s\rangle| and BB is a characteristic of the diffusion operator. Measuring the w-state gives the target state with the success probability of O(1/B2)O(1/B^{2}) and O(B2)O(B^{2}) applications of the algorithm can boost it from O(1/B2)O(1/B^{2}) to O(1)O(1), making the total time complexity O(B3/α)O(B^{3}/\alpha). In the special case of Grover's algorithm, DsD_{s} is IsI_{s} and BB is very close to 11. A more efficient way to boost the success probability is quantum amplitude amplification provided we can efficiently implement IwI_{w}. Such an efficient implementation is not known so far. In this paper, we present an efficient algorithm to approximate selective phase inversions of the unknown eigenstates of an operator using phase estimation algorithm. This algorithm is used to efficiently approximate IwI_{w} which reduces the time complexity of general algorithm to O(B/α)O(B/\alpha). Though O(B/α)O(B/\alpha) algorithms are known to exist, our algorithm offers physical implementation advantages.Comment: Accepted for publication in Physical Review A. arXiv admin note: substantial text overlap with arXiv:1210.464

    Quantum Metropolis Sampling

    Get PDF
    The original motivation to build a quantum computer came from Feynman who envisaged a machine capable of simulating generic quantum mechanical systems, a task that is believed to be intractable for classical computers. Such a machine would have a wide range of applications in the simulation of many-body quantum physics, including condensed matter physics, chemistry, and high energy physics. Part of Feynman's challenge was met by Lloyd who showed how to approximately decompose the time-evolution operator of interacting quantum particles into a short sequence of elementary gates, suitable for operation on a quantum computer. However, this left open the problem of how to simulate the equilibrium and static properties of quantum systems. This requires the preparation of ground and Gibbs states on a quantum computer. For classical systems, this problem is solved by the ubiquitous Metropolis algorithm, a method that basically acquired a monopoly for the simulation of interacting particles. Here, we demonstrate how to implement a quantum version of the Metropolis algorithm on a quantum computer. This algorithm permits to sample directly from the eigenstates of the Hamiltonian and thus evades the sign problem present in classical simulations. A small scale implementation of this algorithm can already be achieved with today's technologyComment: revised versio

    Encoding a Qubit into a Cavity Mode in Circuit-QED using Phase Estimation

    Full text link
    Gottesman, Kitaev and Preskill have formulated a way of encoding a qubit into an oscillator such that the qubit is protected against small shifts (translations) in phase space. The idea underlying this encoding is that error processes of low rate can be expanded into small shift errors. The qubit space is defined as an eigenspace of two mutually commuting displacement operators SpS_p and SqS_q which act as large shifts/translations in phase space. We propose and analyze the approximate creation of these qubit states by coupling the oscillator to a sequence of ancilla qubits. This preparation of the states uses the idea of phase estimation where the phase of the displacement operator, say SpS_p, is approximately determined. We consider several possible forms of phase estimation. We analyze the performance of repeated and adapative phase estimation as the simplest and experimentally most viable schemes given a realistic upper-limit on the number of photons in the oscillator. We propose a detailed physical implementation of this protocol using the dispersive coupling between a transmon ancilla qubit and a cavity mode in circuit-QED. We provide an estimate that in a current experimental set-up one can prepare a good code state from a squeezed vacuum state using 88 rounds of adapative phase estimation, lasting in total about 4μ4 \mu sec., with 94%94\% (heralded) chance of success.Comment: 24 pages, 15 figures. Some minor improvements to text and figures. Some of the numerical data has been replaced by more accurate simulations. The improved simulation shows that the code performs better than originally anticipate

    Analyzing many-body localization with a quantum computer

    Full text link
    Many-body localization, the persistence against electron-electron interactions of the localization of states with non-zero excitation energy density, poses a challenge to current methods of theoretical and numerical analysis. Numerical simulations have so far been limited to a small number of sites, making it difficult to obtain reliable statements about the thermodynamic limit. In this paper, we explore the ways in which a relatively small quantum computer could be leveraged to study many-body localization. We show that, in addition to studying time-evolution, a quantum computer can, in polynomial time, obtain eigenstates at arbitrary energies to sufficient accuracy that localization can be observed. The limitations of quantum measurement, which preclude the possibility of directly obtaining the entanglement entropy, make it difficult to apply some of the definitions of many-body localization used in the recent literature. We discuss alternative tests of localization that can be implemented on a quantum computer.Comment: 11 pages, 8 figures; slightly revised, published versio

    Calculating energy derivatives for quantum chemistry on a quantum computer

    Get PDF
    Modeling chemical reactions and complicated molecular systems has been proposed as the `killer application' of a future quantum computer. Accurate calculations of derivatives of molecular eigenenergies are essential towards this end, allowing for geometry optimization, transition state searches, predictions of the response to an applied electric or magnetic field, and molecular dynamics simulations. In this work, we survey methods to calculate energy derivatives, and present two new methods: one based on quantum phase estimation, the other on a low-order response approximation. We calculate asymptotic error bounds and approximate computational scalings for the methods presented. Implementing these methods, we perform the world's first geometry optimization on an experimental quantum processor, estimating the equilibrium bond length of the dihydrogen molecule to within 0.014 Angstrom of the full configuration interaction value. Within the same experiment, we estimate the polarizability of the H2 molecule, finding agreement at the equilibrium bond length to within 0.06 a.u. (2% relative error).Comment: 19 pages, 1 page supplemental, 7 figures. v2 - tidied up and added example to appendice
    corecore