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Generation of eigenstates using the phase-estimation algorithm
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The phase estimation algorithm is so named because it allows the estimation of the eigenvalues

associated with an operator. However it has been proposed that the algorithm can also be used to
generate eigenstates. Here we extend this proposal for small quantum systems, identifying the con-
ditions under which the phase estimation algorithm can successfully generate eigenstates. We then
propose an implementation scheme based on an ion trap quantum computer. This scheme allows us
to illustrate two simple examples, one in which the algorithm effectively generates eigenstates, and
one in which it does not.

PACS numbers: 03.67.Lx, 32.80.Pj

I. INTRODUCTION

Since the inception of quantum computation [1], peo-
ple in the field have endeavored to find tasks which a
quantum computer could perform more efficiently than
a classical computer [2, 3, 4, 5]. For a detailed intro-
duction into the field of quantum computation and infor-
mation, see [6]. The algorithm which has by far gener-
ated the most interest is Shor’s factoring algorithm [4],
as it enables the cracking of the RSA encryption sys-
tem [7]. Kitaev [8] generalized Shor’s algorithm, show-
ing how a quantum computer can generate an eigenvalue
of an arbitrary unitary operator (in the limit of a large
number of qubits, and not necessarily efficiently). Due
to experimental difficulties, a large scale quantum com-
puter (if possible), will not be attainable for a number of
years. However, small-scale quantum computers are al-
ready available [9]. In this paper, we show how a version
of the phase estimation algorithm can be implemented
on a particular ‘small-scale’ quantum computer, the ion
trap quantum computer.

Given some unitary operator U and an approximate
eigenstate; the goal of the phase estimation algorithm [8,
10] is to obtain an eigenvalue of U and leave the quan-
tum system in the corresponding eigenstate [11, 12]. To
accomplish this task, we shall need two quantum sys-
tems which can be coupled together. One, we shall call
the index system, the other the target system. The in-
dex system is initially prepared in the state |0〉. After
performing the algorithm, the index system will store an
eigenvalue of the target system operator, U .

Traditionally both the target and index systems have
been qubit registers. In this paper the index system will
remain a register of qubits, however we shall allow the
target system to be an arbitrary N -dimensional quan-
tum system, where N may be equal to infinity. For a
more generalized discussion of combining continuous and
discrete quantum computation see [13].
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In Sec. II we briefly review the phase estimation al-
gorithm then derive the analytical results which will al-
low us to characterize the algorithm’s performance when
using only a small number of qubits. In Sec. III we de-
rive the Hamiltonians necessary to investigate the num-
ber and displacement operators in an ion trap, and con-
trast the algorithms effectiveness with respect to the two
different operators.

II. THE PHASE ESTIMATION ALGORITHM

In what follows, we shall assume that our index sys-
tem is a register of m qubits. First, we need to be able
to perform the operation Λ(U) on our coupled system.
Λ(U) is completely described by defining its action on
the standard basis states of the index system, coupled to
an arbitrary target system state,

Λ(U)|j〉I |ψ〉T = II ⊗ U j
T |j〉I |ψ〉T

= |j〉U j |ψ〉 ∀ j ∈ ZM , (1)

where ZM = {0, 1, 2, . . . ,M − 1} and M = 2m. As in the
last line of Eq. (1), we shall continue to omit the subscript
notation when it is clear whether a ket or operator is
referring to the target or index system. We begin the
algorithm by initializing our quantum computer into the
state

|Ψ0〉 = |0〉|ψ〉. (2)

Performing a π/2 rotation of each qubit in the index reg-
ister results in the state

|Ψ1〉 =
1√
M

M−1
∑

j=0

|j〉|ψ〉, (3)

We now perform Λ(U) on this state giving

|Ψ2〉 = Λ(U)|Ψ1〉 =
1√
M

M−1
∑

j=0

|j〉U j |ψ〉. (4)

The final steps in the algorithm are to perform the uni-
tary quantum Fourier transform [14] on the index register
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and measure this register [18]. However, before applying
this transform we shall re-write Eq. (4). First we replace
|ψ〉 by it’s representation as a sum of eigenvectors of U ,

|ψ〉 =
∑

k

ck|φk〉, (5)

where k sums over the dimensionality of the target sys-
tem. Hence the state |Ψ2〉 can be written as

|Ψ2〉 =
1√
M

M−1
∑

j=0

|j〉U j
∑

k

ck|φk〉. (6)

We shall write the eigenvalue associated with |φk〉 as eiφk .
Noting that U j applied to each eigenvector |φk〉 is simply
eijφk |φk〉 and changing the order of the summations we
obtain

|Ψ2〉 =
∑

k

ck
1√
M

M−1
∑

j=0

|j〉eijφk |φk〉. (7)

Lastly, for clarity we exchange the order of the systems,
and replace φk with 2πωk/M , where ωk ∈ [0,M),

|Ψ2〉 =
∑

k

ck|φk〉
1√
M

M−1
∑

j=0

e2πijωk/M |j〉. (8)

It is now not hard to show that taking the quantum
Fourier transform of the index register results in the state

|Ψ3〉 =
∑

k

ck|φk〉
M−1
∑

j=0

f(ωk, j)|j〉, (9)

where

f(ωk, j) =

{

1
M

sin(πωk)

sin(π
ωk−j

M
)
eπi(ωk−

ωk−j

M
) : ωk 6= j

1 : ωk = j.
(10)

As we will see shortly, it is helpful to note that

|f(ωk, j)| ≥ |sinc(ωk − j)|, (11)

for all ωk ∈ [0,M) and j ∈ ZM . A plot of |f(ωk, j)| is
shown in Fig. 1 where M = 16 and j has been set to 5.

Finally, measuring the index register will, with high
probability, yield an approximate eigenvector. To under-
stand this, let us begin by looking at the most simplified
case. Suppose for a moment, that we have ωk ∈ ZM for
all k, then

f(ωk, j) = δωk−j . (12)

Thus Eq. (9) simplifies to

∑

k

ck|φk〉|ωk〉. (13)

If we add the assumption that no two values of k give
the same ωk (i.e. we have no degeneracy [19]) then upon
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FIG. 1: A plot of |f | as a function of ωk, with M = 16 and
j = 5.

measuring the index register, we will obtain |ωk〉, and
hence eiφk , with probability |ck|2, and leave the target
system in the eigenstate |φk〉.

Removing the assumption of zero degeneracy, measur-
ing the index register still allows us to obtain some eigen-
value e2πij/M , however the target system is now left in
the state

1√
N

∑

k′

ck′ |φk′ 〉 (14)

where k′ = {k : ωk = j}, and N =
∑

k′ |ck′ |2 is a nor-
malization constant.

Finally, we shall remove the assumption that the ωk

must be elements of ZM . The probability P (j), of mea-
suring the index register in some basis state |j〉 is

P (j) =
∑

k

|〈φk|〈j|Ψ3〉|2

=
∑

k

|ckf(ωk, j)|2. (15)

Having measured the index register to be in some state
|j〉, the target system is left in the state

|ψ′
j〉 =

∑

k

c′k|φk〉, c′k =
ckf(ωk, j)√

N
(16)

where N =
∑

k |ckf(ωk, j)|2.
In order to gain some useful information from Eqs. (15)

and (16), let us assume that our initial target system
state |ψ〉 is an approximate eigenstate of |φq〉 for some q
such that

|cq|2 ≡ |〈φq|ψ〉|2 = p. (17)

Remembering that ωq will be some real number between
0 and M , we define bωqc to be the nearest m-bit integer
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less than ωq, and dωqe to be the nearest m-bit integer
greater than ωq, where modulo M has been assumed.
The probability of measuring the index register in either
the state |bωqc〉 or |dωqe〉 is

P (bωqcordωqe) =
∑

k

|ckf(ωk, bωqc)|2

+
∑

k

|ckf(ωk, dωqe)|2

≥ |cqf(ωq, bωqc)|2 + |cqf(ωq, dωqe)|2

≥ |cq|2 2 sinc2(0.5)

> 0.8p. (18)

Hence, with probability greater than 0.8p we will obtain
an approximate eigenvalue associated with |φq〉 which
differs in phase from the actual eigenvalue by less than
2π/2m. Thus, if p is reasonably large, we have a high
probability of finding the best estimate of the eigenvalue.
However, as we shall see, large p does not imply that we
will improve on the approximate eigenstate.

Suppose we measure the index register in the state
|[ωq]〉, where [ωq] denotes the closest m-bit integer to ωq.
(N.B. This will occur with probability greater than 0.4p,
as |f(ωq, [ωq])|2 > 0.4.) The key question that we wish
to address in this paper is: has our initial approximate
eigenstate improved? Letting p′ ≡ |c′q|2, we are effec-
tively asking what bounds can be placed on p′? For an
arbitrary U it is obvious that the upper bound of p′ = 1
can be obtained by setting |ψ〉 = |φq〉. We now inves-
tigate the lower bound by dividing the eigenstates into
three disjoint sets,

Q = {q},
G = {g : g 6= q, |ωg − [ωq]| ≤ 1} and (19)

H = {h : |ωh − [ωq]| > 1}.

We now have

p′ =
p|f(ωq, [ωq])|2

N , (20)

with

N = p|f(ωq, [ωq])|2 +
∑

g∈G

|cg|2|f(ωg, [ωq])|2

+
∑

h∈H

|ch|2|f(ωh, [ωq])|2. (21)

Using Eqs. (10) and (19), it is not hard to show

0.4 < |f(ωq, [ωq])|2 ≤ 1

0 ≤ |f(ωg, [ωq])|2 ≤ 1 (22)

0 ≤ |f(ωh, [ωq])|2 ≤ λ

where λ = |f(1.5, 0)|2. Asm increases λ tends to ( 2
3π )2 ≈

0.045. However for our analysis it is sufficient to note that

0.045 < λ < 0.05 for m > 3. Eq. (22) leads to the lower
bound

p′ ≥ p|f(ωq, [ωq])|2
p|f(ωq, [ωq])|2 + (1 − λ)G+ λ(1 − p)

(23)

where G =
∑

g |cg|2. Fig. 2 contains a plot of this lower

bound as a function of G for |f(ωq, [ωq])|2 = 0.6 and
various values of p. The circles indicate the points at
which the minimum of p′ equals p. Thus, we see that by
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FIG. 2: The lower bound on p′ as a function of G for
|f(ωq , [ωq])|

2 = 0.6 and various values of p. The circles in-
dicate the points at which the minimum of p′ equals p.

endeavoring to make G as small as possible, we increase
the amplitude of |φq〉. For a given U and |ψ〉, G can be
made arbitrarily small by increasing m. However, we are
interested in the performance of the algorithm for small
values of m. We shall now look at G’s dependence on
U and |ψ〉 by attempting to create eigenvectors for both
the number and displacement operator in a ion trap.

III. AN IONTRAP IMPLEMENTATION

We first derive the Hamiltonian for Λ(U), where U is
the evolution operator associated with the number op-
erator, and investigate the phase estimation algorithm’s
performance for various initial states. We then derive the
Hamiltonian for the more complicated case of U being
the displacement operator. For both of these examples
the index register will be two electronic levels of m ions
in a linear ion trap, and the target system will be the
center-of-mass (CM) vibrational mode of the ions.
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A. The Number Operator

Consider the standard Hamiltonian of the one dimen-
sional harmonic oscillator,

H = ~ω(a†a+
1

2
). (24)

where a† and a are the creation and annihilation opera-
tors. Ignoring the over-all phase contribution of the zero
energy state, the unitary operator we will first be ana-
lyzing is

U(t) = e−iωa†at. (25)

In this case, Λ(U) is given by

Λ(U) = exp





−it
~

m−1
∑

j=0

Hj



 , (26)

where

Hj = ~a†a2jω(σ(j)
z +

1

2
). (27)

The inversion operator for each ion is defined by σ
(j)
z =

(|0〉〈0|− |1〉〈1|)/2. This Hamiltonian can be obtained for
interaction times greater than the period of the CM vi-
brational mode by applying a set of far-detuned standing
wave pulses to the ion [15].

We begin our analysis by initializing the CM mode in
some phonon number state |n〉 [16], and setting ωt =
2π(1 − 1/M). It is important to note that we are as-
suming that all the higher vibrational modes are in the
vacuum state. Assuming no errors, applying the phase
estimation algorithm results in the index register being
measured in the state |n mod M〉 and the target system
is left unchanged. If we now let ωt be some arbitrary
value, applying the algorithm will leave the target sys-
tem unchanged, and the index system will be measured
in the state |j〉 with probability

P (j) =

∣

∣

∣

∣

f

(−ωtnM
2π

, j

)∣

∣

∣

∣

2

(28)

Let us consider the more interesting situation where
the target system is initialized in some coherent state
|α〉. We can utilize the phase estimation algorithm to
transform the state of the target system into an approx-
imation to a Fock state.

For example, suppose we use four index qubits, ωt = 1
and we choose to approximate the Fock state |n = 9〉 by
using the coherent state |α = 3〉. In this example we per-
haps might think that |α = 3〉 is not a good approximate
state because p ≈ 0.13 however the fact that G < 0.035
indicates the algorithm should work well. Applying the
algorithm and measuring the index register in the state
|9〉, we obtain p′ ≈ 0.93. The initial and final target state
for this scenario is shown in Fig. 3.
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FIG. 3: Fock state distributions for the target system initially
in a coherent state with α = 3, and the state of the system
after applying the phase estimation algorithm and measuring
the four index qubits.

Having shown that the phase estimation algorithm can
be used to generate Fock states from coherent states, we
now attempt to generate eigenstates of the displacement
operator.

B. The Displacement Operator

The displacement operator applied to the CM vibra-
tional mode is defined as

D(α) = exp(αa† − α∗a). (29)

Thus the operator we wish to apply is

Λ(D) = exp





−it
~

m−1
∑

j=0

Hj



 , (30)

where the Hj are now defined as

Hj = i~(αa† − α∗a)2j(σ(j)
z +

1

2
). (31)

It has already been shown [17] that conditional displace-
ment operations such as the Hamiltonian in Eq. (31) can
be performed in an ion trap.

It is not hard to show that

D(dei(φ+ π
2
))|α, ε〉 ≈ ei2d|α|e−r |α, ε〉 (32)

for large values of squeezing parameter r and where α =
|α|eiφ, ε = re2iφ and

|α, ε〉 ≡ S(ε)D(α)|0〉 (33)

is a squeezed coherent state. Thus the squeezed coherent
states |α, ε〉 form approximate eigenvectors of the dis-
placement operator D(dei(φ+ π

2
)).
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Without loss of generality we can set φ = 0 in which
case the eigenstates of the displacement operator are
simply the position eigenstates. It is then not hard to
show that for small fixed m, G ≈ 1 − p, which leads to
p′ ≈ p. Thus applying the phase estimation algorithm
to squeezed displaced states does not produce improved
eigenstates of the displacement operator.

IV. CONCLUSION

We have shown that the phase estimation algorithm
can be used to generate eigenstates of the number oper-
ator, even when we severely limit the size of the index
system. It would be interesting to see if an analogous

implementation could be performed using cavity QED,
allowing generation of photon number states with only
small numbers of trapped atoms. We have also shown
that the algorithm’s performance depends on the relation
between the approximate eigenstate and the spectrum of
the operator. We can gauge the algorithm’s performance
by calculating a parameter G.
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