151 research outputs found

    Clock Generation Design for Continuous-Time Sigma-Delta Analog-To-Digital Converter in Communication Systems

    Get PDF
    Software defined radio, a highly digitized wireless receiver, has drawn huge attention in modern communication system because it can not only benefit from the advanced technologies but also exploit large digital calibration of digital signal processing (DSP) to optimize the performance of receivers. Continuous-time (CT) bandpass sigma-delta (ΣΔ) modulator, used as an RF-to-digital converter, has been regarded as a potential solution for software defined ratio. The demand to support multiple standards motivates the development of a broadband CT bandpass ΣΔ which can cover the most commercial spectrum of 1GHz to 4GHz in a modern communication system. Clock generation, a major building block in radio frequency (RF) integrated circuits (ICs), usually uses a phase-locked loop (PLL) to provide the required clock frequency to modulate/demodulate the informative signals. This work explores the design of clock generation in RF ICs. First, a 2-16 GHz frequency synthesizer is proposed to provide the sampling clocks for a programmable continuous-time bandpass sigma-delta (ΣΔ) modulator in a software radio receiver system. In the frequency synthesizer, a single-sideband mixer combines feed-forward and regenerative mixing techniques to achieve the wide frequency range. Furthermore, to optimize the excess loop delay in the wideband system, a phase-tunable clock distribution network and a clock-controlled quantizer are proposed. Also, the false locking of regenerative mixing is solved by controlling the self-oscillation frequency of the CML divider. The proposed frequency synthesizer performs excellent jitter performance and efficient power consumption. Phase noise and quadrature phase accuracy are the common tradeoff in a quadrature voltage-controlled oscillator. A larger coupling ratio is preferred to obtain good phase accuracy but suffer phase noise performance. To address these fundamental trade-offs, a phasor-based analysis is used to explain bi-modal oscillation and compute the quadrature phase errors given by inevitable mismatches of components. Also, the ISF is used to estimate the noise contribution of each major noise source. A CSD QVCO is first proposed to eliminate the undesired bi-modal oscillation and enhance the quadrature phase accuracy. The second work presents a DCC QVCO. The sophisticated dynamic current-clipping coupling network reduces injecting noise into LC tank at most vulnerable timings (zero crossing points). Hence, it allows the use of strong coupling ratio to minimize the quadrature phase sensitivity to mismatches without degrading the phase noise performance. The proposed DCC QVCO is implemented in a 130-nm CMOS technology. The measured phase noise is -121 dBc/Hz at 1MHz offset from a 5GHz carrier. The QVCO consumes 4.2mW with a 1-V power supply, resulting in an outstanding Figure of Merit (FoM) of 189 dBc/Hz. Frequency divider is one of the most power hungry building blocks in a PLL-based frequency synthesizer. The complementary injection-locked frequency divider is proposed to be a low-power solution. With the complimentary injection schemes, the dividers can realize both even and odd division modulus, performing a more than 100% locking range to overcome the PVT variation. The proposed dividers feature excellent phase noise. They can be used for multiple-phase generation, programmable phase-switching frequency dividers, and phase-skewing circuits

    Theory of phaselock techniques as applied to aerospace transponders

    Get PDF
    Phaselock techniques as applied to aerospace transponder

    Proximal-Field Radiation Sensors for Dynamically Controllable and Self-Correcting Integrated Radiators

    Get PDF
    One of the major challenges in the design of integrated radiators at mm-wave frequencies is the generation of surface waves in the dielectric substrate by the on-chip antennas. Since dielectric substrates are excellent surface waveguides with a fundamental mode with no cutoff frequency, there is always some energy trapped in them due to the surface waves and the excited substrate modes. This phenomenon is a significant cause of reduced radiation efficiency for mm-wave integrated radiators. However, in this thesis, we use this as an opportunity. We show that the excited substrate modes in the dielectric substrate of an integrated antenna contain valuable information regarding its far-field radiation properties. We introduce Proximal-Field Radiation Sensors (PFRS) as a number of small sensing antennas that are placed strategically on the same substrate as the integrated antenna and measure electromagnetic waves in its immediate proximity. These sensors extract the existing information in the substrate modes and use it to predict the far-field radiation properties of the integrated antenna in real-time based on in-situ measurements in the close proximity of the antennas, without any need to use additional test equipment and without removing the antenna from its operating environment or interfering with its operation in a wireless system. In other words, PFRS enables self-calibration, self-correction, and self-monitoring of the performance of the integrated antennas. Design intuition and a variety of data processing schemes for these sensors are discussed. Two proof-of-concept prototypes are fabricated on printed circuit board (PCB) and integrated circuit (IC) and both verify PFRS capabilities in prediction of radiation properties solely based on in-situ measurements. Dynamically controllable integrated radiators would significantly benefit from PFRS, These radiators are capable of controlling their radiation parameters such as polarization and beam steering angle through their actuators and control units. In these cases, PFRS serves as a tool for real-time monitoring of their radiation parameters, so that without direct measurement of the far-field properties through bulky equipment the required information for the control units and the actuators are provided. Dynamically controllable integrated radiators can be designed using the additional design space provided by Multi-Port Driven (MPD) radiator methodology. After a review of advantages of MPD design over the traditional single-port design, we show that a slot-based MPD radiator would have the additional advantage of reduced exclusive use area compared to the original wire-based MPD radiator, through demonstration of a 134.5-GHz integrated slot-based MPD radiator with a measured single-element EIRP of +6.0 dBm and a total radiated power of -1.3 dBm. We discuss how MPD methodology enables the new concept of Dynamic Polarization Control, as a method to ensure polarization matching of the transmitter antenna to the receiver antenna, regardless of the polarization and orientation of the receiver antenna in space. A DPC antenna design using the MPD methodology is described and a 105.5-GHz 2x1 integrated DPC radiator array with a maximum EIRP of +7.8 dBm and a total radiated power of 0.9 mW is presented as the first demonstration of an integrated radiator with DPC capability. This prototype can control the polarization angle across the entire tuning range of 0 to 180 degrees while maintaining axial ratios above 10 dB, and control the axial ratio from 2.4 dB (near circular) to 14 dB (linear). We also demonstrate how simultaneous two-dimensional beam steering and DPC capabilities can even match the polarization to a mobile receiver antenna through a prototype 123-GHz 2x2 integrated DPC radiator array with a maximum EIRP of +12.3 dBm, polarization angle control across the full range of 0to 180 degrees as well as tunable axial ratio down to 1.2 dB and beam steering of up to 15 degrees in both dimensions. We also use slot-based DPC antennas to fabricate a 120-GHz integrated slot-based DPC radiator array, expected to have a maximum EIRP of +15.5 dBm. We also introduce a new modulation scheme called Polarization Modulation (Pol-M) as a result of DPC capability, where the polarization itself is used for encoding the data. Pol-M is a spatial modulation method and is orthogonal to the existing phase and amplitude modulation schemes. Thus, it could be added on top of those schemes to enable creation of 4-D data constellations, or it can be used as the only basis for modulation to increase the stream security by misleading the undesired receivers. We discuss how DPC antenna enables Pol-M and also present PCB prototypes for Pol-M transmitter and receiver units operating at 2.4 GHz.</p

    Low Power Circuit Design in Sustainable Self Powered Systems for IoT Applications

    Get PDF
    The Internet-of-Things (IoT) network is being vigorously pushed forward from many fronts in diverse research communities. Many problems are still there to be solved, and challenges are found among its many levels of abstraction. In this thesis we give an overview of recent developments in circuit design for ultra-low power transceivers and energy harvesting management units for the IoT. The first part of the dissertation conducts a study of energy harvesting interfaces and optimizing power extraction, followed by power management for energy storage and supply regulation. we give an overview of the recent developments in circuit design for ultra-low power management units, focusing mainly in the architectures and techniques required for energy harvesting from multiple heterogeneous sources. Three projects are presented in this area to reach a solution that provides reliable continuous operation for IoT sensor nodes in the presence of one or more natural energy sources to harvest from. The second part focuses on wireless transmission, To reduce the power consumption and boost the Tx energy efficiency, a novel delay cell exploiting current reuse is used in a ring-oscillator employed as the local oscillator generator scheme. In combination with an edge-combiner power amplifier, the Tx showed a measured energy efficiency of 0.2 nJ=bit and a normalized energy efficiency of 3.1 nJ=bit:mW when operating at output power levels up to -10 dBm and data rates of 3 Mbps

    Novel Cavity Optomechanical Systems at the Micro- and Nanoscale and Quantum Measurements of Nanomechanical Oscillators

    Get PDF
    This thesis reports on coupling optical microresonators to micro- and nanomechanical oscillators. The mutual optomechanical coupling based on radiation pressure between the microcavity and a mechanical degree of freedom modulating its spatial structure thereby allows both transduction and actuation of the motion of the mechanical degree of freedom by the light field launched into the microcavity. The first part of the thesis reports on a novel experimental approach based on cavity enhanced evanescent near-fields of toroid microresonators. It enables the extension of dispersive cavity optomechanical coupling to sub-wavelength scale nanomechanical oscillators which are at the heart of a variety of precision measurements. The optomechanical coupling present in the developed system is carefully analyzed experimentally and good agreement with theoretical expectations is found. The demonstrated platform allows transduction of nanomechanical motion with an exceptionally high sensitivity, outperforming the previous state-of-the-art transducers. Thereby, for the first time a measurement imprecision lower than the level of the standard quantum limit is achieved. In the present measurements, quantum backaction should already be the dominating contribution to the measurement sensitivity which is however masked by thermal noise. This may pave the way to the first experimental demonstration of radiation pressure quantum backaction on a solid-state mechanical oscillator. Moreover, the radiation pressure interaction between evanescent cavity field and nanomechanical oscillator is shown to enable actuating and controlling the motional state of the oscillator. Both amplification, leading to self-sustained mechanical oscillations, and cooling by radiation pressure dynamical backaction is reported. In addition, the capability of the near-field platform to implement resonant interaction of a mechanical mode with two optical modes is shown as well as the feasibility of quadratic coupling to the nanomechanical oscillators. In the second part of the thesis monolithic on-chip resonators that combine ultra-low optical and mechanical dissipation are designed. To this end, the intrinsic mechanical modes of toroid microresonators are analyzed in detail. High-sensitivity measurements enable the observation of a plethora of mechanical modes and good agreement with finite element modelling is found. In particular the dissipation mechanisms limiting their mechanical quality are studied. Clamping losses are identified as the dominant loss mechanism at room temperature. Using a novel geometric design, these are systematically minimized which leads to spoke-supported microresonators with intrinsic material-loss limited mechanical quality factors rivalling the best published values at similar frequencies

    Multimode microwave circuit optomechanics as a platform to study coupled quantum harmonic oscillators

    Get PDF
    Harmonic oscillators might be one of the most fundamental entities described by physics. Yet they stay relevant in recent research. The topological properties associated with exceptional points that can occur when two modes interact have generated much interest in recent years. Harmonic oscillators are also at the heart of new quantum technological applications: the long lifetime of high-Q resonators make them advantageous as quantum memories, and they are employed for narrowband processing of quantum signals, as in Josephson parametric amplifiers. The goal of this thesis is to explore different fundamental regimes of two coupled harmonic oscillators using cavity optomechanics as the experimen- tal platform. With consistent progress in attaining ever increasing Q factors, mechanical and electromagnetic resonators realize near-ideal harmonic oscillators. By parametrically modulating the nonlinear optomechanical interaction between them, an effective linear coupling is achieved, which is tunable in strength and in the relative frequencies of the two modes. Thus cavity optomechanics provides a framework with excellent control over system parameters for the study of two coupled harmonic modes. The specific optomechanical implementation employed are superconducting circuits with the vibrating top plate of a capacitor as the mechanical element. Multimode optomechanical circuits are realized, with two microwave modes interacting with one or two mechanical oscillators. The supplementary modes serve either as intermediaries in the relation of the two modes of interest, or as auxiliaries used to control a parameter of the system. Three main experimental results are achieved. First, an auxiliary microwave mode allows the engineering of the effective dissipation rate of a mechanical oscillator. The latter then acts as a reservoir for the main microwave mode with which it interacts. The microwave mode susceptibility can be tuned, resulting in an instability akin to that of a maser and in resonant amplification of incoming microwave signals with an added noise close to the quantum minimum. Second, we study the conditions for a nonreciprocal interaction between two microwave modes, when the information flows in one direction but not in the other. The two modes interact through two mechanical oscillators, leading to frequency conversion between the two cavities. Dissipation in the mechanical modes is essential to the scheme in two ways: it provides a reciprocal phase necessary for the interference and eliminates the unwanted signals. Third, level attraction between a microwave and a mechanical mode is demonstrated, where the eigenfrequencies of the system are drawn closer as the result of interaction, rather distancing themselves as in the more usual case of level repulsion. The phenomenon is theoretically connected to exceptional points, and a general classification of the possible regimes of interaction between two harmonic modes is exposed, including level repulsion and attraction as special cases

    Active Backscattering Positioning System Using Innovative Harmonic Oscillator Tags for Future Internet of Things: Theory and Experiments

    Get PDF
    RÉSUMÉ D'ici 2020, l'Internet des objets (IoT) permettra probablement de créer 25 milliards d'objets connectés, 44 ZB de données et de débloquer 11 000 milliards de dollars d’opportunités commerciales. Par conséquent, ce sujet a suscité d’énormes intérêts de recherche dans le monde académique entier. L'une des technologies clés pour l'IoT concerne le positionnement physique intérieur précis. Le principal objectif dans ce domaine est le développement d'un système de positionnement intérieur avec une grande précision, une haute résolution, un fonctionnement à plusieurs cibles, un faible coût, un faible encombrement et une faible consommation d'énergie. Le système de positionnement intérieur conventionnel basé sur les technologies de Wi-Fi ou d'identification par radiofréquence (RFID) ne peut répondre à ces exigences. Principalement parce que leur appareil et leur signal ne sont pas conçus spécialement pour atteindre les objectifs visés. Les chercheurs ont découvert qu'en mettant en oeuvre de différents types de modulation sur les étiquettes, le radar à onde continue (CW) et ses dérivés deviennent des solutions prometteuses. Les activités de recherche présentées dans cette thèse sont menées dans le but de développer des systèmes de positionnement en intérieur bidimensionnel (2-D) à plusieurs cibles basées sur des étiquettes actives à rétrodiffusion harmonique avec une technique à onde continue modulée en fréquence (FMCW). Les contributions de cette thèse peuvent être résumées comme suit: Tout d'abord, la conception d'un circuit actif harmonique, plus spécifiquement une classe d'oscillateurs harmoniques innovants utilisée comme composant central des étiquettes actives dans notre système, implique une méthodologie de conception de signal de grande taille et des installations de caractérisation. L’analyseur de réseau à grand signal (LSNA) est un instrument émergent basé sur les fondements théoriques du cadre de distorsion polyharmonique (PHD). Bien qu'ils soient disponibles dans le commerce depuis 2008, des organismes de normalisation et de recherche tels que l’Institut national des normes et de la technologie (NIST) des États-Unis travaillent toujours à la mise au point d'un standard largement reconnu permettant d'évaluer et de comparer leurs performances. Dans ce travail, un artefact de génération multi-harmonique pour la vérification LSNA est développé. C'est un dispositif actif capable de générer les 5 premières harmoniques d'un signal d'entrée avec une réponse ultra-stables en amplitude et en phase, quelle que soit la variation de l'impédance de la charge.----------ABSTRACT By 2020, the internet of things (IoT) will probably enable 25 billion connected objects, create 44 ZB data and unlock 11 trillion US dollar business opportunities. Therefore, this topic has been attracting tremendous research interests in the entire academic world. One of the key enabling technologies for IoT is concerned with accurate indoor physical positioning. The development of such an indoor positioning system with high accuracy, high resolution, multitarget operation, low cost, small footprint, and low power consumption is the major objective in this area. The conventional indoor positioning system based on WiFi or radiofrequency identification (RFID) technology cannot fulfill these requirements mainly because their device and signal are not purposely designed for achieving the targeted goals. Researchers have found that by implementing different types of modulation on the tags, continuous-wave (CW) radar and its derivatives become promising solutions. The research activities presented in this Ph.D. thesis are carried out towards the goal of developing multitarget two-dimensional (2-D) indoor positioning systems based on harmonic backscattering active tags together with a frequency-modulated continuous-wave (FMCW) technique. Research contributions of this thesis can be summarized as follows: First of all, the design of a harmonic active circuit, more specifically, a class of innovative harmonic oscillators used as the core component of active tags in our system, involves a large signal design methodology and characterization facilities. The large signal network analyzer (LSNA) is an emerging instrument based on the theoretical foundation for the Poly-Harmonic Distortion (PHD) framework. Although they have been commercially available since 2008, standard and research organizations such as the National Institute of Standards and Technology (NIST) of the US are still working towards a widely-recognized standard to evaluate and cross-reference their performances. In this work, a multi-harmonic generation artifact for LSNA verification is developed. It is an active device that can generate the first 5 harmonics of an input signal with ultra-stable amplitude and phase response regardless of the load impedance variation

    High Performance Optical Transmitter Ffr Next Generation Supercomputing and Data Communication

    Get PDF
    High speed optical interconnects consuming low power at affordable prices are always a major area of research focus. For the backbone network infrastructure, the need for more bandwidth driven by streaming video and other data intensive applications such as cloud computing has been steadily pushing the link speed to the 40Gb/s and 100Gb/s domain. However, high power consumption, low link density and high cost seriously prevent traditional optical transceiver from being the next generation of optical link technology. For short reach communications, such as interconnects in supercomputers, the issues related to the existing electrical links become a major bottleneck for the next generation of High Performance Computing (HPC). Both applications are seeking for an innovative solution of optical links to tackle those current issues. In order to target the next generation of supercomputers and data communication, we propose to develop a high performance optical transmitter by utilizing CISCO Systems®\u27s proprietary CMOS photonic technology. The research seeks to achieve the following outcomes: 1. Reduction of power consumption due to optical interconnects to less than 5pJ/bit without the need for Ring Resonators or DWDM and less than 300fJ/bit for short distance data bus applications. 2. Enable the increase in performance (computing speed) from Peta-Flop to Exa-Flops without the proportional increase in cost or power consumption that would be prohibitive to next generation system architectures by means of increasing the maximum data transmission rate over a single fiber. 3. Explore advanced modulation schemes such as PAM-16 (Pulse-Amplitude-Modulation with 16 levels) to increase the spectrum efficiency while keeping the same or less power figure. This research will focus on the improvement of both the electrical IC and optical IC for the optical transmitter. An accurate circuit model of the optical device is created to speed up the performance optimization and enable co-simulation of electrical driver. Circuit architectures are chosen to minimize the power consumption without sacrificing the speed and noise immunity. As a result, a silicon photonic based optical transmitter employing 1V supply, featuring 20Gb/s data rate is fabricated. The system consists of an electrical driver in 40nm CMOS and an optical MZI modulator with an RF length of less than 0.5mm in 0.13&mu m SOI CMOS. Two modulation schemes are successfully demonstrated: On-Off Keying (OOK) and Pulse-Amplitude-Modulation-N (PAM-N N=4, 16). Both versions demonstrate signal integrity, interface density, and scalability that fit into the next generation data communication and exa-scale computing. Modulation power at 20Gb/s data rate for OOK and PAM-16 of 4pJ/bit and 0.25pJ/bit are achieved for the first time of an MZI type optical modulator, respectively

    High Fidelity Satellite Navigation Receiver Front-End for Advanced Signal Quality Monitoring and Authentication

    Get PDF
    Over the last several years, interest in utilizing foreign satellite timing and navigation (satnav) signals to augment GPS has grown. Doing so is not without risks; foreign satnav signals must be vetted and determined to be trustworthy before use in military applications. Advanced signal quality monitoring methods can help to ensure that only authentic and reliable satnav signals are utilized. To effectively monitor and authenticate signals, the front-end must impress as little distortions upon the received signal as possible. The purpose of this study is to design, fabricate, and test the performance of a high-fidelity satnav receiver front-end for advanced monitoring of foreign and domestic space vehicle signals

    Micro-Resonators: The Quest for Superior Performance

    Get PDF
    Microelectromechanical resonators are no longer solely a subject of research in university and government labs; they have found a variety of applications at industrial scale, where their market is predicted to grow steadily. Nevertheless, many barriers to enhance their performance and further spread their application remain to be overcome. In this Special Issue, we will focus our attention to some of the persistent challenges of micro-/nano-resonators such as nonlinearity, temperature stability, acceleration sensitivity, limits of quality factor, and failure modes that require a more in-depth understanding of the physics of vibration at small scale. The goal is to seek innovative solutions that take advantage of unique material properties and original designs to push the performance of micro-resonators beyond what is conventionally achievable. Contributions from academia discussing less-known characteristics of micro-resonators and from industry depicting the challenges of large-scale implementation of resonators are encouraged with the hopes of further stimulating the growth of this field, which is rich with fascinating physics and challenging problems
    • …
    corecore