1,316 research outputs found

    Synchronization of spatiotemporal semiconductor lasers and its application in color image encryption

    Full text link
    Optical chaos is a topic of current research characterized by high-dimensional nonlinearity which is attributed to the delay-induced dynamics, high bandwidth and easy modular implementation of optical feedback. In light of these facts, which adds enough confusion and diffusion properties for secure communications, we explore the synchronization phenomena in spatiotemporal semiconductor laser systems. The novel system is used in a two-phase colored image encryption process. The high-dimensional chaotic attractor generated by the system produces a completely randomized chaotic time series, which is ideal in the secure encoding of messages. The scheme thus illustrated is a two-phase encryption method, which provides sufficiently high confusion and diffusion properties of chaotic cryptosystem employed with unique data sets of processed chaotic sequences. In this novel method of cryptography, the chaotic phase masks are represented as images using the chaotic sequences as the elements of the image. The scheme drastically permutes the positions of the picture elements. The next additional layer of security further alters the statistical information of the original image to a great extent along the three-color planes. The intermediate results during encryption demonstrate the infeasibility for an unauthorized user to decipher the cipher image. Exhaustive statistical tests conducted validate that the scheme is robust against noise and resistant to common attacks due to the double shield of encryption and the infinite dimensionality of the relevant system of partial differential equations.Comment: 20 pages, 11 figures; Article in press, Optics Communications (2011

    On-Off Intermittency in Time Series of Spontaneous Paroxysmal Activity in Rats with Genetic Absence Epilepsy

    Get PDF
    Dynamic behavior of complex neuronal ensembles is a topic comprising a streamline of current researches worldwide. In this article we study the behavior manifested by epileptic brain, in the case of spontaneous non-convulsive paroxysmal activity. For this purpose we analyzed archived long-term recording of paroxysmal activity in animals genetically susceptible to absence epilepsy, namely WAG/Rij rats. We first report that the brain activity alternated between normal states and epilepsy paroxysms is the on-off intermittency phenomenon which has been observed and studied earlier in the different nonlinear systems.Comment: 11 pages, 6 figure
    • …
    corecore