417 research outputs found

    Coherency Matrix Decomposition-Based Polarimetric Persistent Scatterer Interferometry

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The rationale of polarimetric optimization techniques is to enhance the phase quality of the interferograms by combining adequately the different polarization channels available to produce an improved one. Different approaches have been proposed for polarimetric persistent scatterer interferometry (PolPSI). They range from the simple and computationally efficient BEST, where, for each pixel, the polarimetric channel with the best response in terms of phase quality is selected, to those with high-computational burden like the equal scattering mechanism (ESM) and the suboptimum scattering mechanism (SOM). BEST is fast and simple, but it does not fully exploit the potentials of polarimetry. On the other side, ESM explores all the space of solutions and finds the optimal one but with a very high-computational burden. A new PolPSI algorithm, named coherency matrix decomposition-based PolPSI (CMD-PolPSI), is proposed to achieve a compromise between phase optimization and computational cost. Its core idea is utilizing the polarimetric synthetic aperture radar (PolSAR) coherency matrix decomposition to determine the optimal polarization channel for each pixel. Three different PolSAR image sets of both full- (Barcelona) and dual-polarization (Murcia and Mexico City) are used to evaluate the performance of CMD-PolPSI. The results show that CMD-PolPSI presents better optimization results than the BEST method by using either DAD_{\mathrm{ A}} or temporal mean coherence as phase quality metrics. Compared with the ESM algorithm, CMD-PolPSI is 255 times faster but its performance is not optimal. The influence of the number of available polarization channels and pixel's resolutions on the CMD-PolPSI performance is also discussed.Peer ReviewedPostprint (author's final draft

    Advanced pixel selection and optimization algorithms for Persistent Scatterer Interferometry (PSI)

    Get PDF
    Tesi amb diferents seccions retallades per dret de l'editorPremi Extraordinari de Doctorat, promoció 2018-2019. Àmbit de les TICGround deformation measurements can provide valuable information for minimization of associated loss and damage caused by natural and environmental hazards. As a kind of remote sensing technique, Persistent Scatterer Interferometry (PSI) SAR is able to measure ground deformation with high spatial resolution, efficiently. Moreover, the ground deformation monitoring accuracy of PSI techniques can reach up to millimeter level. However, low coherence could hinderthe exploitation of SAR data, and high-accuracy deformation monitoring can only be achieved by PSI for high quality pixels. Therefore, pixel optimization and identification of coherent pixels are crucial for PSI techniques. In this thesis, advanced pixel selection and optimization algorithms have been investigated. Firstly, a full-resolution pixel selection method based on the Temporal Phase Coherence (TPC) has been proposed. This method first estimates noise phase term of each pixel at interferogram level. Then, for each pixel, its noise phase terms of all interferograms are used to assess this pixel’s temporal phase quality (i.e., TPC). In the next, based on the relationship between TPC and phase Standard Deviation (STD), a threshold can be posed on TPC to identify high phase quality pixels. This pixel selection method can work with both Deterministic Scatterers (PSs) and Distributed Scatterers (DSs). To valid the effectiveness of the developed method, it has been used to monitor the Canillo (Andorra) landslide. The results show that the TPC method can obtained highest density of valid pixels among the employed three approaches in this challenging area with X-band SAR data. Second, to balance the polarimetric DInSAR phase optimization effect and the computation cost, a new PolPSI algorithm is developed. This proposed PolPSI algorithm is based on the Coherency Matrix Decomposition result to determine the optimal scattering mechanism of each pixel, thus it is named as CMD-PolPSI. CMDPolPSI need not to search for solution within the full space of solution, it is therefore much computationally faster than the classical Equal Scattering Mechanism (ESM) method, but with lower optimization performance. On the other hand, its optimization performance outperforms the less computational costly BEST method. Third, an adaptive algorithm SMF-POLOPT has been proposed to adaptive filtering and optimizing PolSAR pixels for PolPSI applications. This proposed algorithm is based on PolSAR classification results to firstly identify Polarimetric Homogeneous Pixels (PHPs) for each pixel, and at the same time classify PS and DS pixels. After that, DS pixels are filtered by their associated PHPs, and then optimized based on the coherence stability phase quality metric; PS pixels are unfiltered and directly optimized based on the DA phase quality metric. SMF-POLOPT can simultaneously reduce speckle noise and retain structures’ details. Meanwhile, SMF-POLOPT is able to obtain much higher density of valid pixels for deformation monitoring than the ESM method. To conclude, one pixel selection method has been developed and tested, two PolPSI algorithms have been proposed in this thesis. This work make contributions to the research of “Advanced Pixel Selection and Optimization Algorithms for Persistent Scatterer InterferometryLes mesures de deformació del sòl poden proporcionar informació valuosa per minimitzar les pèrdues i els danys associats causats pels riscos naturals i ambientals. Com a tècnica de teledetecció, la interferometria de dispersors persistents (Persistent Scatter Interferometry, PSI) SAR és capaç de mesurar de forma eficient la deformació del terreny amb una alta resolució espacial. A més, la precisió de monitorització de la deformació del sòl de les tècniques PSI pot arribar a arribar a nivells del mil·límetre. No obstant això, una baixa coherència pot dificultar l’explotació de dades SAR i el control de deformació d’alta precisió només es pot aconseguir mitjançant PSI per a píxels d’alta qualitat. Per tant, l’optimització de píxels i la identificació de píxels coherents són crucials en les tècniques PSI. En aquesta tesi s¿han investigat algorismes avançats de selecció i optimització de píxels. En primer lloc, s'ha proposat un mètode de selecció de píxels de resolució completa basat en la coherència temporal de fase (Temporal Phase Coherence, TPC). Aquest mètode estima per primera vegada el terme de fase de soroll de cada píxel a nivell d’interferograma. A continuació, per a cada píxel, s'utilitzen els termes de la fase de soroll de tots els interferogrames per avaluar la qualitat de fase temporal d'aquest píxel (és a dir, TPC). A la següent, basant-se en la relació entre el TPC i la desviació estàndard de fase (STD), es pot plantejar un llindar de TPC per identificar píxels de qualitat de fase alta. Aquest mètode de selecció de píxels es capaç de detectar tant els dispersors deterministes (PS) com els distribuïts (DS). Per validar l’eficàcia del mètode desenvolupat, s’ha utilitzat per controlar l’esllavissada de Canillo (Andorra). Els resultats mostren que el mètode TPC pot obtenir la major densitat de píxels vàlids, comparat amb els mètodes clàssics de selecció, en aquesta àrea difícil amb dades de SAR de banda X. En segon lloc, per equilibrar l’efecte d’optimització de fase DInSAR polarimètrica i el cost de càlcul, es desenvolupa un nou algorisme de PolPSI. Aquest algorisme proposat de PolPSI es basa en el resultat de la descomposició de la matriu de coherència per determinar el mecanisme de dispersió òptim de cada píxel, de manera que es denomina CMD-PolPSI. CMDPolPSI no necessita buscar solucions dins de l’espai complet de la solució, per tant, és molt més eficient computacionalment que el mètode clàssic de mecanismes d’igualtat de dispersió (Equal Scattering Mechanism, ESM), però amb un efecte d’optimització no tant òptim. D'altra banda, el seu efecte d'optimització supera el mètode BEST, el que te un menor cost computacional. En tercer lloc, s'ha proposat un algoritme adaptatiu SMF-POLOPT per al filtratge adaptatiu i l'optimització de píxels PolSAR per a aplicacions PolPSI. Aquest algorisme proposat es basa en els resultats de classificació PolSAR per identificar primer els píxels homogenis polarimètrics (PHP) per a cada píxel i, alhora, classificar els píxels PS i DS. Després d'això, els píxels DS es filtren pels seus PHP associats i, a continuació, s'optimitzen en funció de la mètrica de qualitat de la fase d'estabilitat de coherència; els píxels classificats com PS no es filtren i s'optimitzen directament en funció de la mètrica de qualitat de la fase DA. SMF-POLOPT pot reduir simultàniament el soroll de la fase interferomètrica i conservar els detalls de les estructures. Mentrestant, SMF-POLOPT aconsegueix obtenir una densitat molt més alta de píxels vàlids per al seguiment de la deformació que el mètode ESM. Per concloure, en aquesta tesi s’ha desenvolupat i provat un mètode de selecció de píxels, i s’han proposat dos algoritmes PolPSI. Aquest treball contribueix a la recerca en "Advanced Pixel Selection and Optimization Algorithms for Persistent Scatterer Interferometry"Postprint (published version

    SMF-POLOPT: an adaptive multitemporal pol(DIn)SAR filtering and phase optimization algorithm for PSI applications

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Speckle noise and decorrelation can hamper the application and interpretation of PolSAR images. In this paper, a new adaptive multitemporal Pol(DIn)SAR filtering and phase optimization algorithm is proposed to address these limitations. This algorithm first categorizes and adaptively filters permanent scatterer (PS) and distributed scatterer (DS) pixels according to their polarimetric scattering mechanisms [i.e., the scattering-mechanism-based filtering (SMF)]. Then, two different polarimetric DInSAR (POLDInSAR) phase OPTimization methods are applied separately on the filtered PS and DS pixels (i.e., POLOPT). Finally, an inclusive pixel selection approach is used to identify high-quality pixels for ground deformation estimation. Thirty-one full-polarization Radarsat-2 SAR images over Barcelona (Spain) and 31 dual-polarization TerraSAR-X images over Murcia (Spain) have been used to evaluate the performance of the proposed algorithm. The PolSAR filtering results show that the speckle of PolSAR images has been well reduced with the preservation of details by the proposed SMF. The obtained ground deformation monitoring results have shown significant improvements, about ×7.2 (the full-polarization case) and ×3.8 (the dual-polarization case) with respect to the classical full-resolution single-pol amplitude dispersion method, on the valid pixels' densities. The excellent PolSAR filtering and ground deformation monitoring results achieved by the adaptive Pol(DIn)SAR filtering and phase optimization algorithm (i.e., the SMF-POLOPT) have validated the effectiveness of this proposed scheme.Peer ReviewedPostprint (author's final draft

    Evaluation of the Multilook Size in Polarimetric Optimization of Differential SAR Interferograms

    Get PDF
    The interferometric coherence is a measure of the correlation between two SAR images and constitutes a commonly used estimator of the phase quality. Its estimation requires a spatial average within a 2-D window, usually named as multilook. The multilook processing allows reducing noise at the expenses of a resolution loss. In this letter, we analyze the influence of the multilook size while applying a polarimetric optimization of the coherence. The same optimization algorithm has been carried out with different multilook sizes and also with the nonlocal SAR filter filter, which has the advantage of preserving the original resolution of the interferogram. Our experiments have been carried out with a single pair of quad-polarimetric RADARSAT-2 images mapping the Mount Etna's volcanic eruption of May 2008. Results obtained with this particular data set show that the coherence is increased notably with respect to conventional channels when small multilook sizes are employed, especially over low-vegetated areas. Conversely, very decorrelated areas benefit from larger multilook sizes but do not exhibit an additional improvement with the polarimetric optimization

    Application of Differential and Polarimetric Synthetic Aperture Radar (SAR) Interferometry for Studying Natural Hazards

    Get PDF
    In the following work, I address the problem of coherence loss in standard Differential Interferometric SAR (DInSAR) processing, which can result in incomplete or poor quality deformation measurements in some areas. I incorporate polarimetric information with DInSAR in a technique called Polarimetric SAR Interferometry (PolInSAR) in order to acquire more accurate and detailed maps of surface deformation. In Chapter 2, I present a standard DInSAR study of the Ahar double earthquakes (Mw=6.4 and 6.2) which occurred in northwest Iran, August 11, 2012. The DInSAR coseismic deformation map was affected by decorrelation noise. Despite this, I employed an advanced inversion technique, in combination with a Coulomb stress analysis, to find the geometry and the slip distribution on the ruptured fault plane. The analysis shows that the two earthquakes most likely occurred on a single fault, not on conjugate fault planes. This further implies that the minor strike-slip faults play more significant role in accommodating convergence stress accumulation in the northwest part of Iran. Chapter 3 presents results from the application of PolInSAR coherence optimization on quad-pol RADARSAT-2 images. The optimized solution results in the identification of a larger number of reliable measurement points, which otherwise are not recognized by the standard DInSAR technique. I further assess the quality of the optimized interferometric phase, which demonstrates an increased phase quality with respect to those phases recovered by applying standard DInSAR alone. Chapter 4 discusses results from the application of PolInSAR coherence optimization from different geometries to the study of creep on the Hayward fault and landslide motions near Berkeley, CA. The results show that the deformation rates resolved by PolInSAR are in agreement with those of standard DInSAR. I also infer that there is potential motion on a secondary fault, northeast and parallel to the Hayward fault, which may be creeping with a lower velocity

    A temporal phase coherence estimation algorithm and its application on DInSAR pixel selection

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Pixel selection is a crucial step of all advanced Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques that have a direct impact on the quality of the final DInSAR products. In this paper, a full-resolution phase quality estimator, i.e., the temporal phase coherence (TPC), is proposed for DInSAR pixel selection. The method is able to work with both distributed scatterers (DSs) and permanent scatterers (PSs). The influence of different neighboring window sizes and types of interferograms combinations [both the single-master (SM) and the multi-master (MM)] on TPC has been studied. The relationship between TPC and phase standard deviation (STD) of the selected pixels has also been derived. Together with the classical coherence and amplitude dispersion methods, the TPC pixel selection algorithm has been tested on 37 VV polarization Radarsat-2 images of Barcelona Airport. Results show the feasibility and effectiveness of TPC pixel selection algorithm. Besides obvious improvements in the number of selected pixels, the new method shows some other advantages comparing with the other classical two. The proposed pixel selection algorithm, which presents an affordable computational cost, is easy to be implemented and incorporated into any advanced DInSAR processing chain for high-quality pixels' identification.Peer ReviewedPostprint (author's final draft

    Indoor experiments on polarimetric SAR interferometry

    Get PDF
    A coherence optimization method, which makes use of polarimetry to enhance the quality of SAR interferograms, has been experimentally tested under laboratory conditions in an anechoic chamber. By carefully selecting the polarization in both images, the resulting interferogram exhibits an improved coherence above the standard HH or VV channel. This higher coherence produces a lower phase variance, thus estimating the underlying topography more accurately. The potential improvement that this technique provides in the generation of digital elevation models (DEM) of non-vegetated natural surfaces has been observed for the first time on some artificial surfaces created with gravel. An experiment on a true outdoor DEM has not been accomplished yet, but the first laboratory results show that the height error for an almost planar surface can be drastically reduced within a wide range of baselines by using the optimization algorithm. This algorithm leads to three possible interferograms associated with statistically independent scattering mechanisms. The phase difference between those interferograms has been employed for extracting the height of vegetation samples. This retrieval technique has been tested on three different samples: maize, rice, and young fir trees. The inverted heights are compared with ground truth for different frequency bands. The estimates are quite variable with frequency, but their complete physical justification is still in progress. Finally, an alternative simplified scheme for the optimization is proposed. The new approach (called polarization subspace method) yields suboptimum results but is more intuitive and has been used for illustrating the working principle of the original optimization algorithm.Peer Reviewe

    Assessment of the Contribution of Polarimetric Persistent Scatterer Interferometry on Sentinel-1 Data

    Get PDF
    Time series of Sentinel-1 data are widely used for monitoring displacements of the Earth surface using persistent scatterer interferometry. By default over land, Sentinel-1 images include two polarimetric channels: VV and VH. However, most works in this application exploit only the VV channel, whereas the VH channel is discarded for its lower amplitude. Thanks to the development of polarimetric persistent scatterer interferometry methods, one can integrate multi-polarisation channels into a single optimal one. Previous studies proved that the number and spatial density of measurement points is increased. In this work, we explore the reason why the VH channel increases the number of measurement points when using the amplitude dispersion ( DA ) as selection criterion. Results obtained over three geographical locations show that the VH channel helps in two ways. In first place, the mean amplitude is increased for targets which have higher amplitude in VH channel, usually associated with rotated elements in the scene. In second place, and more importantly, the amplitude dispersion is decreased over many areas for which the VV channel exhibits fluctuations and peaks. Thanks to the insensitivity of the VH channel to these scene changes, it provides additional measurement points which are reliable despite their low amplitude. The increment of measurement points not only extends the spatial density and enables the detection of active deformation areas not found in the VV results, but also provides more accurate results than only using the VV channel, thanks to the increased density of points, which helps the deformation estimation.This work was supported by the Spanish Ministry of Science and Innovation (State Agency of Research, AEI) and the European Funds for Regional Development (EFRD) under Projects PID2020-117303GB-C21 and PID2020-117303GB-C22. The research was carried out partially in the framework of the ESA-MOST China DRAGON-5 project with ref. 59339

    Polarimetric Approaches for Persistent Scatterers Interferometry

    Get PDF
    In previous works, a general framework to exploit polarimetric diversity to optimize the results of persistent scatterers interferometry (PSI) was presented, but tested only with dual-pol data. In this paper, the performance of these algorithms is assessed using fully polarimetric data, acquired by the Radarsat-2 satellite over the urban area of Barcelona, Spain. In addition, two new highly efficient polarimetric optimization methods, mean intensity polarimetric optimization and joint diagonalization-based polarimetric optimization, are introduced and evaluated. Given the variety of dual-pol configurations provided by current polarimetric satellites, such as TerraSAR-X and Radarsat-2, and the upcoming launch of Sentinel-1, ALOS-2, and Radarsat Constellation Mission, a study has been also carried out to determine the best performing dual-pol configurations for polarimetric PSI. Subsidence maps of the area of study are computed for single-pol, dual-pol, and full-pol data, which show the increase in pixel density with valid deformation results as more polarimetric information is made available. In particular, for full-pol data we get an increase of up to 2.5 times more pixels for coherence-based PSI techniques (degraded resolution), and over four times more for amplitude-based approaches (full resolution), in comparison with single-pol data. Both higher density and quality of pixels yield better results in terms of coverage and accuracy.This work was supported in part by the Spanish Ministerio de Economía y Competitividad and European Union FEDER funds under Project TEC2011-28201-C02-02

    Impact of SAR image resolution on the performance of the amplitude dispersion optimization for polarimetric persistent scatterer interferometry

    Get PDF
    Polarimetric persistent scatterer interferometry (PolPSI) takes advantage of polarimetric optimization algorithms that enhance interferograms’ phase quality by adequately combining the available polarization channels (e.g., HH, VV, HV, and VH) into an improved one. Amplitude dispersion ( DA ) is one of the commonly used phase quality metrics for this optimization. The resolution of the images is supposed to have an impact on the performance of DA -based PolPSI in terms of both pixel density and quality. In this research, this impact is investigated. Specifically, 30 quad-pol RADARSAT-2 images over Barcelona with a resolution around 5 m in both range and azimuth are employed to generate additional data sets with degraded resolutions, ranging from 7.5 to 20 m. The results confirm that, in all cases, the ability of DA to select high-quality pixels, i.e., persistent scatterers, decreases when the spatial resolution worsens because the loss of resolution increases the number of scatterers present in a resolution cell. In addition, it would be expected that the performance of the polarimetric optimization of DA would tend to decrease when the spatial resolution worsens. However, for all employed resolutions, the polarimetric optimization improves the density and quality of PSs with respect to that of any single polarimetric channel. Moreover, this improvement is more noticeable, in relative terms, as the image resolution degrades.This work was supported in part by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO), the State Research Agency (AEI) and the European Funds for Regional Development (EFRD) under Project TEC2017-85244-C2-1-P and Project TEC2017-85244-C2-2-P, in part by the National Natural Science Foundation of China under Grant 42004011 and Grant 41874044, in part by the China Postdoctoral Science Foundation under Grant 2020M671646, in part by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions (Science and Technology of Surveying and Mapping), and in part by the CommSensLab, which is Unidad de Excelencia Maria de Maeztu MDM-2016-0600 financed by the AEI, Spain.Peer ReviewedPostprint (author's final draft
    • …
    corecore