13,375 research outputs found

    Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    Get PDF
    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance for technological applications in interdisciplinary fields such as biotechnology, medicine and advanced materials. Here we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO2) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption

    Analysis of 3D-printed metal for rapid-prototyped reflective terahertz optics

    Get PDF
    We explore the potential of 3D metal printing to realize complex conductive terahertz devices. Factors impacting performance such as printing resolution, surface roughness, oxidation, and material loss are investigated via analytical, numerical, and experimental approaches. The high degree of control offered by a 3D-printed topology is exploited to realize a zone plate operating at 530 GHz. Reflection efficiency at this frequency is found to be over 90%. The high-performance of this preliminary device suggest that 3D metal printing can play a strong role in guided-wave and general beam control devices in the terahertz range.Comment: 13 pages, 6 figures, submitted to Optics Expres

    Surface Engineering for Phase Change Heat Transfer: A Review

    Full text link
    Among numerous challenges to meet the rising global energy demand in a sustainable manner, improving phase change heat transfer has been at the forefront of engineering research for decades. The high heat transfer rates associated with phase change heat transfer are essential to energy and industry applications; but phase change is also inherently associated with poor thermodynamic efficiencies at low heat flux, and violent instabilities at high heat flux. Engineers have tried since the 1930's to fabricate solid surfaces that improve phase change heat transfer. The development of micro and nanotechnologies has made feasible the high-resolution control of surface texture and chemistry over length scales ranging from molecular levels to centimeters. This paper reviews the fabrication techniques available for metallic and silicon-based surfaces, considering sintered and polymeric coatings. The influence of such surfaces in multiphase processes of high practical interest, e.g., boiling, condensation, freezing, and the associated physical phenomena are reviewed. The case is made that while engineers are in principle able to manufacture surfaces with optimum nucleation or thermofluid transport characteristics, more theoretical and experimental efforts are needed to guide the design and cost-effective fabrication of surfaces that not only satisfy the existing technological needs, but also catalyze new discoveries

    Characterization of causes of signal phase and frequency instability Final report

    Get PDF
    Characteristic instabilities in phase and frequency errors of reference oscillator

    Auralization of Air Vehicle Noise for Community Noise Assessment

    Get PDF
    This paper serves as an introduction to air vehicle noise auralization and documents the current state-of-the-art. Auralization of flyover noise considers the source, path, and receiver as part of a time marching simulation. Two approaches are offered; a time domain approach performs synthesis followed by propagation, while a frequency domain approach performs propagation followed by synthesis. Source noise description methods are offered for isolated and installed propulsion system and airframe noise sources for a wide range of air vehicles. Methods for synthesis of broadband, discrete tones, steady and unsteady periodic, and a periodic sources are presented, and propagation methods and receiver considerations are discussed. Auralizations applied to vehicles ranging from large transport aircraft to small unmanned aerial systems demonstrate current capabilities

    Synthesis and Blend Behaviour of Multi-End Capped Polyethylene

    Get PDF
    There is an ever-growing need for polymers with specific surface properties for the production of modified materials. Recently, extremely efficient polymer surface modification has been achieved by incorporating dendritically end functionalised polymers into blends, which combine sufficient mobility, with optimal functionality, to cause dramatic changes in surface properties. This method has significant advantages over traditional coating technologies in that no additional processing step is required. It has already been established that blends of dendritically functionalised polymers have great potential in amorphous systems, but for commercial uptake similar results in semi-crystalline materials must be achieved. Polyethylene (PE) is the world’s most widely produced polymer, coming in many grades of molecular weight, branch content, and crystallinity. Semi-crystalline materials, such as PE possess excellent bulk properties, but their surfaces are notoriously difficult to functionalise except by harsh chemical treatments, or corona discharge methods. By bridging the gap between polymer science that is well understood, and polymer modification, will add value to commercially important materials. However to do this the effect that crystalline domains have on spontaneous surface segregation must be understood. Do crystalline regions exclude lower energy additives and drive them to the surface or are the additives trapped in the bulk? In this study new synthetic methodologies were developed for the preparation of fluoro-end-capped polymers with well defined multiple hydrophobic groups, via anionic polymerisation, resulting in analogues of end-functionalised LLDPE. Physical properties have been characterised using a variety of techniques, namely ion beam analysis (IBA), contact angle measurements and several neutron scattering measurements, including neutron reflectivity (NR), small angle neutron scattering (SANS) and quasi-elastic neutron scattering (QENS) and studies proved surface enrichment with fluoro-chain ends. This work has shown that blends of fluoro-polymer preferentially segregate to the air surface interface and the subsequent surface free energies of these blends were near that of polytetrafluoroethylene (measured surface energy was 8.95 mNm-2) with minimal amounts of fluorine. For example blends with 12 wt% (with respect to matrix polymer) fluorocarbon end-functionalised PE, which is equivalent to ~1% fluorocarbon, result in a measured surface energy of 8.44 mNm-2

    Review on Blueprint of Designing Anti-Wetting Polymeric Membrane Surfaces for Enhanced Membrane Distillation Performance

    Get PDF
    Recently, membrane distillation (MD) has emerged as a versatile technology for treating saline water and industrial wastewater. However, the long-term use of MD wets the polymeric membrane and prevents the membrane from working as a semi-permeable barrier. Currently, the concept of antiwetting interfaces has been utilized for reducing the wetting issue of MD. This review paper discusses the fundamentals and roles of surface energy and hierarchical structures on both the hydrophobic characteristics and wetting tolerance of MD membranes. Designing stable antiwetting interfaces with their basic working principle is illustrated with high scientific discussions. The capability of antiwetting surfaces in terms of their self-cleaning properties has also been demonstrated. This comprehensive review paper can be utilized as the fundamental basis for developing antiwetting surfaces to minimize fouling, as well as the wetting issue in the MD process

    Picosecond Laser based Additive Manufacturing of Hydroxyapatite Coatings on Cobalt Chromium Surfaces

    Get PDF
    We report high repetition rate picosecond laser based additive manufacturing process to coat nanoscale rough hydroxyapatite (HA) on cobalt chromium plates (CoCr). Nanoscale rough coatings of hydroxyapatite are desirable as they mimic the naturally formed hydroxyapatite and in addition provide very high surface area and surface roughness, which leads to better cell adhesion and cell-matrix interaction. Nanoscale HA powders are synthesized using sol-gel procedure and ball milling. Ball-milled powders are suspended in volatile solvents and coated on the CoCr surface using picosecond laser irradiation. The chemical composition and morphology of the coated material was characterized using electron microscopy. The laser-assisted fusion process results in HA coatings that have hierarchical surface roughness down to nanometer scale which may enhance the biocompatibility of the CoCr implants
    corecore