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Abstract: We explore the potential of 3D metal printing to realize complex conductive terahertz
devices. Factors impacting performance such as printing resolution, surface roughness, oxidation,
and material loss are investigated via analytical, numerical, and experimental approaches. The
high degree of control offered by a 3D-printed topology is exploited to realize a zone plate
operating at 530 GHz. Reflection efficiency at this frequency is found to be over 90%. The
high-performance of this preliminary device suggest that 3D metal printing can play a strong
role in guided-wave and general beam control devices in the terahertz range.

© 2016 Optical Society of America
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âĂŸlab on a chipâĂŹ reactionware devices,” Lab Chip 12, 3267–3271 (2012).
6. M. D. Symes, P. J. Kitson, J. Yan, C. J. Richmond, G. J. Cooper, R. W. Bowman, T. Vilbrandt, and L. Cronin,

“Integrated 3D-printed reactionware for chemical synthesis and analysis,” Nature Chem. 4, 349–354 (2012).
7. S. Kim, H. Utsunomiya, J. Koski, B. Wu, M. Cima, J. Sohn, K. Mukai, L. Griffith, and J. Vacanti, “Survival and

function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic
network of channels,” Ann. Surg. 228, 8–13 (1998).

8. H. Seitz, W. Rieder, S. Irsen, B. Leukers, and C. Tille, “Three-dimensional printing of porous ceramic scaffolds for
bone tissue engineering,” J. Biomed. Mater. Res. B 74, 782–788 (2005).

9. P. Habibovic, U. Gbureck, C. J. Doillon, D. C. Bassett, C. A. van Blitterswijk, and J. E. Barralet, “Osteoconduction
and osteoinduction of low-temperature 3D printed bioceramic implants,” Biomaterials 29, 944–953 (2008).

10. R. Blomaard and J. Biskop, “3D inkjet printing of optics,” in “NIP & Digital Fabrication Conference,” (Society for
Imaging Science and Technology, 2015), 1, pp. 39–41.

11. S. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics
in the THz regime and their application for 3D printed THz optics,” J. Infrared, Millimeter, Terahertz Waves 35,
993–997 (2014).

12. S. F. Busch, M. Weidenbach, J. C. Balzer, and M. Koch, “THz optics 3D printed with TOPAS,” J. Infrared, Millimeter,
Terahertz Waves 37, 303–307 (2015).

13. J. Suszek, A. Siemion, M. S. Bieda, N. Blocki, D. Coquillat, G. Cywinski, E. Czerwinska, M. Doch, A. Kowalczyk,
N. Palka, A. Sobczyk, P. Zagrajek M. Zaremba, A. Kolodziejczyk, W. Knap, and M. Sypek, “3-D-printed flat optics
for THz linear scanners,” IEEE Trans. THz Sci. Technol. 5, 314–316 (2015).

                                                                                                   Vol. 24, No. 15 | 25 Jul 2016 | OPTICS EXPRESS 17384 

#263154 http://dx.doi.org/10.1364/OE.24.017384 
Journal © 2016 Received 13 Apr 2016; revised 16 Jun 2016; accepted 15 Jul 2016; published 22 Jul 2016 



14. D. Guo, J. Mou, H. Qiao, W. Hu, and X. Lv, “A 2× 2 3D printed micro-lens array for THz applications,” in “40th
International Conference on Infrared, Millimeter, and Terahertz Waves,” (IEEE, 2015), art. no. 7327641.

15. A. Squires, E. Constable, and R. Lewis, “3D printed terahertz diffraction gratings and lenses,” J. Infrared, Millimeter,
Terahertz Waves 36, 72–80 (2015).

16. L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, “Experimental demonstration of basic
functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in “Optical Fiber Communication
Conference,” (Optical Society of America, 2014), paper M3K–7.

17. X. Wei, C. Liu, Z. Zhang, L. Zhu, J. Wang, K. Wang, Z. Yang, and J. Liu, “Orbit angular momentum encoding at
0.3 THz via 3D printed spiral phase plates,” in “SPIE/COS Photonics Asia,” (International Society for Optics and
Photonics, 2014), 92751P.

18. A. I. Hernandez-Serrano, M. Weidenbach, S. F. Busch, M. Koch, and E. Castro-Camus, “Fabrication of gradient-
refractive-index lenses for terahertz applications by three-dimensional printing,” J. Opt. Soc. Am. B 33, 928–931
(2016).

19. W. D. Furlan, V. Ferrando, J. A. Monsoriu, P. Zagrajek, E. Czerwińska, and M. Szustakowski, “3D printed diffractive
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1. Introduction

In recent years, 3D-printing, a form of additive manufacture, has gained significant attention,
in part due to its generality, versatility, and compatibility with computer-aided design tools.
It is well-suited to rapid prototyping, small- to medium-scale manufacture, and fabricating
replacement parts and custom equipment on demand [1–3]. Additionally, 3D-printing technology
has been demonstrated in cutting-edge applications to construct compact microbatteries [4],
miniaturized chemical reactors [5, 6], scaffolding for visceral [7] and bone tissue growth [8], and
custom surgical implants and models [8, 9].

The ability of 3D printing to realize complex and high-precision structures opens a path
for printing devices that manipulate electromagnetic radiation. For example, 3D-printed lenses
that operate in the optical range are presently a commercially available product [10]. In the
terahertz range, there is a need for rapid prototyping techniques to accelerate the development of
practical technologies. The resolution of 3D-printers is typically in the order of a few tens to a
few hundreds of micrometers. Such a scale is highly suitable for the manipulation of terahertz
waves, with a wavelength spanning from 30 µm to 1 mm, as complicated topologies can readily
be realized at a scale comparable to a wavelength. Furthermore, the achievable dimensions of
3D-printed structures are in the order of several hundreds of wavelengths, making it possible to
realize devices of large aperture. As such, 3D-printing of polymer dielectrics has recently been
employed to realize numerous devices for shaping terahertz radiation, including conventional
lenses [11–15], phase plates [16, 17], gradient-index lenses [18], zone plates [19], axicons [20],
and reflectarrays [21]. On the other hand, metals are naturally suited to reflectives devices and
guiding structures, which are critical devices in the terahertz range. Techniques such as selective
laser melting (SLM) [22,23] make it possible to 3D-print directly in solid metals [24,25]. Despite
this, there have been no demonstrations of direct metal printing in the context of terahertz
technologies. The most related work is terahertz guided-wave structures that were made from
3D-printing of polymers, with a metal layer deposited on the surface [26, 27]. The application of
direct 3D-printing of metals offers an important niche for rapid and versatile realization of such
devices.

In this work, we investigate the previously unexplored approach of using direct 3D-printing of
metals to realize terahertz devices. We select grade-5 titanium for the build material, as it is a
common titanium alloy of wide-spread use in areas including aerospace, automotive, marine,
and medical applications [28]. The efficiency of this alloy as a reflector is investigated using
experimental and analytical means. As a demonstration, a 3D-printed metal phased zone plate
operating at 530 GHz is realized, and its capacity to focus terahertz radiation is demonstrated.
The operating frequency of 530 GHz is selected as suitable to achieve a binary phase difference,
accommodating a conservative estimate of the vertical resolution limitations imposed by the
3D-printing procedure. As opposed to transmissive zone plates made of terahertz-transparent
polymers [19], the demonstrated device is a reflective zone plate. The tradeoff between these
different approaches is that transmissive devices undergo reflection losses, whilst reflective
devices experience feed blockage.
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2. Characteristics of 3D-printed metal

2.1. Fabrication

In the 3D-printing technique known as SLM, a structure is built-up in a layered fashion, by
alternate passes of deposition of the powder build material, and selective exposure to a high-
intensity raster-scanning laser. The laser melts a certain portion of the powder material, thereby
fusing, and subsequently cooling down, to form the solid portions of the relevant layer [23]. The
present work makes use of a ProX 200 SLM printer, which employs a 1070-nm laser at 300 W.
The spot size of the laser is approximately 70 µm, and the scanning speed is 1,800 mm/sec. The
printing procedure takes place in an argon gas chamber, with oxygen averaging at 1000 ppm.
The metal powder utilized is a titanium alloy that is commonly known as “Grade-5 titanium",
“Ti6Al4V", “Ti6-Al4-V", or “Ti 6-4". It is composed of ∼90% titanium, ∼6% aluminum, and
∼4% vanadium. The particle size of the metal powder employed in 3D-printing is at most 40 µm.
Post 3D-printing fabrication, the structure is annealed in an open-air furnace at 650◦ for a period
of two hours in order to relieve stresses that are created within the material during the build
process. Annealing results in the development of an oxidation layer, as an un-intended side-effect.
Finally, the sample is sandblasted at 600 kPa with a particle mixture that is 70% garnet and 30%
glass, and particle sizes in the range from 90 to 400 µm, in order to smooth the surface.

For characterization purposes, a flat, featureless metal disk is fabricated, which is ∼75 mm
in diameter and ∼1 mm thick. This sample is shown in Fig. 1(a). Its surface roughness is
determined using an optical interferometic profiler (model Contour GTâĂŞK1 Optical Profiler
Stitching System from Veeco), and acquired images are presented in Figs. 1(b) and 1(c). There
appears to be some quasi-periodic regularity to the roughness in the form of grains of several
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Fig. 1. Fabricated flat metal disk, showing (a) photograph of ∼75 mm-diameter sample, and
(b,c) optical profiler data at two different locations on the sample surface, with standard
deviations σh of 10.78 and 10.28 µm respectively
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Fig. 2. Characterization of 3D-printed titanium alloy (a) measurement setup (b) examples of
measured spectra, and (c) measured reflection coefficient at normal incidence, where error
bars are shown as colored regions, and (i-iv) represent different locations on the sample
surface.

hundred micrometers. This is a consequence of the dynamics of the liquid-phase metal during
the fabrication procedure, combined with the sequential hatching of the laser [22]. As shown in
Figs. 1(b) and 1(c), optical profiler measurements of the 3D-printed metal reveal the standard
deviation of the surface height to be σh = 10–11 µm, which is in the order of the particle size
employed in 3D-printing. Note the value σh can alternatively be called the root mean squared of
the surface perturbation, commonly denoted Sq , as the mathematical definitions are identical.

In order to determine the presence of oxygen, and any possible contaminations in the surface
layer after annealing and sandblasting, energy-dispersive X-ray spectroscopy (EDX) is performed.
Four distinct compounds are identified in the surface layer. Most representative in the surface is
titania, followed by alumina. This is to be expected, as titanium and aluminium readily oxidise
in air at the annealing temperature of 650◦. There are also pieces of garnet embedded in the
surface, as a result of the sandblasting steps. Finally, there are particles of carbon-rich material,
most likely dust, on the surface. Note, the presence of vanadium was not detected in EDX
characterization, due to low concentration in the alloy used.

2.2. Experiment

In order to determine the efficiency of devices created with 3D-printed grade-5 titanium, it is
necessary to characterize the material for its terahertz properties. The reflectance of the flat
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Fig. 3. Reflection of radiation from sample surface, neglecting surface roughness, showing
(a) oxide-on-metal structure, with internal reflection in the dielectric layer, and (b) Equivalent
transmission-line model, where ZI is the input impedance of the surface.

sample given in Fig. 1(a) is characterized with terahertz time-domain spectroscopy (THz-TDS),
using the normally-incident reflection setup given in Fig. 2(a). A focused beam is used to probe
the properties of the metal, in order to effectively isolate the surface properties at a given point,
and determine the degree to which these properties vary across the surface. The beam waist of the
focused beam is ∼1 mm, which results in a Rayleigh range of ∼5 mm. As the terahertz radiation
is incident on the sample at the approximate location of the beam waist, normal incidence of all
rays can be assumed.

Measurements are taken at four arbitrary points on the sample surface, and five measurements
are taken for each point. The reference spectrum is taken by replacing the sample with a gold
plate. Example spectra from this measurement set are given in Fig. 2(b), showing bandwidth
up to ∼1.75 THz. The normalized and averaged results are given in Fig. 2(c), with standard
deviations given as colored regions. There are significant discrepancies between the different
sets of measurements at frequencies above ∼700 GHz, which suggests a variation in reflectance
across the sample surface. The efficiency of a reflector of this sort is defined as the square of
the reflection coefficient magnitude. Around the nominal operating frequency of 530 GHz, the
reflection coefficient is over 95%, which is equivalent to efficiency of over 90%. In all cases, for
frequencies below 900 GHz, overall efficiency is greater than 80%.

2.3. Modeling of reflection characteristics

A model is developed in order to explain the reflection response of the 3D-printed metal. This
model takes into account losses due to both material dissipation and surface irregularities.
The reflection coefficient, ρr, considering only scattering loss due to surface roughness can be
determined using Eq. 1 [29], where σh represents the standard deviation of the surface height

ρr = exp
[
−2

(
ωσh

c

)2
]
. (1)

This expression is based on the summation of delayed responses introduced by perturbations in
the z-position of the surface, and is independent of polarization. The result is effectively a form
of low-pass filter, with Gaussian roll-off.

Another source of loss that must be considered is dissipation, both in the bulk metal, and
in a thin oxidation layer on the surface. A transmission-line model, illustrated in Fig. 3, is
employed for this system. The impedance, Z , and propagation constant, γ, of a given material
are calculated using Eqs. 2,3 [30], where µ0 and ε0 are the vacuum magnetic permeability and
electric permittivity respectively, and εr − jεi is the complex relative permittivity of the relevant
medium,

Z =

√
µ0

ε0(εr − jεi )
, (2)
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γ = jω
√
µ0ε0(εr − jεi ). (3)

The wave impedances for metal and oxide are given by Zm and Zox respectively, and the complex
propagation constant in the oxide is given by γox. The material properties of grade-5 titanium
are determined in accordance with a Drude model [28, 31], as elaborated in Appendix A.1.
Grade-5 titanium is 90% titanium, and hence titania is expected to make up the majority of
the oxide layer, as has been confirmed by EDX characterisation. Furthermore, although there
are impurities in the form of alumina, garnet, and dust, the relative permittivity of titania is
extremely high (εr ∼ 110, see Appendix A.2), and hence titania dominates the response of the
material. Therefore, the oxide layer is approximated as pure titania, in order to simplify analysis.
Lower-index impurities such as alumina will simply result in a local reduction in the effective
thickness of the oxide layer. As the thickness of the oxide layer is not precisely known, it is
treated as a normally-distributed random variable L, with mean and standard deviation µl and σl

respectively. The input impedance of the transmission line system, ZI, and hence the reflection
coefficient, ρTLM, are therefore random variables as well, as follows

ZI(L) = Zox
Zm + Zoxtanh(γoxL)
Zox + Zmtanh(γoxL)

, (4)

ρTLM(L) =
ZI(L) − Z0

ZI(L) + Z0
. (5)

Given that an incident beam will cover an area of the surface, the overall reflected beam will
effectively average the distribution of oxide thicknesses. Hence the reflection coefficient of the
system according to the transmission-line model, ρl , is the expected value of the reflection
coefficient of the transmission line system ρTLM, or

ρl = 〈ρTLM(L)〉 =
〈ZI(L)〉 − Z0

〈ZI(L)〉 + Z0
. (6)

The expected value of the input impedance can be computed with the following integral, which
discounts non-physical negative values of the thickness,

〈ZI(L)〉 =
1

σl

√
2π

∫ ∞

0
ZI(l)exp

− (l − µl )2

2σ2
l

 dl . (7)

This integral is computed numerically. Note that, in order for the probability density function
of the truncated Gaussian distribution to be valid, the result in Eq. 7 must be normalized by the
factor 1 − Ilower, where

Ilower =
1

σl

√
2π

∫ 0

−∞

exp

− (t − µl )2

2σ2
l

 dl . (8)

This is to ensure that the total integral of the probability density function sums to 1. Although this
means the value µl is no longer the true mean of the distribution, it does not correspond to any
directly measured value, and hence this is of no consequence. The overall reflection coefficient is
computed by taking the product of the reflectivities due to the surface roughness and the loss, or

ρtotal = ρrρl . (9)

The statistical properties of the roughness and the oxidation layer thickness are treated as free
parameters, in order to match them to each set of measured results. Results of this procedure
are presented alongside measured results in Fig. 4. For further insight, the theoretical reflection
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Fig. 4. Modeling of printed metal, fit to measured results, where (i-iv) correspond to
measurements in Fig. 2(c). Scattering reflection coefficient, transmission line model reflec-
tion coefficient, and overall modeled reflection coefficient are given by ρr, ρl , and ρtotal,
respectively. The fitting parameters σh , µl , and σl are the standard deviation of surface
roughness, and the mean and standard deviation of oxide layer thickness, respectively. The
reflection coefficient of perfectly smooth grade-5 titanium metal is also given in (i), as
ρbare, smooth.

coefficient of perfectly smooth, bare grade-5 titanium is determined, and is presented in Fig. 4(i).
This is determined by substituting Zm for ZI in Eq. 5.

Strong agreement is achieved between the measured results and the model. Additionally,
the standard deviation of surface level is in agreement with the optical profiler measurements
presented in Fig. 1. It can be seen that the statistical properties of the surface topology and oxide
layer thickness play a significant role in the frequency-dependent response. Furthermore, given
that the measured response is different for measurements taken at different points on the sample
surface, these statistical properties must vary across the surface of the sample. Lastly, reflection
coefficients ρl and ρr are significantly lower than the reflection coefficient of idealized bare
grade-5 titanium, and hence we assert that surface roughness and the oxide layer are the most
significant contributors to reflection loss, especially at higher frequencies.

3. 3D-printed zone plate

A binary phased zone plate consists of alternate rings of 0 and π phases, in a concentric
arrangement, in order to focus radiation via diffraction. Whilst such a structure could potentially
have been fabricated by machining, our work serves as proof-of-concept for arbitrary 3D-printed
reflective devices such as binary-phase holorams [32], which are more difficult to directly
machine. A zone plate has been chosen for this purpose, as the performance can be characterized
in a relatively straightforward manner.
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3.1. Required phase distribution

Beam control is most commonly achieved by imposing a particular phase profile on a wavefront,
which determines the progression of the beam. Whilst reflectarrays and phased arrays achieve
the bespoke phase profile by resonators or electronic phase shifters [33–36], in the case of a
3D-printed device it is achieved by path difference in the topology itself. As the vertical resolution
of additive manufacture is limited, the minimum achievable path difference, and hence phase
difference, is quantized into levels. If the radiation is obliquely incident on the structure, with an
angle of incidence of θ, the minimal phase shift is dictated by the following equation, where the
ridge height is ∆h

∆φ =
4π
λ
∆h cosθ. (10)

Note that a larger angle of incidence will result in finer phase quantization.
Given that the vertical resolution determines the minimal ridge height, the maximum operating

frequency is dictated wholly by the choice of phase quantization. For a given vertical resolution,
a larger phase quantization value will result in a higher operating frequency. The maximal viable
phase quantization is π radians, and this results in binary phase, which is sufficient for diverse
beam-shaping applications [32, 37–40]. In this case, the conservative vertical resolution of the
3D printer is 200 µm, and hence this value is chosen for ∆h. As a consequence, the operating
frequency of binary optics is 375 GHz for normal incidence, and 530 GHz for oblique incidence
at 45◦, according to Eq. 10. The latter option is selected for this work as it is more amenable
to experimental characterization. Note potential drawbacks of employing a physically shaped
topology of this sort with oblique incidence include the possibility of shadowing. However, such
effects can be neglected if the lateral dimensions of topological features are significantly greater
than their heights.

A binary-phase zone plate is a diffractive optic that can both focus and collimate beams, in a
manner that is analogous to a lens or parabolic reflector. This is achieved by imposing a phase
profile with alternating rings phased at 0 and π radians on the beam, with switching occurring at
the radii dictated by the following expression, where f is the focal length of the device [41],

rm =

√
mλ f +

m2λ2

4
, m = 1, 2, 3, ... (11)

Given that the reflective zone plate in the present work is operated at an oblique angle, elliptical
rings are employed such that they present as circles when viewed at a 45◦ angle, as shown in
Fig. 5(a). The following equation describes the elliptical curve tracing the edge of zone m,(

x cos
π

4

)2
+ y2 = r2

m . (12)

A focal length of 50 mm is employed for this design, and the fabricated zone plate is shown in
Fig. 5(b). The device has eleven zones in total, and the x-domain width of the smallest zone
is over six times the ridge height. Therefore, topological shadowing effects can be neglected.
Lastly, the device is composed of solid metal, and hence it is highly physically robust.

3.2. Characterization and modeling of zone plate

A fiber-coupled THz-TDS system (Menlo TERA K15) is employed to characterize the fabricated
sample, with experimental setup shown in Fig. 5(c). The sample is set at a 45◦ angle with respect
to the transmitter, and is excited with a collimated beam. This beam is best approximated by
a Gaussian beam, of ∼17 mm radial beamwidth, which is truncated to a 17 mm radius. TE-
polarized light is employed, but this is not expected to impact the relative path length of the
alternating zones, and hence it has no effect on diffractive behavior. The receiver raster-scans in
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Fig. 5. Zone plate design, showing (a) skewing of concentric circles into ellipses, (b)
photograph of fabricated ∼50 mm-diameter sample, with chosen zone radii rm = 5.33 mm,
7.54 mm, 9.25 mm, 10.70 mm, 11.98 mm, ..., and ridge height of ∆h = 200 µm, and (c)
measurement setup for oblique characterization of focal spot.

the focal plane in order to image the focal spot. The measured amplitude profile at 530 GHz is
shown in Fig. 6(a), and a focal spot can be seen, albeit with some aberration and ringing effects.
Additionally, the beam is slightly wider in the x-dimension than in the y-dimension. In order to
evaluate the measured results, the device is simulated using a procedure involving both full-wave
simulations and and the Huygens-Fresnel principle [42], with details given in Appendix B. The
result of this simulation is shown in Fig. 6(b), and a focal spot is clearly visible. Furthermore,
the beam widths in the x- and y-dimensions appear to be equal, and there is far less aberration
than in the measured results.

The most likely explanation for the disparity in x and y beam waist in the measured results is
a slight rotational misalignment of the sample. This shortens the effective aperture of the zone
plate in the x-dimension, which results in a broader focal spot. The rotational misalignment can
be incorporated into the numerical simulation. An error of 3◦ results in the focal spot shown
in Fig. 6(c). It can be seen that this rotational misalignment has resulted in a focal spot that is
broader in the x-dimension than in the y-dimension, much like the measured focal spot given
in Fig. 6(a). Additionally, a possible explanation for general aberration in the focal spot is the
variation in surface height over a more gradual scale than the characterized surface roughness.
This imparts some randomness to the phase of the reflected beam, which slightly degrades overall
focal spot quality.
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Fig. 6. Field distribution in the focal plane at 530 GHz. (a) Measured linear amplitude
distribution, (b) simulated results, and (c) simulated result, incorporating 3◦ angular mis-
alignment. For closer comparison, cross-sectional field profiles are given in (d) and (e).
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Fig. 7. Measured focal spot (a) below operating frequency, (b) at operating frequency, and
(c) above operating frequency.

In order to facilitate closer comparison, cross sectional field distributions of measured and
simulated focal spots along the x- and y-axes are given in Figs. 6(d) and 6(e). It can be seen
from these results that the simulation incorporating rotational misalignment is a better match
to the measured results in the x-dimension than the simulation without rotational alignment.
Additionally, whilst there is approximate agreement, both simulated field profiles are narrower
than the measured profile in the y-dimension. This is likely due to degradations in beam quality
imposed by surface randomness, and vertical tilt of the sample may also be a contributing factor.

It is of interest to observe the zone plate’s focusing performance at frequencies other than
the operating frequency. To this end, measured focal spot results are provided, over a 60 GHz
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range about the operating frequency, in Fig. 7. It can be seen that a focal spot of similar quality
is maintained over this frequency range, which illustrates the capacity of this device to operate
over a reasonable bandwidth.

4. Conclusion

We have evaluated the applicability of 3D-printed metal to terahertz technology. A 3D-printed
titanium alloy is identified as potentially suitable for reflective optics in the terahertz range. This
alloy, characterized by using THz-TDS, is shown to have efficiency of reflection above 80% for
frequencies below 900 GHz, and above 90% below the nominal operating frequency of 530 GHz.
A model incorporating surface roughness and variation in oxide layer thickness is employed to
explain the reflection characteristics of the 3D-printed titanium alloy. Based on this model, we
conclude that the most significant contributors to loss are surface roughness, and the presence
of oxide at the surface. Despite its present use to describe the reflectivity of a specific titanium
alloy, the developed analytical model is general, and can be applied to other metals.

As a proof-of-concept, a terahertz zone plate with an operating frequency of 530 GHz is
printed, and the focal spot is characterized with THz-TDS. The device is significantly more
robust and durable than comparable devices realized with microfabrication techniques. Other such
zone plates can be produced on-demand to arbitrary specification, as the additive manufacture
process is rapid and readily customizable. Furthermore, other reflective devices, including free-
form optics, may be produced in the same way to serve arbitrary beam-shaping requirements.
Additionally, guiding structures such as hollow-tube waveguides and mode converters may
also be printed directly in metal, at scales that are challenging for conventional machining and
assembly. Therefore, our work opens opportunities for rapid prototyping of numerous diverse
types of devices for the manipulation of terahertz radiation.

More advanced 3D-printers can provide finer resolution, potentially supporting beam shaping
applications towards 1 THz. Additionally, the conductivity of the alloy employed in this work is
fairly low for a metal [28]. Other metals are available for 3D-printing, including other alloys of
titanium, steel, and aluminum [25], which may have higher conductivity, and importantly, may
oxidize less readily. For instance, printing in AlSi10Mg has previously been demonstrated in
other applications [43], and this material has electrical conductivity in the order of a hundred
times that of grade-5 titanium [44]. Therefore, such alloys may exhibit higher reflectivity than
the material presented in this work.

A. Material properties

A.1. Bulk metal

For grade-5 titanium, the electrical conductivity at room temperature is ∼ 0.68 MS/m [28].
A Drude model of this material exists in the literature [31], indicating plasma and collision
frequencies of 1.99 × 1016 rad/s, and 5.12 × 1015 rad/s, respectively. These values are employed
to model the material properties of the titanium alloy.

A.2. Oxide layer

The oxide layer is approximated as pure titania of variable thickness, as explained in Section 2.3.
The properties of titania are known in the literature. The relative permittivity of titania is
εr = 109.96 [45]. The absorption coefficient, in cm−1, is empirically modeled with a quadratic
expression, α = 25.5ν2 − 5.5ν + 4.2, where ν is the terahertz frequency [46].

B. Zone plate simulation

The entire zone plate structure is simulated using the numerical electromagnetics package CST
Microwave Studio. Oblique plane-wave incidence is employed, in order to approximate a TE-
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polarized collimated beam impinging upon the surface of the structure with a 45◦ angle of
incidence. The structure is electrically large, and hence it is necessary to approximate the metal
with PEC, to reduce the simulation complexity. This is valid, as the properties of the metal and
the surface at subwavelength scales are not expected to impact diffractive behavior, but rather
will only result in some losses. The resulting field distribution is extracted into a text file, for
further processing. In order to isolate the scattered field from the total field, a second simulation
is performed considering only the bounding box, and the resulting field distribution is subtracted
from the field distribution of the zone plate simulation.

The scattered field from the zone plate structure is imported into Matlab. It is necessary to
account for oblique excitation, in order to effectively view the structure at a 45◦ angle. To this
end, a linear phase profile of x2π sin(π/4)/λ is imposed on the field distribution, and the x-axis
is shortened by a factor of cos(π/4). This mathematical transformation is the equivalent of the
procedure described in Fig. 5.

The software package employed, CST Microwave Studio, is most amenable to plane-wave
excitation. However the collimated beam that is employed in the measurement is finite in extent,
and the width of the beam impacts the resulting focal spot. In order to better approximate the
collimated beam of the fiber-coupled THz-TDS system employed, a Gaussian beam profile, of
radial beamwidth 17 mm, and truncated to a 17 mm radius, is imposed on the scattered field
distribution. Finally, the Hugens-Fresnel principle [42] is employed to forwards-propagate the
resulting field profile to the focal plane, over a distance of 50 mm.

In order to determine the effect of rotational misalignment experienced during experimental
characterization of the zone plate, further alterations are made to the scattered field profile
prior to employing the Huygens-Fresnel principle. Rotational misalignment is approximated by
employing an angle other than π/4 in the transformation described above, which compensates
for the oblique excitation. This effectively results in ‘viewing’ the sample at the wrong angle.
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