2,131 research outputs found

    Wadge Degrees of ω\omega-Languages of Petri Nets

    Full text link
    We prove that ω\omega-languages of (non-deterministic) Petri nets and ω\omega-languages of (non-deterministic) Turing machines have the same topological complexity: the Borel and Wadge hierarchies of the class of ω\omega-languages of (non-deterministic) Petri nets are equal to the Borel and Wadge hierarchies of the class of ω\omega-languages of (non-deterministic) Turing machines which also form the class of effective analytic sets. In particular, for each non-null recursive ordinal α<ω_1CK\alpha < \omega\_1^{{\rm CK}} there exist some Σ0_α{\bf \Sigma}^0\_\alpha-complete and some Π0_α{\bf \Pi}^0\_\alpha-complete ω\omega-languages of Petri nets, and the supremum of the set of Borel ranks of ω\omega-languages of Petri nets is the ordinal γ_21\gamma\_2^1, which is strictly greater than the first non-recursive ordinal ω_1CK\omega\_1^{{\rm CK}}. We also prove that there are some Σ_11{\bf \Sigma}\_1^1-complete, hence non-Borel, ω\omega-languages of Petri nets, and that it is consistent with ZFC that there exist some ω\omega-languages of Petri nets which are neither Borel nor Σ_11{\bf \Sigma}\_1^1-complete. This answers the question of the topological complexity of ω\omega-languages of (non-deterministic) Petri nets which was left open in [DFR14,FS14].Comment: arXiv admin note: text overlap with arXiv:0712.1359, arXiv:0804.326

    Forward Analysis and Model Checking for Trace Bounded WSTS

    Full text link
    We investigate a subclass of well-structured transition systems (WSTS), the bounded---in the sense of Ginsburg and Spanier (Trans. AMS 1964)---complete deterministic ones, which we claim provide an adequate basis for the study of forward analyses as developed by Finkel and Goubault-Larrecq (Logic. Meth. Comput. Sci. 2012). Indeed, we prove that, unlike other conditions considered previously for the termination of forward analysis, boundedness is decidable. Boundedness turns out to be a valuable restriction for WSTS verification, as we show that it further allows to decide all ω\omega-regular properties on the set of infinite traces of the system

    Complexity of Problems of Commutative Grammars

    Full text link
    We consider commutative regular and context-free grammars, or, in other words, Parikh images of regular and context-free languages. By using linear algebra and a branching analog of the classic Euler theorem, we show that, under an assumption that the terminal alphabet is fixed, the membership problem for regular grammars (given v in binary and a regular commutative grammar G, does G generate v?) is P, and that the equivalence problem for context free grammars (do G_1 and G_2 generate the same language?) is in Π2P\mathrm{\Pi_2^P}

    On the Decidability of Non Interference over Unbounded Petri Nets

    Full text link
    Non-interference, in transitive or intransitive form, is defined here over unbounded (Place/Transition) Petri nets. The definitions are adaptations of similar, well-accepted definitions introduced earlier in the framework of labelled transition systems. The interpretation of intransitive non-interference which we propose for Petri nets is as follows. A Petri net represents the composition of a controlled and a controller systems, possibly sharing places and transitions. Low transitions represent local actions of the controlled system, high transitions represent local decisions of the controller, and downgrading transitions represent synchronized actions of both components. Intransitive non-interference means the impossibility for the controlled system to follow any local strategy that would force or dodge synchronized actions depending upon the decisions taken by the controller after the last synchronized action. The fact that both language equivalence and bisimulation equivalence are undecidable for unbounded labelled Petri nets might be seen as an indication that non-interference properties based on these equivalences cannot be decided. We prove the opposite, providing results of decidability of non-interference over a representative class of infinite state systems.Comment: In Proceedings SecCo 2010, arXiv:1102.516

    Equivalence-Checking on Infinite-State Systems: Techniques and Results

    Full text link
    The paper presents a selection of recently developed and/or used techniques for equivalence-checking on infinite-state systems, and an up-to-date overview of existing results (as of September 2004)

    Scale-invariant cellular automata and self-similar Petri nets

    Full text link
    Two novel computing models based on an infinite tessellation of space-time are introduced. They consist of recursively coupled primitive building blocks. The first model is a scale-invariant generalization of cellular automata, whereas the second one utilizes self-similar Petri nets. Both models are capable of hypercomputations and can, for instance, "solve" the halting problem for Turing machines. These two models are closely related, as they exhibit a step-by-step equivalence for finite computations. On the other hand, they differ greatly for computations that involve an infinite number of building blocks: the first one shows indeterministic behavior whereas the second one halts. Both models are capable of challenging our understanding of computability, causality, and space-time.Comment: 35 pages, 5 figure
    corecore