9,740 research outputs found

    Generalized Asynchronous Systems

    Full text link
    The paper is devoted to a mathematical model of concurrency the special case of which is asynchronous system. Distributed asynchronous automata are introduced here. It is proved that the Petri nets and transition systems with independence can be considered like the distributed asynchronous automata. Time distributed asynchronous automata are defined in standard way by the map which assigns time intervals to events. It is proved that the time distributed asynchronous automata are generalized the time Petri nets and asynchronous systems.Comment: 8 page

    A Kleene theorem for Petri automata

    Get PDF
    While studying the equational theory of Kleene Allegories (KAl), we recently proposed two ways of defining sets of graphs [BP15]: from KAl expressions, that is, regular expressions with intersection and converse; and from a new automata model, Petri automata, based on safe Petri nets. To be able to compare the sets of graphs generated by KAl expressions, we explained how to construct Petri automata out of arbitrary KAl expressions. In the present paper, we describe a reverse transformation: recovering an expression from an automaton. This has several consequences. First, it generalises Kleene theorem: the graph languages specified by Petri automata are precisely the languages denoted by KAl expressions. Second, this entails that decidability of the equa-tional theory of Kleene Allegories is equivalent to that of language equivalence for Petri automata. Third, this transformation may be used to reason syntactically about the occurrence nets of a safe Petri net, provided they are parallel series

    Integrated Structure and Semantics for Reo Connectors and Petri Nets

    Full text link
    In this paper, we present an integrated structural and behavioral model of Reo connectors and Petri nets, allowing a direct comparison of the two concurrency models. For this purpose, we introduce a notion of connectors which consist of a number of interconnected, user-defined primitives with fixed behavior. While the structure of connectors resembles hypergraphs, their semantics is given in terms of so-called port automata. We define both models in a categorical setting where composition operations can be elegantly defined and integrated. Specifically, we formalize structural gluings of connectors as pushouts, and joins of port automata as pullbacks. We then define a semantical functor from the connector to the port automata category which preserves this composition. We further show how to encode Reo connectors and Petri nets into this model and indicate applications to dynamic reconfigurations modeled using double pushout graph transformation

    Reachability of Communicating Timed Processes

    Full text link
    We study the reachability problem for communicating timed processes, both in discrete and dense time. Our model comprises automata with local timing constraints communicating over unbounded FIFO channels. Each automaton can only access its set of local clocks; all clocks evolve at the same rate. Our main contribution is a complete characterization of decidable and undecidable communication topologies, for both discrete and dense time. We also obtain complexity results, by showing that communicating timed processes are at least as hard as Petri nets; in the discrete time, we also show equivalence with Petri nets. Our results follow from mutual topology-preserving reductions between timed automata and (untimed) counter automata.Comment: Extended versio

    A Fuzzy Petri Nets Model for Computing With Words

    Full text link
    Motivated by Zadeh's paradigm of computing with words rather than numbers, several formal models of computing with words have recently been proposed. These models are based on automata and thus are not well-suited for concurrent computing. In this paper, we incorporate the well-known model of concurrent computing, Petri nets, together with fuzzy set theory and thereby establish a concurrency model of computing with words--fuzzy Petri nets for computing with words (FPNCWs). The new feature of such fuzzy Petri nets is that the labels of transitions are some special words modeled by fuzzy sets. By employing the methodology of fuzzy reasoning, we give a faithful extension of an FPNCW which makes it possible for computing with more words. The language expressiveness of the two formal models of computing with words, fuzzy automata for computing with words and FPNCWs, is compared as well. A few small examples are provided to illustrate the theoretical development.Comment: double columns 14 pages, 8 figure

    Compositions of (max, +) automata

    Get PDF
    This paper presents a compositional modeling approach by means of (max, +) automata. The motivation is to be able to model a complex discrete event system by composing sub-models representing its elementary parts. A direct modeling of safe timed Petri nets using (max, +) automata is first introduced. Based on this result, two types of synchronous product of (max, +) automata are proposed to model safe timed Petri nets obtained by merging places and/or transitions in subnets. An asynchronous product is finally proposed to represent particular bounded timed Petri nets

    Bisimulation Relations Between Automata, Stochastic Differential Equations and Petri Nets

    Get PDF
    Two formal stochastic models are said to be bisimilar if their solutions as a stochastic process are probabilistically equivalent. Bisimilarity between two stochastic model formalisms means that the strengths of one stochastic model formalism can be used by the other stochastic model formalism. The aim of this paper is to explain bisimilarity relations between stochastic hybrid automata, stochastic differential equations on hybrid space and stochastic hybrid Petri nets. These bisimilarity relations make it possible to combine the formal verification power of automata with the analysis power of stochastic differential equations and the compositional specification power of Petri nets. The relations and their combined strengths are illustrated for an air traffic example.Comment: 15 pages, 4 figures, Workshop on Formal Methods for Aerospace (FMA), EPTCS 20m 201

    On detectability of labeled Petri nets and finite automata

    Get PDF
    We study detectability properties for labeled Petri nets and finite automata. We first study weak approximate detectability (WAD) that implies that there exists an infinite observed output sequence of the system such that each prefix of the output sequence with length greater than a given value allows an observer to determine if the current state belongs to a given set. We also consider two new concepts called instant strong detectability (ISD) and eventual strong detectability (ESD). The former property implies that for each possible infinite observed output sequence each prefix of the output sequence allows reconstructing the current state. The latter implies that for each possible infinite observed output sequence, there exists a value such that each prefix of the output sequence with length greater than that value allows reconstructing the current state. Results: WAD: undecidable for labeled Petri nets, PSPACE-complete for finite automata ISD: decidable and EXPSPACE-hard for labeled Petri nets, belongs to P for finite automata ESD: decidable under promptness assumption and EXPSPACE-hard for labeled Petri nets, belongs to P for finite automata SD: belongs to P for finite automata, strengthens Shu and Lin's 2011 results based on two assumptions of deadlock-freeness and promptness ISD<SD<ESD<WD<WAD for both labeled Petri nets and finite automataComment: 44 pages, 21 figure
    • …
    corecore