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Objective 
The aim of this paper is to 
explain bisimilarity relations 
between SDCPN (stochastically 
and dynamically coloured Petri 
net), GSHS (general stochastic 
hybrid system) and HSDE (hybrid 
stochastic differential equation), 
which means that the strengths 
of one stochastic model 
formalism can be used by both 
of the other stochastic model 
formalisms. More specifically, 
these bisimilarity relations make 
it possible to combine the 
formal verification power of 
automata with the analysis 
power of stochastic differential 
equations and the compositional 
specification power of Petri nets. 
 
Description of work 
We start by defining SDCPN and 
the resulting SDCPN stochastic 

process, which is referred to as 
a GSHP (general stochastic 
hybrid process). Next, we 
present a simple but illustrative 
SDCPN example model. 
Subsequently, we use this 
example model to study GSHP as 
an execution of a GSHS and to 
show that SDCPN and GSHS are 
bisimilar. Next, we study GSHP 
as a stochastic process solution 
of HSDE and show with the 
illustrative example that SDCPN 
and HSDE are bisimilar. 
 
Results and conclusions 
The bisimilarities between 
SDCPN, GSHS and HSDE models 
for the example considered 
mean that the resulting example 
model inherits the strengths of 
all three formal stochastic 
modelling formalisms. Examples 
of GSHP properties are 
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convergence in discretisation, 
existence of limits, existence of 
event probabilities, strong 
Markov properties, reachability 
analysis. Examples of GSHS 
features are their connection to 
formal methods in automata 
theory and optimal control 
theory. Examples of HSDE 
features are stochastic analysis 
tools for semi-martingales. 
Examples of SDCPN features are 
natural expression of causal 
dependencies, concurrency and 
synchronisation mechanism, 
hierarchical and modular 
construction, and graphical 
representation. These 
complementary advantages of 
SDCPN, GSHS, HSDE and GSHP 
perspectives tend to increase 
with the complexity of the 
system considered. 
 
Applicability 
An illustrative large scale 
application of bisimilarity 
relations between SDCPN, HSDE 
and stochastic hybrid automata 
has been developed in air traffic 
management. Currently, pilots 
depend of air traffic controllers 
in solving potential conflicts 
between their flight trajectories. 
This places a huge requirement 
on the tasks of an air traffic 
controller. The number of 
aircraft that one air traffic 
controller can handle ranges 
between 10 and 20, depending 
of the complexity of the traffic 
pattern. It had been suggested 
by RTCA (1995) that this 
limitation of the air traffic 

controller can be solved by 
moving the responsibility of 
conflict resolution from the air 
traffic controller to the pilots. 
Since then this airborne self 
separation idea has received a 
lot of research attention. 
Nevertheless, it still is unknown 
how much more air traffic can 
safely be accommodated under a 
well designed airborne self 
separation way of working. In 
order to add to the solution of 
this debate, a series of large 
European studies towards 
solving this question have been 
started under the name 
HYBRIDGE and iFly, respectively. 
The way of working is to first 
develop a well defined SDCPN 
model of the airborne self 
separation concept of operation 
to be analysed. Subsequently 
this SDCPN model is further 
analysed by using a bisimilar 
HSDE and hybrid automation 
formal model representation, in 
which powerful stochastic 
analysis theory is exploited for 
the speeding up of Monte Carlo 
simulations. Using this 
approach, Blom, Klein Obbink 
and Bakker (2009) have shown 
that the first generation of 
airborne self separation concept 
designs falls short in safely 
accommodating higher air traffic 
demand than conventional ATM 
can. The feedback of this finding 
to advanced air traffic concept 
designers triggered the 
development of more advanced 
airborne self separation concept 
of operation.
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Amsterdam, Netherlands
everdij@nlr.nl blom@nlr.nl

Two formal stochastic models are said to be bisimilar if their solutions as a stochastic process are
probabilistically equivalent. Bisimilarity between two stochastic model formalisms means that the
strengths of one stochastic model formalism can be used by the other stochastic model formalism.
The aim of this paper is to explain bisimilarity relations between stochastic hybrid automata, stochas-
tic differential equations on hybrid space and stochastic hybrid Petri nets. These bisimilarity relations
make it possible to combine the formal verification power of automata with the analysis power of
stochastic differential equations and the compositional specification power of Petri nets. The rela-
tions and their combined strengths are illustrated for an air traffic example.

1 Introduction

Two formal stochastic models are said to be bisimilar if their solutions as a stochastic process (i.e.
their executions) are probabilistically equivalent [8, 23]. Bisimilarity relations between formal stochastic
models are very useful to study since they allow one stochastic model to take advantage of the strengths of
the other stochastic model. The aim of this paper is to show bisimulation relations between three different
stochastic modelling formalisms: stochastic hybrid automata, stochastic differential equations on hybrid
space, and stochastic hybrid Petri nets. These bisimulation relations make it possible to combine the
formal verification power of automata with the analysis power of stochastic differential equations and
the compositional specification power of Petri nets.

For the stochastic automata formalism, we take the general stochastic hybrid system (GSHS) theoret-
ical setting developed by [7]. A GSHS is a hybrid automaton defined on a hybrid state space. This hybrid
state space consists of a countable set of discrete modes, and per discrete mode a Euclidean subset. Per
discrete mode, a stochastic differential equation (SDE) is defined. Two additional GSHS elements are a
jump rate function and a GSHS transition measure. The execution of these elements provides a stochastic
process that follows the solution of the SDE connected to the initial discrete mode. After a time period,
defined by the jump rate function, the process state may spontaneously jump to another mode, defined
by the GSHS transition measure. A jump may also be forced if the process state hits the boundary of the
Euclidean subset. The GSHS execution is referred to as general stochastic hybrid process (GSHP). One
of the main strengths of the automata formalism is the availability of formal verification tools.

For the hybrid stochastic differential equations formalism we take the hybrid stochastic differential
equations (HSDE) theoretical setting developed in a series of complementary studies [1, 2, 20, 21]. A
HSDE consists of a sequence of SDEs on a hybrid state space, driven by a Poisson random measure.
When the Poisson random measure generates a multivariate point, a spontaneous jump occurs. A jump
may also be forced if the process state hits the boundary of a Euclidean subset. The HSDE solution
process is referred to as general stochastic hybrid process (GSHP). In [16] it is shown that whereas the
GSHS formalism is at some points more general than HSDE (for GSHS the dimension of the Euclidean
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2 Bisimulation Relations Between Automata, Stochastic Differential Equations and Petri Nets

subset may depend on the discrete mode; for HSDE this dimension is fixed), HSDE has the advantage of
an established semi-martingale property and includes the coverage of jump-linear systems.

For the stochastic hybrid Petri nets formalism, we take stochastically and dynamically coloured Petri
nets (SDCPN) developed in a series of studies by [13, 14, 15]. A Petri net has places (circles), which
model possible discrete states or conditions, and which may contain one or more tokens (dots), mod-
elling which of these states are current. The places are connected by transitions (squares), which model
state switches by removing input tokens and producing output tokens along arcs (arrows). In SDCPN,
the tokens have Euclidean-valued colours that follow SDEs. Some of the transitions remove and pro-
duce tokens spontaneously, other transitions are forced and occur when the colours of their input tokens
reach the boundary of a Euclidean subset. The collection of token colours in all places forms a general
stochastic hybrid process (GSHP). The specific strength of SDCPN is their compositional specification
power, which makes available a hierarchical modelling approach that separates local modelling issues
from global modelling issues. This is illustrated for a large distributed example in air traffic manage-
ment [17], which covers many distributed agents each of which interacts in a dynamic way with the
others. Other typical Petri net features are concurrency and synchronisation mechanism, hierarchical
and modular construction, and natural expression of causal dependencies, in combination with graphical
and equational representation.

The aim of this paper is to illustrate the relations between SDCPN, GSHP, HSDE and GSHS which
show that SDCPN, GSHS and HSDE are bisimilar. This means that if we take the elements of any one of
these formalisms, we can construct the elements of another formalism in such a way that their associated
GSHPs are probabilistically equivalent. Fig. 1 shows the relations between the formalisms, and the key
tools available for each of them.

Compositional

specification

Automata
theory

Probabilistic
analysis

Stochastic
analysis

SDCPN

HSDE

GSHS

GSHP

[E2]

[E1]

[B][E2]

[BL]

[E1]

denotes bisimilarity

denotes execution

Figure 1: Relationship between SDCPN, GSHS, GSHP and HSDE, and their key properties and advan-
tages. The [B] arrow is established in [1]. The [BL] arrow is established in [7]. The [E1] arrows are
established in [15]. The [E2] arrows are established in [16].

With these relations, the properties and advantages of the various approaches come within reach
of each other. The compositional specification power of SDCPN makes it relatively easy to develop
a model for a complex system with multiple interactions. Subsequently, in the analysis stage three
alternative approaches can be taken. The first is direct execution of SDCPN and evaluation through e.g.
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Monte Carlo simulation. The second is mapping the SDCPN into a GSHS and evaluating its execution,
with the advantages of connection to formal methods in automata theory and to optimal control theory
[6]. The third is mapping the SDCPN into HSDE and evaluating its solution, with the advantages of
stochastic analysis for semi-martingales [10, 11]. With the GSHP resulting from any of these three
means, properties become available such as convergence of discretisation, existence of limits, existence
of event probabilities, strong Markov properties, and reachability analysis [7, 9, 12].

The organisation of this paper is as follows. Section 2 defines SDCPN and the related SDCPN
process. Section 3 presents an example SDCPN model for a simple but illustrative air traffic situation.
Section 4 defines GSHS and illustrates how the example SDCPN can be mapped to a bisimilar GSHS.
Section 5 defines HSDE and illustrates how the example SDCPN can be mapped to a bisimilar HSDE.
Section 6 gives conclusions.

2 SDCPN

This section outlines stochastically and dynamically coloured Petri net (SDCPN). For a more formal
definition, we refer to [16].

Definition 2.1 (Stochastically and dynamically coloured Petri net.) An SDCPN is a collection of ele-
ments (P , T , A , N , S , C , I , V , W , G , D , F ), together with an SDCPN execution prescription
which makes use of a sequence {Ui; i = 0,1, . . .} of independent uniform U [0,1] random variables, of
independent sequences of mutually independent standard Brownian motions {Bi,P

t ; i = 1,2, . . .} of appro-
priate dimensions, one sequence for each place P, and of five rules R0–R4 that solve enabling conflicts.

2.1 SDCPN elements

The SDCPN elements (P , T , A , N , S , C , I , V , W , G , D , F ) are defined as follows:

• P is a finite set of places.

• T is a finite set of transitions which consists of 1) a set TG of guard transitions, 2) a set TD of
delay transitions and 3) a set TI of immediate transitions.

• A is a finite set of arcs which consists of 1) a set AO of ordinary arcs, 2) a set AE of enabling arcs
and 3) a set AI of inhibitor arcs.

• N : A →P×T ∪T ×P is a node function which maps each arc A ∈A to a pair of ordered
nodes N (A), where a node is a place or a transition.

• S ⊂ {R0,R1,R2, . . .} is a finite set of colour types, with R0 , /0.

• C : P → S is a colour type function which maps each place P ∈P to a specific colour type.
Each token in P is to have a colour in C (P). If C (P) = R0 then a token in P has no colour.

• I is a probability measure, which defines the initial marking of the net: for each place it defines
a number ≥ 0 of tokens initially in it and it defines their initial colours.

• V = {VP;P ∈P,C (P) 6= R0} is a set of token colour functions. For each place P ∈P for
which C (P) 6= R0, it contains a function VP : C (P)→ C (P) that defines the drift coefficient of a
differential equation for the colour of a token in place P.
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4 Bisimulation Relations Between Automata, Stochastic Differential Equations and Petri Nets

• W = {WP;P ∈P,C (P) 6= R0} is a set of token colour matrix functions. For each place P ∈P
for which C (P) 6= R0, it contains a measurable mapping WP : C (P)→ Rn(P)×h(P) that defines
the diffusion coefficient of a stochastic differential equation for the colour of a token in place P,
where h : P→ N and n : P→ N is such that C (P) = Rn(P). It is assumed that WP and VP satisfy
conditions that ensure a probabilistically unique solution of each stochastic differential equation.

• G = {GT ;T ∈ TG} is a set of transition guards. For each T ∈ TG, it contains a transition guard
GT , which is an open Euclidean subset with boundary ∂GT .

• D = {DT ;T ∈ TD} is a set of transition delay rates. For each T ∈ TD, it contains a locally
integrable transition delay rate DT .

• F = {FT ;T ∈ T } is a set of firing measures. For each T ∈ T , it contains a firing measure FT ,
which generates the number and colours of the tokens produced when transition T fires, given the
value of the vector that collects all input tokens: For each output arc, zero or one token is produced.
For each fixed H, FT (H; ·) is measurable. For any c, FT (·;c) is a probability measure.

For the places, transitions and arcs, the graphical notation is as in Figure 2.

Place Guard transitionG

Delay transitionD

Immediate transitionI

Ordinary arc

Enabling arc

Inhibitor arc

Figure 2: Graphical notation for places, transitions and arcs in an SDCPN

2.2 SDCPN execution

The execution of an SDCPN provides a series of increasing stopping times, {τi; i = 0,1, . . .}, τ0 = 0, with
for t ∈ (τk,τk+1) a fixed number of tokens per place and per token a colour which is the solution of a
stochastic differential equation.

Initiation. The probability measure I characterises an initial marking at τ0, i.e. it gives each place
P ∈P zero or more tokens and gives each token in P a colour in C (P), i.e. a Euclidean-valued vector.

Token colour evolution. For each token in each place P for which C (P) 6= R0: if the colour of this
token is equal to CP

0 at time t = τ0, and if this token is still in this place at time t > τ0, then the colour
CP

t of this token equals the probabilistically unique solution of the stochastic differential equation dCP
t =

VP(CP
t )dt +WP(CP

t )dBi,P
t with initial condition CP

τ0
=CP

0 , and with {Bi,P
t } an h(P)-dimensional standard

Brownian motion. Each token in a place for which C (P) = R0 remains without colour.

Transition enabling. A transition T is pre-enabled if it has at least one token per incoming ordinary
and enabling arc in each of its input places and has no token in places to which it is connected by an
inhibitor arc. For each transition T that is pre-enabled at τ0, consider one token per ordinary and enabling
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arc in its input places and write CT
t , t ≥ τ0, as the column vector containing the colours of these tokens;

CT
t evolves through time according to its corresponding token colour functions. If this vector is not

unique (i.e., if one input place contains several tokens per arc), all possible such vectors are executed in
parallel. A transition T is enabled if it is pre-enabled and a second requirement holds true. For T ∈ TI ,
the second requirement automatically holds true at the time of pre-enabling. For T ∈ TG, the second
requirement holds true when CT

t ∈ ∂GT . For T ∈ TD, the second requirement holds true at t = τ0 +σT
1 ,

where σT
1 is generated from a probability distribution function DT (t− τ0) = 1− exp(−∫ t

τ0
DT (CT

s )ds).
A Uniform random variable Ui is used to determine this σT

1 . In the case of competing enablings, the
following rules apply:

R0 The firing of an immediate transition has priority over the firing of a guard or a delay transition.

R1 If one transition becomes enabled by two or more sets of input tokens at exactly the same time,
and the firing of any one set will not disable one or more other sets, then it will fire these sets of
tokens independently, at the same time.

R2 If one transition becomes enabled by two or more sets of input tokens at exactly the same time,
and the firing of any one set disables one or more other sets, then the set that is fired is selected
randomly, with the same probability for each set.

R3 If two or more transitions become enabled at exactly the same time and the firing of any one
transition will not disable the other transitions, then they will fire at the same time.

R4 If two or more transitions become enabled at exactly the same time and the firing of any one
transition disables some other transitions, then each combination of transitions that can fire inde-
pendently without leaving enabled transitions gets the same probability of firing.

Transition firing. If T is enabled, suppose this occurs at time τ1 and in a particular vector of token
colours CT

τ1
, it removes one token per ordinary input arc corresponding with CT

τ1
from each of its input

places (i.e. tokens are not removed along enabling arcs). Next, T produces zero or one token along each
output arc: If (eT

τ1
,aT

τ1
) is a random hybrid vector generated from probability measure FT (·;CT

τ1
) (by

making use of a Uniform random variable Ui), then vector eT
τ1

is a vector of zeros and ones, where the
ith vector element corresponds with the ith outgoing arc of transition T . An output place gets a token iff
it is connected to an arc that corresponds with a vector element 1. Moreover, aT

τ1
specifies the colours of

the produced tokens.

Execution from first transition firing onwards. At t = τ1, zero or more transitions are pre-enabled (if
this number is zero, no transitions will fire anymore). If these include immediate transitions, then these
are fired without delay, but with use of rules R0–R4. If after this, still immediate transitions are enabled,
then these are also fired, and so forth, until no more immediate transitions are enabled. Next, the SDCPN
is executed in the same way as described above for the situation from τ0 onwards.

2.3 SDCPN stochastic process

The marking of the SDCPN is given by the numbers of tokens in the places and the associated colour val-
ues of these tokens and can be mapped to a probabilistically unique SDCPN stochastic process {Mt ,Ct}
as follows: For any t ≥ τ0, let a token distribution be characterised by the vector M′t = (M′1,t , . . . ,M

′
|P|,t),

where M′i,t ∈N denotes the number of tokens in place Pi at time t and 1, . . . , |P| refers to a unique order-
ing of places adopted for SDCPN. At times t ∈ (τk−1,τk) when no transition fires, the token distribution
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6 Bisimulation Relations Between Automata, Stochastic Differential Equations and Petri Nets

is unique and we define Mt = M′t . The associated colours of these tokens are gathered in a column vector
Ct which first contains all colours of tokens in place P1, next (i.e. below it) all colours of tokens in place
P2, etc, until place P|P|. If at time t = τk one or more transitions fire, then the SDCPN discrete process
state at time τk is defined by Mτk = the token distribution that occurs after all transitions that fire at time
τk have been fired. The associated colours of these tokens are gathered in a column vector Cτk in the
same way as described above. This construction ensures that the process {Mt ,Ct} has limits from the left
and is continuous from the right, i.e., it satisfies the càdlàg property.

3 Air traffic example and its SDCPN model

To illustrate the advantages of SDCPN when modelling a complex system, consider a simplified model of
the evolution of an aircraft in one sector of airspace. The deviation of this aircraft from its intended path
is affected by its engine system and its navigation system. Each of these aircraft systems can be in either
Working (functioning properly) or Not working (operating in some failure mode). Both systems switch
between these modes independently and with exponentially distributed sojourn times, with finite rates
δ3 (engine repaired), δ4 (engine fails), δ5 (navigation repaired) and δ6 (navigation fails), respectively. If
both systems are Working, the aircraft evolves in Nominal mode and the position Yt and velocity St of
the aircraft are determined by dXt = V1(Xt)dt +W1dWt , where Xt = (Yt ,St)

′. If either one, or both, of
the systems is Not working, the aircraft evolves in Non-nominal mode and the position and velocity of
the aircraft are determined by dXt = V2(Xt)dt +W2dWt . The factors W1 and W2 are determined by wind
fluctuations. Initially, the aircraft has position Y0 and velocity S0, while both its systems are Working.
The evaluation of this process may be stopped when the aircraft has Landed, i.e. its vertical position and
velocity are equal to zero.

An SDCPN graph for this example is developed in two stages. In the first stage, the agents of
the operation are modelled separately, by one local SDCPN each, see Fig. 3a. In the next stage, the
interactions between the agents are modelled, thus connecting the local SDCPN, Fig. 3b.

P2

I

T1

I

T2

•
P1

G

T7

G
T8

P7

P3

D
T4

D
T3

•
P4

P5 D
T6

D
T5

•
P6

3a: Local Petri nets 3b: Composed Petri net
P2

I
T1a

I
T1b

I T2

•
P1

G T7

G T8

P7

P3

D
T4

D
T3

•
P4

P5 D
T6

D
T5

•
P6

Figure 3: SDCPN graph for the aircraft evolution example

Fig. 3b shows the SDCPN graph for this example, where,
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• P1 denotes aircraft evolution Nominal, i.e. evolution is according to V1 and W1.

• P2 denotes aircraft evolution Non-nominal, i.e. evolution is according to V2 and W2.

• P3 and P4 denote engine system Not working and Working, respectively.

• P5 and P6 denote navigation system Not working and Working, respectively.

• P7 denotes the aircraft has landed.

• T1a and T1b denote a transition of aircraft evolution from Nominal to Non-nominal, due to engine
system or navigation system Not working, respectively.

• T2 denotes a transition of aircraft evolution from Non-nominal to Nominal, due to engine system
and navigation system both Working again.

• T3 through T6 denote transitions between Working and Not working of the engine and navigation
systems.

• T7 and T8 denote transitions of the aircraft landing.

The graph in Fig. 3b completely defines SDCPN elements P , T , A and N , where TG = {T7,T8},
TD = {T3,T4,T5,T6} and TI = {T1a,T1b,T2}. The other SDCPN elements are specified below:

S : Two colour types are defined; S = {R0,R6}.

C : C (P1) = C (P2) = C (P7) = R6, i.e. tokens in P1, P2 and P7 have colours in R6; the colour com-
ponents model the 3-dimensional position and 3-dimensional velocity of the aircraft. C (P3) =
C (P4) = C (P5) = C (P6) = R0 , /0.

I : Place P1 initially has a token with colour X0 = (Y0,S0)
′, with Y0 ∈ R2 × (0,∞) and S0 ∈ R3 \

Col{0,0,0}. Places P4 and P6 initially each have a token without colour.

V , W : The token colour functions for places P1, P2 and P7 are determined by (V1,W1), (V2,W2),
and (V7,W7), respectively, where (V7,W7) = (0,0). For places P3 – P6 there is no token colour
function.

G : Transitions T7 and T8 have a guard defined by GT7 = GT8 = R2× (0,∞)×R2× (0,∞).

D : The jump rates for transitions T3, T4, T5 and T6 are DT3(·) = δ3, DT4(·) = δ4, DT5(·) = δ5 and
DT6(·) = δ6.

F : Each transition has a unique output place, to which it fires a token with a colour (if applicable)
equal to the colour of the token removed.

4 From SDCPN to GSHS

Following [7], this section first presents a definition of general stochastic hybrid system (GSHS) and its
execution. In [15] it has been proven that under a few conditions, SDCPN and GSHS are bisimilar. In
Subsection 4.2 this is illustrated by showing how the SDCPN example of the previous section can be
mapped to a bisimilar GSHS.
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8 Bisimulation Relations Between Automata, Stochastic Differential Equations and Petri Nets

4.1 GSHS definition

Definition 4.1 (General stochastic hybrid system) A GSHS is an automaton (K, d, X , f , g, Init, λ , Q),
where

• K is a countable set.

• d : K→ N maps each θ ∈K to a natural number.

• X : K→{Eθ ;θ ∈K} maps each θ ∈K to an open subset Eθ of Rd(θ). With this, the hybrid state
space is given by E , {{θ}×Eθ ;θ ∈K}.
• f : E→{Rd(θ);θ ∈K} is a vector field.

• g : E→{Rd(θ)×h;θ ∈K} is a matrix field, with h ∈ N.

• Init: B(E)→ [0,1] is an initial probability measure, with B(E) the Borel σ -algebra on E.

• λ : E→ R+ is a jump rate function.

• Q : B(E)× (E ∪∂E)→ [0,1] is a GSHS transition measure, where ∂E , {{θ}×∂Eθ ;θ ∈K} is
the boundary of E, in which ∂Eθ is the boundary of Eθ .

Definition 4.2 (GSHS execution) A stochastic process {θt ,Xt} is called a GSHS execution if there
exists a sequence of stopping times 0 = τ0 < τ1 < τ2 · · · such that for each k ∈ N:

• (θ0,X0) is an E-valued random variable extracted according to probability measure Init.

• For t ∈ [τk,τk+1), θt = θτk and Xt = Xk
t , where for t ≥ τk, Xk

t is a solution of the stochastic differ-

ential equation dXk
t = f (θτk ,X

k
t )dt + g(θτk ,X

k
t )dB

θτk
t with initial condition Xk

τk
= Xτk , and where

{Bθ
t } is h-dimensional standard Brownian motion for each θ ∈K.

• τk+1 = τk +σk, where σk is chosen according to a survivor function given by F(t) =
1(t<τ∗) exp(−∫ t

0 λ (θ ,Xk
s )ds). Here, τ∗ = inf{t > τk | Xk

t ∈ ∂Eθτk
} and 1 is indicator function.

• The probability distribution of (θτk+1 ,Xτk+1), i.e. the hybrid state right after the jump, is governed
by the law Q(·;(θτk ,Xτk+1−)).

[7] show that under assumptions G1-G4 below, a GSHS execution is a strong Markov Process and
has the càdlàg property (right continuous with left hand limits).

G1 f (θ , ·) and g(θ , ·) are Lipschitz continuous and bounded. This yields that for each initial state
(θ ,x) at initial time τ there exists a pathwise unique solution Xt to dXt = f (θ ,Xt)dt +g(θ ,Xt)dBt ,
where {Bt} is h-dimensional standard Brownian motion.

G2 λ : E → R+ is a measurable function such that for all ξ ∈ E, there is ε(ξ ) > 0 such that t →
λ (θt ,Xt) is integrable on [0,ε(ξ )).

G3 For each fixed A ∈ B(E), the map ξ → Q(A;ξ ) is measurable and for any (θ ,x) ∈ E ∪ ∂E,
Q(·;θ ,x) is a probability measure.

G4 If Nt = ∑k 1(t≥τk), then it is assumed that for every starting point (θ ,x) and for all t ∈R+, ENt < ∞.
This means, there will be a finite number of jumps in finite time.
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4.2 A bisimilar GSHS for the example SDCPN

Next we transform the SDCPN example model of Section 3 into a bisimilar GSHS. The first step is to
construct the state space K for the GSHS discrete process {θt}. This is done by identifying the SDCPN
reachability graph. Nodes in the reachability graph provide the number of tokens in each of the SDCPN
places. Arrows connect these nodes as they represent transitions firing. The SDCPN of Fig. 3b has seven
places hence the reachability graph for this example has elements that are vectors of length 7. These
nodes, excluding the nodes that enable immediate transitions, form the GSHS discrete state space.

V4 =(0,1,1,0,1,0,0) (0,0,1,0,1,0,1)=V8

V2 =(0,1,1,0,0,1,0) (0,1,0,1,1,0,0)=V3

V6 =(0,0,0,1,1,0,1) (0,0,1,0,0,1,1)=V7

(1,0,1,0,0,1,0)(0,1,0,1,0,1,0)(1,0,0,1,1,0,0)

V1 =(1,0,0,1,0,1,0) (0,0,0,1,0,1,1)=V5

T5
T6 T3 T4

T8

T3
T4 T6 T5

T1a T3 T5 T1b

T8

T5 T6 T4
T3

T4 T2 T6

T7

T8

Figure 4: Reachability graph for the SDCPN of Fig. 3b. The nodes in bold type face correspond with the
elements of the GSHS discrete state space K.

The reachability graph is shown in Fig. 4, with nodes that form the GSHS discrete state space in Bold
typeface, i.e. K= {V1, . . . ,V8}, with V1 = (1,0,0,1,0,1,0), V2 = (0,1,1,0,0,1,0), V3 = (0,1,1,0,1,0,0),
V4 = (0,1,0,1,1,0,0), V5 = (0,0,0,1,0,1,1), V6 = (0,0,1,0,0,1,1), V7 = (0,0,1,0,1,0,1), V8 = (0,0,0,
1,1,0,1). Since initially there is a token in places P1, P4 and P6, the GSHS initial mode equals θ0 =
V1 = (1,0,0,1,0,1,0). The GSHS initial continuous state value equals the vector containing the initial
colours of all initial tokens. Since the initial colour of the token in Place P1 equals X0, and the tokens
in places P4 and P6 have no colour, the GSHS initial continuous state value equals Col{X0, /0, /0} = X0.
The GSHS drift coefficient f is given by f (θ , ·) = V1(·) for θ =V1, f (θ , ·) = V2(·) for θ ∈ {V2,V3,V4},
and f (θ , ·) = 0 otherwise. For the diffusion coefficient, g(θ , ·) = W1 for θ = V1, g(θ , ·) = W2 for θ ∈
{V2,V3,V4}, and g(θ , ·) = 0 otherwise. The hybrid state space is given by E = {{θ}×Eθ ;θ ∈M}, where
for θ ∈ {V1,V2,V3,V4}: Eθ = R2× (0,∞)×R2× (0,∞) and for θ ∈ {V5,V6,V7,V8}: Eθ = R6. Always
two delay transitions are pre-enabled: either T3 or T4 and either T5 or T6. This yields λ (V1, ·) = λ (V5, ·) =
δ4 +δ6, λ (V2, ·) = λ (V6, ·) = δ3 +δ6, λ (V3, ·) = λ (V7, ·) = δ3 +δ5, λ (V4, ·) = λ (V8, ·) = δ4 +δ5. For the
determination of GSHS transition measure Q, we make use of the reachability graph, the sets D , G and
F and the rules R0–R4. In Table 1, Q(θ ′,x′;θ ,x) = p denotes that if (θ ,x) is the value of the GSHS
state before the hybrid jump, then, with probability p, (θ ′,x′) is the value of the GSHS state immediately
after the jump.

With this, the SDCPN of the aircraft evolution example is uniquely mapped to an GSHS. It can be
shown that the SDCPN execution and the execution of the resulting GSHS are probabilistically equiva-
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Table 1: Example GSHS transition measure for size of jump
For x /∈ ∂EV1 : Q(V2,x;V1,x) = δ4

δ4+δ6
, Q(V4,x;V1,x) = δ6

δ4+δ6

For x ∈ ∂EV1 : Q(V5,x;V1,x) = 1
For x /∈ ∂EV2 : Q(V3,x;V2,x) = δ6

δ3+δ6
, Q(V1,x;V2,x) = δ3

δ3+δ6

For x ∈ ∂EV2 : Q(V6,x;V2,x) = 1
For x /∈ ∂EV3 : Q(V4,x;V3,x) = δ3

δ3+δ5
, Q(V2,x;V3,x) = δ5

δ3+δ5

For x ∈ ∂EV3 : Q(V7,x;V3,x) = 1
For x /∈ ∂EV4 : Q(V3,x;V4,x) = δ4

δ4+δ5
, Q(V1,x;V4,x) = δ5

δ4+δ5

For x ∈ ∂EV4 : Q(V8,x;V4,x) = 1
For all x: Q(V6,x;V5,x) = δ4

δ4+δ6
, Q(V8,x;V5,x) = δ6

δ4+δ6

For all x: Q(V7,x;V6,x) = δ6
δ3+δ6

, Q(V5,x;V6,x) = δ3
δ3+δ6

For all x: Q(V8,x;V7,x) = δ3
δ3+δ5

, Q(V6,x;V7,x) = δ5
δ3+δ5

For all x: Q(V7,x;V8,x) = δ4
δ4+δ5

, Q(V5,x;V8,x) = δ5
δ4+δ5

lent, i.e. the SDCPN and the GSHS are bisimilar. Thanks to this bisimilarity we can now use the automata
framework to analyse the GSHP that is defined by the SDCPN model for the example.

5 From SDCPN to HSDE

Following [1] and [2], this section first presents a definition of hybrid stochastic differential equation
(HSDE) and gives conditions under which the HSDE has a pathwise unique solution. This pathwise
unique solution is referred to as HSDE solution process or GSHP. The basic advantage of using HSDE
in defining a GSHP over using GSHS is that with the HSDE approach the spontaneous jump mechanism
is explicitly built on an underlying stochastic basis, whereas in GSHS the execution itself imposes an
underlying stochastic basis. In [16] it has been proven that under a few conditions, SDCPN and HSDE
are bisimilar. In Subsection 5.2 this is illustrated by showing how the SDCPN example of the previous
section can be mapped to a bisimilar HSDE.

5.1 HSDE definition

For the HSDE setting we start with a complete stochastic basis (Ω,ℑ,F,P,T), in which a complete
probability space (Ω,ℑ,P) is equipped with a right-continuous filtration F = {ℑt} on the positive time
line T = R+. This stochastic basis is endowed with a probability measure µθ0,X0 for the initial state,
an independent h-dimensional standard Wiener process {Wt} and an independent homogeneous Poisson
random measure pP(dt,dz) on T×Rd+1.

Definition 5.1 (Hybrid stochastic differential equation) An HSDE on stochastic basis (Ω,ℑ,F,P,T), is
defined as a set of equations (1)-(8) in which a collection of elements (M, E, f , g, µθ0,X0 , Λ, ψ , ρ , µ , pP,
{Wt}) appear.

The elements (M, E, f , g, µθ0,X0 , Λ, ψ , ρ , µ , pP, {Wt}) are defined as follows:

• M= {ϑ1, . . . ,ϑN} is a finite set, N ∈ N, 1≤ N < ∞.
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• E = {{θ}×Eθ ;θ ∈M} is the hybrid state space, where for each θ ∈M, Eθ is an open subset of
Rn with boundary ∂Eθ . The boundary of E is ∂E = {{θ}×∂Eθ ;θ ∈M}.
• f : M×Rn→ Rn is a measurable mapping.

• g : M×Rn→ Rn×h is a measurable mapping.

• µθ0,X0 : Ω×B(E)→ [0,1] is a probability measure for the initial random variables θ0, X0, which
are defined on the stochastic basis; µθ0,X0 is assumed to be invertible.

• Λ : M×Rn→ [0,∞) is a measurable mapping.

• ψ :M×M×Rn×Rd→Rn is a measurable mapping such that x+ψ(ϑ ,θ ,x,z)∈Eϑ for all x∈Eθ ,
z ∈ Rd , and ϑ ,θ ∈M.

• ρ : M×M×Rn→ [0,∞) is a measurable mapping such that ∑
N
i=1 ρ(ϑi,θ ,x) = 1 for all θ ∈M,x ∈

Rn.

• µ : Ω×Rd → [0,1] is a probability measure which is assumed to be invertible.

• pP : Ω×T×Rd+1 → {0,1} is a homogeneous Poisson random measure on the stochastic basis,
independent of (θ0,X0). The intensity measure of pP(dt,dz) equals dt · µL(dz1) · µ(dz), where
z = Col{z1,z} and µL is the Lebesgue measure.

• W : Ω×T→ Rh such that {Wt} is an h-dimensional standard Wiener process on the stochastic
basis, and independent of (θ0,X0) and pP.

Using these elements, the HSDE process {θ ∗t ,X∗t } is defined as follows:

θ
∗
t = θ

k
t for all t ∈ [τb

k ,τ
b
k+1),k = 0,1,2, . . . (1)

X∗t = Xk
t for all t ∈ [τb

k ,τ
b
k+1),k = 0,1,2, . . . (2)

Hence {θ ∗t ,X∗t } consists of a concatenation of processes {θ k
t ,X

k
t } which are defined by (3)-(8) below. If

the system (1)-(8) has a solution in probabilistic sense, then the process {θ ∗t ,X∗t } is referred to as HSDE
solution process or GSHP.

dθ
k
t =

N

∑
i=1

(ϑi−θ
k
t−)pP(dt,(Σi−1(θ

k
t−,X

k
t−),Σi(θ

k
t−,X

k
t−)]×Rd) (3)

dXk
t = f (θ k

t ,X
k
t )dt +g(θ k

t ,X
k
t )dWt +

∫
Rd

ψ(θ k
t ,θ

k
t−,X

k
t−,z)pP(dt,(0,Λ(θ k

t−,X
k
t−)]×dz) (4)

with θ 0
0 = θ0, X0

0 = X0 and with Σ0 through ΣN measurable mappings satisfying, for θ ∈M, ϑ j ∈M,
x ∈ Rn:

Σi(θ ,x) =
{

Λ(θ ,x)∑
i
j=1 ρ(ϑ j,θ ,x) if i > 0

0 if i = 0
(5)

In addition, for k = 0,1,2, . . ., with τb
0 = 0:

τ
b
k+1 , inf{t > τ

b
k | (θ k

t ,X
k
t ) ∈ ∂E} (6)

P{θ k+1
τb

k+1
= ϑ ,Xk+1

τb
k+1
∈ A | θ k

τb
k+1−

= θ ,Xk
τb

k+1−
= x}= Q({ϑ}×A;θ ,x) (7)

for A ∈B(Rn), where Q is given by

Q({ϑ}×A;θ ,x) = ρ(ϑ ,θ ,x)
∫
Rd

1A(x+ψ(ϑ ,θ ,x,z))µ(dz) (8)

Next, the following proposition can be shown to hold true [16]:
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Proposition 5.1 Let conditions H1-H8 below hold true. Let (θ ∗0 (ω),X∗0 (ω)) = (θ0,X0) ∈ E for all ω .
Then for every initial condition (θ0,X0), (1)-(8) has a pathwise unique solution {θ ∗t ,X∗t } which is càdlàg
and adapted and is a semi-martingale assuming values in the hybrid state space E.

H1 For all θ ∈ M there exists a constant K(θ) such that for all x ∈ Rn, | f (θ ,x)|2 + ‖g(θ ,x))‖2 ≤
K(θ)(1+ |x|2), where |a|2 = ∑i(ai)

2 and ||b||2 = ∑i, j(bi j)
2.

H2 For all r ∈ N and for all θ ∈M there exists a constant Lr(θ) such that for all x and y in the ball
Br = {z ∈ Rn | |z| ≤ r+1}, | f (θ ,x)− f (θ ,y)|2 +‖g(θ ,x)−g(θ ,y)‖2 ≤ Lr(θ)|x− y|2.

H3 For each θ ∈M, the mapping Λ(θ , ·) : Rn→ [0,∞) is continuous and bounded, with upper bound a
constant CΛ.

H4 For all (θ ,ϑ) ∈M2, the mapping ρ(ϑ ,θ , ·) : Rn→ [0,∞) is continuous.

H5 For all r ∈ N there exists a constant Mr(θ) such that

sup
|x|≤r

∫
Rd
|ψ(ϑ ,θ ,x,z)|µ(dz)≤Mr(θ), for all ϑ ,θ ∈M

H6 |ψ(θ ,θ ,x,z)|= 0 or > 1 for all θ ∈M, x ∈ Rn, z ∈ Rd

H7 {(θ ∗t ,X∗t )} hits the boundary ∂E a finite number of times on any finite time interval

H8 |ϑi−ϑ j|> 1 for i 6= j, with | · | a suitable metric well defined on M.

5.2 A bisimilar HSDE for the example SDCPN

Next we transform the SDCPN example model of Section 3 into a bisimilar HSDE. This mapping follows
much the same procedure as for SDCPN to GSHS, except that the discrete state space is now referred
to as M (rather than K) and the Markov jump rate is now referred to as Λ (rather than λ ). The main
additional difference is that the HSDE elements do not include a transition measure Q to define the size of
jump, but include functions ψ , ρ and µ instead. The mapping of SDCPN to HSDE uses the construction
of transition measure Q as an intermediate step, however. For the particular example SDCPN in this
paper, these functions can be determined from Q as follows: Since the continuous valued process jumps
to the same value with probability 1, we find that ψ(V i,V j,x,z) = 0 for all V i, V j, x, z. Moreover,
ρ(V i,V j,x) = PQ(V i,x,V j,x) and µ may be any given invertible probability measure.

With this, the SDCPN of the aircraft evolution example is uniquely mapped to an HSDE. If in addi-
tion, we want to make use of the HSDE properties of Proposition 5.1, i.e. the resulting HSDE solution
process being adapted and a semi-martingale, we need to make sure that HSDE conditions H1-H8 are
satisfied. It is shown below that they are, under the following sufficient condition D1 for the example
SDCPN.

D1 For P ∈ {P1,P2}, there exist Kv
P, Lv

P, Kw
P and Lw

P such that for all c,a ∈ C (P),
|VP(c)|2 ≤ Kv

P(1+ |c|2) and |VP(c)−VP(a)|2 ≤ Lv
P|c−a|2 and

‖WP(c)‖2 ≤ Kw
P (1+ |c|2) and ‖WP(c)−WP(a)‖2 ≤ Lw

P |c−a|2.

We verify that under condition D1, HSDE conditions H1-H8 hold true in this example.

H1: From the construction of f and g above we have for θ = V1: | f (θ ,x)|2 + ‖g(θ ,x)‖2 = |V1(x)|2 +
‖W1(x)‖2 ≤ Kv

P1
(1+ |x|2) +Kw

P1
(1+ |x|2) = K(θ)(1+ |x|2), with K(θ) = (Kv

P1
+Kw

P1
). For θ =

V2,V3,V4 the verification is with replacing V1, W1 by V2, W2.
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H2: From the construction of f and g above we have for θ = V1: | f (θ ,x)− f (θ ,y)|2 + ‖g(θ ,x)−
g(θ ,y)‖2 = |V1(x)−V1(y)|2 +‖W1(x)−W1(y)‖2 ≤ Lv

P1
|x− y|2 +Lw

P1
|x− y|2 = Lr(θ)|x− y|2 with

Lr(θ) = Lv
P1
+Lw

P1
. For θ =V2,V3,V4 replace V1, W1 by V2, W2.

H3: Since δ3–δ6 are constant, for all θ , Λ(θ , ·) is bounded and continuous, with upper bound CΛ =
max{δ4 +δ6,δ3 +δ6,δ3 +δ5,δ4 +δ5}.

H4: Since for all θ ,ϑ , PQ(ϑ , ·;θ ,x) is constant, we find ρ(ϑ ,θ ,x) = PQ(ϑ ,x,θ ,x) is continuous.

H5 and H6: These are satisfied due to ψ(V i,V j,x,z) = 0 for all V i, V j, x, z.

H7: This condition holds due to δ3–δ6 being finite and the fact that in this SDCPN example, there is no
firing sequence of more than one guard transition.

H8: This condition holds for all V1, . . . ,V8, with metric |a|2 = ∑i(ai)
2.

Thanks to this bisimilarity mapping we can now use HSDE tools to analyse the GSHP that is defined by
the execution of the SDCPN model for the example.

6 Conclusions

The aim of this paper was to explain bisimilarity relations between SDCPN (stochastically and dynami-
cally coloured Petri net), GSHS (general stochastic hybrid system) and HSDE (hybrid stochastic differ-
ential equation), which means that the strengths of one stochastic model formalism can be used by both
of the other stochastic model formalisms. More specifically, these bisimilarity relations make it possible
to combine the formal verification power of automata with the analysis power of stochastic differential
equations and the compositional specification power of Petri nets.

We started in Section 2 by defining SDCPN and the resulting SDCPN stochastic process, which
is referred to as a GSHP (general stochastic hybrid process). In Section 3 we presented a simple but
illustrative SDCPN example model. In Section 4 we studied GSHP as an execution of a GSHS and
illustrated by using the example of Section 3 that SDCPN and GSHS are bisimilar. Next, in Section 5
we studied GSHP as a stochastic process solution of HSDE and showed with an illustrative example that
SDCPN and HSDE are bisimilar.

The bisimilarities between SDCPN, GSHS and HSDE models for the example considered mean that
the resulting example model inherits the strengths of all three formal stochastic modelling formalisms.
This has been depicted in Fig. 1 in the introduction. Examples of GSHP properties are convergence in
discretisation, existence of limits, existence of event probabilities, strong Markov properties, reachabil-
ity analysis. Examples of GSHS features are their connection to formal methods in automata theory and
optimal control theory. Examples of HSDE features are stochastic analysis tools for semi-martingales.
Examples of SDCPN features are natural expression of causal dependencies, concurrency and synchro-
nisation mechanism, hierarchical and modular construction, and graphical representation. These com-
plementary advantages of SDCPN, GSHS, HSDE and GSHP perspectives tend to increase with the com-
plexity of the system considered.

An illustrative large scale application of bisimularity relations between SDCPN, HSDE and stochas-
tic hybrid automata has been developed in air traffic management. Currently pilots depend of air traffic
controllers in solving potential conflicts between their flight trajectories. This places a huge requirement
on the tasks of an air traffic controller. Imagine a similar kind of approach for road traffic; then each car
driver would be blind and depends of instructions that some road traffic controller is communicating with
the car drivers. How many cars do you think can be managed by one road traffic controller? The number
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14 Bisimulation Relations Between Automata, Stochastic Differential Equations and Petri Nets

of aircraft that one air traffic controller can handle ranges between 10 and 20, depending of the complex-
ity of the traffic pattern. Over a decade ago, it had been suggested by [22] that this limitation of the air
traffic controller can be solved by moving the responsibility of conflict resolution from the air traffic con-
troller to the pilots. Since then this airborne self separation idea has received a lot of research attention.
Nevertheless, it still is unknown how much more air traffic can safely be accommodated under a well de-
signed airborne self separation way of working. In order to add to the solution of this debate, a series of
large European studies towards solving this question have been started under the name HYBRIDGE [18]
and iFly [19] respectively. The way of working is to first develop a well defined SDCPN model of the
airborne self separation concept of operation to be analysed, e.g. [17]. Subsequently this SDCPN model
is further analysed using a bisimilar HSDE and hybrid automation formal model representation [5, 3], in
which powerful stochastic analysis theory is exploited for the speeding up of Monte Carlo simulations.
Using this approach, [4] have shown that the first generation of airborne self separation concept designs
falls short in safely accommodating higher air traffic demand than conventional ATM can. The feedback
of this finding to advanced air traffic concept designers triggered the development of more advanced
airborne self separation concept of operation, e.g. see [19].
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