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Abstract
Detectability is a basic property of dynamic systems: when it holds an observer can use
the current and past values of the observed output signal produced by a system to recon-
struct its current state. In this paper, we consider properties of this type in the framework
of discrete-event systems modeled by labeled Petri nets and finite automata. We first study
weak approximate detectability. This property implies that there exists an infinite observed
output sequence of the system such that each prefix of the output sequence with length
greater than a given value allows an observer to determine if the current state belongs to a
given set. We prove that the problem of verifying this property is undecidable for labeled
Petri nets, and PSPACE-complete for finite automata. We also consider one new concept
called eventual strong detectability. The new property implies that for each possible infi-
nite observed output sequence, there exists a value such that each prefix of the output
sequence with length greater than that value allows reconstructing the current state. We
prove that for labeled Petri nets, the problem of verifying eventual strong detectability is
decidable and EXPSPACE-hard, where the decidability result holds under a mild prompt-
ness assumption. For finite automata, we give a polynomial-time verification algorithm for
the property. In addition, we prove that strong detectability is strictly stronger than eventual
strong detectability for labeled Petri nets and even for deterministic finite automata.
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1 Introduction

Detectability is a basic property of dynamic systems: when it holds an observer can use the
current and past values of the observed output signal produced by a system to reconstruct
its current state (Giua and Seatzu 2002; Shu et al. 2007; Shu and Lin 2011, 2013a; Fornasini
and Valcher 2013; Xu and Hong 2013; Zhang et al. 2016; Ru and Hadjicostis 2010; Yin and
Lafortune 2017b; Masopust 2018; Keroglou and Hadjicostis 2015; Sasi and Lin 2018). This
property plays a fundamental role in many related control problems such as observer design
and controller synthesis. Hence for different applications, it is meaningful to characterize
different notions of detectability. This property also has different terminologies, e.g., Giua
and Seatzu (2002), Xu and Hong (2013), and Ru and Hadjicostis (2010), call it “observabil-
ity” while Fornasini and Valcher (2013) and Zhang et al. (2016), call it “reconstructibility”.
In this paper, we uniformly call this property “detectability”, and call another similar prop-
erty “observability” implying that the initial state can be determined by the observed output
signal produced by a system (e.g., Yin 2017; Shu and Lin 2013b; Zhang et al. 2018; Zhang
and Zhang 2016).

1.1 Literature review

1.1.1 Finite automata

For discrete-event systems (DESs) modeled by finite automata, the detectability problem
has been widely studied (Shu et al. 2007; Shu and Lin 2011; Zhang 2017; Masopust 2018;
Yin and Lafortune 2017b) in the context of ω-languages, i.e., taking into account all output
sequences of infinite length generated by a DES. These results are usually based on two
assumptions that a system is deadlock-free and that it cannot generate an infinitely long
subsequence of unobservable events. These requirements are collected in Assumption 1
formally stated in Section 3.2: when it holds, a system will always run and generate an
infinitely long observation.

Two fundamental definitions are those of strong detectability and weak detectability (Shu
et al. 2007). Strong detectability implies1 that:

(A) there exists a positive integer k such that for all infinite output sequences σ gen-
erated by a system, all prefixes of σ of length greater than k allow reconstructing the
current states.

Weak detectability implies that:

(B) there exists a positive integer k and some infinite output sequence σ generated by
a system such that all prefixes of σ of length greater than k allow reconstructing the
current states.

Weak detectability is strictly weaker than strong detectability. Consider the finite automa-
ton shown in Fig. 1, where events a and b can be directly observed. It is weakly detectable
but not strongly detectable. The automaton can generate infinite event sequences aω and
bω, where (·)ω denotes the concatenation of infinitely many copies of ·. When any number
of a’s are observed but no b is observed, the automaton could be only in state s0. Hence it is

1Formal definitions of strong and weak detectability are given later in Definitions 1 and 3.
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Fig. 1 A finite automaton

weakly detectable. When any number of b’s are observed but no a is observed, it could be
in states s1 or s2. Hence it is not strongly detectable.

Strong detectability can be verified in polynomial time while weak detectability can be
verified in exponential time (Shu et al. 2007; Shu and Lin 2011) under Assumption 1 given
in Section 3.2.

In addition, checking weak detectability is PSPACE-complete in the numbers of states
and events for finite automata, where the hardness result holds for deterministic finite
automata whose events can be directly observed (Zhang 2017). The hardness result even
holds for more restricted deterministic finite automata having only two events that can be
directly observed (Masopust 2018).

1.1.2 Petri nets

Detectability of free-labeled Petri nets with unknown initial markings (i.e., states) has been
studied by Giua and Seatzu (2002), where several types of detectability called “(strong)
marking observability”, “uniform (strong) marking observability”, and “structural (strong)
marking observability” are proved to be decidable2 by reducing them to several decidable
home space properties (Escrig and Johnen 1989) that are more general than the reachability
problem of Petri nets (with respect to a given marking).

Some detectability properties of labeled Petri nets3 have also been studied. In Ru and
Hadjicostis (2010), a notion of detectability called “structural observability” is character-
ized. This property implies that for every initial marking, each observed label (i.e., output)
sequence determines the current marking. It is pointed out that the “structural observabil-
ity” is important, because “the majority of existing control schemes for Petri nets rely on
complete knowledge of the system state at any given time step” (Ru and Hadjicostis 2010).
It is shown that structural observability can be verified in polynomial time (Ru and Hadji-
costis 2010). In the same paper, in order to make a labeled Petri net structurally observable,
the problem of placing the minimal number of sensors on places and the problem of placing
the minimal number of sensors on transitions are studied, respectively. The former problem
is proved to be NP-complete, while the latter is shown to be solvable in polynomial time,
both in the numbers of places and transitions.

In (Jančar 1994), for labeled Petri nets, a concept of determinism is characterized, where
this concept implies that each label sequence generated by a net can be used to determine
the current marking. It is proved that verifying determinism is as hard as verifying cover-
ability for Petri nets (Rackoff 1978; Lipton 1976), hence EXPSPACE-complete. Note that
the “structural observability” studied in Ru and Hadjicostis (2010) requires a labeled Petri
net to satisfy the determinism property at each initial marking.

2In the sequel, we will always use the expression “a property is decidable/undecidable” instead of “the
problem of verifying the property is decidable/undecidable.”
3More precisely labeled place/transition nets or labeled P/T nets for short
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The above mentioned detectability results for labeled Petri nets apply to finite-length
languages of the nets, i.e., the set of all words (of finite length) that a net can generate.
In the sequel, we always use terminology “language” to denote “finite-length language”
for short, and use “ω-language” to denote a “language” consisting of infinite-length label
sequences. However, a few authors have recently studied detectability properties of ω-
languages extending to labeled Petri net models the notions of strong and weak detectability
which Shu and Lin have originally studied in the context of finite automata.

Weak detectability of labeled Petri nets with inhibitor arcs has been proved to be unde-
cidable by Zhang and Giua (2018) by reducing the well known undecidable language
equivalence problem (Hack 1976, Theorem 8.2) of labeled Petri nets to the inverse problem
of the weak detectability problem, i.e., the non-weak detectability problem.

Decidability and complexity of strong detectability and weak detectability for labeled
Petri nets are also studied by Masopust and Yin (2019). Under the first item of Assumption
1 given in Section 3.2 and another assumption that a net cannot generate an infinite unob-
servable sequence which is actually equivalent to the second item of Assumption 1 for Petri
nets, strong detectability has been proved to be decidable with EXPSPACE-hard complex-
ity by Masopust and Yin (2019) by reducing its negation to the satisfiability of a Yen’s path
formula (Yen 1992; Atig and Habermehl 2009). Weak detectability has been proved to be
undecidable by reducing the undecidable language inclusion problem (Hack 1976, Theo-
rem 8.2) to the non-weak detectability problem, thus improving the related result given by
Zhang and Giua (2018).

1.2 Contribution of the paper

In this paper, we propose some new notions of detectability in the context of ω-languages,
and characterize the related decision problems (in terms of decidability or computational
complexity) for both finite automata and labeled Petri nets.

To motivate the interest for this work, let us recall that the theory of ω-languages is a rich
and important domain of computer science (Pin and Perrin 2004). We mention, in addition,
that these languages have a practical interest in automatic control because they can describe
the infinite behavior of a system: for this reason they find significant applications in the very
active area of verification with discrete-event and hybrid systems — in particular model
checking with temporal logic.

1.2.1 Eventual detectability

Let us consider again the notion of strong dectability implied by condition (A) stated above.
An alternative definition could be based on the following definition:

(A’) for every infinite output sequence σ generated by a system, there exists a positive
integer kσ such that all prefixes of σ of length greater than kσ allow reconstructing
the current states,

where the length kσ of the transient before the state can be reconstructed may depend on a
particular output sequence σ .

Obviously, condition (A) implies condition (A’) but the converse implication does not
hold, because there may exist infinitely many strings of infinite length and thus a maximal
value among all kσ may not be computed (this will be formally proved in Proposition 4).
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We point out some similarities with the notion of diagnosability introduced by Lafortune
and co-authors (Sampath et al. 1995) which requires the occurrence of a fault to be detected
within a finite delay. The original definition by Sampath et al. (1995) assumes this delay
may depend on the string that produces the fault, i.e., it is similar to condition (A’) above.
A different condition, similar to condition (A) above and called K-step diagnosability or
uniform diagnosability, is considered by Cabasino et al. (2012) or Yoo and Garcia (2004):
it assumes the length of the delay is bounded for all strings. Note however a difference with
respect to the detectability results we present here: the two notions of diagnosability and K-
step diagnosability are equivalent in the case of finite automata, thanks to the well-known
Myhill-Nerode characterization of a regular language by the finiteness of its set of residuals.
They only differ for infinite-state systems, such as labeled Peri nets. Recent diagnosability
results have also been presented by Ammour et al. (2018), Takai and Kumar (2018), Fabre
et al. (2018), and Nunes et al. (2018), etc.

Based on condition (A’), we consider a new type of detectability, which we call eventual
strong detectability. Formally, eventual strong detectability implies that for every infinite
output sequence σ generated by a system, there exists a positive integer kσ such that each
prefix σ ′ of σ with length greater than kσ allows reconstructing the current state. We
will prove that eventual strong detectability is strictly weaker than strong detectability and
strictly stronger than weak detectability, for labeled Petri nets and even for deterministic
finite automata satisfying Assumption 1.

We will also prove that eventual strong detectability can be verified in polynomial time
for finite automata. For labeled Petri nets, we show that the property is decidable and
the corresponding decision problem is EXPSPACE-hard: note that this decidability result
holds under the promptness assumption (collected in (ii) of Assumption 2) that is actually
equivalent to condition (ii) of Assumption 1 for labeled Petri nets.

1.2.2 Approximate detectability

State estimation is usually a preliminary step that a plant operator must address so that,
depending on the state value, a suitable action may be taken, which is also similar to the
state disambiguation problem in the literature (Yin and Lafortune 2018; Sears and Rudie
2014; Wang et al. 2007). Examples include computing a control input in supervisory control,
raising an alarm in fault diagnosis, inferring a secret in an opacity problem, reacting to
the detection of a cyber-attack, etc. The number of these possible actions is usually finite
and this naturally determines a finite partition of the system’s state space into equivalence
classes, each one corresponding to states for which the same action should be taken. In such
a context, it is not necessary to solve a detectability problem, i.e., determine the exact value
of the state, but just to solve an approximate version of it, i.e., determine to which class the
state belongs.

The notion of approximate detectability applies to all previously defined detectabil-
ity notions, weak or strong. Here we just study one of them, namely weak approximate
detectability which implies that, given a finite partition of the state space, there exists an
integer k and an infinite output sequence generated by a system each of whose prefixes of
length greater than k allows determining the partition cell to which the current state belongs.
In this paper, we will prove that weak approximate detectability is undecidable for labeled
P/T nets. For finite automata, we will prove that deciding this property is PSPACE-complete.
The undecidable result is obtained by reducing the undecidable language equivalence
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Table 1 Relationships among different detectability notions for labeled Petri nets, where ⇒ means “the
notion on the tail is stronger than the notion on the head”, �= means “the two notions are not equivalent
by the counterexample shown in the figure beside �=”, the decidability result for strong detectability proved
by Masopust and Yin (2019) is based on Assumption 1, and can be strengthened to hold only based on the
promptness assumption which is actually (ii) of Assumption 1 for labeled Petri nets by using our proposed
extended concurrent composition method similarly as in the proof of Theorem 4. The decidability result for
eventual strong detectability is also based on the promptness assumption

Strong detectability Eventual strong detectability

decidable (Masopust and Yin 2019) ⇒�= (Fig. 4) decidable (Thm. 4)

EXPSPACE-hard (Masopust and Yin 2019) EXPSPACE-hard (Thm. 4)

⇓�= (Fig. 9)

Weak approximate detectability Weak detectability

undecidable (Thm. 1) ⇐�= (Fig. 2) undecidable (Masopust and Yin 2019)

problem for labeled P/T nets to negation of the weak approximate detectability problem.
The result for finite automata is obtained by using related results for weak detectability of
finite automata (Zhang 2017; Shu et al. 2007).

1.3 Paper structure

To help the reader better understand the contribution of the paper, the relations among the
different detectability properties studied in this work are shown in Tables 1 and 2. The table
also includes known results on strong detectability and weak detectability of finite automata
and labeled Petri nets proved by Masopust and Yin (2019) and Zhang (2017).

The remainder of the paper is as follows. Section 2 introduces necessary preliminar-
ies, including finite automata, labeled Petri nets, the language equivalence problem, and
the coverability problem, together with necessary tools such as Dickson’s lemma, Yen’s
path formulae, etc. Section 3 collects the results on weak approximate detectability for
finite automata and labeled Petri nets. Section 4 consists of the results on eventual strong
detectability also for both models. Section 5 ends up with a short conclusion. We first study
weak approximate detectability because fewer tools are needed than in studying eventual
strong detectability.

Table 2 Relationships among different detectability notions for finite automata, where s and e are the num-
bers of states and events, ⇒ means “the notion on the tail is stronger than the notion on the head”, �= means
“the two notions are not equivalent by the counterexample shown in the figure beside �=”; the polynomial-
time verification algorithm for strong detectability given in Shu and Lin (2011) applies to finite automata
satisfying Assumption 1, but generally does not apply to finite automata that violate Assumption 1; by
using the proposed method in our paper, one can design a polynomial-time verification algorithm for strong
detectability of all finite automata; the exponential-time verification algorithm for weak detectability given
in Shu and Lin (2011) actually applies to finite automata satisfying the assumption of non-emptiness of gen-
erated ω-languages that is weaker than Assumption 1, and in this paper we characterize how to verify the
weaker assumption and how to deal with the case when the weaker assumption is not satisfied

Strong detectability Eventual strong detectability

P (Shu and Lin 2011) ⇒�= (Fig. 4) O(s4e2) (Thm. 3)

⇓�= (Fig. 9)

Weak approximate detectability Weak detectability

PSPACE-complete (Thm. 2) ⇐�= (Fig. 2) PSPACE-complete (Zhang 2017)
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2 Preliminaries

Next we introduce necessary notions that will be used throughout this paper. Symbols N

and Z+ denote the sets of natural numbers and positive integers, respectively. For a set S,
S∗ and Sω are used to denote the sets of finite sequences (called words) of elements of S

including the empty word ε and infinite sequences (called configurations) of elements of
S, respectively. As usual, we denote S+ = S∗ \ {ε}. For a word s ∈ S∗, |s| stands for
its length, and we set |s′| = +∞ for all s′ ∈ Sω. For s ∈ S and natural number k, sk

and sω denote the k-length word and configuration consisting of copies of s’s, respectively.
For a word (configuration) s ∈ S∗(Sω), a word s′ ∈ S∗ is called a prefix of s, denoted as
s′ � s, if there exists another word (configuration) s′′ ∈ S∗(Sω) such that s = s′s′′. For
two natural numbers i ≤ j , [i, j ] denotes the set of all integers between i and j including
i and j ; and for a set S, |S| its cardinality and 2S its power set. For a word s ∈ S∗, where
S = {s1, . . . , sn}, �(s)(si) denotes the number of si’s occurrences in s, i ∈ [1, n]. A partition
of a set S is a set of nonempty subsets of S such that these subsets are pairwise disjoint and
their union equals S.

2.1 Labeled state-transition systems

In order to formulate detectability notions in a uniform manner, we introduce labeled state-
transition systems (LSTSs) as follows, which contain finite automata and labeled Petri nets
as special cases. An LSTS is formulated as a sextuple

S = (X, T , X0,→, �, �),

where X is a set of states, T a set of events, X0 ⊂ X a set of initial states, →⊂ X × T × X

a transition relation, � a set of outputs (labels), and � : T → � ∪ {ε} a labeling function.
As usual, we use �−1(σ ) to denote the preimage {t ∈ T |�(t) = σ } of an output σ ∈
�. A state x ∈ X is called deadlock if (x, t, x′) /∈→ for any t ∈ T and x′ ∈ X. S is
called deadlock-free if it has no deadlock state. Events with label ε are called unobservable.
Other events are called observable. Denote T =: To∪̇Tε , where To and Tε are the sets of
observable events, and unobservable events, respectively. For an observable event t ∈ T ,
we say t can be directly observed if �(t) differs from �(t ′) for any other t ′ ∈ T . Labeling
function � : T → � ∪ {ε} can be recursively extended to � : T ∗ ∪ T ω → �∗ ∪ �ω as
�(t1t2 . . . ) = �(t1)�(t2) . . . and �(ε) = ε. For all x, x′ ∈ X and t ∈ T , we also denote

x
t−→ x′ if (x, t, x′) ∈→. More generally, we denote all transitions x

t1−→ x1, x1
t2−→ x2, . . . ,

xn−1
tn−→ xn by x

t1...tn−−−→ xn for short, where n is a positive integer. We say a state x′ ∈ X is

reachable from a state x ∈ X if there exist t1, . . . , tn ∈ T such that x
t1...tn−−−→ x′, where n is

a positive integer. We say a subset X′ of X is reachable from a state x ∈ X if some state of
X′ is reachable from x. Similarly a state x ∈ X is reachable from a subset X′ of X if x is
reachable from some state of X′. We call a state x ∈ X reachable if either x ∈ X0 or it is
reachable from some initial state. For an LSTS S , we call the new LSTS the accessible part
(denoted by Acc(S)) of S that is obtained from S by removing all non-reachable states. An
LSTS S is called deterministic if for all x, x′, x′′ ∈ X and all t ∈ T , if (x, t, x′) ∈→ and
(x, t, x′′) ∈→ then x′ = x′′.

For each σ ∈ �∗, we denote by M(S, σ ) the set of states that the system can be in
after σ has been observed, i.e., M(S, σ ) := {x ∈ X|(∃x0 ∈ X0)(∃s ∈ T +)[(�(s) =
σ) ∧ (x0

s−→ x)]}. In addition, we set M(S, ε) := M(S, ε) ∪ X0. Particularly, for all
X′ ⊂ X we denote M(X′, ε) := X′ ∪ {x ∈ X|(∃x′ ∈ X′)(∃s ∈ T +)[(�(s) = ε) ∧
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(x′ s−→ x)]}; and for all σ ∈ �+, we denote M(X′, σ ) := {x ∈ X|(∃x′ ∈ X′)(∃s ∈
T +)[(�(s) = σ) ∧ (x′ s−→ x)]}. L(S) denotes the language generated by system S , i.e.,
L(S) := {σ ∈ �∗|M(S, σ ) �= ∅}. An infinite event sequence t1t2 · · · ∈ T ω is called
generated by S if there exist states x0, x1, · · · ∈ X with x0 ∈ X0 such that for all i ∈
N, (xi, ti+1, xi+1) ∈→. We use Lω(S) to denote the ω-language generated by S , i.e.,
Lω(S) := {σ ∈ �ω|(∃t1t2 · · · ∈ T ω generated by S)[�(t1t2 . . . ) = σ ]}.

2.2 Finite automata

A DES can be modeled by a finite automaton or a labeled Petri net. In order to represent
a DES, we consider a finite automaton as a finite LSTS S = (X, T , X0,→, �, �), i.e.,
when X, T , � are finite. Such a finite automaton is also obtained from a standard finite
automaton (Sipser 1996) by removing all accepting states, replacing a unique initial state by
a set X0 of initial states, and adding a labeling function �. In the sequel, a finite automaton

always means a finite LSTS. Transitions x
t−→ x′ with �(t) = ε are called ε-transitions (or

unobservable transitions), and other transitions are called observable transitions.

2.3 Labeled Petri nets

A net is a quadruple N = (P, T , P re, Post), where P is a finite set of places graphically
represented by circles; T is a finite set of transitions graphically represented by bars; P ∪
T �= ∅, P ∩ T = ∅; Pre : P × T → N and Post : P × T → N are the pre- and post-
incidence functions that specify the arcs directed from places to transitions, and vice versa.
Graphically Pre(p, t) is the weight of the arc p → t and Post (p, t) is the weight of the
arc t → p for all (p, t) ∈ P × T . The incidence function is defined as C = Post − Pre.

A marking is a map M : P → N that assigns to each place of a net a natural number
of tokens, graphically represented by black dots. For a marking M ∈ N

P , the restriction of
M to a subset P ′ of P is denoted by M|P ′ . For a marking M ∈ N

P , a transition t ∈ T is
called enabled at M if M(p) ≥ Pre(p, t) for all p ∈ P , and is denoted by M[t〉, where
as usual NP denotes the set of maps from P to N. An enabled transition t at M may fire
and yield a new making M ′(p) = M(p) + C(p, t) for all p ∈ P , written as M[t〉M ′.
As usual, we assume that at each marking and each time step, at most one transition fires.
For a marking M , a sequence t1 . . . tn of transitions is called enabled at M if t1 is enabled
at M , t2 is enabled at the unique M2 satisfying M[t1〉M2, . . . , tn is enabled at the unique
Mn−1 satisfying M[t1〉 · · · [tn−1〉Mn−1. We write the firing of t1 . . . tn at M as M[t1 . . . tn〉
for short, and similarly denote the firing of t1 . . . tn at M yielding M ′ by M[t1 . . . tn〉M ′.
T (N,M0) := {s ∈ T ∗|M0[s〉} is used to denote the set of transition sequences enabled at
M0. Particularly we have M0[ε〉M0. A pair (N,M0) is called a Petri net or a place/transition
net (P/T net), where N = (P, T , P re, Post) is a net, M0 : P → N is called the initial
marking, and the Petri net evolves initially at M0 as transition sequences fire. Denote the set
of reachable markings of the Petri net by R(N,M0) := {M ∈ N

P |∃s ∈ T ∗, M0[s〉M}.
A labeled P/T net is a quadruple (N,M0, �, �), where N is a net, M0 is an initial

marking, � is an alphabet (a finite set of labels), and � : T → � ∪ {ε} is a labeling
function that assigns to each transition t ∈ T a symbol of � or the empty word ε, which
means when a transition t fires, its label �(t) can be observed if �(t) ∈ �; and noth-
ing can be observed if �(t) = ε. A transition t ∈ T is called observable if �(t) ∈ �,
and called unobservable otherwise. Particularly, a labeling function � : T → � is called
ε-free, and a P/T net with an ε-free labeling function is called an ε-free labeled P/T
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net. A Petri net is actually an ε-free labeled P/T net with an injective labeling function.
For a labeled P/T net G = (N,M0, �, �), the language generated by G is denoted by
L(G) := {σ ∈ �∗|∃s ∈ T ∗,M0[s〉, �(s) = σ }, i.e., the set of labels of finite transition
sequences enabled at the initial marking M0. We also say for each σ ∈ L(G), G generates σ .
For σ ∈ �ω, we say G generates σ if an infinite event sequence t1t2 · · · ∈ T ω is enabled at
M0 (denoted M0[t1t2 . . . 〉) and �(t1t2 . . . ) = σ . The set of infinite label sequences generated
by G is denoted by Lω(G) (which is an ω-language).

Note that for a labeled P/T net G = (N,M0, �, �), when we observe a label sequence
σ ∈ �∗, there may exist infinitely many firing transition sequences labeled by σ . However,
for an ε-free labeled P/T net, when we observe a label sequence σ , there exist at most finitely
many firing transition sequences labeled by σ . Denote by M(G, σ) := {M ∈ N

P |∃s ∈
T ∗, M0[s〉M, �(s) = σ }, the set of markings in which G can be when σ is observed. Then
for each σ ∈ �∗, M(G, σ) is finite for an ε-free labeled P/T net G.

2.4 The language equivalence problem

The undecidable result proved in this paper is obtained by using the following language
equivalence problem.

Proposition 1 (Hack 1976, Theorem 8.2) It is undecidable to verify whether two ε-free
labeled P/T nets with the same alphabet generate the same language.

2.5 Dickson’s lemma

Let P be a finite set. For every two elements x and y of NP , we say x ≤ y if and only
if x(p) ≤ y(p) for all p in P . We write x < y if x ≤ y and x �= y. For a subset S of
N

P , an element x ∈ S is called minimal if for all y in S, y ≤ x implies y = x. Dickson’s
lemma (Dickson 1913) shows that for each subset S of NP , there exist at most finitely many
distinct minimal elements. This lemma follows from the fact that every infinite sequence
with all elements in N

P has an increasing infinite subsequence, where such an increasing
subsequence can be chosen component-wise (Reutenauer 1990, Theorem 2.5). We will use
Dickson’s lemma to prove some decidable results for labeled P/T nets.

2.6 The coverability problem

We also need the following Proposition 2 on the coverability problem to obtain some main
results on complexity.

Proposition 2 (Rackoff 1978; Lipton 1976) It is EXPSPACE-complete to decide for a Petri
net G = (N,M0) and a destination marking M ∈ N

P whether G covers M , i.e., whether
there exists a marking M ′ ∈ R(N,M0) such that M ≤ M ′.

In Lipton (1976), it is proved that deciding coverability for Petri nets requires at least
2cn space infinitely often for some constant c > 0, where n is the number of transitions.
In Rackoff (1978), it is shown that deciding this property for a Petri net requires at most
space 2cm log m for some constant c, where m is the size of the set of all transitions. For a
Petri net ((P, T , P re, Post), M0), each transition t ∈ T corresponds to a |P |-length vector
Post (·, t) − Pre(·, t) =: c(t) whose components are integers. The size of t is the sum of
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the lengths of the binary representations of the components of c(t) (where the length of 0 is
1). The size of T is the sum of the sizes of all transitions of T , and is set to be the above m.

The coverability problem belongs to EXPSPACE (Rackoff 1978). Proposition 2 has
been used to prove the EXPSPACE-hardness of checking diagnosability (Yin and Lafortune
2017a) and prognosability (Yin 2018) of labeled Petri nets.

2.7 Infinite graphs

Let (V ,E) be a directed graph, where V is the vertex set, and E ⊂ V × V the edge set.
For each edge (v, v′) ∈ E, also denoted by v → v′, v and v′ are called the tail and the
head of the edge, respectively, v is called a parent of v′ and v′ is called a child of v. A
directed graph is called infinite if it has infinitely many vertices. A path is a sequence of
vertices connected by edges with the same direction, i.e., a path is of one of the forms:
(1) · · · → v−1 → v0 → v1 → · · · (bi-infinite), (2) v0 → v1 → · · · (infinite), (3)
· · · → v−1 → v0 (anti-infinite), or (4) v1 → · · · → vn (finite). For each finite path
v1 → · · · → vn, v1 is called an ancestor of vn, and vn is called a descendant of v1. A
directed graph (V ,E) is called a tree if there is a vertex v0 without any parent (called root),
any other vertex is a descendant of v0 and the head of exactly one edge. A tree is called
locally finite if each vertex has at most finitely many children.

2.8 Yen’s path formulae for Petri nets

The final tool that we will use to prove some decidable results is Yen’s path formula (Yen
1992; Atig and Habermehl 2009) for Petri nets. In Yen (1992), a concept of Yen’s path
formulae is proposed and some upper bounds for verifying the satisfiability of the formulae
are studied. In addition, it is shown that many problems, e.g., the boundedness problem,
the coverability problem for Petri nets, can be reduced to the satisfiability problem of some
Yen’s path formulae. In Atig and Habermehl (2009), a special class of Yen’s path formulae
called increasing Yen’s path formulae is proposed. The main results of Atig and Habermehl
(2009) are stated as follows.

Proposition 3 (Atig and Habermehl 2009) The reachability problem for Petri nets can be
reduced to the satisfiability problem of some Yen’s path formula, and the satisfiability prob-
lem of each Yen’s path formula can be reduced to the reachability problem for Petri nets
with respect to the marking with all places empty, all in polynomial time. In addition, the
satisfiability of each increasing Yen’s path formula can be verified in EXPSPACE.

For a Petri net (N,M0), where N = (P, T , P re, Post) is a net, each Yen’s path formula
consists of the following elements:

1. Variables. There are two types of variables, namely, marking variablesM1, M2, . . . and
variables for transition sequences s1, s2, . . . , where each Mi denotes an indeterminate
function in Z

P and each si denotes an indeterminate finite sequence of transitions, Z is
the set of integers.

2. Terms. Terms are defined recursively as follows.

(a) ∀ constant c ∈ N
P , c is a term.

(b) ∀j > i, Mj − Mi is a term, where Mi and Mj are marking variables.
(c) T1 + T2 and T1 − T2 are terms if T1 and T2 are terms.
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3. Atomic Predicates. There are two types of atomic predicates, namely transition
predicates and marking predicates.

(a) Transition predicates.

– y � �(si) < c, y � �(si) = c, and y � �(si) > c are predicates, where
i > 1, constant y ∈ Z

T , constant c ∈ N, and � denotes the inner product (i.e.,
(a1, . . . , a|T |) � (b1, . . . , b|T |) = ∑|T |

i=1 akbk).
– �(s1)(t) ≤ c and �(s1)(t) ≥ c are predicates, where constant c ∈ N, t ∈ T .

(b) Marking predicates.

– Type 1. M(p) ≥ c and M(p) > c are predicates, where M is a marking
variable and c ∈ Z is constant.

– Type 2. T1(i) = T2(j), T1(i) < T2(j), and T1(i) > T2(j) are predicates,
where T1, T2 are terms and i, j ∈ T .

4. F1 ∨ F2 and F1 ∧ F2 are predicates if F1 and F2 are predicates.

A Yen’s path formula f is of the following form (with respect to Petri net (N,M0),
where N = (P, T , P re, Post)):

(∃M1, . . . , Mn ∈ N
P )(∃s1, . . . , sn ∈ T ∗)[(M0[s1〉M1[s2〉 · · · [sn〉Mn)

∧F(M1, . . . , Mn, s1, . . . , sn)], (1)

where F(M1, . . . , Mn, s1, . . . , sn) is a predicate.
Given a Petri net G and a Yen’s path formula f , we use G |= f to denote that f is true

in G. The satisfiability problem is the problem of determining, given a Petri net G and a
Yen’s path formula f , whether G |= f .

A Yen’s path formula (1) is called increasing if F does not contain transition predicates
and implies Mn ≥ M1. When n = 1, it naturally holds Mn ≥ M1, then in this case an
increasing Yen’s path formula is (∃M1)(∃s1)[(M0[s1〉M1) ∧ F(M1)].

The unboundedness problem can be formulated as the satisfiability of the increasing
Yen’s path formula (∃M1,M2)(∃s1, s2)[(M0[s1〉M1[s2〉M2) ∧ (M2 > M1)].

The coverability problem can be formulated as the satisfiability of the increasing
Yen’s path formula (∃M1)(∃s1)[(M0[s1〉M1) ∧ (M1 ≥ M)], where M is the destination
marking.

3 Weak approximate detectability

The concept of weak detectability is formulated as follows.

Definition 1 (WD) Consider an LSTS S = (X, T , X0, →, �, �). System S is called
weakly detectable if Lω(S) �= ∅ implies there exists a label sequence σ ∈ Lω(S) such that
for some positive integer k, |M(S, σ ′)| = 1 for every prefix σ ′ of σ satisfying |σ ′| ≥ k.

Sometimes, we do not need to determine the current state of an LSTS, but only need to
know whether the current state belongs to some prescribed subset of reachable states. Then
the concept of weak approximate detectability is formulated as below.
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Definition 2 (WAD) Consider an LSTS S = (X, T ,X0,→, �, �). Given a positive integer
n > 1 and a partition {R1, . . . , Rn} of the set of its reachable states, S is called weakly
approximately detectable with respect to partition {R1, . . . , Rn} if Lω(S) �= ∅ implies there
exists a label sequence σ ∈ Lω(S) such that for some positive integer k, for every prefix σ ′
of σ satisfying |σ ′| ≥ k, ∅ �= M(S, σ ′) ⊂ Riσ ′ for some iσ ′ ∈ [1, n].

3.1 Labeled Petri nets

One directly sees that if an LSTS is weakly detectable, then it is weakly approximately
detectable with respect to every finite partition of its state space. However, if it is weakly
approximately detectable with respect to some finite partition of its state space, then it is
not necessarily weakly detectable. See the following example.

Example 1 Consider a labeled Petri net G in Fig. 2. We have Lω(G) = {aω, bω}. We
also have for all k ∈ Z+, M(G, ak) = {(0, 1, 0, 0, 0), (1, 0, 0, 0, 0)}, M(G, bk) =
{(0, 0, 0, 1, 0), (0, 0, 0, 0, 1)}, where the components of a marking is in the order
(p−2, p−1, p0, p1, p2). These observations show that the net is not weakly detectable. It is
weakly approximately detectable with respect to the partition:

R1 = {(0, 0, 1, 0, 0)},
R2 = {(0, 0, 0, 1, 0), (0, 0, 0, 0, 1)},
R3 = {(0, 1, 0, 0, 0), (1, 0, 0, 0, 0)} (2)

of the set of its reachable markings. Also, this net is a nondeterministic finite automaton
with (0, 0, 1, 0, 0) being the unique initial state. Similarly we have the automaton is also
weakly approximately detectable with respect to partition (2) but not weakly detectable. In
addition, this net becomes a deterministic finite automaton if we regard a and b as labels of
four different events, respectively, and the corresponding deterministic finite automaton is
also weakly approximately detectable with respect to partition (2) but not weakly detectable.

For the weak approximate detectability of labeled P/T nets, the following result holds.

Theorem 1 Let n > 1 be a positive integer. It is undecidable to verify for an ε-free labeled
P/T net and a partition {R1, . . . , Rn} of the set of its reachable markings, whether the
labeled P/T net is weakly approximately detectable with respect to {R1, . . . , Rn}.

Proof We prove this result by reducing the language equivalence problem of labeled Petri
nets (Proposition 1) to the problem under consideration. We only need to prove the case

Fig. 2 A labeled P/T net G, where letters beside transitions denote their labels, each arc is with weight 1

476 Discrete Event Dynamic Systems (2020) 30:465–497



n = 2, since the undecidability of the case for any n greater than 2 trivially follows from
that. In addition, in our reduction, the partition is computable by using the reachability
algorithm (Kosaraju 1982; Mayr 1984; Lambert 1992).

Arbitrarily given two ε-free labeled P/T nets Gi = (Ni,M
i
0, �, �i), where Ni =

(Pi, Ti, P rei, P osti), i = 1, 2, P1 ∩ P2 = ∅, T1 ∩ T2 = ∅, we next construct a new ε-free
labeled P/T net G = (NG,MG

0 , � ∪ {σG}, �G) from G1 and G2. G is specified as fol-
lows: (1) Add 5 places p0, p

1
1, p

2
1, p2, p3 to G1 and G2, where initially p0 has one token,

and all the other places have no token. (2) Add 6 transitions t1
0 , t2

0 , t1
1 , t2

1 , t2, t3, and arcs
p0 → t1

0 → p1
1 → t1

1 → p2 → t2 → p3 → t3 → p2, and p0 → t2
0 → p2

1 → t2
1 → p3,

where these transitions are labeled by σG /∈ �. (3) For each transition t ∈ Ti , add arcs
pi

1 → t → pi
1, i = 1, 2. (4) All these newly added arcs are with weight 1. See Fig. 3 as a

sketch.
For net G, initially only transition t1

0 or t2
0 can fire. After t1

0 (t2
0 ) fires, the unique token

in place p0 moves to place p1
1 (p2

1), initializing net G1 (G2). While G1 (G2) is running,
only transition t1

1 (t2
1 ) outside T1 ∪T2 can fire. The firing of t1

1 (t2
1 ) moves the token in place

p1
1 (p2

1) to place p2 (p3), and terminates the running of G1 (G2), yielding that the token in
p2 (p3) can move along the direction p2 → p3 → p2 periodically forever, but G1 (G2)
will never run again. Hence net G may fire only infinite transition sequences t1

0 st1
1 (t2t3)

ω,
t1
0 s′, t2

0 rt2
1 (t3t2)

ω, or t2
0 r ′, where s ∈ (T1)

∗, s′ ∈ (T1)
ω, r ∈ (T2)

∗, r ′ ∈ (T2)
ω. So G can

generate only configurations σGσ(σG)ω or σGσ ′ where σ ∈ �∗, σ ′ ∈ �ω. Note that for
some nets G1 and G2, the corresponding net G never fires t1

0 s′ or t2
0 r ′ as above, e.g., when

L(G1) ∪ L(G2) is finite; but for all G1 and G2, the corresponding G fires t1
0 st1

1 (t2t3)
ω and

t2
0 rt2

1 (t3t2)
ω as above.

We partition the set R(NG,MG
0 ) of reachable markings of net G as follows:

R1 = {M ∈ N
PG |M(p0) or M(p1

1) or M(p2) = 1,M(p2
1) = M(p3) = 0}

∩R(NG,MG
0 ),

R2 = {M ∈ N
PG |M(p2

1) or M(p3) = 1,M(p0) = M(p1
1) = M(p2) = 0}

∩R(NG,MG
0 ). (3)

By using the reachability algorithm in the literature, one can decide whether an arbitrary
given marking belongs to R1, R2, or neither R1 nor R2.

Fig. 3 Sketch for the reduction in
the proof of Theorem 1, where
all transitions outside G1 ∪ G2
are with the same label.
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If L(G1) �= L(G2), without loss of generality, we assume that there exists σ ∈
L(G1)\L(G2). Then when G generates configuration σGσ(σG)ω, it can fire only transition
sequences t1

0 st1
1 (t2t3)

ω, where s ∈ (T1)
∗, �G(s) = σ . It can be directly seen for each posi-

tive integer k, ∅ �= M(G, σGσ(σG)k) ⊂ Rk mod 2+1, where k mod 2 means the remainder
of k divided by 2. That is, net G is weakly approximately detectable with respect to
partition (3).

Next we assume that L(G1) = L(G2). Note that net G generates only configurations
σGσ ′ or σGσ(σG)ω, where σ ′ ∈ �ω, σ ∈ �∗. For the former case, for each prefix σ ′′ of
σ ′, there exist firing sequences s ∈ (T1)

∗ of net G1 and r ∈ (T2)
∗ of net G2 such that

�G(s) = �G(r) = σ ′′, and markings MG,M ′
G ∈ N

PG such that MG
0 [t1

0 s〉MG, MG
0 [t2

0 r〉M ′
G,

MG(p1
1) = 1, MG(p2

1) = 0, M ′
G(p1

1) = 0, and M ′
G(p2

1) = 1, then we have M(G, σ ′′) ∩
R1 �= ∅ and M(G, σ ′′) ∩ R2 �= ∅. For the latter case, chosen an arbitrary prefix σGσ(σG)k

of σGσ(σG)ω, where k is an arbitrary positive integer, we have there exist firing sequences
s ∈ (T1)

∗ of net G1 and r ∈ (T2)
∗ of net G2 such that �G(s) = �G(r) = σ and net G

can fire both t1
0 ss′ and t2

0 rr ′, where s′ and r ′ are k length prefixes of (t2t3)
ω and (t3t2)

ω,
respectively. Since G will fire both t1

0 ss′ and t2
0 rr ′, we have M(G, σGσ(σG)k) ∩ R1 �= ∅

and M(G, σGσ(σG)k) ∩ R2 �= ∅. Hence for each positive integer k, M(G, σGσ(σG)k)

intersects both R1 and R2. We have checked all label sequences generated by G, hence G

is not weakly approximately detectable with respect to partition (3).

3.2 Finite automata

Next, we study the complexity of deciding weak approximate detectability of finite
automata.

An exponential-time algorithm for verifying weak detectability of a finite automaton S
under Assumption 1 is given in Shu and Lin (2011), but the algorithm actually applies to
every S satisfying Lω(S) �= ∅ which is weaker than Assumption 1. Automaton S satisfy-
ing Lω(S) = ∅ is naturally weakly detectable and hence weakly approximately detectable
with respect to very finite partition of its set of reachable states as well, and the condition
Lω(S) = ∅ can be verified in linear time of the size of S by computing all strongly con-
nected components of S . Note that in Assumption 1, (ii) is actually a little weaker than the
counterpart in Shu et al. (2007) and Shu and Lin (2011), as in these two papers, there is
no requirement “reachable from an initial state”. However, one easily sees that existence of
a cycle not reachable from an initial state consisting of only unobservable events does not
violate the verification results for weak detectability given in Shu and Lin (2011).

Assumption 1 An LSTS S = (X, T , X0,→, �, �) satisfies

(i) S is deadlock-free,
(ii) no cycle in S reachable from an initial state contains only unobservable events, i.e.,

for every reachable state x ∈ X and every nonempty unobservable event sequence s,

there exists no transition sequence x
s−→ x in S .

In Assumption 1, (i) guarantees that the automaton never halts, (ii) ensures that for each
infinite event sequence generated by the automaton, the corresponding label sequence is
also of infinite length.

It is not difficult to see that weak approximate detectability is PSPACE-complete for
finite automata. In order to show the PSPACE-hardness of weak approximate detectabil-
ity with respect to a partition of cardinality n, we can slightly change the reduction in our

478 Discrete Event Dynamic Systems (2020) 30:465–497



paper (Zhang 2017) to reduce the finite automaton intersection problem to weak approxi-
mate detectability in polynomial time. To prove the PSPACE membership, we can reduce
weak approximate detectability to weak detectability in polynomial time by constructing
a quotient automaton from the original automaton, where elements of the corresponding
partition are states of the quotient automaton. Hence the following theorem holds.

Theorem 2 1. The weak approximate detectability of finite automata can be verified in
PSPACE.

2. Deciding weak approximate detectability of deterministic finite automata whose events
can be directly observed is PSPACE-hard.

Remark 1 The notion of weak approximate detectability can be extended from a finite par-
tition of the set of reachable states to a finite cover of that set. Such an extension may have
potential applications in supervisor reduction of supervisory control theory. In supervisory
control theory, the optimal solution to the control problem associated with a DES is the
supremal supervisor (the supremal controllable sublanguage), and it is important to reduce
the size of the supremal supervisor together with preserving some corresponding control
actions (Cai and Wonham 2016; Su and Wonham 2004; Vaz and Wonham 1986), where the
reduction is done based on a notion of control cover that is actually a cover of the state set.
Under this extension, it is not difficult to see that the extended weak approximate detectabil-
ity of finite automata can also be verified in PSPACE by the powerset construction used to
verify weak detectability in Shu and Lin (2011), and it is undecidable to verify this notion
for labeled Petri nets (from Theorem 1).

4 Eventual strong detectability

The concepts of strong detectability and eventual strong detectability are given as follows.
The former implies there exists a positive integer k such that for each infinite label sequence
generated by a system, each prefix of the label sequence of length greater than k allows
reconstructing the current state. The latter implies that for each infinite label sequence gen-
erated by a system, there exists a positive integer k (depending on the label sequence) such
that each prefix of the label sequence of length greater than k allows doing that. Hence the
former is stronger than the latter.

Definition 3 (SD) Consider an LSTS S = (X, T , X0, →, �, �). System S is called
strongly detectable if there exists a positive integer k such that for each label sequence
σ ∈ Lω(S), |M(S, σ ′)| = 1 for every prefix σ ′ of σ satisfying |σ ′| > k.

Definition 4 (ESD) Consider an LSTS S = (X, T ,X0,→, �, �). System S is called even-
tually strongly detectable if for each label sequence σ ∈ Lω(S), there exists a positive
integer kσ such that |M(S, σ ′)| = 1 for every prefix σ ′ of σ satisfying |σ ′| > kσ .

By definition, strong detectability implies eventual strong detectability. The following
Proposition 4 shows that they are not equivalent.

Proposition 4 Strong detectability strictly implies eventual strong detectability for labeled
P/T nets and finite automata.
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Fig. 4 A labeled P/T net G that
is eventually strongly detectable,
but not strongly detectable

Proof Consider the labeled P/T net G in Fig. 4, where a and b are labels of transitions. It
can be seen that Lω(G) = aω + a∗bω + a∗baω := {aω} ∪ {anbω|n ∈ N} ∪ {anbaω|n ∈
N}. One also has that M(G, an) = {(1, 0, 0)}, M(G, anb) = {(0, 1, 0), (0, 0, 1)},
M(G, anbbm+1) = {(0, 1, 0)}, M(G, anbam+1) = {(0, 0, 1)} for all m, n ∈ N. Hence G

is eventually strongly detectable, but not strongly detectable.
The net can be regarded as a deterministic finite automaton satisfying Assumption 1

when a and b are regarded as labels of events. By a direct observation, it is also eventually
strongly detectable, but not strongly detectable.

4.1 Finite automata

In order to give an easily understandable way to verify eventual strong detectability of finite
automata, for a finite automaton S = (X, T , X0,→, �, �), we next construct three new
automata from S .

Firstly, we construct its concurrent composition

CCA(S) = (X′, T ′, X′
0,→′) (4)

as follows:

1. X′ = X × X;
2. T ′ = T ′

o ∪ T ′
ε , where T ′

o = {(t̆ , t̆ ′)|t̆ , t̆ ′ ∈ T , �(t̆) = �(t̆ ′) ∈ �}, T ′
ε = {(t̆ , ε)|t̆ ∈

T , �(t̆) = ε} ∪ {(ε, t̆)|t̆ ∈ T , �(t̆) = ε};
3. X′

0 = X0 × X0;
4. for all (x̆1, x̆

′
1), (x̆2, x̆

′
2) ∈ X′, (t̆ , t̆ ′) ∈ T ′

o, (t̆ ′′, ε) ∈ T ′
ε , and (ε, t̆ ′′′) ∈ T ′

ε ,

– ((x̆1, x̆
′
1), (t̆ , t̆

′), (x̆2, x̆
′
2)) ∈→′ if and only if (x̆1, t̆ , x̆2), (x̆

′
1, t̆

′, x̆′
2) ∈→,

– ((x̆1, x̆
′
1), (t̆

′′, ε), (x̆2, x̆
′
2)) ∈→′ if and only if (x̆1, t̆

′′, x̆2) ∈→, x̆′
1 = x̆′

2,
– ((x̆1, x̆

′
1), (ε, t̆

′′′), (x̆2, x̆
′
2)) ∈→′ if and only if x̆1 = x̆2, (x̆′

1, t̆
′′′, x̆′

2) ∈→.

For an event sequence s′ ∈ (T ′)∗, we use s′(L) and s′(R) to denote its left and right
components, respectively. Similar notation is applied to states of X′. In addition, for every
s′ ∈ (T ′)∗, we use �(s′) to denote �(s′(L)) or �(s′(R)), since �(s′(L)) = �(s′(R)).
In the above construction, CCA(S) aggregates every pair of transition sequences of S
producing the same label sequence. In addition, CCA(S) has at most |X|2 states and at
most |X|2(2|Tε ||X|+∑

σ∈� |�−1(σ )|2|X|2) transitions, where the number does not exceed
|X|2(2|Tε ||X| + |To|2|X|2). Hence it takes time O(2|X|3|Tε | + |X|4 ∑

σ∈� |�−1(σ )|2) to
construct CCA(S). For the special case when all observable events can be directly observed
studied in Shu and Lin (2011), the complexity reduces to O(2|X|3|Tε | + |X|4|To|). See the
following example.

Example 2 A finite automaton S and its concurrent composition CCA(S) are shown in
Fig. 5.
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Fig. 5 A finite automaton (left) and its concurrent composition (right, only the accessible part illustrated)

Secondly, we construct its observation automaton

Obs(S) = (X, {ε, ε̂}, X0, →′, {ε̂}, �′) (5)

in linear time of the size of S , where →′⊂ X × {ε, ε̂} × X, �′(ε) = ε, �′(ε̂) = ε̂, for
every two states x, x′ ∈ X, (x, ε̂, x′) ∈→′ if there exists t ∈ T such that (x, t, x′) ∈→ and
�(t) �= ε; (x, ε, x′) ∈→′ if there exists t ∈ T such that (x, t, x′) ∈→ and for all t ′ ∈ T

with (x, t ′, x′) ∈→, �(t ′) = ε. Here the labeling function �′ is also naturally extended to
�′ : {ε, ε̂}∗ ∪{ε, ε̂}ω → {ε̂}∗ ∪{ε̂}ω. One sees that Lω(S) �= ∅ if and only if in Obs(S) there

is a transition sequence x0
s−→ x

s′−→ x such that x0 ∈ X0, s, s′ ∈ {ε, ε̂}∗, and �′(s′) �= ε.
Thirdly, we also need to construct its bifurcation automaton

Bifur(S) = (X, {ε̄, ε̌}, X0,→′, {ε̄, ε̌}, �′) (6)

in linear time of the size of S , where →′⊂ X × {ε̄, ε̌} × X, �′(ε̄) = ε̄, �′(ε̌) = ε̌, �′ is

also naturally extended to �′ : {ε̄, ε̌}∗ ∪ {ε̄, ε̌}ω → {ε̄, ε̌}∗ ∪ {ε̄, ε̌}ω, transitions x
ε̄−→ x′ are

called fair transitions, transitions x
ε̌−→ x′ are called bifurcation transitions, for every two

states i, j ∈ X, (1) (j, ε̄, i), (j, ε̌, i) /∈→′ if ¬A1, (2) (x, ε̄, x′) ∈→′ if A1 ∧ A2 ∧ A3, (3)
(x, ε̌, x′) ∈→′ otherwise, where

A1 = (∃t ∈ T )[(j, t, i) ∈→],
A2 = (�t ∈ T , j ′ ∈ X)[((j, t, j ′) ∈→) ∧ (�(t) = ε) ∧ (j ′ �= j)],
A3 = (∀t ∈ T )[(((j, t, i) ∈→) ∧ (�(t) �= ε)) =⇒

(�t ′ ∈ T , j ′ ∈ X)[((j, t ′, j ′) ∈→) ∧ (�(t ′) = �(t)) ∧ (j ′ �= i)]].
Ones sees that both fair transitions and bifurcation transitions can be ε-transitions or observ-
able transitions. Next we explain the relation between Bifur(S), the original automaton S ,
and the concurrent composition CCA(S). Here (1) holds if there is no transition from state
j to state i in S; (2) holds if there exists a transition from j to i, and none of such tran-
sitions has a bifurcation in S; and (3) holds if there is a transition from j to i that has a
bifurcation also in S . For the case that (3) holds, if A1 holds but A2 does not hold, then for
S one has {j} � M({j}, ε) and hence |M({j}, ε)| > 1, for CCA(S) there is a transition

(j, j)
(ε,t̃)−−→ (j, i′) with �(t̃) = ε and i′ �= j ; if A1 and A2 hold but A3 does not hold, then for

S one has |M({j}, ε)| = 1, {i} � M({j}, �(t̃ ′)), and hence |M({j}, �(t̃ ′))| > 1 for some

t̃ ′ ∈ T with �(t̃ ′) �= ε and (j, t̃ ′, i) ∈→; for CCA(S) there is a transition (j, j)
(t̃ ′,t̃ ′′)−−−→ (i, i′)

with i′ �= i and �(t̃ ′) = �(t̃ ′′) for the above t̃ ′.
One also has that for all states x and x′, there is a transition from x to x′ in S if and only

if there is a transition from x to x′ in Obs(S) if and only if there is a transition from x to x′
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in Bifur(S). This obvious observation is helpful in verifying eventual strong detectability
for finite automata.

Example 3 Reconsider the finite automaton S in Example 2 (in the left part of Fig. 5).
Its observation automaton and bifurcation automaton are seen in Fig. 6. It has a
unique initial state and generates a nonempty ω-language. In addition, all its states are
reachable.

We next use the concurrent composition, the observation automaton, and the bifurca-
tion automaton of a finite automaton S defined by (4), (5), and (6) to verify its eventual
strong detectability without any assumption. Note that by using a similar way, one can
design a polynomial-time algorithm for verifying strong detectability, which strengthens the
polynomial-time verification algorithm given in Shu and Lin (2011) under Assumption 1.
In addition, the method in Shu and Lin (2011) can also be used to check eventual strong
detectability, but also only under Assumption 1.

Theorem 3 The eventual strong detectability of finite automata can be verified in polyno-
mial time.

Proof Consider a finite automaton S = (X, T , X0, →, �, �) and another finite automa-
ton Acc(CCA(S)) = (X′, T ′, X′

0,→′). We use Acc(CCA(S)), Obs(Acc(S)), and
Bifur(Acc(S)) to verify its eventual strong detectability.

One observes by definition that S is not eventually strongly detectable if and only if

there is an infinite transition sequence x0
s1−→ such that (7a)

x0 ∈ X0, �(s1) ∈ �ω and for every n ∈ Z+, there is a prefix (7b)

s′
1 of s1 satisfying |�(s′

1)| > n and |M(S, �(s′
1))| > 1. (7c)

We claim that (7) holds if and only if one of the following items holds:

(1) In Acc(CCA(S)), there exists an infinite transition sequence

x′
0

s′
1−→ x′

1

s′
2−→ · · · (8)

such that x′
0 ∈ X′

0, for every i ∈ Z+, s′
i ∈ (T ′)∗, �(s′

i ) ∈ �+, and s′
i (L) �= s′

i (R).
(2) In S , there exists an infinite transition sequence

x0
s1−→ x1

s2−→ x2
s3−→ · · · (9)

Fig. 6 Observation automaton (left) and bifurcation automaton (right) of the automaton in the left part of
Fig. 5
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such that x0 ∈ X0, for all i ∈ Z+, si ∈ T ∗, �(si+1) ∈ �+, and |M({xi}, σ )| > 1 for
some σ � �(si+1).

It is trivial to see that either Item (1) or Item (2) implies (7).
Conversely suppose that (7) holds but Item (2) does not hold. Then for S , there is an

infinite transition sequence

x̄0
s̄1−→ x̄1

s̄2−→ x̄2
s̄3−→ · · · (10)

satisfying (7b) and (7c) such that for every i ∈ Z+, s̄i ∈ T ∗, �(s̄i+1) ∈ �+, and
|M({x̄i}, σ̄ )| = 1 for all σ̄ � �(s̄i+1). Fix such a sequence (10). Then for every i ∈ Z+,
there exists a finite transition sequence

x̄i
0

s̄i
1−→ · · · s̄i

i−→ x̄i
i (11)

such that x̄i
0 ∈ X0, for all j ∈ [1, i], one has �(s̄i

j ) = �(s̄j ), x̄i
j �= x̄j . Choose k sufficiently

large, by the finiteness of X, we obtain a transition sequence

x̄′
0

s̄′
1−→ · · · s̄′

k−→ x̄′
k (12)

of Acc(CCA(S)) such that x̄′
0 ∈ X′

0, the left component and the right component of Eq. 12
are a prefix of (10) and (11) with i = k; for all i ∈ [1, k], x̄′

i (L) �= x̄′
i (R), and x̄′

l′ = x̄′
l′′ for

some 0 < l′ < l′′ ≤ k. Then the prefix x̄′
0

s̄′
1−→ · · · s̄′

l′−→ x̄′
l′

s̄′
l′+1−−→ · · · s̄′

l′′−→ x̄′
l′′ of Eq. 12 can be

extended to an infinite transition sequence of the form (8) by repeating x̄′
l′

s̄′
l′+1−−→ · · · s̄′

l′′−→ x̄′
l′′

for infinitely many times, i.e., Item (1) holds.
Next we show that both Item (1) and Item (2) can be verified in polynomial time.
Observe that Item (1) holds if and only if in Acc(CCA(S)), there is a finite transition

sequence

x̃′
0

s̃′
1−→ x̃′

1

s̃′
2−→ x̃′

1 (13)

with x̃′
0 ∈ X′

0, s̃′
1, s̃

′
2 ∈ (T ′)∗ such that �(s̃′

2) ∈ �+ and x̃′
1(L) �= x̃′

1(R). Next we verify (13)
in polynomial time. See Fig. 7 for a sketch.

1. Compute Obs(Acc(CCA(S))).
2. Compute all strongly connected components of Obs(Acc(CCA(S))).

Fig. 7 A sketch for verifying
(13).
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3. Denote the set of states (x, x̄) of Obs(Acc(CCA(S))) with x �= x̄ that belong to a cycle
with nonempty label sequence by X′

c, check whether X′
c �= ∅.

Each of the first two steps costs linear time of CCA(S). Note that X′
c �= ∅ if and only if

(13) holds. Observe that X′
c �= ∅ if and only if in one of the obtained strongly connected

components, there is an observable transition and a state (x′, x̄′) with x′ �= x̄′. Hence the
third step also costs linear time. Overall, verifying Item (1) costs linear time of CCA(S), at
most O(|X|4|T |2).

Also observe that Item (2) holds if and only if in S , there exists a finite transition
sequence

x̃0
s̃1−→ x̃1

s̃2−→ x̃1 (14)

such that x̃0 ∈ X0, s̃1, s̃2 ∈ T ∗, �(s̃2) ∈ �+, and |M({x̃1}, σ )| > 1 for some σ � �(s̃2).
Next we show that Eq. 14 can be verified in polynomial time. See Fig. 8 for a

sketch.

1. Compute Obs(Acc(S)) and Bifur(Acc(S)).
2. Compute Xoc and Xbc, where Xoc (resp. Xbc) is the set of states of Acc(S) that belong

to a cycle containing an observable transition (resp. a bifurcation transition).
3. Check whether Xoc ∩ Xbc = ∅.

Note that a state x of Acc(S) belongs to a cycle containing an observable transition (resp. a
bifurcation transition) if and only if x is any state of any strongly connected component of
Obs(Acc(S)) (resp. Bifur(Acc(S))) that contains an observable transition (resp. a bifurca-
tion transition). Then one has Xoc ∩ Xbc �= ∅ if and only if (14) holds. Hence it takes linear
time of S to check whether Item (2) holds.

Example 4 Recall the finite automaton S in the left part of Fig. 5. Following the procedure
in the proof of Theorem 3, by Figs. 5 and 6, we have Xoc = {s0, s1}, Xbc = ∅, Xoc∩Xbc = ∅
(implying that Item (2) does not hold), and X′

c = ∅ (implying that Item (1) does not hold
either), then S is eventually strongly detectable.

Remark 2 By using a similar method as in the proof of Theorem 3, one can design a
polynomial-time verification algorithm for strong detectability of finite automata without
any assumption, with complexity linear of the size of Obs(Acc(CCA(S))), hence at most
O(|X|4|T |2).

Let us analyse the computational complexity of using (Shu and Lin 2011, Theorem
5) to verify strong detectability of finite automata satisfying Assumption 1. In Shu and
Lin (2011), for a finite automaton S (satisfying Assumption 1), a nondeterministic finite
automaton Gdet with at most |X|2/2+|X|/2+1 states and at most (|X|2/2+|X|/2+1)2|T |

Fig. 8 A sketch for verifying (14)
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transitions is constructed to verify its strong detectability, where every state of Gdet is a sub-
set of states of S with cardinality 1 or 2, except for the initial state of Gdet being a superset
of X0. The time consumption for computing Gdet is as follows:

i.e., at most O(2|X|3|To| + |X|4|�||Tε | + |X|4|�|). For the special case when all observ-
able events can be directly observed studied in Shu and Lin (2011), the complexity is
O(2|X|3|To|+|X|4|To||Tε |+|X|4|To|). Actually, this construction tracks sets of states of S
with consistent observations, which is similar to the powerset construction that is of expo-
nential size of S . It is proved that S is strongly detectable if and only if every state of Gdet

reachable from a cycle is a singleton. This condition can be check in linear time of Gdet by
computing strongly connected components of Gdet .

However, this method generally does not apply to a finite automaton that does not satisfy
Assumption 1. For example, let us consider the finite automaton S in the left part of Fig. 5.
Remove the self-loop on s1, and denote the new automaton by S̄ . Then one directly sees that
Lω(S̄) = {aω}, and S̄ is strongly detectable. However, in the corresponding Gdet , which
consists of a self-loop with label a on {s0} and a transition from {s0} to {s1, s2} with label
b, there is a state {s1, s2} with cardinality 2 reachable from a cycle, hence S̄ is not strongly
detectable by Shu and Lin (2011, Theorem 5). Actually, the verification method does not
apply to this example because, two deadlock states s1 and s2 are not in any infinite-length
transition sequence, but reachable from a state s0 that belongs to an infinite-length transition
sequence with infinite-length label sequence.

Remark 3 Eventual strong detectability is a uniform concept. That is, a labeled Petri net
is eventually strongly detectable if and only if it is eventually strongly detectable when its
initial marking is replaced by any of its reachable markings. Formally, for a labeled Petri net
G = (N,M0, �, �), G is eventually strongly detectable if and only if G′ = (N, M, �, �)

is eventually strongly detectable for each M ∈ R(N,M0).

Example 5 Consider a labeled P/T net G as shown in Fig. 9, where a, b are labels. We have
Lω(G) = aω + a∗bω, |M(G, an)| = 1, |M(G, anbm)| = 2 for all m, n ∈ Z+. Hence
the net is weakly detectable, but not eventually strongly detectable. The deterministic finite
automaton obtained from the net when a and b are regarded as labels of events (particularly
b as the label of four different events) is also weekly detectable, but not eventually strongly
detectable.
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4.2 Labeled Petri nets

In this subsection we discuss the decidability and complexity of eventual strong detectability
for labeled Petri nets.

If a labeled Petri net G satisfies Lω(G) = ∅, then it is naturally eventually strongly
detectable. Actually whether the property Lω(G) = ∅ holds can be verified in EXPSPACE,
and can also be guaranteed by the following Assumption 2 that is weaker than the widely
used Assumption 1 in detectability studies of DESs.

Proposition 5 Verifying whether a labeled Petri net G satisfies Lω(G) = ∅ belongs to
EXPSPACE.

Proof Consider a labeled Petri net G = (N = (P, T , P re, Post), M0, �, �). Observe that
Lω(G) �= ∅ if and only if there exists an infinite firing sequence

M0[s1〉M1[s2〉 · · · (19)

such that for each i ∈ Z+, �(si) ∈ �+.
For G, a sequence (19) exists if and only if G satisfies the following Yen’s path formula

(∃M̃1, M̃2)(∃̃s1, s̃2)[(M0 [̃s1〉M̃1 [̃s2〉M̃2) ∧ (M̃2 ≥ M̃1) ∧ (�(̃s2) ∈ �+)]. (20)

The “if” part follows from M̃1 [̃s2〉M̃2 being a repetitive firing sequence (hence can
consecutively fire for infinitely many times) and |�(̃s2)| > 0.

For the “only if” part: Arbitrarily fix a sequence (19). By Dickson’s lemma, in the set
{M0,M1, . . . }, there are totally finitely many distinct minimal elements. Choose k > 0
such that {M0, . . . , Mk} contains the maximal number of distinct minimal elements of
{M0,M1, . . . }, then there exist 0 ≤ k′ ≤ k < k′′ such that Mk′ ≤ Mk′′ . Then the firing
sequence M0[s1 . . . sk′′ 〉Mk′′ [sk′+1 . . . sk′′ 〉M ′ satisfies Mk′′ ≤ M ′ and �(sk′+1 . . . sk′′) ∈ �+.

The satisfiability of (20) is actually a fair nondetermination problem and hence belongs
to EXPSPACE (Atig and Habermehl 2009, Subsection 6.1).

Assumption 2 (i) A labeled P/T net G does not terminate, i.e., there exists an infinite
firing sequence at the initial marking, and

(ii) it is prompt, i.e., there exists no repetitive firing sequence labeled by the empty string.

Note that the deadlock-freeness assumption (see (i) of Assumption 1) implies (i) of
Assumption 2, but not vice versa; (ii) of Assumption 2 is actually equivalent to (ii)
of Assumption 1 for labeled Petri Petri nets. Note also that for a labeled P/T net G,
Lω(G) �= ∅ implies that G does not terminate, but not vice versa, because transitions
could be labeled by ε. Verifying termination of Petri nets (the first part of Assumption
2) is EXPSPACE-complete by the results of Rackoff (1978) and Lipton (1976). Verify-
ing promptness of labeled Petri nets belongs to EXPSPACE (Atig and Habermehl 2009).

Fig. 9 A labeled P/T net G that
is weakly detectable, but not
eventually strongly detectable.
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In addition, promptness is equivalent to all infinite firing sequences being labeled by
infinite-length sequences.

In order to characterize eventual strong detectability for labeled Petri nets, we introduce
the concurrent composition of a labeled Petri net. Given a labeled P/T net G = (N =
(P, T , P re, Post), M0, �, �), we construct in polynomial time its concurrent composition
as a Petri net

CCN(G) = (N ′ = (P ′, T ′, P re′, P ost ′),M ′
0) (21)

which aggregates every pair of firing sequences of G producing the same label sequence.
Denote P = {p̆1, . . . , p̆|P |} and T = {t̆1, . . . , t̆|T |}, duplicate them to Pi = {p̆i

1, . . . , p̆
i|P |}

and Ti = {t̆ i1, . . . , t̆ i|T |}, i = 1, 2, where we let �(t̆1
i ) = �(t̆2

i ) = �(t̆i ) for all i in [1, |T |].
Then we specify G′ as follows:

1. P ′ = P1 ∪ P2;
2. T ′ = T ′

o ∪ T ′
ε , where T ′

o = {(t̆1
i , t̆2

j ) ∈ T1 × T2|i, j ∈ [1, |T |], �(t̆1
i ) = �(t̆2

j ) ∈ �},
T ′

ε = {(t̆1, ε)|t̆1 ∈ T1, �(t̆1) = ε} ∪ {(ε, t̆2)|t̆2 ∈ T2, �(t̆2) = ε};
3. for all k ∈ [1, 2], all l ∈ [1, |P |], and all i, j ∈ [1, |T |] such that �(t̆1

i ) = �(t̆2
j ) ∈ �,

Pre′(p̆k
l , (t̆

1
i , t̆2

j )) =
{

Pre(p̆k
l , t̆

1
i ) if k = 1,

P re(p̆k
l , t̆

2
j ) if k = 2,

P ost ′(p̆k
l , (t̆

1
i , t̆2

j )) =
{

Post (p̆k
l , t̆

1
i ) if k = 1,

P ost (p̆k
l , t̆

2
j ) if k = 2;

4. for all l ∈ [1, |P |], all i ∈ [1, |T |] such that �(t̆1
i ) = �(t̆2

i ) = ε,

Pre′(p̆1
l , (t̆

1
i , ε)) = Pre(p̆1

l , t̆
1
i ),

P re′(p̆2
l , (ε, t̆

2
i )) = Pre(p̆2

l , t̆
2
i ),

P ost ′(p̆1
l , (t̆

1
i , ε)) = Post (p̆1

l , t̆
1
i ),

P ost ′(p̆2
l , (ε, t̆

2
i )) = Post (p̆2

l , t̆
2
i );

5. M ′
0(p̆

k
l ) = M0(p̆l) for any k in [1, 2] and any l in [1, |P |].

A labeled Petri net and its concurrent composition are shown in Figs. 10 and 11,
respectively.

Assume that there exists a label sequence σ ∈ L(G) such that |M(G, σ)| > 1,
then there exist transitions tμ1 , . . . , tμn , tω1 , . . . , tωn ∈ T ∪ {ε}, where n ≥ 1, such that
�(tμi

) = �(tωi
) for all i ∈ [1, n], �(tμ1 . . . tμn) = �(tω1 . . . tωn) = σ , M0[tμ1 . . . tμn〉M1

and M0[tω1 . . . tωn〉M2 for different M1 and M2 both in N
P . Then for CCN(G), we have

M ′
0[(t1

μ1
, t2

ω1
) . . . (t1

μn
, t2

ωn
)〉M ′, where M ′(p̆k

l ) = Mk(p̆l), k ∈ [1, 2], l ∈ [1, |P |], and

M ′(p̆1
l′) �= M ′(p̆2

l′) for some l′ ∈ [1, |P |] (briefly denoted by M ′|P1 �= M ′|P2 ).

Fig. 10 A labeled Petri net G,
where event a is unobservable,
but b can be directly observed
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Fig. 11 Concurrent composition
of the net in Fig. 10

Assume that for each label sequence σ ∈ L(G), we have |M(G, σ)| = 1. Then for all
M ′ ∈ R(N ′,M ′

0), M ′(p̆1
l ) = M ′(p̆2

l ) for each l in [1, |P |] (briefly denoted by M ′|P1 =
M ′|P2 ).

We next characterize eventual strong detectability for labeled P/T nets. If a labeled Petri
net G satisfies Lω(G) = ∅, then it is eventually strongly detectable.

Checking strong detectability for labeled P/T nets is proved to be decidable and
EXPSPACE-hard in the size of a labeled P/T net (Masopust and Yin 2019) under Assump-
tion 1 (it is not difficult to see that the assumption “there does not exist an infinite
unobservable sequence” used in Masopust and Yin (2019) is equivalent to promptness by
Dickson’s lemma). Here the size of a P/T net G = (N = (P, T , P re, Post), M0) is
�log |P |� + �log |T |�+ the size of {Pre(p, t)|p ∈ P, t ∈ T } ∪ {Post (p, t)|p ∈ P, t ∈
T } ∪ {M0(p)|p ∈ P }, where the last term means the sum of the lengths of the binary
representations of the elements of {Pre(p, t)|p ∈ P, t ∈ T } ∪ {Post (p, t)|p ∈ P, t ∈
T } ∪ {M0(p)|p ∈ P } (Atig and Habermehl 2009; Yen 1992). Hence the size of a labeled
P/T net can be defined as the sum of the size of its underlying P/T net and that of its labeling
function � : T → � ∪ {ε}, where the latter is actually no greater than |T |.

Consider a labeled Petri net G. Consider a reachable marking M1 of G and a firing
sequence ψ = M1[t2〉M2[t3〉 · · · [tl〉Ml , where l > 1 ti is a transition of G for every i ∈
[2, l]. We say that ψ has a bifurcation if there exists k ∈ [2, l] such that in the concurrent
composition CCN(G) of G, there is a firing sequence M ′

1[t ′2〉M ′
2[t ′3〉 · · · [t ′n〉M ′

n for some
n > 1 and with all t ′2, . . . , t ′n being transitions of CCN(G) such that M ′

1|P1 = M ′
1|P2 = M1,

M ′
n|P1 = Mk , the left component of t ′2 . . . t ′n equals t2 . . . tk , and M ′

k′ |P1 �= M ′
k′ |P2 for some

k′ ∈ [2, n].
For G, for two infinite firing sequences

M0 [̃t1〉M̃1 [̃t2〉 · · · and (22a)

M0 [̂t1〉M̂1 [̂t2〉 · · · , (22b)

where t̃i , t̂i are transitions of G for all i ∈ Z+, we call they merge after a finite time if
in CCN(G), there is an infinite firing sequence M ′

0[t ′1〉M ′
1[t ′2〉 · · · with t ′1, t ′2, . . . all being

transitions of CCN(G) such that the left component and right component of t ′1t ′2 . . . equal
t̃1̃t2 . . . and t̂1̂t2 . . . , respectively, and there exists k ∈ Z+ such that M ′

j |P1 = M ′
j |P2 for all

j > k.

Theorem 4 (1) The eventual strong detectability of a labeled P/T net G under (ii) of
Assumption 2 is decidable.

(2) Deciding whether a labeled P/T net G with Lω(G) �= ∅ is eventually strongly
detectable is EXPSPACE-hard.
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Proof (1) Proof of the decidability result:
By Proposition 5, we first verify whether G satisfies Lω(G) �= ∅ in EXPSPACE. If no,

then G is eventually strongly detectable. Otherwise, continue the following procedure.
Consider a labeled Petri net G = (N = (P, T , P re, Post), M0, �, �) with Lω(G)

being nonempty. By definition, G is not eventually strongly detectable if and only if
there exists σ ∈ Lω(G) such that for all k ∈ N there exists a prefix σ̄ of σ satisfying
|σ̄ | > k and |M(G, σ̄ )| > 1. We construct the concurrent composition CCN(G) = (N ′ =
(P ′, T ′, P re′, P ost ′),M ′

0) of G as in (21).
We claim that G is not eventually strongly detectable if and only if one of the following

two items holds (see Examples 6 and 7):

(1) In CCN(G), there exists an infinite firing sequence

M ′
0[s′

1〉M ′
1[s′

2〉 · · · , (23)

where for every i ∈ Z+, s′
i contains a transition of T ′

o, and M ′
i |P1 �= M ′

i |P2 .
(2) In G, there exists an infinite firing sequence

M0[s1〉M1[s2〉M2[s3〉 · · · (24)

such that M0[s1〉M1 has a bifurcation, for each i ∈ Z+, �(si) ∈ �+, and
Mi[si+1〉Mi+1 also has a bifurcation.

Apparently if Item (1) or Item (2) holds, then G is not eventually strongly detectable.
Suppose that G is not eventually strongly detectable. Then there exists an infinite firing

sequence

M0[s̄1〉M1[s̄2〉M2[s̄3〉 · · · (25)

such that �(s̄i ) ∈ �+ and |M(G, �(s̄1 . . . s̄i ))| > 1 for all i ∈ Z+. Next we fix such a
sequence (25).

Furthermore, suppose that Item (1) does not hold. Then (25) and each infinite firing
sequence of G staring at M0 and having the same label sequence as (25) has will merge
after a finite time, since the label sequence of (25) is of infinite length. Next we prove that
Item (2) holds. If in (25), infinitely many of M0[s̄1〉M1, M1[s̄2〉M2, . . . have bifurcations,
then (25) is a firing sequence satisfying the requirement in Item (2). Next we assume that
there are only finitely many of them having bifurcations, and reach a contradiction. Without
loss of generality, we assume that only M0[s̄1〉M1 has a bifurcation. Then for each k ∈ Z+,
there exists a firing sequence M0 [̃sk〉M̃k such that �(̃sk) � �(s̄1s̄2 . . . ), |�(̃sk)| > k, and
some prefix of (25) and M0 [̃sk〉M̃k can be combined to obtain a firing sequence M ′

0[s′
k〉M ′

k

of CCN(G) such that the label sequence of the right component of s′
k equals �(̃sk), M

′
k|P2 =

M̃k , and M
′
k|P1 �= M

′
k|P2 . Collecting all such firing sequences M0 [̃sk〉M̃k , k ∈ Z+, we

obtain a locally finite, infinite tree T with M0 the root. Also collect all such markings M̃k ,
k ∈ Z+, to obtain a set M. Observe that in T, M0 has infinitely many descendants of M.
Also observe in T that one of the finitely many children of M0 also has infinitely many
descendants of M, denote such a child of M0 by M̂1, then we obtain a firing sequence
M0 [̂t1〉M̂1 of G, where t̂1 ∈ T . Since T is locally finite, repeating the process of looking for
M0 [̂t1〉M̂1, we can obtain an infinite firing sequence

M0 [̂t1〉M̂1 [̂t2〉 · · · (26)

of G such that for each i ∈ Z+, M̂i has infinitely many descendants of M in T. By (ii)
of Assumption 2, we have (26) is labeled by an infinite-length label sequence. Also, since
for each i ∈ Z+, M0 [̂t1 . . . t̂i〉M̂i is a prefix of some path of T, we have �(̂t1̂t2 . . . ) =
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�(s̄1s̄2 . . . ). Then it is not difficult to see that (26) and (25) can be combined into an infinite
firing sequence of CCN(G) satisfying the requirement in Item (1), which is a contradiction.

Next we prove that the satisfiability of Item (1) or Item (2) are both decidable, completing
the proof of the decidability result of eventual strong detectability.

For Item (1):
We claim that Item (1) holds if and only if there exists a firing sequence

M ′
0[s′

1〉M ′
1[s′

2〉M ′
2 (27)

in CCN(G) satisfying

(M ′
2 ≥ M ′

1) ∧ (s′
2 contains a transition in T ′

o) ∧ (M ′
2|P1 �= M ′

2|P2), (28)

where T ′
o ⊂ T ′ is shown in (21). That is, we next prove that Item (1) holds if and only if

(∃M ′
1, M

′
2)(∃s′

1, s
′
2)[(27) ∧ (28)] (29)

is satisfied.
“if”: Assume that for CCN(G), Eq. (29) holds. Then Item (1) holds, because M ′

2|P1 �=
M ′

2|P2 , s′
2 contains a transition in T0 (hence �(s′

2) is of positive length), and M ′
1[s′

2〉M ′
2 is a

repetitive firing sequence and can fire consecutively for infinitely many times.
“only if”: Assume that Item (1) holds, and fix a sequence (23).
By Dickson’s lemma, the set {M ′

0, M
′
1, . . . } contains at most finitely many distinct min-

imal elements. Then there exists k ∈ Z+ such that {M ′
0, . . . , M

′
k} contains the maximal

number of distinct minimal elements of {M ′
0,M

′
1, . . . }. Hence there exists 0 ≤ l ≤ k such

that M ′
l ≤ M ′

k+1. Then the firing sequence

M ′
0[s′

1 . . . s′
l〉M ′

l [s′
l+1 . . . s′

k+1〉M ′
k+1

satisfies that M ′
k+1 ≥ M ′

l , s
′
l+1 . . . s′

k+1 contains at least one transition of T ′
o, and M ′

k+1|P1 �=
M ′

k+1|P2 , i.e., (29) holds.
In (28), “M ′

2 ≥ M ′
1” can be expressed as combination of marking predicates,

“s′
2 contains a transition in T ′

o” is a transition predicate, only “M ′
2|P1 �= M ′

2|P2 ” is not a
predicate.

Add two new places p′′
0 and p′′

1 into CCN(G), where initially p′′
0 contains exactly 1 token,

but p′′
1 contains no token; add one new transition r ′′

1 , and arcs p′′
0 → r ′′

1 → p′′
1 , both with

weight 1. Also, for each transition t in CCN(G), add arcs p′′
1 → t → p′′

1 , both with weight
1. Then we obtain a new Petri net CCN(G)′. We have CCN(G) satisfies (29) if and only if
CCN(G)′ satisfies the Yen’s path formula

(∃M ′′
1 ,M ′′

2 , M ′′
3 )(∃s′′

1 , s′′
2 , s′′

3 )[
(M ′′

0 [s′′
1 〉M ′′

1 [s′′
2 〉M ′′

2 [s′′
3 〉M ′′

3 ) ∧
(s′′

1 = r ′′
1 ) ∧ (M ′′

3 ≥ M ′′
2 ) ∧ (s′′

3 contains a transition of T ′
o) ∧

((M ′′
3 − M ′′

1 )|P1 �= (M ′′
3 − M ′′

1 )|P2)], (30)

where note that one always has M ′′
1 |P1 = M ′′

1 |P2 .
Then by Proposition 3, the satisfiability of (29) is decidable, implying that the satisfia-

bility of Item (1) is decidable.
Next we prove that the satisfiability of Item (2) is decidable.
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We claim that for G, Item (2) holds if and only if

there exists a firing sequence M0[s1〉M1[s2〉M2 satisfying (31a)

M1 ≤ M2, (31b)

s2 contains an observable transition, and (31c)

M1[s2〉M2 contains a bifurcation. (31d)

Assume that for G, Item (2) holds. Again by Dickson’s lemma, there exist 0 ≤ l < k such
that the firing sequence M0[s1 . . . sl〉Ml[sl+1 . . . sk〉Mk satisfies that Ml ≤ Mk , sl+1 . . . sk
contains an observable transition, and Ml[sl+1 . . . sk〉Mk has a bifurcation. That is, Eq. (31)
holds.

Assume that (31) holds. By (31b), (31c), and (31d), the sequence in (31a) can be extended
to an infinite firing sequence

sM0[s1〉M1[s2〉M2[s2〉(M2 + (M2 − M1))[s2〉 · · · [s2〉(M2 + k(M2 − M1))[s2〉 · · ·
satisfying for each l ∈ Z+, one has (M2 + l(M2 − M1))[s2〉(M2 + (l + 1)(M2 − M1)) has
a bifurcation. That is, Item (2) holds.

Add a new set

Tφ = T 1
φ ∪ T 2

φ

of transitions into CCN(G), where φ /∈ T1 ∪ T2, T 1
φ = {(t̆1, φ)|t̆1 ∈ T1}, T 2

φ = {(φ, t̆2)|t̆2 ∈
T2}. Add the following rules: for all l ∈ [1, |P |], all i ∈ [1, |T |],

Pre′(p̆1
l , (t̆

1
i , φ)) = Pre(p̆1

l , t̆
1
i ),

P re′(p̆2
l , (φ, t̆2

i )) = Pre(p̆2
l , t̆

2
i ),

P ost ′(p̆1
l , (t̆

1
i , φ)) = Post (p̆1

l , t̆
1
i ),

P ost ′(p̆2
l , (φ, t̆2

i )) = Post (p̆2
l , t̆

2
i ).

The newly obtained extended concurrent composition is denoted by

CCNE(G) = (N ′′ = (P ′′, T ′′, P re′′, P ost ′′),M ′′
0 ), (32)

where P ′′ = P ′, T ′′ = T ′ ∪ Tφ , M ′′
0 = M ′

0. For example, the corresponding extended
concurrent composition of the net in Fig. 10 is shown in Fig. 12.

Fig. 12 Extended concurrent
composition of the net in Fig. 10
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Fig. 13 Sketch for the reduction in the hardness proof of Theorem 4

Then for G, (31) holds if and only if for CCNE(G),

there exists a firing sequence M ′′′
0 [s′′′

1 〉M ′′′
1 [s′′′

2 〉M ′′′
2 [s′′′

3 〉M ′′′
3 such that (33a)

M ′′′
1 ≤ M ′′′

3 , (33b)

s′′′
3 contains a transition (t1, ∗) with �(t1) ∈ �, (33c)

M ′′′
2 |P1 �= M ′′′

2 |P2 , (33d)

s′′′
1 , s′′′

2 ∈ (T ′)∗, (33e)

s′′′
3 ∈ (T ′ ∪ T 1

φ )∗, (33f)

where we omit a similar proof for the equivalence compared to the previous claim. Among
(33b)–(33f), only (33d) is not a predicate. Using a similar construction to the one that
is used to reduce the satisfiability of (29) for CCN(G) to the satisfiability of a Yen’s
path formula for CCN(G)′, we can reduce the satisfiability of (33) to the satisfiability of
a Yen’s path formula for a new Petri net. Hence, the satisfiability of Item (2) for G is
decidable.

(2) Proof of the hardness result:
To prove conclusion 2 of Theorem 4, we are given a Petri net G = (N =

(P, T , P re, Post), M0) and a destination marking M ∈ N
P , and construct a labeled P/T

net
G′ = (N ′ = (P ′, T ′, P re′, P ost ′),M ′

0, T ∪ {σG}, �) (34)

as follows (see Fig. 13 as a sketch):

1. Add three places p0, p1, p2, where initially p0 contains exactly one token, but p1 and
p2 contain no token;

2. add three transitions t0, t1, t2, and arcs p0 → t0 → p0, t1 → p1, t2 → p2, all with
weight 1; for every p ∈ P , add arcs p → t1 and p → t2, both with weight M(p);

3. add label σG /∈ T ∪ {t0, t1, t2}, �(t) = t for each t ∈ T ∪ {t0}, �(t) = σG for each
t ∈ {t1, t2}.

Fig. 14 A labeled P/T net G
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Fig. 15 Reachability graph of the labeled Petri net in Fig. 14

It is clear that if M is not covered by G then G′ shown in (34) is eventually strongly
detectable. If M is covered by G, then there exists a firing sequence M0[σ1〉M1 with M1 ≥
M . Furthermore, there exist two infinite firing sequences

M ′
0[σ1〉M ′

1[t1〉M ′
2[t0〉M ′

2[t0〉 · · · ,

M ′
0[σ1〉M ′

1[t2〉M ′′
2 [t0〉M ′′

2 [t0〉 · · · ,

where M ′
2 �= M ′′

2 since M ′
2(p1) > 0, M ′

2(p2) = 0, M ′′
2 (p2) > 0, M ′′

2 (p1) = 0. Also
by �(t1) = �(t2), we have G′ is not eventually strongly detectable. This reduction runs
in time linear of the number of places of G and the number of tokens of the destination
marking M . Since the coverability problem is EXPSPACE-hard in the number of transi-
tions of G, deciding non-eventual strong detectability is EXPSPACE-hard in the numbers of
places and transitions of G′ and the number of tokens of M , hence deciding eventual strong
detectability is also EXPSPACE-hard, which completes the proof.

Remark 4 By using the extended concurrent composition and a similar procedure as
the proof of Theorem 4, the decidability result for strong detectability of labeled Petri
nets proved in Masopust and Yin (2019) can be strengthened to hold only based on the
promptness assumption.

Example 6 Consider a labeled Petri net G shown in Fig. 14, where event a can be directly
observed, but b and c share the same label b. One directly sees that Lω(G) = {(ab)ω},
and M(G, (ab)n) = {(1, 0), (0, 0)} for all n ∈ Z+. Hence G is not weakly detectable, and
hence not eventually strongly detectable. By its reachability graph shown in Fig. 15, one
sees that this net satisfies Item (2) in the proof of Theorem 4, but not Item (1) in the proof.
However, the net in Fig. 9 satisfies Item (1) but not Item (2).

Example 7 Consider a labeled Petri net G shown in Fig. 16. Its reachability graph is shown
in Fig. 17, one has Lω(G) = {abω}. By the reachability graph, one sees that the net is not

prompt, since there is a repetitive firing sequence in (1, 0, 0, 0, 0)
t2(a)−−→ (0, 0, 1, 0, 0)

t4(ε)−−→
(0, 0, 1, 1, 0) labeled by the empty string. This net is not eventually strongly detectable,
since for each n ∈ Z+, |M(G, abn)| = ∞ > 1. However, the net does not satisfy Item (1)
or Item (2) in the proof of Theorem 4.

Fig. 16 A labeled P/T net G
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Fig. 17 Reachability graph of the
labeled Petri net in Fig. 16

5 Conclusion

In this paper, we obtained a series of results on detectability of discrete-event systems. We pro-
posed one new notion of weak detectability and one new notion of strong detectability. We
proved that (1) the problem of verifying weak approximate detectability of labeled Petri nets is
undecidable; (2) the problem of verifying eventual strong detectability of labeled Petri nets
is decidable and EXPSPACE-hard under the promptness assumption; (3) for finite automata,
the problem of verifying weak approximate detectability is PSPACE-complete, and the other
property can be verified in polynomial time. (4) The relationships between thse notions of
detectability were also characterized, and it was proved that no two of them are equivalent.

The decidability of strong detectability and eventual strong detectability of labeled Petri
nets without the promptness assumption are two interesting open problems. It is also an
open problem whether there is a reduction from weak detectability to weak approximate
detectability, or vice versa, for labeled Petri nets. Other variants of notions of detectability,
e.g., different notions of approximate detectability are left for further study. Uniform ver-
sions of these notions of detectability are left for further study. It is also an interesting topic
to look for fast algorithms for verifying these notions for (bounded) labeled Petri nets.

Funding Information Open access funding provided by Royal Institute of Technology.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

494 Discrete Event Dynamic Systems (2020) 30:465–497

http://creativecommons.org/licenses/by/4.0/


References

Ammour R, Leclercq E, Sanlaville E, Lefebvre D (2018) Faults prognosis using partially observed stochastic
Petri-nets: an incremental approach. Discrete Event Dynamic Systems 28(2):247–267

Atig MF, Habermehl P (2009) On Yen’s path logic for Petri nets. In: Bournez O, Potapov I (eds) Reachability
Problems. Springer, Berlin, pp 51–63

Cabasino MP, Giua A, Lafortune S, Seatzu C (2012) A new approach for diagnosability analysis of Petri nets
using verifier nets. IEEE Trans Autom Control 57(12):3104–3117

Cai K, Wonham WM (2016) Supervisor Localization: A Top-Down approach to distributed control of
Discrete-Event systems. Springer International Publishing

Dickson LE (1913) Finiteness of the odd perfect and primitive abundant numbers with n distinct prime
factors. Am J Math 35(4):413–422

Escrig DF, Johnen C (1989) Decidability of home space property. Rapport no. LRI-503, Laboratoire de
Recherche en Informatique University of South Paris, Orsay 07:1–14
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