5,825 research outputs found
Structural Design Guidelines for Pervious Concrete Pavements
Pervious pavements have gained popularity in recent years as the transportation industry focuses on sustainability and environmental impact. This research investigated the structural design of pervious concrete pavements. There is no standard design method; therefore, the goal was to lessen ambiguity surrounding the use of pervious concrete for pavement structures. By characterization of the rigid pavement design equation from the 1993 AASHTO Structural Design Guide for Design of Pavement Structures through laboratory exploration and review of existing literature, a guide was created to assist engineers in the design of pervious concrete pavements
Evaluation of pervious and macro-pervious pavements as harvesting systems for localized landscape and horticultural irrigation
Pervious pavements have been used as water harvesting systems and studies have shown the value of water derived from pervious pavements as irrigation water for landscaping. An alternative system is a modification known as a macro-pervious pavement system. These devices infiltrate water through discrete points into a porous subbase offering all the benefits of the pervious pavement along with an ability to use the specially designed infiltration systems as a means of protecting the sub surface environment from major oil spillages. This paper reports ongoing research aimed at assessing the suitability of water derived from both pervious and macro-pervious pavement installations for irrigation use. Results are reported from ongoing field studies of a 6 year old macro-pervious pavement and, for comparative purposes, a 10 year old pervious pavement system which illustrates the great potential of pavement derived water from both types of system and some of the problems which require care in the management of the irrigation syste
Prediction of Thermal Behavior of Pervious Concrete Pavements in Winter
Because application of pervious concrete pavement (PCPs) has extended to cold-climate regions of the United States, the safety and mobility of PCP installations during the winter season need to be maintained. Timely application of salt, anti-icing, and deicing agents for ice/snow control is most effective in providing sufficient surface friction when done at a suitable pavement surface temperature. The aim of this project was to determine the thermal properties of PCP during the winter season, and to develop a theoretical model to predict PCP surface temperature. The project included a laboratory and a field component. In the laboratory, thermal conductivity of pervious concrete was determined. A linear relationship was established between thermal conductivity and porosity for pervious concrete specimens. In the field, the pavement temperature in a PCP sidewalk installation at Washington State University was monitored via in-pavement instrumentation. Based on the field data, the Enhanced Integrated Climatic Model (EICM) was developed and validated for the site, using PCP thermal properties and local climatic data. The EICM-predicted PCP surface temperature during the winter season agreed well with the field temperature. Overall, the predicted number of days that the pavement surface fell below 32°F agreed well with the number based on field data for 85% of the days. Therefore, the developed model is useful in identifying those days to apply deicer agents. Finally, a regression model using climatic indices was developed for PCP surface temperature prediction in the absence of a more advanced temperature model
Experimental Study on Pervious Concrete: An Eco Friendly Concrete Pavement
As a civil engineer and human being it's our prime duty prime to save environment, because lack of water absorption and air permeability of common concrete pavement, rain water is not entered in to the ground directly. It will reduce ground water table, plants are difficult to grow normally, difficult to maintain temperature and humidity of earth. To minimize such affects, the research on pervious concrete pavement widely done for road way application. In this study, determine compressive strength, porosity test on pervious concrete. The compressive strength is relatively low because of its porosity but at the same time we increase water absorption quality. Due to low strength we cannot be used as a road pavement. The pervious concrete can only be applied to footpaths, parking and where low strength is required
Environmentally Friendly Pervious Concrete for Treating Deicer-Laden Stormwater: Phase I
A graphene oxide-modified pervious concrete was developed by using low-reactivity, high-calcium fly ash as sole binder and chemical activators and other admixtures. The density, void ratio, mechanical strength, infiltration rate, Young’s modulus, freeze-deicer salt scaling, and degradation resistance of this pervious concrete were measured against three control groups. The test results indicate that graphene oxide modified fly ash pervious concrete is comparable to Portland cement pervious concrete. While the addition of 0.03% graphene oxide (by weight of fly ash) noticeably increased the compressive strength, split tensile strength, Young’s modulus, freeze-deicer salt scaling, and degradation resistance of fly ash pervious concrete, it reduced the void ratio and infiltration rate. The fly ash pervious concrete also showed unfavorable high initial loss during the freeze-deicer salt scaling test, which may be attributed to the low hydration degree of fly ash at early age. It is recommended that durability tests for fly ash concrete be performed at a later age
Comparing the effects of oil palm kernel shell and cockle shell on properties of pervious concrete pavement
Nowadays, pervious concrete pavement is one of the best materials used in construction industry as a top layer of permeable pavement system to control the storm water at source. In addition, increasing production of waste materials, increased the interest in utilising the waste materials for environmental and technical benefits. Therefore, this paper compared the effect of using two different sizes of oil palm kernel shell (OPKS) and cockleshell (CS) as partial replacement of natural coarse aggregate on properties of pervious concrete pavement. Thirteen mixtures were made, in which 6.30-mm natural gravel was replaced with 0, 25, 50 and 75% of 6.30-mm and 4.75-mm of both shells. The relationships between the properties of pervious concrete mixtures was also determined. The replacement of OPKS and CS as the natural aggregate decreased the compressive strength, while the angular shape of both shells caused higher void content and permeability as compared to those of control pervious concrete. On the other hand, pervious concrete containing CS showed better properties than those of incorporating OPKS. Apart from that, strong relationships between density, void content, permeability, compressive strength values indicated that they can be used as a pervious concrete quality control tests for prediction of properties of pervious concrete pavement before placement in the field
Green Up Pavement Rehabilitation Design Tool
While designers produce pavement rehabilitation recommendations every day, for projects of all sizes, most designers have little information on the environmental impact of their recommendations. This research developed a new decision tool, called the “Green Up Pavement Rehabilitation Design Tool,” to allow the comparison of different rehabilitation solutions in terms of greenhouse gas emissions and to encourage sustainable practices such as materials recycling and the use of permeable, cool, and quiet pavement surfaces. The project aligns with the major goal of California Senate Bill 1, which is “to address deferred maintenance on the state highway system and the local street and road system,” by providing a rehabilitation strategy selection tool as well as an educational tool to promote sustainable pavement practices. The Green Up graphic and the overall methodology were finalized in consultation with representatives of the portland cement concrete and asphalt industries in California. For designers interested in learning more, the tool includes fact sheets about sustainable pavement rehabilitation strategies and links to additional online resources
Environmentally Friendly Pervious Concrete for Treating Deicer-Laden Stormwater: Phase II
In Phase I of this project, graphene oxide (GO)-modified pervious concrete was developed using coal fly ash as the sole binder. The primary objectives of Phase II of this project were (1) to evaluate the stormwater infiltration capacity of GO-modified fly ash pervious concrete; (2) to evaluate the durability performance of GO-modified fly ash pervious concrete using freeze/thaw and salt resistance testing methods; and (3) to use advanced analytical tools to fully characterize the GO-modified fly ash binder. Test results indicate different degrees of reduction in concentrations of possible pollutants in stormwater—copper, zinc, sulphate, chloride, ammonia, nitrate, and total phosphate. The incorporation of GO significantly improved the resistance of pervious concrete to freeze/thaw cycles and ambient-temperature salt attack. The specimens were examined using X-ray diffraction, which revealed that the mineralogy and the chemical composition of fly ash pastes differ considerably from those of cement pastes. Nuclear magnetic resonance was used to study the chemical structure and ordering of different hydrates, and provided enhanced understanding of the freeze/thaw and salt scaling resistance of fly ash pervious concrete and the role of GO
Sustainable approaches for stormwater quality improvements with experimental geothermal paving systems
This article has been made available through the Brunel Open Access Publishing Fund.This research assesses the next generation of permeable pavement systems (PPS) incorporating ground source heat pumps (geothermal paving systems). Twelve experimental pilot-scaled pavement systems were assessed for its stormwater treatability in Edinburgh, UK. The relatively high variability of temperatures during the heating and cooling cycle of a ground source heat pump system embedded into the pavement structure did not allow the ecological risk of pathogenic microbial expansion and survival. Carbon dioxide monitoring indicated relatively high microbial activity on a geotextile layer and within the pavement structure. Anaerobic degradation processes were concentrated around the geotextile zone, where carbon dioxide concentrations reached up to 2000 ppm. The overall water treatment potential was high with up to 99% biochemical oxygen demand removal. The pervious pavement systems reduced the ecological risk of stormwater discharges and provided a low risk of pathogen growth
- …
