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EXECUTIVE SUMMARY 

The objective of this project during Phase I is to advance the scientific knowledge of 

nanotechnology by using it to expand the use of industrial waste and recycled materials in 

pervious concrete. This report provides an analysis and evaluation of mortar and pervious 

concrete that has fly ash as a sole binder. Chemical activators and graphene oxide were chosen to 

improve the overall performance of mortar and pervious concrete. The method of analysis 

included a uniform design of experiments to investigate the effects of admixtures and chemical 

activators on the performance of fly ash binder, and a microscopic investigation to obtain 

additional insights on the function of graphene oxide and chemical activators in fly ash binder. 

The results of mortar tests indicated that low-reactivity fly ash could be used as sole binder to 

form a paste with desirable strength by adopting chemical activation and graphene oxide 

modification at room temperature.  

Following fly ash mortar testing, the property of pervious concrete with fly ash as a sole 

binder was evaluated. Laboratory evaluation consisted of a density and porosity test, mechanical 

strength test, modulus of elasticity test, and durability test. It was concluded that graphene oxide-

modified fly ash pervious concrete is comparable to cement pervious concrete in terms of 

desirable density, void ratio, strength, infiltration rate, and durability. Further investigation is 

needed to improve hydration degree at early age. The results of this study demonstrate an 

example of a beneficial use of fly ash, a use that diverts fly ash from waste streams in its building 

material application. The results also show the potential for using such “greener” pervious 

concrete for treating deicer-laden stormwater in a variety of contaminant-loading scenarios.
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CHAPTER 1.0  INTRODUCTION 

1.1 Background 

This project has two objectives: (1) to advance the scientific knowledge of 

nanotechnology by applying it to expanding the use of industrial waste and recycled materials in 

pervious concrete; and (2) to explore the potential of “greener” pervious concrete for treating 

deicer-laden stormwater in a variety of contaminant-loading scenarios.  

Pervious concrete is a special type of high-porosity concrete that allows water from 

precipitation and other sources to pass through it directly (Figure 1.1). The infiltration effect 

provided by pervious concrete pavement not only recharges the groundwater, but also reduces 

the amount of total suspended solids, total phosphor, and total nitrogen and metals in the 

groundwater (Schaefer et al. 2006). The infiltration effect provided by pervious concrete 

pavement also meets U.S. Environmental Protection Agency (EPA) stormwater regulations.  

 

Figure 1.1  Pervious concrete demonstration (photo by J.J. Harrison) 

Fly ash, a by-product of coal-fired power plants (Figure 1.2a), has been used as partial 

cement replacement in concrete for decades. However, fly ash is typically used at a replacement 

rate of less than 35% by mass of cement due to the lack of understanding of its overall 
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performance (Minkara 2015). Two categories of fly ash are defined by ASTM C618: Class F fly 

ash (FFA) and Class C fly ash (CFA). Class F fly ash is produced from burning anthracite or 

bituminous coal and contains less than 20% CaO, so it is pozzolanic in nature. Class F fly ash 

requires a cement agent or activators to produce cementitious pastes. Palomo et al. demonstrated 

the potential of alkali-activated FFA as a cement for the future; the glassy silica and alumina 

contents in FFA were transformed into well-cemented composites by alkali activation (Palomo et 

al. 1999). 

 

Figure 1.2  (a) Fly ash; (b) air pollution from fly ash (photo by Shaila Dewan) 

Class C fly ash is produced from the burning of lignite or subbituminous coal and 

contains more than 20% CaO. In addition to its pozzolanic properties, CFA has self-cementing 

properties. Researchers have demonstrated that certain CFA can be used solely as a binder for 

green concrete production, with similar mechanical and durability performance as Portland 

cement (Roskos et al. 2015; Berry et al. 2011).  

1.2 Problem Statement 

A typical pervious concrete mix design in the United States contains Portland cement. It 

is well known that Portland cement has some environmental concerns related to mining and 

a b 
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manufacture: high-energy consumption and the release of air pollutants (NOx and SO2) and 

greenhouse gases (CO2). The annual global production of cement is about 4180 billion metric 

tons in 2014 (Hendrik G. van Oss 2015), which has had an enormous impact on the environment. 

In this study, to make pervious concrete sustainable, fly ash has been chosen to fully replace 

Portland cement.  

Significant quantities of fly ash are generated every year. In 2013, the United States 

produced 115 million tons of coal ash. While only 45% of the coal ash was used beneficially, 

nearly 64 million tons were disposed of (Minkara 2015). In an effort to recycle fly ash from 

industrial waste and reduce the demand for Portland cement, fly ash has been used as partial 

cement replacement in concrete for years (Roskos 2011; Harwalkar and Awanti 2014; Palomo et 

al. 1999; Schneider et al. 2011). A 100% fly ash pervious concrete could reduce the demand for 

Portland cement and divert fly ash from industrial waste, helping to reduce serious 

environmental problems (Figure 1.2b) 

1.3 Scope of Work 

This study consists of two tasks: In Task I, emphasis is placed on the selection of fly ash 

and an interdisciplinary evaluation of fly ash paste with activators and nanomodifiers. The 

research plan includes the following: 

1. Preparation: review literature on the properties of fly ash and pervious concrete.  

2. Selection: adopt criteria for identifying fly ash that could be used as a sole binder in 

pervious concrete.  

3. Interdisciplinary investigation: investigate the fundamental engineering properties and the 

durability of a pure fly ash paste. Standard mechanical test methods related to Structural 
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Engineering and Pavement Engineering will be adopted. Scanning electron microscope 

(SEM)/energy dispersive X-ray spectroscopy (EDS) will be employed to understand the 

microstructure and the elemental composition of fly ash paste with graphene oxide (GO).  

The focus of Task II is a systematic laboratory investigation of pervious concrete with a 

pure fly ash paste. Based on the Task I evaluation, a mix design of pervious concrete and the 

selected fly ash will be developed, with a goal of desired workability, compressive strength, and 

split tensile strength. Laboratory tests (salt scaling, freeze–thaw, and abrasion resistance) 

simulating many years of field service will be conducted to investigate the durability of pervious 

concrete. 

1.4 Outline of Report 

This report is divided into five chapters. Chapter 1 outlines the scope of work. Chapter 2 

provides a literature review based on both national and international sources. Chapter 3 contains 

description and discussion of the different mortar designs with the pure fly ash binder. Chapter 4 

addresses the mix design for pervious concrete with the pure fly ash binder. Chapter 5 

summarizes the work of this report and gives conclusions. 
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CHAPTER 2.0  LITERATURE REVIEW 

2.1 Introduction 

Fly ash has been used as a partial cement replacement in concrete for years; however, it is 

typically used at a replacement ratio of less than 35% due to a lack of understanding related to its 

overall performance (Minkara 2015). In particular, fly ash with high free lime content can cause 

cement stability issues and deleterious concrete expansion (Thomas 2007a). The research 

presented is based on an idea that carefully selected fly ash can perform as self-cementitious 

material to create a paste in the presence of water, which forms a thick coating around aggregates 

and replaces 100% Portland cement in pervious concrete. Activators and nanomodifiers were 

chosen to facilitate the dissolution of aluminosilicates from fly ash and the polymerization of 

reaction products around aggregates. The following literature review summarizes recent studies 

on fly ash characterization and its hydration mechanism to support the idea behind this research; 

it also includes a review of literature related to the mix design, mechanical and material 

properties, durability, and permeability of pervious concrete. The information and data gathered 

from this literature review were used to develop a fly ash pervious concrete that meets the 

multidisciplinary requirements of Material Science, Structural Engineering, Pavement 

Engineering, and Environmental Engineering.  

2.2 Fly Ash Properties 

As a by-product of coal-fired power plants, the physical and chemical characteristics of 

fly ash are dependent on coal type, the boiler, operating conditions, and post-combustion 
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conditions. As illustrated in Figure 2.1, mineral matter within coal oxidizes, decomposes, fuses, 

disintegrates, or agglomerates. Spherical, amorphous (non-crystalline) fly ash particles are 

formed by rapid cooling in the post-combustion zone. Heating and cooling have a significant 

effect on the composition and morphology of fly ash particles (Kutchko and Kim 2006), which 

determine the pozzolanic or cementitious property of fly ash. Fluidized bed combustion (FBC) 

fly ash is typically produced at lower temperatures (800–1000°C) and is generally considered to 

have less pozzolanic activity than fly ash produced at higher temperatures (Iribarne et al. 2001). 

In a pulverized coal-fired boiler, furnace operating temperatures are typically in excess of 

1400°C, which produces pulverized fuel fly ash (PFA). Pulverized fuel fly ash can be blended 

with FBC ash to provide or reinforce pozzolanic activity. One study (McCarthy and Solem-

Tishmack 1994) stated that, essentially, all high-calcium fly ash, dry process flue gas 

desulphurization (FGD) by-products, and clean coal technology by-products that use lime as a 

sorbent are cementitious, while low-calcium fly ash, wet process FGD by-products, and bottom 

ash slags are not generally cementitious. 
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Figure 2.1  General transformation of mineral matter in coal during combustion  

(reprinted from  Kutchko and Kim 2006) 

 

The main chemical composition of fly ash is aluminosilicate compounds (Iribarne et al. 

2001); fly ash also contains some iron and calcium oxides (Brouwers and Eijk 2003). Other than 

SiO2, Al2O3, Fe2O3, and CaO as the major constituents of fly ash, the X-ray fluorescence (XRF) 

technique shows that other elements in fly ash include MgO, Na2O, K2O, SO3, MnO, TiO2, and 

C (Ramezanianpour 2014). Based on CaO content, fly ash can be divided into high-calcium fly 

ash (CaO content > 10%) and low-calcium fly ash (CaO Content < 10%) (Fan et al. 2015). In 

accordance with ASTM C618, high-calcium fly ash is produced from burning lignite or 

subbituminous coal, since lignite and subbituminous coal have high CaO content, up to 10%. 

Low-calcium fly ash typically is produced by the combustion of anthracite or bituminous coal. 

Fly ash with (SiO2 + Al2O3+ Fe2O3) > 70% is classified as Class F, while fly ash with 70% > 

(SiO2+ Al2O3+ Fe2O3) > 50% is classified as Class C (C09 Committee 2012). Low-calcium and 

high-calcium fly ash show a discrepancy in unburned carbon content. High-calcium fly ash 

usually has low unburned carbon content (< 1%), whereas low-calcium fly ash has relatively 
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high unburned carbon content that is able to absorb significant amounts of water and chemical 

admixtures (Ramezanianpour 2014). 

Fly ash is a complex material in terms of mineralogical composition; approximately 316 

individual minerals and 188 mineral groups have been identified in it (Vassilev and Vassileva 

2005; Vassilev et al. 2004). X-ray diffraction (XRD) and infrared spectroscopy techniques are 

usually used to determine crystalline phases in fly ash. The low-angle XRD technique is used to 

determine glass phases. In general, the content of fly ash is mainly vitreous (< 90%) 

(Ramezanianpour 2014). The content of crystalline material varies, ranging from 11 to 48% 

(Joshi 1970), and this material may contain one or more of the four major crystalline phases: 

quartz, mullite, magnetite, and hematite (Ramezanianpour 2014). The presence of a mineral form 

in high/low calcium fly ash indicates a large difference in crystalline materials. In general, the 

mineral composition of low-calcium fly ash mainly consists of mullite, quartz, and magnetite. 

The mineral composition of high-calcium fly ash is relatively complex, usually consisting of 

lime, mullite, hematite, magnetite, quartz, anhydrite, and gehlenite (Zhao et al. 2010). In addition 

to the more reactive calcium-rich glass phases, some of the crystalline phases in high-calcium fly 

ash react with water, which makes high-calcium fly ash react more easily with water than low-

calcium fly ash. This characteristic consequently renders fly ash both pozzolanic and hydraulic in 

nature (Thomas 2007b). Berry et al. (2011) demonstrated the possibilities of using fly ash as the 

sole cementitious binder to make concrete that has moderate strength, if the calcium content of 

fly ash is high enough. Error! Reference source not found. summarizes the mineral contents of 

both low-calcium and high-calcium fly ash.  
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Table 2.1  The minerals in fly ash (adopted from Li 2011) 

Low-calcium fly ash High-calcium fly ash 

Mullite {2Al2O3.2SiO2} 

Calcium, aluminum, magnesium 

melilite 

{Ca, Mg, Al (Si2O7)} 

Quartz {SiO2} 
Ferrite – spinel 

{(Mg, Fe)(Fe, Mg)2O4} 

Magnetite – Ferrite 

{Fe3O4 - (Mg ,Fe)(Fe ,Mg)2O4} 

 Merwinite 

{Ca3Mg(SiO4)2} 

Magnetite {Fe3O4} Larnite {Ca2SiO4} 

Anhydrite {CaSO4} Lime {CaO} 

 

Periclase {MgO} 

Cristobalite / quartz {SiO2} 

Feldspar (Na, Ca, Al) silicate 

Tricalcium silicate {Ca3SiO5} 

Tricalcium aluminate {Ca3Al2O6} 

Anhydrite {CaSO4} 

2.3 Fly Ash Glass Structure and Hydration Reactions 

Some crystalline phases (C2S, C3A, CaSO4, MgO, and free CaO) in fly ash can react with 

water to form ettringite, mono sulphoaluminate hydrate, and C-S-H, which contribute to the 

hydraulic property of fly ash. Ramezanianpour reported that the hydration behavior of C2S, C3A 

in fly ash is the same as that in cement (Ramezanianpour 2014). Since fly ash is composed of 

75–90 wt.% of Si-Al bearing glass, fly ash belongs to the silica-alumina-based system. However, 

the formation rate of C-S-H from the glass phase is relatively low. Aluminosilicate glassy 

structure in fly ash contains Si-O-Si and Si-O-Al chemical bond, etc., as well as a certain amount 

of network modifier bond, for example, Ca-O and Mg-O. The bond of network modifiers is 

much weaker than the Si-O-Si and Si-O-Al bond, while the Si-O-Al bond is more prone to break 

than the Si-O-Si bond (Duxson and Provis 2008). Diamond (1981) conducted a study of fly ash 
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glass using XRD. The results indicated that the composition of glass in low-calcium fly ash (< 

5wt.% CaO) has diffused halo maxima at 23° (2-theta (Cu Kα radiation)); high-calcium fly ash 

(10 ~ 20 wt.% CaO) at 28° (2-theta). The glass phases in fly ash can be categorized into Type I 

and Type II (Hemmings and Berry 1987). The Type I glass phase is aluminosilicate glass 

(similar to low-calcium glass in Diamond’s findings), which has a relatively low content of 

network modifier (CaO + MgO + Na2O + K2O ≈ 8%). The Type II glass phase is calcium-

aluminosilicate glass (similar to high-calcium glass in Diamond’s findings), which has a higher 

content of network modifier (CaO + MgO + Na2O + K2O ≈ 27%).  

Li (2011), who conducted a study of the composition and structure of glass phases in fly 

ash, found that low-calcium fly ash presented a lower content of glass phase (≈ 72 wt.%) than 

high-calcium fly ash presented (≈ 81 wt.%). Since the structure of glass phases in fly ash varies 

with the element composition, furnace temperature, and cooling speed, the structure of glass 

phases was studied by Li (2011) as well, using IR-Raman, nuclear magnetic resonance (NMR), 

and high-resolution transmission electron microscopy (HRTEM) techniques. The results showed 

that more Si-O-Si(Al) bonds existed in low-calcium fly ash, with Si mainly existing as Q4 and Q2 

units (Q4/ Q2 = 100/48.46) and Al existing as both 4-coordinate and 6-coordinate (4CN/6CN ≈ 1, 

Al exists approximately equally in the glass phases and crystalline phases) (Figure 2.2). In 

addition, a phase separation in glass was found in the low-calcium fly ash. As for high-calcium 

fly ash, it was found that Si-O-Si(Al) bonds were less than that of low-calcium fly ash. Si mainly 

existed as a Q1 unit with some Q2 units (Q1/ Q2 = 100/69.95), while Al also existed as both 4-

coordinate and 6-coordinate (4CN/6CN>1, almost all Al existed in the glass phases). Contrary to 

low-calcium fly ash, no obvious phase separation was found in high-calcium fly ash. All of these 
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findings suggest that the degree of polymerization is higher in low-calcium fly ash, whereas 

high-calcium fly ash is more prone to the hydration reaction.  

  

Figure 2.2  Example of NMR analysis of Si and Al structure   

(reprinted from Ashbrook, Sharon 2006) 

An alkaline solution is often used to activate glass phases in fly ash. Si-O-Al and Si-O-Si 

bonds in glass phases can rupture and depolymerize, generating [SiO4]
4- and [AlO4]

5- monomers. 

These monomers can further form into a three-dimensional network structure. Relevant reactions 

are shown as follows (Joseph Davidovits 1994): 

  

Figure 2.3 provides an illustration of the dissolution mechanism that contains both 

monovalent and divalent network modifiers in the fly ash glass. In the moderately high pH 

environment, water molecules break down into H+, which replaces Ca2+ and Na+ from the glass. 

With Ca2+ and Na+ leaching, the glass structure is distorted; the replacement of Ca2+ gives more 

distortion to the glass structure than Na+. With the increase of pH, Si-O-Si and Si-O-Al bonds are 

attacked by OH-. Then the breakage of the Si-O-Al bond occurs due to its weak nature. This also 
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promotes depolymerization of the whole glass structure and, thus, the formation of Si (OH)4- and 

Al (OH)4- monomers.  

 

Figure 2.3  Hydration mechanism of vitreous aluminosilicate  

(reprinted from Kutchko and Kim 2006) 

Based on this dissolution mechanism, it is easy to understand that Ca2+ and Mg2+ ions in 

the glass structure cause a greater degree of distortion in the aluminosilicate structure. This 

distortion leads to the formation of a small concentration of weaker Al-O-Al bonds and increases 

the amount of non-bridging oxygen, which decreases the degree of polymerization (Li 2011; 

Duxson and Provis 2008). For these reasons, fly ash that is rich in Ca2+ and Mg2+ shows much 

higher reactivity than fly ash with fewer alkali ions. All these findings support the idea of using 

high-calcium fly ash as a sole binder in making a moderate strength concrete such as pervious 

concrete.  
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2.4 Pervious Concrete  

2.4.1 Aggregates 

Pervious concrete uses the same aggregates as conventional concrete; however, it 

contains little or no fine aggregate, and the size distribution or gradation of the coarse aggregate 

is kept narrow. The standard aggregates used in pervious concrete are typically crushed stone 

(angular aggregates) or gravel (rounded aggregates).Typical sizes are from 3/8 in. to 1 in. 

(Tennis et al. 2004). Smaller aggregates can increase the compressive strength of pervious 

concrete by providing a tighter bond between aggregates and cement paste (Anderson et al. 

2013). The disadvantage of using smaller aggregates in the mix design of pervious concrete is 

the decrease of void space (Tennis et al. 2004). Although smaller aggregates can increase the 

void ratio in pervious concrete, use of larger aggregate results in a statistically significant 

decrease in both compressive strength and static elastic moduli due to the subsequent decrease in 

paste amount. As it has been reported (Crouch et al. 2007), while compressive strength was 

higher for pervious concrete containing smaller aggregate sizes, there was no significant 

difference between the static elastic moduli when different aggregate sizes were used. For a 

given aggregate size, Ghafoori and Dutta (1995) provided a chart which displays the effects of 

aggregate cement ratio and compaction energy on the 28-day compressive strength of pervious 

concrete (Figure 2.4). 
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Figure 2.4  28-day compressive strength vs. A/C ratio  

(reprinted from Ghafoori, N. and Dutta, S. 1995) 

Today, much research effort has been directed toward the use of glass powders as fine 

aggregates. In one study (Tejaswi, S Sai et al. 2015),it was found that by partially replacing 

cement with glass powder, the initial strength gain of concrete was less due to the addition of 

glass powder on the seventh day, but it increased at a later age. It was also found that a 20% 

addition of glass powder resulted in better strength of the concrete. Glass powder size less than 

90 microns was found to be very effective for strength enhancement (Tejaswi, S Sai et al. 2015). 

Based on these findings, recycled glass powder shows the potential for being used in pervious 

concrete. 

A typical mix design of pervious concrete has no fine aggregates. However, a small 

amount (5–7%) of fine aggregate is required to increase freeze–thaw durability (Kevern et al. 

2010). As shown in Figure 2.5a, a small amount of fine aggregates is also beneficial to the 

workability of pervious concrete. The initial workability of pervious concrete increases slightly 

with a sand to coarse aggregate ratio between 0% and 12.5%; however, with a sand to coarse 
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aggregate ratio between 7.5% and 10%, a significant decrease in compaction energy occurs 

(Schaefer et al. 2009). The relationship between porosity and 7-day compressive strength is 

shown in Figure 2.5b. With a fine aggregate amount of less than 10%, the mortar volume 

increases, creating a thick paste around coarse aggregates. Above 10%, the binder demand from 

the surface area of the additional fine aggregate begins to negatively impact compressive 

strength. A 7–10% of fine aggregate to coarse aggregate ratio has been shown to greatly increase 

compressive strength with a slight decrease in porosity (Schaefer et al. 2009). 

 

Figure 2.5  (a) Effect of fine aggregate on workability (b) Effect of fine aggregate on concrete 

properties (reprinted from Schaefer et al. 2009) 

2.4.2 Cementitious materials 

Although in this study, fly ash was used as cementitious material, a literature review was 

carried out on conventional cementitious material, that is, Portland cement. The knowledge 

obtained from the study of Portland cement as cementitious material was transferred into this 

study of fly ash as cementitious material.  

Portland cement, conforming to ASTM C150 and C1157, and blended cements, 

conforming to ASTM C595 and C1157, were typically used in pervious concrete. Silica fume, 

fly ash, and ground-granulated blast furnace slag were used as supplementary cementitious 

a b 
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materials (SCM). Since SCM can affect setting time, rate of strength development, permeability, 

and porosity, SCM should be tested by trial batching (Roy and Ldorn 1982; Thomas 2007b; 

Holland 2005). The reason to incorporate SCM is to improve the durability of pervious concrete. 

Silica fume is a by-product of silicone production, and can significantly increase the strength and 

durability of concrete. Silica fume is normally used to replace 5–12% of Portland cement 

(Holland 2005). Fly ash is often used to replace 5–65% of Portland cement (Thomas 2007b). 

Blast furnace slag, which is a by-product of steel manufacturing, also improves the strength and 

durability of concrete, and can replace 20–70% of Portland cement (Roy and Ldorn 1982).  

The water-to-cement ratio is another critical factor for successful mixing of pervious 

concrete. Water-to-cement ratios between 0.27 and 0.38 are often used with proper inclusion of 

admixtures such as an air entraining agent water reducer (Tennis et al. 2004). Tennis et al. (2004) 

indicated that there is no clear relationship between strength and the water-to-cementitious-

material ratio for pervious concrete because the total paste volume is less than the voids volume 

in pervious concrete. Therefore, stronger paste in pervious concrete may not always lead to 

increased strength. Meininger (1988) studied the relationship between 28-day compressive 

strength and water-to-cement ratio with different aggregate-to-cement ratios and aggregate sizes. 

As shown in Figure 2.6, the results of these experiments were used to deduce an optimum water 

cement ratio. Desirable water content can also be inspected visually. Figure 2.7a and Figure 2.7c 

show a sample of pervious concrete that is too dry or too wet to form a void structure, whereas 

Figure 2.7b shows a proper amount of water as a sample of pervious concrete that forms a ball.  
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Figure 2.6  28-day compressive strength vs. W/C ratio  

(reprinted from Meininger 1988) 

 

 

Figure 2.7  Samples of pervious concrete with different water contents, formed into a ball: (a) too 

little water, (b) proper amount of water, and (c) too much water  

(reprinted from Tennis et al. 2004) 

2.4.3 Admixture 

Due to little or no fine aggregates in the mix designs, pervious concrete mix is typically 

harsh and can create challenges in placement on job sites. To address the challenges, chemical 

admixtures are used in pervious concrete mainly to improve workability and performance. Good 

pervious concrete mixtures must discharge from a concrete truck readily, have stable paste 

without draining to the bottom of the pavement after compaction, have a sufficient setting time, 

a b c 
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and obtain adequate strength (Koehler et al. 2009). Chemical admixtures must be selected 

carefully to achieve these properties.  

Cement particles in pervious concrete usually have quick hydration due to a low water-

to-cement ratio. In addition, pervious concrete mix dries quickly from the open void structure. 

Retarders or hydration-stabilizing admixtures (HSA) are commonly used in pervious concrete to 

control rapid setting time (Tennis et al. 2004). One study indicated that a dosage of 5 fl oz./cwt 

(325 mL/100 kg) of HSA provides approximately 60–90 minutes of working time at 70°F 

(21.1°C) ambient temperature conditions from the time of batching (Bury et al. 2006).  

Pervious concrete has a very high void volume, which negatively affects its overall 

strength. To achieve desirable strength, a strong paste is required to bond aggregates. One way to 

achieve a strong paste is to use low water-to-cement ratios. Therefore, pervious concrete 

typically has a water-to-cement ratio in the range of 0.27–0.30 for better overall strength. A mid-

range water reducing admixture or a high-range water reducing admixture is needed to 

efficiently disperse cement particles with low water content (Koehler et al. 2009). 

Other commonly used admixtures are viscosity-modifying admixtures (VMAs) and air-

entraining admixtures (AEAs). A VMA is used to achieve better flow, faster discharge time from 

a truck, and easier placement and compaction of an otherwise dry, harsh mix (Bury et al. 2006). 

A VMA prevents clogging that can occur from cement paste that drains to the bottom of the 

pavement due to gravity, and otherwise reduces the infiltration rate of pervious concrete. A 

VMA also improves compressive and flexural strength in low-compaction pervious concrete 

mixes by providing a better paste-to-aggregate bond (Bury et al. 2006). Air-entraining 

admixtures, which can reduce freeze–thaw damage in conventional concrete, are also used to 
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control freeze–thaw damage in pervious concrete exposed to certain conditions of freezing and 

thawing (National Ready Mixed Concrete Association 2004).  

Pervious concrete durability is of considerable importance. Many researchers found that 

mixing of polymeric admixtures, such as styrene–butadiene rubber (SBR) latex, modifies the 

cement matrix and achieves better durability (Wang et al. 2011; Yang et al. 2009; Zhong and 

Chen 2002). Yang et al. (2009) found that admixing SBR with a varying SBR/cement ratio of 0–

16% led to a denser and more refined microstructure of cement hydrates; this was confirmed by 

improved chloride penetration resistance along with general ionic permeability resistance. 

Scanning electron microscopy (SEM) investigation confirmed that SBR forms a network 

structure with cement hydrate phases to bind aggregate particles. Huang et al. (2010) carried out 

laboratory experiments and found that a ratio of 10% latex solids to cement slightly decreased 

the porosity and permeability of conventional pervious concrete, but increased the compressive 

and split tensile strength of conventional pervious concrete. All these results suggest the 

beneficial effects of SBR on overall performance of Portland cement pervious concrete; 

however, no study on mixing SBR with fly ash as a cementitious material was found.  

The recent development of nanosize materials presents an opportunity to improve the 

overall performance of cementitious materials. Among numerous nanomaterials, graphene oxide 

(GO) (see Figure 2.8) shows potential as an admixture for concrete because it is a two-

dimensional carbon sheet with an aspect ratio up to 30,000 or higher (Tung et al. 2009), has a 

Young’s modulus of 1 TPa and an intrinsic strength of 130 Gpa, and is highly hydrophilic (Lee 

et al. 2008).  
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Figure 2.8  (a) SEM image of GO membrane. (b) molecular model of GO  

(reprinted from Lv et al. 2014). 

Gong et al. (2015) indicated that the addition of 0.03% (by weight of cement) GO in plain 

cement resulted in 13.5% lower total porosity and 27.7% fewer capillary pores compared with 

cement without GO addition. The 28-day compressive strength and tensile strength of cement 

paste were increased by over 40%. However, GO reduced the workability of plain cement mix. 

Lv et al. (2014) observed that different amounts of GO (0.01–0.06% by weight of cement) 

promoted flower-like and polyhedron-like cement hydration products (Figure 2.9), which 

formed a compact microstructure. As a result, the flexural strength and compressive strength of 

cement mix with 0.03% GO were considerably improved by 60.7% and 38.9%, respectively. 

Graphene oxide demonstrated a crack deflection or branching mechanism, which increases a 

crack path to release stress in cement paste. Ranjbar et al. (2015) found that GO absorbs more 

energy when under crack bridging or pull out and thus leads to improved toughness. 

a b 
 



22 

 

Figure 2.9  SEM image of cement hydrates at 7-days: (a) flower-like shape with 0.01% GO; (b) 

polyhedron-like shape with 0.05% GO  

(reprinted from Lv et al. 2014) 

These results suggest that GO can significantly improve the overall performance of 

cement mix by regulating cement hydration, providing a crack branching and bridging 

mechanism, and acting as nanofillers. Therefore, GO shows significant potential for practical 

application in fly ash-based cementitious materials of high strength and durability. 

Each admixture may improve the performance of pervious concrete in a specific way. 

However, lab tests should be used to quantify the effects of individual admixture so that all 

admixtures used in a pervious concrete system can lead to a positive overall effect. The typical 

range of material proportions of pervious concrete are listed in Table 2.2. 

Table 2.2  Typical ranges of material proportions in pervious concrete (adopted from Tennis et al. 

2004) 

 Proportions (lb/yd3) 

Cementitious materials 450 to 700 

Aggregate 2000 to 2500 

Water to cement ratio 

(by mass) 
0.27 to 0.43 

Aggregate to cement ratio 

(by mass) 
4 to 4.5:1 

Fine to coarse aggregate 

ratio (by mass) 
0 to 1:1 
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2.4.4 Permeability 

The internal interconnected void space of pervious concrete allows water to flow through, 

thus reducing the amount of runoff. Permeability or the saturated hydraulic conductivity of 

pervious concrete is an important property in draining water from a concrete surface.  

Schaefer et al. (2006) tested pervious concrete permeability by using a falling head 

permeability test apparatus (Figure 2.10). A flexible gum sealed the top perimeter of the samples 

to inhibit water leakage along their sides. The samples were then confined in a membrane and 

sealed in a rubber sleeve. The tests were performed with several water heights. The average 

coefficient of permeability (k) was determined using Equation 1 (Das and Sobhan 2013) . 

 
(1) 

where 

 

k = coefficient of permeability, L/T 

a = cross-sectional area of the standpipe, L2  

L = length of sample, L 

A = cross-sectional area of specimen, L2  

t = time for water to drop from h1 to h2, T  

h1 = initial water level, L 

h2 = finial water level, L 

 

 

Figure 2.10  Permeameter used to measure the permeability of pervious concrete samples 

(reprinted from Das and Sobhan 2013) 
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Flores et al. (2007) proposed a test method to evaluate pervious concrete permeability. A 

4 inch by 8 inch (10  20 cm) pervious concrete cylinder was used in this method. The perimeter 

surface of the cylinder was covered with waterproof, non-absorbing material. A plastic cap was 

attached to the top of the specimen as a constant head at the top surface of the concrete. This test 

recorded the time it took for water to flow through the entire specimen (Figure 2.11).  

 

Figure 2.11  Filtration test apparatus (reprinted from Flores et al. 2007) 

The typical water permeability of pervious concrete is 288 in./hr (0.2 cm/s) to 770 in./hr 

(0.54 cm/s). Although the falling head method (FHM) and the constant head method (CHM) are 

commonly used to test the water permeability of permeable concrete, Qin et al. (2015) indicated 

that permeability measured using the FHM was typically lower than that measured using the 

CHM, because permeability was found to decrease with the applied water head. The authors 

suggested that the water permeability of pervious concrete should be reported with the applied 

pressure and the associated testing method. 

2.4.5 Void ratio 

Pervious concrete typically has a void ratio of 15–40%, depending on its application, 

whereas conventional concrete has a void ratio of 3–5% (Wanielista and Manoj Chopra 2007). 

Pervious concrete is usually used for constructing pavement that requires a reasonable flexural 
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strength. One study indicated that, with void ratios of 20–29%, pervious concrete could achieved 

desirable flexural strengths of 400 psi to 500 psi (Gong et al. 2015). The void volume in pervious 

concrete is the summation of effective porosity (open or interconnected porosity) and closed 

porosity (Neithalath et al. 2010; Neithalath et al. 2006). Effective porosity allows water to flow 

through, whereas closed porosity contributes little to permeability. Therefore, high porosity may 

not indicate high permeability in pervious concrete. Effective porosity is more important to 

permeability and acoustic absorption of pervious concrete (Tong 2011). Tennis et al. (2004) 

reported the relationship between void ratio and permeability for Portland cement concrete as 

shown in Figure 2.12. The authors also indicated that mixes with a void ratio of between 15% 

and 19% could achieve a 7-day compressive strength of about 3,000 psi or more, and a 

permeability between 135 in./hr and 240 in./hr. The 7-day compressive strength decreased 

lineally with increasing void ratio.  

 

Figure 2.12  Relationship between strength, void ratio and permeability  

(reprinted from Tennis et al. 2004) 

Most testing methods (ASTM D7063 and ASTM C140) to determine the void ratio of 

pervious concrete are based on the water displacement principle. These test methods involve 

holding a pervious concrete sample under water and shaking it to remove air bubbles. Void ratio 
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can be calculated based on the submerged mass and dry mass of samples. However, these 

methods are not always accurate, since some voids in pervious concrete are not readily 

accessible to water and the sample shaking is difficult to reproduce. A new test method has been 

proposed that involves submerging a pervious concrete sample for 30 minutes, tapping the 

sample against the container 5 times, and inverting it 180°. This method has proven to be 

sufficient for filling most pores in a sample with an error of 2.2% in void ratio between different 

operators and testing facilities (Montes et al. 2005). 

Some researchers have also studied the effects of void ratio on sound absorption 

characteristics of pervious concrete. Park et al. (2005) reported that the optimum void ratio for 

sound absorption is 25%, since compressive strength reduced rapidly when the void ratio 

exceeded 25%. Kim and Lee (2010) indicated that the maximum acoustic absorption coefficient 

increased as the void ratio increased, and the acoustic maximum absorption coefficient reached 

1.0 when the void ratio exceeded 30%.  

2.4.6 Durability 

Durability concerns for pervious concrete mainly include freeze–thaw resistance, 

clogging, salt-scaling resistance, and abrasion resistance.  

Freeze–thaw resistance 

Pervious concrete can allow for the free transfer of moisture into a concrete matrix, 

which potentially causes more severe freeze–thaw problems in pervious concrete than in 

conventional concrete. A mass loss of about 15% after freeze–thaw damage represents a terminal 

serviceability level for pervious concrete pavement (Vernon R. Schaefer et al. 2006). Air-

entrainment has been shown to improve freeze–thaw protection for concrete. The National 
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Ready Mixed Concrete Association (NRMCA) suggests using 4–8% air entrainment with a 

spacing factor of 0.01 inches to provide freeze–thaw resistance for pervious concrete in cold 

weather areas.  

While the current ASTM C666 may not be able to simulate the exact in situ freeze–thaw 

conditions for pervious concrete, many researchers have investigated the freeze–thaw resistance 

of pervious concrete from various perspectives. Olek et al. (2003) found that the specimens 

undergoing a more rapid cycle rate had relative dynamic moduli of less than 40% at 80 freeze–

thaw cycles, whereas specimens undergoing a slower cycle rate had relative dynamic moduli 

greater than 90% left. Neithalath (2004) stated that after 80 cycles of slow freezing and thawing 

(1 cycle per day), pervious concrete samples maintained more than 95% of relative dynamic 

modulus, while samples with the same mix design at a rapid rate of freezing and thawing (5 to 6 

cycles per day) had 50% of dynamic modulus. Schaefer et al. (2006) concluded that freeze–thaw 

damage of pervious concrete is a result of either aggregate deterioration or cement paste matrix 

failure. Mix design with sand or latex had better freeze–thaw resistance. The optimum mix 

design for freeze–thaw resistance was single-sized gravel with 7% sand, which resulted in only 

2% mass loss after 300 freeze–thaw cycles.  

Although some factors, such as freeze–thaw cycle rate, were evaluated for freeze–thaw 

resistance, more study is needed to investigate the effects of aggregate properties and compaction 

energy on the freeze–thaw resistance of pervious concrete. 

Clogging 

Clogging, which adversely affects the permeability of pervious concrete, is one of the 

major concerns associated with pervious concrete voids. Joung (2008) performed a clogging test 
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to measure permeability after clogging. This test involved placing 50 g of clogging material 

(sand) into 1 kg of water and mixing thoroughly. The clogging fluid was then poured into 

pervious concrete samples. These two steps were repeated five times until samples became well 

clogged. The permeability of clogged specimens was measured by a falling-head permeameter. It 

was found that pervious concrete samples with a void ratio of over 33% were not affected by 

clogging. Samples with a void ratio from 23% to 31% were clogged and decreased in 

permeability. Haselbach and Freeman (2006) found that porosity increased significantly from top 

to bottom for pervious concrete slabs approximately 6 inches in height and placed with an 

approximately 10% surface compaction technique. This top lower porosity could trap larger 

clogging particles within the pavement. Therefore, surface washing or vacuum sweeping usually 

was efficient at removing larger clogging particles trapped in the top layer of pavement.  

Salt-scaling resistance 

The application of deicers could cause serious damage to pervious concrete pavement. 

Commonly used deicers are chloride-based salts such as sodium chloride and calcium chloride. 

The mechanisms for deicer attack on pervious concrete  are similar to those on conventional 

concrete: the chemical reaction between salts and cement hydrates physically and chemically 

changes the aggregates, aggregate-paste interface, and cement paste, and causes severe paste 

deterioration (Lee et al. 2000). Studies have shown that low chloride concentrations (2% to 4%) 

produced more scaling in conventional concrete, irrespective of the w/c ratio (Marchand et al. 

1999). However, the porous structure of pervious concrete may make it more susceptible to salt-

scaling deep into pavements. Anderson et al. (2013) performed salt-scaling tests on different 

pervious concrete mix designs; the results are summarized in Figure 2.13, where each data point 
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is averaged from 16 mix designs. Of all the solutions, 4% to 8% of salt solution caused the most 

serious damage. Those samples with 8% solution failed after tests. Anderson et al. also tested the 

salt-scaling resistance of pervious concrete using different fly ash content. The results showed 

that mixes with 10% and 20% fly ash replacement exhibited better salt-scaling resistance than 

the control specimens containing no fly ash, but mixes of 0% and 30% fly ash replacement had 

the greatest damage. 

 

Figure 2.13  Salt-scaling damage for all mix design per salt concentration 

 (reprinted from Anderson et al. 2013) 

Abrasion resistance 

Surface abrasion is a potential problem for pervious concrete, especially when 

snowplows and studded tires are used in wintertime, because of its low strength and rough 

surface from the void structure. Therefore, pervious concrete is not suitable for highway 

pavements. The standard test method of abrasion resistance is ASTM C944 (Figure 2.14a). 

Other methods include the Cantabro test conducted with the Los Angeles abrasion machine 

(Figure 2.14b) and loaded wheel tester (Figure 2.14c). Dong et al. (2013) presented abrasion 

results of pervious concrete with different methods (see Table 2.3). The comparison showed that 

the Cantabro test had the lowest coefficient of variation (11.1%), and the ASTM C944 had the 
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highest (32%). This study also indicated that using small-size aggregates and/or adding latex and 

fibers generally improved the abrasion resistance of pervious concrete. Amde and Rogge (2013) 

performed the ASTM C944 test on a pervious concrete mix design with different admixtures. 

They found that pervious concrete with cellulose fibers had the lowest mass loss of 0.1%. 

Admixtures such as delayed set modifier and viscosity modifier increased mass loss 0.3–0.4% 

compared with the control mix mass loss of 0.2–0.3%. Kevern and Sparks (2013)  also evaluated 

low-cost techniques for improving the abrasion resistance of pervious concrete. The results 

showed that latex paint and epoxy were effective at improving abrasion resistance, whereas super 

absorbent polymer for internal curing reduced abrasion resistance.  

Table 2.3  Comparison of three abrasion tests (reprinted from  Dong et al. 2013) 

 

 

 

Figure 2.14  Abrasion testing apparatus (a) ASTM C944 method; (b) L.A. abrasion machine; (c) 

studded steel wheel abrasion test (reprinted from Dong et al. 2013) 

a b c 
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2.4.7 Placement and compaction 

There are many procedures for placing pervious concrete as pavements. Since most 

pervious concrete mixes do not flow, pervious concrete cannot be pumped. The placement of 

pervious concrete on job sites usually requires a single additional shoot attached to a ready-mix 

truck, and pervious concrete mix is often pulled off the shoot manually (Figure 2.15). Mixes that 

contain a viscosity-modified admixture are more flowable. A full-length shoot can be used to 

discharge more flowable pervious concrete from a ready-mix truck with fewer workers (Kevern 

et al. 2006). 

 

Figure 2.15  Pervious concrete placing (reprinted from Kevern et al. 2006) 

The compaction of pervious concrete is critical, since it affects the void ratio, 

permeability, strength, and durability of pervious concrete. A vibratory screed or a weight roller 

is typically used to compact pervious concrete pavements. Sometimes a plate compactor with 

plywood placed on top of the pervious concrete pavement is used for compaction (Kevern et al. 

2006). Although different compaction techniques are developed for specific jobsite applications, 

producing specimens that have compaction similar to in-place pervious concrete pavement is still 

more challenging. Putman and Nepture (2011) studied the differences between laboratory 
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specimens and pavement cores by using different compaction procedures. They found that the 

standard Proctor hammer method provided the least variability in compaction and resulted in 

properties similar to the in-place pavement. The authors indicated that the density of cylinders 

was generally greater than the pavement; however, 600  600 mm slabs with the same thickness 

of pavement had porosity and density closest to those of pavement.  

2.5 Literature Review Summary and Conclusions 

Based on previous research, it is possible to use fly ash as a sole cementitious binder in 

making concrete that has moderate strength, such as pervious concrete. The following 

conclusions can be drawn from the literature review: 

 The physical and chemical characteristics of fly ash depend on the coal type, the boiler, 

operating conditions, and post-combustion conditions. Other than the coal type, heating 

and cooling has a significant effect on the composition and morphology of fly ash 

particles, which determine the pozzolanic or cementitious properties of fly ash. 

 Other than SiO2, Al2O3, Fe2O3, and CaO as major constituents of fly ashes, the X-ray 

fluorescence (XRF) technique shows that fly ash also consists of MgO, Na2O, K2O, SO3, 

MnO, TiO2, and C. 

 According to ASTM C618 standards, high-calcium fly ash is produced from burning 

lignite or subbituminous coal, since lignite and subbituminous coal have a high CaO 

content, up to 10%. Low-calcium fly ash typically is produced by the combustion of 

anthracite or bituminous coal. Fly ash with (SiO2 + Al2O3+ Fe2O3)> 70% is classified as 

Class F fly ash. Fly ash, with 70% > (SiO2+ Al2O3+ Fe2O3) > 50%, is classified as 

Class C fly ash. One study indicated that essentially all high-calcium fly ash is 
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cementitious, while low-calcium fly ash is not generally cementitious. 

 Fly ash is a very complex material in terms of mineralogical composition. Approximately 

316 individual minerals and 188 mineral groups have been identified in fly ash. In 

general, fly ash mainly consists of vitreous content (< 90%), and the content of crystalline 

material varies, in the range of 11% to 48%, and may contain one or more of the four 

major crystalline phases: quartz, mullite, magnetite, and hematite. Some of the crystalline 

phases (C2S, C3A, CaSO4, MgO, and free CaO) in fly ash will react with water to 

contribute to the hydraulic property of fly ash. 

 Fly ash is generally composed of 75–90 wt.% of Si-Al bearing glass, which can be 

categorized into Type I and Type II glass phases. Type I glass phase is aluminosilicate 

glass (similar to low-calcium glass), which has a relatively low content of network 

modifier (CaO + MgO + Na2O + K2O ≈ 8%). Type II glass phase is calcium-

aluminosilicate glass (similar to high-calcium glass), which has a higher content of 

network modifier (CaO + MgO + Na2O + K2O ≈ 27%).  

 Low-calcium fly ash has a lower content of glass phase than high-calcium fly ash has. In 

low-calcium fly ash, Si mainly exists as Q4 and Q2 units and Al exists almost equally in 

the glass phase and crystalline phase as both 4-coordinate and 6-coordinate. A phase 

separation in glass was also found in low-calcium fly ash. In low-calcium fly ash, Si 

mainly exists as Q1 and Q2 units and almost all Al exists in the glass phase as both 4-

coordinate and 6-coordinate. It is suggested that the degree of polymerization is higher in 

low-calcium fly ash, and high-calcium fly ash is more prone to hydration reaction.  
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The following are conclusions based on the pervious concrete literature review: 

 Pervious concrete typically contains little or no fine aggregate, and the size distribution or 

gradation of the coarse aggregate is narrow. Smaller aggregates will decrease the void 

space of pervious concrete. The use of larger aggregate results in a statistically significant 

decrease in both compressive strength and static elastic moduli.  

 A small amount (5–7%) of fine aggregate is required to increase the freeze–thaw 

durability of pervious concrete, which is beneficial to the compressive strength of 

pervious concrete. A 7–10% fine aggregate to coarse aggregate ratio has been shown to 

greatly increase compressive strength with a slight decrease in porosity, but additional 

fine aggregates above 10% negatively impacts the compressive strength. Glass powder 

size less than 90 microns, used as a fine aggregate, is very effective at enhancing 

pervious concrete strength. 

 Portland cement and blended cement are usually used as cementitious materials for 

pervious concrete. Silica fume, fly ash, and ground-granulated blast furnace slag are 

typically used as supplementary cementitious materials, and have a great impact on 

setting time, rate of strength development, permeability, and porosity of pervious 

concrete. Water-to-cement ratios of between 0.27 and 0.38 are used with proper inclusion 

of admixtures such as an air-entraining agent, water reducer for pervious concrete, but 

there is no clear relationship between strength and water to cementitious materials ratio 

for pervious concrete. 

 Pervious concrete mix is typically harsh and can create a challenge in placement on job 

sites. To address this challenge, chemical admixtures are used in pervious concrete, 



35 

mainly to improve workability and performance. Retarders or hydration-stabilizing 

admixtures (HSA) are commonly used in pervious concrete to control rapid setting time. 

A mid-water- or high-range water reducing admixture is needed with low water content. 

A viscosity-modifying admixture (VMA) is used to achieve better flow and faster 

discharge time. Air-entraining admixtures are also used to control freeze–thaw damage in 

pervious concrete. 

 Graphene oxide (GO) can improve the overall performance of cement mix significantly 

by regulating cement hydration, providing a crack branching and bridging mechanism, 

and acting as nanofillers. Therefore, GO shows significant potential as an admixture in 

pervious concrete of high strength and durability. 

 Typical water permeability of pervious concrete is 288 in./hr (0.2 cm/s) to 770 in./hr 

(0.54 cm/s). The falling head method (FHM) and constant head method (CHM) are 

commonly used to test the water permeability of permeable concrete. The water 

permeability of pervious concrete should be reported along with the applied pressure and 

the associated testing method. 

 Pervious concrete typically has a void ratio of 15%–40%, depending on its application. 

The void volume in pervious concrete is the summation of effective porosity (open or 

interconnected porosity) and closed porosity. The water displacement principle is used to 

determine the void ratio of pervious concrete (ASTM D7063 and ASTM C140).  

 Durability concerns for pervious concrete mainly include freeze–thaw resistance, 

clogging, salt-scaling resistance, and abrasion resistance. The National Ready Mixed 

Concrete Association (NRMCA) suggests using 4% to 8% air entrainment with a spacing 
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factor of 0.01 inches to provide freeze–thaw resistance for pervious concrete in cold 

weather areas. Clogging is another major concern, as it adversely affects the permeability 

of pervious concrete. It was found that pervious concrete samples with a void ratio over 

33% were not affected by clogging. Mixes with 10% and 20% fly ash replacement are 

used to achieve better salt-scaling resistance. The standard test method of abrasion 

resistance is ASTM C944. A small-size aggregate and/or adding latex and fiber, as well 

as latex paint and an epoxy coating, generally improved the abrasion resistance of 

pervious concrete.  

 Pervious concrete placing procedures are different from conventional concrete placing 

procedures, since most pervious concrete mixes are not flowable. The compaction of 

pervious concrete is critical, since it affects the void ratio, permeability, strength, and 

durability of pervious concrete. 
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CHAPTER 3.0  DEVELOPING CEMENTITIOUS BINDER WITH 100% FLY ASH 

3.1 Introduction 

Significant quantities of fly ash, a by-product of coal-fired power plants, are generated 

every year. In 2013, the United States produced 115 million tons of coal ash. Only 45% was used 

beneficially; nearly 64 million tons were disposed of (Minkara 2015). In an effort to recycle fly 

ash from industrial waste and reduce the demand for Portland cement, fly ash has been used as a 

partial cement replacement in concrete for years. However, fly ash is typically used at a 

replacement ratio of less than 35% due to concerns about possible low early-age strength and the 

potential issue of freeze–thaw resistance (Minkara 2015).  

ASTM C618 defines two categories of fly ash: Class F fly ash (FFA) and Class C fly ash 

(CFA). Class F fly ash is produced from the burning of anthracite or bituminous coal and 

generally contains less than 10% CaO, so it is pozzolanic in nature. Class F fly ash requires a 

cement agent or activators to produce cementitious pastes. Palomo et al. (1999) demonstrated the 

great potential of alkali-activated FFA as a cement for the future. The glassy silica and alumina 

contents from FFA were transformed into well-cemented composites by alkali activation. 

Class C fly ash is produced from the burning of lignite or subbituminous coal and 

generally contains more than 20% CaO. In addition to pozzolanic properties, CFA has some self-

cementing properties. Some researchers (Xie et al. 2015; Roskos 2011; Berry et al. 2011; Roskos 

et al. 2015) demonstrated that certain selected CFA can be used solely as a binder, with similar 

mechanical and durability performance as that of Portland cement.  

In the last decade, a majority of researchers (Antiohos and Tsimas 2004; Fernández-

Jiménez et al. 2005; Fernández-Jiménez and Palomo 2005; Shi and Day 2000) focused on alkali-
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activated fly ash binders. This is a process that involves mixing fly ash with certain alkaline 

activators. The mixture is cured at a relatively high temperature. One patent (Davidovits 1982) 

described the alkali activation of metakaolin, which is similar to the alkali activation of fly ash, 

in a polymerical model as following the general formula: 

Mn [- (Si-O2)z – Al – O].wH2O (Formula 1) 

where M is the alkaline element, n is the degree of polymerization, and z is 1,2, or 3. Fernández-

Jiménez et al. (2005) developed a descriptive model for alkali-activated fly ash cement. In these 

two models, alkali activators facilitate the dissolution of aluminosilicates from fly ash and the 

polymerization of reaction products.  

Typically, FFA and ground-granulated blast furnace slag (GGBFS) are preferred as 

alkali-activated binder precursors. Class F fly ash lies somewhere in between FFA and GGBFS 

in terms of chemical composition; therefore, CFA shows the potential of being a binder. 

Although some high-reactive CFA possesses excellent self-cementitious properties (Xie et al. 

2015), a large portion of CFA still shows limited self-cementing ability or pozzolanic qualities. 

Research (Guo et al. 2010; Tishmack et al. 1999; Winnefeld et al. 2010; Tishmack et al. 2001) 

has been conducted on CFA binders. All CFA binders that have been studied require a high 

curing temperature to achieve desirable mechanical properties. In this study, the authors assume 

that the high CaO content of CFA could compensate for the requirement of high curing 

temperature for FFA, since Ca2+ typically is a network modifier to disrupt the aluminosilicates 

structure in CFA (Li et al. 2010).  

The first set of experiments revealed limited strength in fly ash mortar without activation. 

This led to a second set of experiments in which fly ash was activated by a combination of 

chemical activators. With chemical activation and other additives, low-reactive CFA is able to 
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form an environmentally friendly binder at room temperature, which can replace Portland 

cement and reach desirable strength and durability. Recently, the use of younger lignite or 

subbituminous coal has substantially increased, and large quantities of CFA have been produced 

from this kind of coal (Guo et al. 2010). Our objective is to recycle CFA from industrial waste 

and contribute to the understanding of this by-product for future applications. 

3.2 Experimentation 

3.2.1 Materials 

Three types of fly ash were obtained from three power plants in the western United 

States. Fly ash compositions, examined by X-ray fluorescence (XRF) analysis, are presented in 

Table 3.1. Class F fly ash 3 was used as a control, since it has been well studied (Xie et al. 2015). 

As described in Table 3.2, CFA 1 can be considered a low-reactivity, high-calcium fly ash, 

whereas CFA 3 is a high-reactivity, high-calcium fly ash. Although all can be considered fly ash, 

with Type II glass phase (CaO + MgO + Na2O + K2O ≈ 27%), the reactivity still varies 

according to the criteria in Table 3.2. ASTM C144 siliceous sands were used as fine aggregates. 

Table 3.1  Chemical composition of the fly ash (% wt.) 

 SiO2 Al2O3 Fe2O3 Na2O K2O TiO2 MgO CaO MnO L.O.I* Origin 

CFA 1 23.5 13.8 4.8 6.3 0.4 1.3 4.2 23.2 0.1 0.15 OR 

FFA 2 33.3 14.9 5.4 3.7 1.2 1.1 4.7 14.5 0.1 1.8 WA 

CFA 3 20.6 14.5 4.7 2.5 0.3 1.4 6.2 29.9 0.1 0.32 MT 
* Loss on ignition 

 

Table 3.2  Fly ash spheres reactivity (adopted from Enders 1995) 

 CaO (% wt.) Al2O3/(Al2O3+SiO2) Reactivity 

High-Ca-spheres >25 ± 0.45 High 

Low-Ca-spheres <25 ± 0.45 Low 

Ca-free-spheres ± 0 <0.45 Inert 

 

 



40 

The two groups of laboratory experiments featured different mix designs, as detailed 

below. The aim of using these mix designs was to develop a viable environmentally friendly 

binder made at room temperature with coal fly ash.  

Group 1: CFA1, FFA2, and admixtures designed to improve the properties of mortar. 

 Nanoclay (PGW, 98% montmorillonite, bulk density 0.678 g/cm3, Nanocor Inc.): to 

improve strength and reduce the permeability of hardened mortar. 

 Styrene-butadiene rubber (SBR) latex (Euclid Chemical Company): to improve bond 

strength and reduce the chloride permeability of hardened mortar. 

 Borax (Na2B4O7) was used mainly as a set retarder. 

 Air-entraining (AE) agent (BASF MB-AE 90): to improve freeze–thaw durability. 

 Triethanolamine (TEA): to improve early-age strength of hardened mortar. 

Group 2: CFA1 only, and chemical activators designed to facilitate dissolution of fly ash 

particles and polymerization of hydration products. 

 Water glass, i.e., sodium silicate (Na2SiO3.9H2O). 

 Sodium sulfate (Na2SO4.10H2O). 

 Quicklime (CaO). 

 Calcium chloride (CaCl2.2H2O). 

3.2.2 Fabrication of fly ash mortar and testing methods 

For evaluating the fly ash binder, mortar samples made from CFA binder were tested 

using a MTS hydraulic compression test machine. According to ASTM C270 and C780 

standards, the as-received fly ash was mixed with sand, water, and other admixtures or 

activators, based on a statistical design of experiments (DoEs), which will be discussed later. The 

ratio of binder/sand was 1:2.5 by volume. In order to achieve reasonable workability and 
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mechanical strength, the water/binder ratio was determined at 0.2–0.32 by mass based on 

extensive trial and error. After mixing, mortar was cast into a 2-by-4-inch cylindrical mold. The 

mortar cylinders (Figure 3.1) were demolded after 24 hours and cured in a controlled 

environment (temperature = 18°C–22°C, relative humidity = 98%). Compressive strength and 

split tensile strength were tested at 3-day, 7-day, 14-day, and 28-day curing ages following 

ASTM C109 and C496 standards, which provided a macroscopic indication of the cementing 

ability of fly ash binder. Each reported f’c value was averaged from three duplicate specimens. 

 

Figure 3.1  Mortar cylinders, 2 inch 4 inch in size 

A high-range water reducer (BASF MasterGlenium 7920) was employed to improve the 

workability of all fresh mortars. As such, a mini slump flow test (Figure 3.2) was adopted to 

examine the workability of the fresh mortar. The water reducer gives a slump flow value by 

measuring the average of the final spread diameter of the mortar under self-weight. The amount 

of water reducer was adjusted so that the final spread diameter could achieve a minimum of 200 

mm (8 in.) without apparent segregation or bubbling (Jin 2002).  

 

Figure 3.2  Mini slump test kit 
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In addition, a surface resistivity test (Figure 3.3) was conducted on selected mortars 

according to AASHTO TP95. Tested at the saturated surface dry (SSD) condition, surface 

resistivity provides an indirect indication of the microstructure of water-saturated mortar and has 

proven to correlate well with its resistance to chloride ion penetration (Polder 2001). The device 

(Giatec SurfTM) can automatically measure surface resistivity around the concrete or mortar 

specimen using four channels of a four-probe array (located at 90° from each other). 

 

Figure 3.3  Surface resistivity test setup (reprinted from GIATEC) 

To examine the fly ash binder at the microlevel, scanning electron microscopy (SEM) 

was carried out; information about surface morphology and the amorphous and crystalline 

structure of the samples was obtained by using a JEOL JXA-8500F electron microprobe. The 

beam conditions used were as follows: 15 kV accelerating voltage, 50 nA beam current, and 

focused beam diameter. Specifically, secondary electron imaging (SEI) and backscattered 

electron imaging (BSE) were the two modes of the instrument used to obtain high-resolution 

images from microscopic areas of interest on each sample.  

3.2.3 Statistical design of experiment 

For the mix design of both groups of mortar samples, a uniform design (UD) scheme was 

adopted to design experiments to investigate the effects of admixtures (Group 1) or chemical 

activators (Group 2) on compressive strength and other properties of these unconventional 
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mortars. The use of a statistical design of experiment (DoE) enabled the exploration of a large 

domain of unknown factors and their interactions with a limited number of experiments, in light 

of resource constraints. The UD is such that the experimental points are uniformly scattered in 

the domain of experiments (Fang et al. 2000). Known as good lattice points, the experimental 

points are representative of the domain. Compared with orthogonal factorial design, UD can 

significantly reduce how many experiments are performed when dealing with a large number of 

parameters at different levels. Table 3.3 presents the five design factors and their values at three 

different levels for each group of mortar samples, respectively. These specific values for each 

design factor were determined based on existing knowledge in the published domain along with 

cost considerations. Note that the dosage of water reducer by mass of binder is yet another factor 

that varied, based on trial and error, to achieve reasonable workability of fresh mortar; as such, it 

was not a design factor but a documented factor.   
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Table 3.4 presents the UD table, 5 factors at 3 levels with 27 runs, used for the DoE, 

which was adopted from standard Uniform Design Tables 

(http://sites.stat.psu.edu/~rli/DMCE/UniformDesign/). Once coupled with Table 3.3, Table 3.4 

was translated to experimental points in Table 3.5 and Table 3.7.  

 

 

 

 

 

 

 

Table 3.3  DoE factors and levels for Group 1 and 2 mortars 

DoE 1 

factors 

Nanoclay/FAC1 

ratio 

SBR/FAC1 

ratio 

FAF2/FAC1 

ratio 

Water/binder 

ratio 

Air-

entraining 

agent dosage 

 X1 X2 X3 X4 X5 

Level 1 0% 0% 0% 20% 0 ml/kg 

Level 2 0.6% 6% 10% 22% 25 ml/kg 

Level 3 1.2% 12% 20% 24% 50 ml/kg 

DoE 2  

factors 

Na2SiO3/FAC1 

ratio 

CaO/FAC1 

ratio 

CaCl2/FAC1 

ratio 

Na2SO4/FAC1 

ratio 

Water/binder 

ratio 

 X1 X2 X3 X4 X5 

Level 1 1% 2% 0.5% 1% 28% 

Level 2 3% 5% 1% 2% 30% 

Level 3 7% 10% 2% 3% 32% 
*Borax dosage = 0.2 wt.% of binder, TEA dosage = 1.2ml/one-liter water for all DoE 1 and 2 mortars 

*Water reducer dosage was adjusted to achieve desirable spread diameter 

*All ratios were by mass 
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Table 3.4  The uniform design scheme 

Run no. 

Factor X1 

level 

Factor X2 

level 

Factor X3 

level 

Factor X4 

level 

Factor X5 

level 

1 2 2 3 2 1 

2 2 2 2 2 2 

3 1 3 2 2 1 

4 3 2 3 1 2 

5 2 3 1 1 1 

6 1 3 3 1 2 

7 1 2 2 2 2 

8 2 1 2 1 3 

9 2 2 1 3 1 

10 3 2 1 3 3 

11 1 1 1 2 3 

12 1 1 3 1 1 

13 3 3 1 2 2 

14 3 3 3 3 1 

15 1 2 3 3 3 

16 1 1 2 3 1 

17 3 2 2 1 1 

18 3 3 2 1 3 

19 2 1 3 3 2 

20 2 3 3 2 3 

21 2 3 2 3 3 

22 2 1 1 1 2 

23 3 1 1 2 1 

24 1 3 1 3 2 

25 1 2 1 1 3 

26 3 1 3 2 3 

27 3 1 2 3 2 

 

Once the DoE was implemented and experimental values were recorded, an algebraic 

function of factors was developed to characterize the response variable as a function of 

influential factors. This step allows the prediction of response with the influential factors varying 

at intermediate levels, which were not experimentally studied. Predictive models enable the 

optimization of a given response under given constraints (Muthukumar and Mohan 2004), such 

as determining the lowest cost fly ash binder with 28-day f’c greater than a designed value. 
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3.3 Results and Discussions 

3.3.1 Environmentally friendly fly ash mortars without activation (Group 1 additives) 

The average values for 3-day, 7-day, 14-day, and 28-day compressive strength and spread 

diameter are presented in Table 3.5, along with the water reducer dosage (ml/one-liter water). 

The surface resistivity of samples was recorded as well. The amount of water reducer was 

adjusted so that the final spread diameter could achieve 8 inches, since it is considered to be an 

important property of SCC (Jin 2002). All fly ash mortar samples showed surface resistivity 

between 104 and 241 kΩ-cm, which can be categorized into a very low chloride permeability 

group according to AASHTO T59 and is consistent with a previous study (Xie et al. 2015). This 

low permeability is associated with lower conductivity of hydration products, lower amount of 

ions in the pore solution, and lower porosity. 

Table 3.5  DoE 1 – Properties of fresh and hardened mortar with Group 1 additives 

Run 

3-day fc’ 

(psi) 

7-day fc’ 

(psi) 

14-day fc’ 

(psi) 

28-day fc’ 

(psi) 

Spread 

diameter 

(in.) 

Water 

reducer  

(ml/l) 

Surface 

resistivity kΩ-

cm (28-d) 

1 1177.6 1554.0 1840.2 2191.8 9.4 15 170 

2 720.6 1018.5 1228.5 1443.8 9.3 15 161 

3 242.9 383.25 490.9 528 9.0 20 208 

4 490.0 913.5 1000.2 1102.5 9.1 15 191 

5 494.1 682.5 774.4 1021.2 9.2 20 241 

6 286.2 480.4 535.5 603.8 8.9 20 232 

7 586.8 879.4 1147.2 1317.8 9.2 15 157 

8 1459.7 2155.8 2459.6 2690.6 9.4 20 142 

9 557.9 1102.5 1231.4 1333.5 11.2 15 130 

10 660.9 1084.2 1215.4 1370.4 12.3 15 124 

11 1338.2 1842.8 2173.5 2226.0 10.0 10 119 

12 1393.8 2073.8 2307.4 2583.0 8.8 15 152 

13 312.9 540.8 624.8 727.2 11.6 20 210 

14 475.6 674.7 714 876.8 8.8 25 180 

15 405.6 614.3 708.8 790.2 9.3 15 143 

16 821.5 1286.3 1393.9 1580.3 12.0 10 120 

17 531.2 787.5 863.7 1055.3 9.4 20 192 
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Run 

3-day fc’ 

(psi) 

7-day fc’ 

(psi) 

14-day fc’ 

(psi) 

28-day fc’ 

(psi) 

Spread 

diameter 

(in.) 

Water 

reducer  

(ml/l) 

Surface 

resistivity kΩ-

cm (28-d) 

18 255.3 443.7 506.7 556.5 9.0 20 142 

19 903.8 1304.6 1601.3 1840.2 11.9 10 113 

20 331.5 595.9 656.3 753.4 8.7 20 109 

21 236.8 380.7 391.2 420.0 8.9 20 177 

22 1566.8 2325.8 2682.8 2974.9 12.6 10 142 

23 1420.6 2084.3 2438.6 2651 11.3 15 109 

24 280.0 477.8 506.7 532.9 9.1 20 175 

25 957.4 1312.5 1452.4 1557.4 10.2 15 192 

26 932.6 1580.3 1724.6 1916.3 11.4 15 117 

27 1027.4 1585.5 1737.8 1785.0 11.9 10 104 

 

Model derivation and visualization 

By conducting analysis of variance (ANOVA) and regression analysis, data in Table 3.5 

were used to develop compressive strength models for DoE 1 with Group 1 additive.  

Since all compressive models show a two-way interaction, three-dimensional (3D) 

contour plots were provided to show response surface plots, which help to identify the type of 

interactions between test variables on the response in Figure 3.20–Figure 3.23. Comparison 

between test results and predicted results were provided as well in the figures. Three-day, 7-day, 

14-day, and 28-day compressive strength models were developed as follows:  

fc’ (3-day)= 938.7 – 474.2 * X2 – 116.9 * X4 – 201.8 * X1^2 – 153.9 * X3X5 

 

fc’ (7-day)= 1102.2 – 641 * X2 – 145.8 * X4 – 146 * X1^2 + 166.4 * X3^2 + 162.8 * X2X4 

 

fc’ (14-day)= 1291.6 – 738 * X2 – 169.8 * X4 – 204.6 * X1^2 + 117.2 * X3^2 + 177.5 * X2X4 

 

fc’ (28-day)= 1552.6 – 834 * X2 – 210.8 * X4 – 292.5 * X1^2 + 218.9 * X3^2 + 192 * X2X4 
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Figure 3.4  (a) 3D contour diagram of 3-day fc’ model; (b) 3-day fc’ test data vs. model prediction 

 

 

Figure 3.5  (a) 3D contour diagram of 7-day fc’ model; (b) 7-day fc’ test data vs. model prediction 

 

Figure 3.6  (a) 3D contour diagram of 14-day fc’ model; (b) 14-day fc’ test data vs. model 

prediction 

a b 

a b 

a b 
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Figure 3.7  (a) 3D contour diagram of 28-day fc’ model; (b) 28-day fc’ test data vs. model 

prediction 

Model verification 

Analysis of variance (ANOVA) was conducted to verify the models; R2 gives a 

correlation between the test response and the predicted response. Adjusted R2 is a modified 

version of R2, which ignores some insignificant model terms. For the model to be fit, R2 and 

adjusted R2 should have good agreement, since adjusted R2 will penalize models by adding 

insignificant terms. Table 3.6 presents the model summary statistics for all four models. The 

values of R2 for the four models are all higher than 0.9, which indicates a high degree of 

correlation between models and experiments results. In addition, the adjusted R2 value is in good 

agreement with the R2 value for each model. The F-value shows the ratio of explained errors to 

unexplained errors, which should be low enough for a model to be significant. P-value is the 

probability that the model will not explain the experimental response. It is observed that the F-

values are low and the p-values are all less than 0.1%, indicating that all four models are highly 

significant.  

a b 
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Table 3.6  ANOVA Summary of DoE 1 

Model R2 

Adjusted 

R2 

Degree of 

freedom (D.F.) 

Residual 

D.F. F-value p-value 

3-day fc’ 0.93 0.86 4 22 33.44 <0.001 

7-day fc’ 0.95 0.91 5 21 40.75 <0.001 

14-day fc’ 0.95 0.90 5 21 38.14 <0.001 

28-day fc’ 0.95 0.89 5 21 37.47 <0.001 

 

 

Normal probability plots of the residuals (shown in Figure 3.8  and Figure 3.9 ) were 

used to assess model errors. The residuals are the deviations of the observed data values from the 

fitted values, which are assumed random and normally distributed. As shown in these figures, 

resulting residuals follow a linear trend. 

 

Figure 3.8  Normal probability plot for (a) 3-day fc’ model; (b) 7-day fc’ model 

a b 
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Figure 3.9  Normal probability plot for (a) 14-day fc’ model; (b) 28-day fc’ model 

Trace plots indicate the effect of changing each mixture component while holding all 

other mixture components in a constant ratio. The trace plots are shown in Figure 3.10 and 

Figure 3.11.  

 

Figure 3.10  Trace plot for (a) 3-day fc’ model; (b) 7-day fc’ model 

a b 

a 
b 
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Figure 3.11  Trace plot for (a) 14-day fc’ model; (b) 28-day fc’ model 

3.3.2 Environmentally friendly pure fly ash mortars with activation (Group 2 additives) 

Similar to DoE 1, the average values for 7-day, 14-day, and 28-day compressive strength, 

split tensile strength, and spread diameter are shown in Table 3.7, along with the water reducer 

dosage and surface resistivity of all samples. All fly ash mortar samples showed a surface 

resistivity between 117 and 157 kΩ-cm, which can be categorized into a very low chloride 

permeability group as well. However, the variance of surface resistivity in DoE 1 is more than 

that of DoE 2, which could be attributed to the function of the additives in Group 1.  

Table 3.7  DoE 2 – Properties of fresh and hardened mortar with Group 2 additives 

Run 

7-d fc’ 

(psi) 

14-d fc’ 

(psi) 

28-d fc’ 

(psi) 

Spread 

diameter 

(in) 

Water 

reducer  

(ml/l) 

28-d 

Surface 

resistivity 

(kΩ-cm) 

1 2014.7 2532.2 2787.2 10.3 10 142 

2 2312.4 2769.2 2988.3 9.8 20 151 

3 2562.4 2766.3 3212.1 9.9 20 154 

4 2187.0 2988.1 3467.3 9.6 20 155 

5 2588.2 3199.0 3756.7 9.7 10 139 

6 2185.9 2727.8 3112.3 8.9 5 146 

7 2395.2 2877.1 3289.0 10.7 20 150 

8 2380.2 2988.2 3522.5 10.3 20 142 

a b 
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Run 

7-d fc’ 

(psi) 

14-d fc’ 

(psi) 

28-d fc’ 

(psi) 

Spread 

diameter 

(in) 

Water 

reducer  

(ml/l) 

28-d 

Surface 

resistivity 

(kΩ-cm) 

9 2609.4 3289.2 3876.2 9.1 25 130 

10 1910.6 2756.5 3100.2 10.0 10 133 

11 2162.6 2256.2 2431.9 9.2 15 152 

12 2563.3 3302.0 3771.1 9.8 25 139 

13 1867.5 2729.4 3087.0 9.6 5 149 

14 2407.1 2987.1 3652.1 9.7 10 140 

15 2807.1 3421.2 3987.6 10.0 10 143 

16 2797.7 3102.1 3566.4 9.4 20 120 

17 2117.7 3212.0 3411.2 9.8 25 139 

18 2352.9 3388.3 3762.0 9.9 15 142 

19 2383.5 3554.9 4011.7 9.4 20 123 

20 2557.7 3411.8 4156.4 9.7 5 119 

21 2357.7 2998.0 3456.3 9.3 5 157 

22 2376.5 3400.1 4231.2 10.6 20 142 

23 2705.9 3721.1 4877.9 11.0 20 119 

24 2658.8 4010.4 4412.0 9.9 5 145 

25 2235.3 2612.2 2766.6 9.7 15 142 

26 1882.4 2488.8 2988.3 10.2 15 117 

27 2009.4 2780.3 3277.0 9.3 20 124 

 

3.3.3 Model derivation and visualization 

By using ANOVA and regression analysis, data in Table 3.7 were used to develop 

compressive strength models for DoE 2 with Group 2 additive as well. For two-way interactions 

identified in models, three-dimensional (3D) contour plots were provided to show the response 

surface plots in Figure 3.12, Figure 3.13, and Figure 3.14. For three-way interactions identified 

in models, three-way interaction charts were adopted to show the synergetic effects of three 

different activators (Figure 3.16, Figure 3.17, Figure 3.18, and Figure 3.19 ). Comparisons 

between test results and predicted results are provided as well. Seven-day, 14-day and 28-day 

compressive strength models were developed by running regression analyses:  

fc’ (7-day) = 2342.9 – 182.5 * X1 + 108.2 * X1X2 + 230.5 * X3X5 + 308.4 * X1X2X3 
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fc’ (14-day)= 3067.6 + 227.0* X1X2 + 344.6 * X3X5 + 626.7 * X1X2X3 – 457.6 * X2X3X4 

 
fc’ (28-day)= 3356.4 + 222.9* X22 + 233.6* X1X2 + 581.3 * X3X5 + 713.9 * X1X2X3 – 397.1 *  X2X3X4 

 

 

 

Figure 3.12  (a) 3D contour diagram of 7-day fc’ model; (b) 7-day fc’ test data vs. model 

prediction 

 

Figure 3.13  (a) 3D contour diagram of 14-day fc’ model; (b) 14-day fc’ test data vs. model 

prediction 

a b 

a b 
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Figure 3.14  (a) 3D contour diagram of 28-day fc’ model; (b) 28-day fc’ test data vs. model 

prediction 

Model verification 

In Table 3.8, observe that the F-values are low and the p-values are all less than 0.1%, 

indicating that all three models of DoE 2 are highly significant. 

Table 3.8  ANOVA summary of DoE 2 

Model R2 

Adjusted 

R2 

Degree of 

freedom (D.F.) 

Residual 

D.F. F-value p-value 

7-day fc’ 0.94 0.89 4 22 42.99 <0.001 

14-day fc’ 0.93 0.88 4 22 39.90 <0.001 

28-day fc’ 0.95 0.90 4 22 38.52 <0.001 

 

Normal probability plots of the residuals (shown in Figure 3.15) are used to assess the model 

errors of DoE 2. 

a b 
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Figure 3.15  Normal probability plot for (a) 7-day fc’ model; (b) 14-day fc’ model; (c) 28-day fc’ 

model 

Three-way interaction charts show synergetic effects of activators.  

 

Figure 3.16  Synergetic effect of quick lime, CaCl2 and water glass in 14-day fc’ model.  

(Factor X1, X2, and X3) 

a b 

c 
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Figure 3.17  Synergetic effect of quick lime, CaCl2 and water glass in 28-day fc’ model. 

(Factor X1, X2, and X3) 

 

 

Figure 3.18  Synergetic effect of quick lime, CaCl2 and Na2SO4 in 14-day fc’ model. 

(Factor X2, X3, and X4) 
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Figure 3.19  Synergetic effect of quick lime, CaCl2 and Na2SO4 in 28-day fc’ model. 

(Factor X2, X3, and X4) 

3.4 Microscopic Investigation 

A microscopic investigation was conducted to obtain more insights on the effects of 

chemical activators, using the SEI and BSE modes of the electron microprobe. For comparison, 

mortar mix #22 of DoE 1 and mortar mix #23 of DoE 2 were examined at the age of 35 days, as 

they performed the best in their group in terms of compressive strength development. As shown 

in Figure 3.20a, most of the fly ash spheres remained smooth and spherical, implying that the 

degree of fly ash hydration was relatively low for mortar mix #22 of DoE 1 without activation. In 

contrast, Figure 3.20c suggests that many of the fly ash spheres in mortar mix #23 of DoE 2 were 

dissolved. While SEI micrographs provide only morphological information, BSE images provide 

morphological and compositional information by discriminating between heavy and light atoms. 

Figure 3.20b confirms that most of the fly ash spheres remained barely reacted. As such, in 

mortar #22 of DoE 1, the fly ash particles mainly served as micro-aggregates and nucleation 

centers for the precipitation of hydration products (Schaefer et al. 2009). In contrast, Figure 

3.20d reveals more dissolution of fly ash spheres and the formation of more homogenous phases. 

Fly ash spheres in Figure 3.20d (mortar #23 of DoE 2) clearly exhibit different levels of 
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dissolution: some spheres were totally dissolved, some collapsed, and some were only at the 

onset of dissolution. Figure 3.20e and Figure 3.20f further illustrate these phenomena at higher 

spatial resolution. Figure 3.20e reveals that hydration only occurred at the surface layer of fly ash 

spheres in the absence of activation. Fly ash is the principal source of aluminosilicates for DoE 1 

mortars. These low-activity fly ash spheres were only able to provide a submicron-thin layer of 

hydration products, which explains the low compressive strength of DoE 1 fly ash mortars. In 

contrast, Figure 3.20f reveals that hydration products covered the fly ash spheres and that some 

interlacing fibrous structures formed among the spheres. It is reasonable to assume that these 

hydration products and fibrous structures provided additional mechanical strength. Since the 

dissolution of fly ash spheres was improved significantly with chemical activation, more 

aluminosilicates were provided to form C-S-H gel. 
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Figure 3.20  Micrograph of 28-day mortar surfaces: 

(a) SEI, DoE 1 Mortar #22; (b) BSE, DoE 1 Mortar #22; (c) SEI, DoE 2 Mortar #23;  

(d) BSE, DoE 2 Mortar #23; (e) SEI, DoE 1 Mortar #22; (f) SEI, DoE 2 Mortar #23 

 

a b 

c d 

e f 
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3.5 Investigation of Graphene Oxide Modified Mortar 

Previous studies ((Lv et al. 2014; Gong et al. 2015; Ranjbar et al. 2015) indicate that 

graphene oxide (GO) can significantly improve the overall performance of cement mix by 

regulating cement hydration, providing a crack branching and bridging mechanism, and acting as 

nanofillers. Therefore, GO shows significant potential for practical application in fly ash-based 

cementitious materials of high strength and durability. 

The GO used in this study was produced by using a modified Hummer’s method, which 

mainly involves chemical oxidation of the graphite (Li et al. 2008). The as-produced GO was 

pasty, which was diluted with deionized water first and then sonicated for 45 minutes by using a 

Branson digital sonifier (S-450D, 400 W, 50% amplitude) to produce stable GO suspension 

(max. 3g/L) (Figure 3.21). The GO suspension with designed GO content (by weight) was then 

ready for the production of GO-fly ash or GO-cement binder. 

 

Figure 3.21  Ultrasonification of GO suspension 

Since mortar mix #23 of DoE 2 was the best performer in terms of compressive strength, 

it was chosen to study the effects of GO on fly ash mortar. The mix design of mortar #23 (shown 

in Table 3.3 and   
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Table 3.4) was modified with the addition of 0.03% (by weight of fly ash binder) GO. 

The same mix and curing procedures described in Section 3.2.2 were used to produce this GO-

modified mortar.  

After 28 days, the GO-modified fly ash mortar #23 of DoE 2 was compared with the 

regular fly ash mortar #23 of DoE 2 and the regular cement based mortar. The surface condition 

of mortar usually indicates to some extent the degree of polymerization of hydration products. 

By visual inspection, the smoothness of the GO-modified mortar surface was much better than 

the regular fly ash mortar, while the Portland cement mortar showed the smoothest surface 

(Figure 3.22), which indicates that the polymerization degree of GO-modified fly ash hydration 

products was higher than the regular fly ash hydration products, but lower than the cement 

hydration products.  

 

Figure 3.22  Mortar cylinders, 2 inch  4 inch in size: 

cement mortar (left); GO-modified fly ash mortar (middle); fly ash mortar (right) 

The compressive strength of GO-modified fly ash mortar was measured using the same 

method described in Section 3.2.2. Table 3.9 shows the effect of GO on the strength of fly ash 

mortar. Observe that an increase of 23% in the 28-day compressive strength of fly ash mortar 

was achieved by incorporating 0.03% (by weight of fly ash) GO. Gong et al. (2015) indicated in 

a similar study that the introduction of 0.03% by weight GO sheets increased the compressive 

strength of cement paste by more than 40%. Another study by Ranjbar et al. (2015) found that 
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the compressive strength of fly ash-based geopolymer was improved 1.44 times by adding 1% by 

weight graphene nanoplatelet. 

Table 3.9  Comparison of compressive strength 

 0.03% GO-modified fly 

ash mortar Regular fly ash mortar 

Compressive strength 

increase 

7-day fc’ (psi)  3353.2 2705.9 24% 

14-day fc’ (psi) 4688.0 3721.1 26% 

28-day fc’ (psi) 5998.2 4877.9 23% 

 

A microscopic investigation was conducted to obtain additional insights on the effects of 

GO. Chemical element maps of the polished mortar sections were generated by using electron 

probe micro-analysis/wavelength dispersive X-ray spectroscopy (EPMA/WDS), which visualizes 

chemical element distributions in the analyzed area. For comparison, mortar mix #23 of DoE 2 

and the GO-modified mortar mix #23 of DoE 2 were examined at the age of 14 days. Mapping of 

two selected elements (Ca and Si) is shown in Figure 3.23.  

Figure 3.23 confirms that the fly ash particles are rich in Si and Ca elements, which is 

consistent with the chemical composition analysis of the fly ash used (Table 3.1). Figure 3.23 

also suggests that the fly ash particles were not fully reacted at the age of 14 days, since many fly 

ash particles remained spherical shapes. It is clear from Figure 3.23b that the sand particles (very 

rich in Si) can be easily discriminated based on the difference in chemical composition between 

sand and paste. 
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(a) 

 
(b) 

Figure 3.23  Element mapping (Ca and Si) 

(a) #23 mortar of DoE 2; (b) GO-modified #23 mortar of DoE 2 

ImageJ software was used to generate element ratio maps by processing the EPMA/WDS 

data from the element mapping in Figure 3.23. As show in Figure 3.24a, the Ca/Si mole ratio of 

regular fly ash mortar varies from 0 to 4, whereas the Ca/Si mole ratio of GO-modified fly ash 

mortar ranges from 0 to 5. The Ca/Si mole ratio maps indicate that the Ca-rich phase is 

conglomerated at spotted areas in the GO-modified fly ash mortar. On the contrary, the Ca-rich 

phase in the fly ash mortar is evenly dispersed with a low Ca/Si mole ratio. This finding was 

further confirmed by the histogram analysis of two Ca/Si mole ratio maps. As shown in Figure 

3.25, the Ca/Si mole ratio of regular fly ash mortar features a mean value of 0.926 with a 

standard deviation of 1.281, whereas GO-modified fly ash mortar has a higher mean value of 

Ca Si 

Ca Si 
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1.384 with a standard deviation of 2.111. All these observations suggest that the phases present 

in fly ash mortar could be some form of CSH (calcium silicate hydrate). However, this CSH 

form with low Ca/Si ratio (average = 0.926 and 1.384) is different from the one produced by the 

hydration of Portland cement. Gan (Gan 1997) stated that the average bulk Ca/Si ratio of CSH in 

Portland cement paste falls between 1.5 and 1.7. A similar study by Brough and Atkinson (2002) 

found that CSH in KOH (potassium hydroxide)-activated slag mortar has a well-defined Ca/Si 

ratio of approximately 1.1, which is closer to the Ca/Si ratio in this study. 

The average bulk Ca/Si ratio was increased from 0.926 to 1.384 in the GO-modified fly 

ash mortar, which indicates that the addition of 0.03% GO could facilitate the leaching of Ca2+ 

from fly ash particles. Meanwhile, since a higher standard deviation of Ca/Si ratio was observed 

in the GO-modified fly ash mortar, it is likely that GO nanosheets dispersed in fly ash paste act 

as growth points to form hydration products with a higher Ca/Si ratio. Abdolhosseini Qomi et al. 

(2014) studied the effect of Ca/Si ratio on the mechanical properties of CSH at nanoscale. They 

found that the CSH prepared at Ca/Si ratio = 1 to 1.1 exhibits superior stiffness and hardness on 

average, and that the CSH at low and high Ca/Si ratios behaved differently, which could explain 

why GO-modified fly ash mortar has a higher compressive strength than regular fly ash mortar.  
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 (a) (b) 

Figure 3.24  Ca/Si mole ratio mapping 

(a) #23 mortar of DoE 2; (b) GO modified #23 mortar of DoE 2 

 

      
 (a) (b) 

Figure 3.25  Histogram of Ca/Si mole ratio mapping 

(a) #23 mortar of DoE 2; (b) GO-modified #23 mortar of DoE 2 

3.6 Summary and Conclusions 

The laboratory study in this chapter explores the beneficial use of low-reactivity coal fly 

ash as cementitious binder in mortars, without heat activation. A uniform design scheme was 

employed for the statistical design of experiments. Predictive models were developed based on 

the experimental data to quantify the influence of mix design parameters on the compressive 
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strength of fly ash mortars at various ages. The models were verified and then employed for 

predictions. 

The first group of mortar samples was fabricated using a low-reactivity Class C and Class 

F coal fly ash as well as admixtures intended to improve the strength and durability of hardened 

mortar. In the absence of chemical activation, these fly ash mortars exhibited a relatively low 28-

day compressive strength in the range of 420–2975 psi, whereas a high-calcium, high-reactivity 

fly ash mortar (CFA3) can develop a compressive strength of 4000 psi at 28-d. The SBR latex 

exhibited a negative impact on the compressive strength of fly ash mortars. Admixing a small 

amount of the montmorillite nanoclay (0.6% by mass of Class C fly ash) significantly improved 

the compressive strength of fly ash mortars. 

The second group of mortar samples was fabricated using the same low-activity Class C 

fly ash along with the following chemical activators: sodium silicate, quicklime, calcium 

chloride, and sodium sulfate. Admixing chemical activators into fly ash mortars led to noticeable 

improvement in their mechanical properties, with a 28-day compressive strength in the range of 

2432–4878 psi. These activators showed a high level of synergetic effects. The highest 28-day 

compressive strength can be achieved by using high levels of water glass, quicklime, and CaCl2, 

but a low level of Na2SO4. In addition, it was found that that the benefit of admixed sodium 

sulfate on compressive strength could be compromised in the presence of quicklime and calcium 

chloride. 

Microscopic examination was conducted to shed light on the hydration behavior of 

selected fly ash mortars, using an electron probe micro-analyzer. Without activation, the fly ash 

spheres were only covered by a submicron-thin layer of hydration products and served mainly as 

micro-aggregates. With chemical activation at room temperature, hydration products covered the 
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fly ash spheres, and some interlacing fibrous structures formed among the spheres. This explains 

the observed difference in the two groups of fly ash mortars and points to a direction for further 

improving the development of such unconventional mortars and concretes. 

The effect of GO on the strength of activated fly ash mortar was also studied. It was 

observed that an increase of 23% in the 28-day compressive strength of fly ash mortar was 

achieved by incorporating 0.03% (by weight of fly ash) GO. A microscopic investigation was 

conducted to obtain more insights on the effects of GO. It was found that the Ca/Si mole ratio of 

the regular fly ash mortar featured a mean value of 0.926 with a standard deviation of 1.281, 

whereas that of GO-modified fly ash mortar presented a higher mean value of 1.384 with a 

standard deviation of 2.111. The increased average bulk Ca/Si ratio, from 0.926 to 1.384, by GO 

indicated that the addition of 0.03% GO could facilitate the leaching of Ca2+ from fly ash 

particles. Meanwhile, since a higher standard deviation of Ca/Si ratio was observed in the GO-

modified fly ash mortar, it is likely that the GO nanosheets dispersed in fly ash paste act as 

growth points to form hydration products with a higher Ca/Si ratio due to GO’s higher surface 

energy and template effect.  

It is concluded that low-reactivity fly ash can be used as a sole binder to form a paste 

with desirable strength by adopting chemical activation and GO modification at room 

temperature. This pure fly ash binder was applied to pervious concrete for further investigation, 

which will be discussed in Chapter 4. 
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CHAPTER 4.0  DEVELOPING PERVIOUS CONCRETE WITH 100% FLY ASH 

4.1 Introduction 

In Chapter 3, mortar with fly ash as a binder was tested for the following reasons (Jin 2002): 

1. In pervious concrete, the binder provides a bond between coarse aggregates and 

provides suitable workability of the concrete. The binder requires properties similar to those of 

mortar, that is, strong overall strength to ensure bonding, stable paste without segregation, 

sufficient setting time, etc. 

2. Mortar contains all the mixing materials of pervious concrete, except that in pervious 

concrete, the fine aggregates are scaled up to the coarse aggregates. Therefore, a mortar test 

reflects the properties of pervious concrete to some extent.  

3. The scale of an experiment for mortar is much smaller than that for pervious concrete. 

Therefore, the variables of a mortar test can be controlled in a laboratory. With mortar tests, the 

design of the experiment can include investigation of many combinations of variables with 

reasonable effort. A small-scale test can be repeated more readily and can provide more accurate 

results.  

4. Based on the literature review, there is agreement among many researchers that 

successful fabrication of mortar should be achieved before concrete application and that an 

understanding of mortar behavior is of importance itself. 

This chapter describes our investigation into the performance of pervious concrete with 

fly ash as a cementitious binder, using the method developed in Chapter 3. Based on the proven 

binding strength and durability of a pure fly ash paste (described in previous chapters), an 

innovative pervious concrete mix design of a pure fly ash binder modified by graphene oxide 
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(GO) was developed with the desired workability and with overall strength and durability. This 

mix design was compared with control groups. Laboratory tests that simulated many years of 

field service were conducted to investigate the durability of pervious concrete; the tests included 

evaluations of salt scaling and freeze–thaw damage. 

4.2 Experimentation 

4.2.1 Materials 

Class F fly ash (CFA) 1, a low-reactivity fly ash described in Chapter 3, was used along 

with activators (water glass, sodium silicate, sodium sulfate, quicklime, calcium chloride) as a 

fly ash binder for a pervious concrete mix design. The GO used in the pervious concrete was 

prepared using the procedures described in Section 3.4. The 0.03% (by weight of binder) GO for 

each mix design was sonicated to stable suspension before being subjected to any applications.  

One type of single-sized coarse aggregate (crushed limestone 3/8-inch in size with 100% 

passing the 1/2-inch sieve and 100% retained on the 3/8-inch sieve) was used. The dry-rodded 

unit weight, specific gravity, and water absorption of this coarse aggregate are listed in Table 

4.1. One commercially available glass powder, recycled from industrial feedstocks, was used as 

a microfiller. The properties of this glass powder are listed in Table 4.2. The main composition 

of the glass powder is amorphous calcium aluminosilicate formed by the fusion of calcia, silica, 

and alumina, with lesser amounts of boron oxide and magnesium oxide. It has been found that 

glass powder, 75µm or less in size, can act as an effective supplementary material, preventing 

alkali-silica reaction (Sukamal Kanta Ghosh et al. 2015). The intent of using glass powder in this 

study was to mitigate the excessive alkalinity of activators in the fly ash binder or the alkali-

silica reaction in the cement binder. A type I/II cement (ASTM C150) was used in the mix 

design of control groups. Cement properties provided by the manufacturer are listed in Table 4.2. 

 



71 

Table 4.1  Properties of aggregate used in the pervious concrete 

Aggregate type Crushed limestone 

Aggregate size 3/8 inch 

Unit wight (lb/ft3) 90.2 

Specific gravity 2.6 

Water absorption 2.5% 

 

Table 4.2  Physical and chemical properties of glass powder and cement 

 Glass powder Cement 

Specific gravity 2.5 3.2 

Bulk density (lb/ft3) 43 76 

d98 top size (µm) 40 -- 

D50 median size (µm) 8–9 -- 

SiO2 (wt.%) 50–55% 21% 

CaO (wt.%) 20–25% 65% 

Al2O3 (wt.%) 14–20% 4% 

Fe2O3 (wt.%) <1% 3.5% 

Na2O+K2O (wt.%) 8–14% <0.9% 

Loss on ignition (wt.%) <0.5% <1.1% 

Tricalcium silicate C3S (wt.%) -- 55% 

Tricalcium aluminate C3A (wt.%) -- 6.2% 

4.2.2 Mix proportions 

Four groups of pervious concrete were designed based on the best performer of fly ash 

mortar in Chapter 3 and the suggested proportion values in Table 2.2. The fly ash binder from 

#23 mortar of DoE 2 was used as a pervious concrete binder. These four groups of pervious 

concrete were designed to investigate the performance of fly ash-based pervious concrete and 

how the addition of GO content influences the void ratio, strength, water permeability, and 

Young's modulus of pervious concrete. The proportions of four mixes are shown in Table 4.3.  
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4.2.3 Specimen fabrication 

The pervious concrete for the four mix designs (see Table 4.3) was prepared in four 

separate batches. Cylinders 4 in. in diameter, 8 in. in height and cylinders 6 in. in diameter, 12 in. 

in height were prepared by using an improved standard concrete mixing procedure, because it 

was found that when the standard concrete mixing procedure was used, pervious concrete 

samples failed at the interface between the cement binder and the aggregate under compression. 

The improved mixing procedure was adopted to improve the bonding between the cement/fly ash 

paste and the aggregate (Vernon R. Schaefer et al. 2006). The coarse aggregate was sieved and 

washed, and then air-dried. The additional amount of water was calculated to reach a saturated 

surface dry (SSD) condition of coarse aggregates. The “butter batch” was mixed in the rotating 

drum before mixing the pervious concrete. Then a small amount of cement/fly ash and GO 

suspension liquid (<5% by mass) was mixed with the aggregate for 1 minute to coat the surface 

of the aggregate. The remaining cement/fly ash, GO suspension liquid, and water with 

admixtures were added to the rotating drum and mixed for 3 minutes. The mixture was allowed 

to rest for 3 minutes, and then was mixed again for additional 2 minutes. Before casting, a 

pervious concrete ball was made with a handful of pervious concrete mix. If the sample was able 

to maintain the ball shape, then the mix was considered acceptable. If the sample of pervious 

concrete mix was too dry or too wet, it would not form a ball.  
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Table 4.3  Pervious concrete material proportions used in this study 

Mix 

Design 

Agg. 

Size 

(inch) 

Agg. 

(kg/m3) 

[a/b] 

Cement 

(kg/m3) 

Fly ash 

CFA1 

(kg/m3) 

Water 

(kg/m3) 

[w/b] 

NaSO4 

(kg/m3) 

CaO 

(kg/m3) 

CaCl2 

(kg/m3) 

Water 

Glass 

(kg/m3) 

GO 

(g/100k

g 

binder) 

TEA 

(ml/100

kg 

binder) 

HRWR 

(ml/100

kg 

binder) 

AE 

(ml/100

kg 

binder) 

Cement 3/8 
1425 

[4.45] 
320 -- 

80 

[0.25] 
-- -- -- -- -- 40 300 30 

Cement 

+ GO 
3/8 

1425 

[4.45] 
320 -- 

80 

[0.25] 
-- -- -- -- 96 40 300 30 

Fly ash 3/8 
1435 

[4.0] 
-- 358 

97 

[0.27] 
3.6 17.9 3.6 25 -- 40 1000 30 

Fly ash 

+ GO 
3/8 

1435 

[4.0] 
-- 358 

97 

[0.27] 
3.6 17.9 3.6 25 108 40 1000 30 

 
* 2% (by weight of cement or fly ash) glass powder used for all mix designs 

* a/b = aggregate-binder-ratio 

* w/b = water-binder-ratio 

* 1 lb/yd3 = 0.5933 kg/m3 

* 1 fl oz/cwt = 65.2 mL/100 kg 
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All 4 in. by 8 in. cylinder specimens were prepared in two layers, with each layer 

compacted by ten blows of a standard 2.5 kg Protocol hammer. The 6 in. by 12 in. cylinders were 

prepared in three layers. The specimens were struck off at the top surface before being covered 

with caps. The specimens were demolded after 24 hours and cured according to ASTM C192. To 

ensure that the pervious concrete cylinders had smooth, parallel, uniform bearing surfaces to the 

applied axial load during compression testing, the cylinders were capped with a sulfur capping 

compound according to ASTM C617 (Figure 4.1). A close-up view of sample surfaces is shown 

in Figure 4.2. 

 

Figure 4.1  Pervious concrete cylinders with capping: 

(left to right) cement, cement + GO, fly ash, fly ash + GO 

 

Figure 4.2  Close-up view of sample surface: 

(left to right) cement, cement + GO, fly ash, fly ash + GO 
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4.3 Tests and Results  

4.3.1 Density and Void Ratio 

ASTM C1754 was used to determine the density of hardened pervious concrete. The 

average length of the specimen was recorded to the nearest 0.25 mm (0.01 in.) by using the jaw 

caliper. The average diameter of the specimen was recorded to the nearest 0.25 mm (0.01 in.) by 

averaging two diameters measured at right angles to each other at about mid-height of the 

specimen. To measure the dry mass, the specimen was first dried in an oven at a temperature of 

38°C for 24 hours. The specimen was removed from the oven to record the mass. Then the 

specimen was put back in the oven for 24 hours before again determining the mass. These two 

steps must be repeated until the difference between any two subsequent mass measures is less 

than 0.5%. The density of the hardened pervious concrete of different mix at 28 days was 

calculated by dividing the dry mass of the sample by it volume. The results are shown in Table 

4.4 and Figure 4.3. 

Table 4.4  Density of hardened pervious concrete at 28 days (unit: Kg/m3) 

 Cement Cement + GO Fly ash Fly ash + GO 

Sample 1 1873.3 1857.5 1926.5 1965.7 

Sample 2 1897.6 1885.3 1896.2 1944.7 

Sample 3 1860.2 1803.2 1885.6 1990.4 

Sample 4 1900.2 1869.4 1912.3 1983.6 

Average 1882.8 1853.9 1905.2 1971.1 
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Figure 4.3  Density of hardened pervious concrete at 28 days 

ASTM C1754 was used to determine the void ratio of hardened pervious concrete. The 

specimen was submerged completely in a water bath for 30 minutes, with water temperature at 

20±3°C. A rubber mallet was used to tap the side of the specimen ten times below the water to 

release the trapped air bubbles inside the pervious concrete. The specimen was rotated after each 

tap so that taps were equally spaced around the circumference of the specimen. The submerged 

mass was recorded to the nearest 0.5 g (0.001 lb). The void ratio of the hardened pervious 

concrete of difference mix at 28 days was calculated according to Equation 2 and is shown in 

Table 4.5 and Figure 4.4. All the samples showed void ratios between 20% and 31%, which are 

within an acceptable range (Montes et al. 2005). The incorporation of GO in the binder resulted 

in a decreased average void ratio of fly ash pervious concrete ranging from 24.9% to 21.2%, 

whereas the average void ratio of Portland cement pervious concrete increased from 27.4% to 

28.9%. 

Void ratio = (1 −
W𝑑−W𝑤

𝜌𝑤V
) × 100%  (2) 

where  Wd = oven dry mass of sample 

 Ww = submerged mass of sample 

 𝜌𝑤 = density of water 

 V = volume of sample 
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Table 4.5  Void ratio of hardened pervious concrete at 28 days 

 Cement Cement + GO Fly ash Fly ash + GO 

Sample 1 27.8% 29.3% 23.2% 21.5% 

Sample 2 26.3% 27.8% 25.9% 22.1% 

Sample 3 28.3% 30.8% 25.5% 20.2% 

Sample 4 27.1% 28.0% 24.8% 21.1% 

Average 27.4% 28.9% 24.9% 21.2% 

 

 

Figure 4.4  Void ratio of hardened pervious concrete at 28 days 

4.3.2 Compressive and split tensile strength test 

The compression test was performed on Day 7 and Day 28 following ASTM C39. Before 

testing, the diameter of each specimen was measured at the top, middle, and bottom of the 

specimen's length. The cross-section area was calculated based on the average diameter. The 

loading rate used was between 24 psi/sec and 40 psi/sec. The compression test was stopped when 

the load started decreasing rapidly, or there was an obvious sign of damage on samples. The 

compressive strength of the hardened pervious concrete from different mix designs is shown in 

Table 4.6 and Figure 4.5. All values in Table 4.6 are the average of three test results. For four 

pervious concrete mixes, the development of compressive strength as a function of time is shown 

in Figure 4.6.  
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Table 4.6  Compressive strength results 

Mix design 7-day fc’ (psi) 28-day fc’ (psi) 

Cement 1363 1822 

Cement+GO 1381 2256 

Fly ash 893 1447 

Fly ash+GO 1457 2220 

 

 

Figure 4.5  Compressive strength test results 

 

 

Figure 4.6  Compressive strength development with time 
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Figure 4.7 shows the relationship between the void ratio and compressive strength. There 

is no overall correlation found between the void ratio and compressive strength, since each mix 

used a different binder system. However, for each binder system, the general trend is that 

compressive strength decreases as the void ratio increases. 

 

Figure 4.7  Relationship between void ratio and 28-day compressive strength 

The addition of 0.03% (by weight of binder) GO improved the average 7-day 

compressive strength of fly ash pervious concrete by 63% (from 893 psi to 1457 psi), but the 

0.03% GO only increased the average 7-day compressive strength of cement pervious concrete 

from 1363 psi to 1381 psi (1%). The average 28-day compressive strength varied from 1447 psi 

to 2256 psi. The incorporation of 0.03% GO in the binder showed that the average 28-day 

compressive strength of fly ash pervious concrete was improved from 1447 psi to 2220 psi (by 

53%), while the average 28-day compressive strength of cement pervious concrete was improved 

from 1822 psi to 2256 psi (by 24%).  

In summary, the addition of 0.03% GO increased both 7-day and 28-day compressive 

strength of fly ash pervious concrete by more than 50%. However, for cement pervious concrete, 

GO only increased the 28-day compressive strength by 24% and had little effect on early 



80 

strength development. Note that all samples produced from the improved mixing procedure 

described in Section 4.2.1 failed through the aggregate after compression tests (see Figure 4.8), 

which eliminated the weak interface zone between the paste and aggregates. 

 

Figure 4.8  Failure surface of samples after compression tests on 7-day: 

cement + GO (left); fly ash + GO (right) 

The split tensile strength test was performed by applying a line load along the cylinder 

length. Since there are no standard test methods for measuring the split tensile strength of 

pervious concrete, ASTM C496 was used. Before testing, the diameter of each specimen was 

measured at the top, middle, and bottom of the specimen length. The cross-section area was 

calculated based on the average diameter. The loading rate for this test was between 100 psi/min 

and 150 psi/min, and the test was stopped when an obvious sign of damage occurred on samples 

(see Figure 4.9). The split tensile strength of hardened pervious concrete was calculated based on 

Equation 3 and is shown in Table 4.7 and Figure 4.10. All values in Table 4.7 are the average of 

three test results.  

Split tensile strength = 2P/πld  (3) 

where  P = maximum applied load 

 l = length 

 d = diameter 

 

gravel failure 
gravel failure 
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Figure 4.9  Failure surface of samples after split tensile strength tests at 7-day: 

cement + GO(left); fly ash + GO(right) 

Table 4.7  Split tensile strength results 

Mix design 7-day ft’ (psi) 28-day ft’ (psi) 

Cement 168.7 240.9 

Cement+GO 180.6 283.1 

Fly ash 125.9 200.5 

Fly ash+GO 181.8 274.2 

 

 

Figure 4.10  Split tensile strength test results 

The addition of 0.03% GO improved the average 7-day split tensile strength of fly ash 

pervious concrete by 44% (from 126 psi to 182 psi); it increased the average 7-day split tensile 
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strength of Portland cement pervious concrete by 7% (from 169 psi to 181 psi). The average 28-

day split tensile strength varied from 200.5 psi to 283.1 psi. The incorporation of 0.03% GO into 

the binder showed that the average 28-day split tensile strength of fly ash pervious concrete was 

improved from 200.5 psi to 274.2 psi (by 37%), while the average 28-day split tensile strength of 

cement pervious concrete was improved from 240.9 psi to 283.1 psi (by 18%). Figure 4.11 

shows the relationship between the 28-day compressive strength and 28-day split tensile strength 

of pervious concrete, which is a linear relationship. The split tensile strength is approximately 

equal to 12% of the compressive strength for all the pervious concrete mixes. 

 

Figure 4.11  Relationship between split tensile strength and compressive strength at 28 days 

4.3.3 Young’s modulus 

Young’s modulus (E) is an important property used for pervious concrete design. At the 

date of compressive strength tests, two samples of each mix design were used to determine the 

Young’s modulus of pervious concrete according to ASTM C 469. A compressometer was used 

to measure the longitudinal strain of samples during the loading (Figure 4.12). The loading rate 

for this test was between 28 psi/sec and 42 psi/sec. The specimen was loaded three times, and the 

data from the first loading were not used. The test was stopped when the load reached 40% of the 

average ultimate load of the specimens from the same mix design. The Young’s modulus of the 
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hardened pervious concrete was calculated based on Equation 4 and is shown in Table 4.8 and 

Figure 4.13. All values in Table 4.8 are the average of two test results. 

E = (S2 – S1)/( ε2 – 0.000050) (4) 

where  S2 = stress corresponding to 40% of ultimate load 

 S1 = stress corresponding to a longitudinal strain of 50 millionths 

 ε2 = longitudinal strain produce by stress S2 

 

 

Figure 4.12  Compressometer setup 

Table 4.8  Young’s modulus (E) of pervious concrete 

Mix design E at 7 days (ksi) E at 28 days (ksi) 

Cement 2450 2450 

Cement+GO 2500 2550 

Fly ash 2900 2950 

Fly ash+GO 2950 3150 
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Figure 4.13  Young’s modulus (E) of pervious concrete 

Based on test results, the fly ash pervious concrete has a higher E of 2950 ksi than that of 

Portland cement pervious concrete (E = 2450 ksi) at 28 days. At 28 days, the incorporation of 

0.03% GO increased the E of the fly ash pervious concrete by 6.8% (from 2950 ksi to 3150 ksi), 

while it increased the E of the Portland cement pervious concrete by 4.1% (from 2450 ksi to 

2550 ksi).  

4.3.4 Infiltration test 

The test method proposed by Flores et al. (2007) was adopted to evaluate the 

permeability of pervious concrete. A 4 in. by 8 in. (10  20 cm) pervious concrete cylinder was 

used in this method. The perimeter surface of cylinder was covered with a waterproof and non-

absorbing material. A plastic cap was attached to the top of the specimen to get a constant 1 cm 

water head at the top surface of the pervious concrete. This test recorded the time that the given 

volume of water needs to flow through the entire specimen. The infiltration rate of the hardened 

pervious concrete was calculated based on Equation 5 and is shown in Table 4.9 and Figure 4.14. 
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Infiltration rate = Q/At  (5) 

where  Q = volume of water for the test 

 A = cross-section area of specimen 

 t = recorded time for water to flow through the entire specimen 

 

Table 4.9  Infiltration rate of hardened pervious concrete at 28 days 

 Cement  

(in./hr) 

Cement + GO 

(in./hr) 

Fly ash 

(in./hr) 

Fly ash + GO 

(in./hr) 

Sample 1 1249 1590 623 729 

Sample 2 1166 1521 583 795 

Sample 3 1093 2082 950 625 

Sample 4 1561 1682 776 515 

Average 1267 1719 733 666 

 

 

Figure 4.14  Infiltration rate of hardened pervious concrete at 28 days 

For all mixes, the infiltration rate ranges from 515 in./hr to 2082 in./hr. Low infiltration 

mixes are those with fly ash as a binder. The Portland cement pervious concrete has a higher 

infiltration rate compared with those of fly ash groups. It is likely that the fly ash pervious 

concrete needs a greater volume of binder, which yields a less void and tortuous structure, to 

achieve similar strength of the cement pervious concrete. While GO reduced the infiltration rate 

of the fly ash pervious concrete, it significantly improved the infiltration rate of the Portland 
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cement pervious concrete. Further investigation is needed to understand the effects of GO on the 

void ratio and permeability of pervious concrete. 

Previous studies (Vernon R. Schaefer et al. 2006; Joung 2008) found that the infiltration 

rate was highly correlated to the void ratio. Figure 4.15 shows the relationship between the void 

ratio and the infiltration rate for all the pervious concrete samples in this study, where the 

infiltration rate increased exponentially as a function of void ratio. 

 

Figure 4.15  Relationship between void ratio and infiltration rate of the pervious concrete 

4.3.5 Freeze-deicer salt scaling resistance test 

Sixteen pervious concrete specimens in 4 in. by 4 in. cylinders were tested at 28 days, 

and labeled as four groups: C (cement), Cg (cement + GO), F (fly ash), and Fg (fly ash + GO). 

Each group has four cylinder samples (Figure 4.16). The test was conducted at the cold lab at 

Montana State University. The pervious concrete cylinders were immersed in a plastic container 

containing 3% NaCl solution for 24 hours. The concrete cylinders were then surface-dried with 

paper towels and weighed. Next, all the cylinders were placed in a closed container and 

transferred with solution into the freezer at -20 ± 1°C for 24 hours. After this freezing stage, the 

specimens (along with the plastic box) were placed in the laboratory environment at 23 ± 2°C 
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and with a RH ranging from 45–55% for 12 hours. Once the ice in the plastic container was 

completely thawed, the cylinders were transferred onto a wood plate and dried for 12 hours, at 

which time each of the specimens was weighed and its mass recorded. This freeze/thaw and 

wet/dry cycle was repeated 15 times. After drying at 3, 7, 10, 13, and 15 cycles, the mass change 

of each concrete cylinder was tested. Note that a sufficiently low temperature (-20° C) and 

sufficient amount of time (24 h) are crucial to ensure complete freezing of the concrete pore 

solution. By design, this test protocol simulated salt scaling of the field concrete in an 

accelerated manner. For concrete structures in the field environment, often the number of their 

freeze/thaw cycles is estimated from the number of times the ambient air temperature crosses the 

0°C threshold (divided by two). This method tends to substantially overestimate the actual 

number of freeze/thaw cycles that occurred inside the concrete, especially when the presence of 

deicer solution significantly reduces the freezing point of the pore solution. 

 

Figure 4.16  Pervious concrete samples before freeze-deicer salt scaling test 

The test results are presented in Figure 4.17 and Table 4.10. The freezing rate at the 

sample core was also recorded (Figure 4.18). After the third cycle, the cement pervious concrete 

had a weight loss of 2.06% and 5.35%, whereas the fly ash pervious concrete had a weight loss 

of approximately 15% (Figure 4.19). The initial weight loss of fly ash pervious concrete was 

much higher, because there was still a certain amount of the unhydrated fly ash binder at 28 
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days. Due to slow hydration progress, fly ash pervious concrete typically performs more strongly 

at later ages. The incorporation of GO increased the salt scaling resistance for all groups. 

Although ordinary fly ash pervious concrete did not show better salt scaling resistance than other 

groups, it is noteworthy that the GO-modified fly ash pervious concrete was the only group that 

survived after the fifth cycle with 57% weight loss, which indicated that GO-modified hydration 

products from the fly ash had better salt scaling resistance than the conventional cement 

hydrates. 
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Figure 4.17  Weight loss during freeze-deicer salt scaling test 

 

 

Figure 4.18  Freezing rate of pervious concrete immersed in 3% NaCl 
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Table 4.10  Freeze-deicer salt scaling test results 

Note:  

1. Unit of weight is grams 

2. * Disintegrated  

3. By the end of the 6th cycle all the samples are completely disintegrated 

Sample 
Dry weight 

- Initial 

Wet 

weight 
Increase in weight 

3rd cycle 

(after 

dry) 

Loss of weight compared to 

Initial weight 

5th cycle 

(after 

dry) 

Loss of weight compared to 

Initial weight 

6th cycle 

(after dry) 

Loss of 

weight 

compared to 

Initial weight 

4x4 Cyl. 2902 3008 3.65% 3.65% * 100% 100% * -100% -100.00% * 100.00% 

c-1 1569 1586 1.08% 

1.57% 

1400 10.77% 

-5.35% 

* -100% 

-100% 

* 

-100% 
c-2 1484 1512 1.89% 1401 5.59% * -100% * 

c-3 1399 1428 2.07% 1350 3.50% * -100% * 

c-4 1438 1456 1.25% 1416 1.53% * -100% * 

Cg -1 1587 1618 1.95% 

1.90% 

1561 1.64% 

-2.06% 

* -100% 

-100% 

* 

-100% 
Cg -2 1464 1492 1.91% 1439 1.71% * -100% * 

Cg -3 1454 1486 2.20% 1414 2.75% * -100% * 

Cg -4 1492 1515 1.54% 1460 2.14% * -100% * 

F-1 1379 1415 2.61% 

2.26% 

1251 9.28% 

-15.80% 

* -100% 

-100% 

* 

-100% 
F-2 1478 1509 2.10% 1250 15.43% * -100% * 

F-3 1491 1528 2.48% 1195 19.85% * -100% * 

F-4 1399 1425 1.86% 1138 18.66% * -100% * 

Fg-1 1623 1655 1.97% 

1.87% 

1584 2.40% 

-15.17% 

824 -49.23% 

-57% 

* 

-100% 
Fg-2 1570 1601 1.97% 1011 35.61% 460 -70.70% * 

Fg-3 1560 1588 1.79% 1442 7.56% 654 -58.08% * 

Fg-4 1557 1584 1.73% 1322 15.09% 753 -51.64% * 
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Figure 4.19  Pervious concrete samples after the third cycle during freeze-deicer salt scaling test 

(top to bottom) cement, cement + GO, fly ash, fly ash + GO 
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4.3.6 Degradation resistance test 

At 90 days, three samples of each mix design were used to determine the degradation 

resistance of pervious concrete according to ASTM C1747. A Los Angeles abrasion machine 

was used for this test. The weight loss during the test was calculated to characterize the 

degradation resistance of each mix design. The GO-modified fly ash pervious concrete samples 

before and after the test are shown in Figure 4.20 The test results for all samples are shown in 

Figure 4.21.  

 

 
 (a) (b) 

Figure 4.20  Samples before and after degradation test. (a) before test; (b)after test 

 

 
Figure 4.21  Degradation test results 

The weight loss values for all samples were within the range of 38% to 72% at 90days. A 

similar test performed on the cement pervious concrete had weight loss between 35% to 80% 
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(Qiao Dong et al. 2013). After the test, the fly ash pervious concrete had the highest weight loss 

of 66%. However, the incorporation of GO decreased the weight loss of fly ash pervious 

concrete significantly (from 66% to 44%). The GO-modified cement pervious concrete showed 

similar weight loss (44%) as the cement samples (45%). This test indicated that the GO-modified 

fly ash pervious concrete had comparable degradation resistance to the cement pervious concrete 

at later age. It is recommended that the durability test for fly ash concrete be performed at later 

ages due to its later strength development.  

4.4 Summary and Conclusions 

With proven binding strength and durability of a pure fly ash paste, as described in the 

previous chapter, an innovative pervious concrete mix design of a pure fly ash binder modified 

by graphene oxide (GO) was developed. All hardened pervious concrete samples exhibited a 

density ranging from 1803 Kg/m3 to 1990 Kg/m3, but fly ash pervious concrete typically had a 

higher density than the cement pervious concrete. All the samples had values of void ratio 

between 20% and 31%. By incorporating GO into the binder, the average void ratio of fly ash 

pervious concrete was reduced from 24.9% to 21.2%, whereas the average void ratio of Portland 

cement pervious concrete was increased from 27.4% to 28.9%. 

The average 28-day fc’ for fly ash pervious concrete was1447 psi, and 2256 psi for GO-

modified fly ash pervious concrete. The addition of 0.03% GO (by weight of binder) increased 

both 7-day and 28-day fc’ of fly ash pervious concrete by more than 50%, while for Portland 

cement pervious concrete, the 0.03% GO increased the 28-day fc’ by 24% and had little effect on 

early strength development. 
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It is noted that all samples produced from the improved mixing procedure described in 

Section 4.2.1 failed through the aggregate after compression tests (see Figure 4.8), which 

eliminated the weak interface zone between the paste and aggregates. 

The average 28-day ft’ for the fly ash pervious concrete was 200 psi, and 274 psi for GO-

modified fly ash pervious concrete. The incorporation of 0.03% GO (by weight of binder) into 

the binder showed that the average 28-day ft’ of fly ash pervious concrete was improved from 

200.5 psi to 274.2 psi (by 37%), while the average 28-day ft’ of cement pervious concrete was 

improved from 240.9 psi to 283.1 psi (by 18%). The split tensile strength was approximately 

equal to 12% of the compressive strength for all the pervious concrete mixes at 28 days. 

The fly ash pervious concrete had a higher E of 2950 ksi than that of Portland cement 

pervious concrete (E = 2450 ksi) at 28 days. At 28 days, the incorporation of 0.03% GO 

increased the E of the fly ash pervious concrete by 6.8%, while it increased the E of the Portland 

cement pervious concrete by 4.1%. 

For all mixes, the measured infiltration rate ranged from 515 in./hr to 2082 in./hr. 

Portland cement pervious concrete had a higher infiltration rate than fly ash groups. While the 

GO reduced the infiltration rate of the fly ash pervious concrete, it significantly improved the 

infiltration rate of the Portland cement pervious concrete. The infiltration rate was found to 

increase exponentially as a function of void ratio. 

The freeze-deicer salt scaling resistance test was conducted at 28 days; the initial weight 

loss of fly ash pervious concrete was much higher than that of cement pervious concrete due to 

the slow hydration of fly ashes. The incorporation of GO increased the salt scaling resistance for 

all groups, but the improvement for the cement pervious concrete was marginal. The GO-

modified fly ash pervious concrete was the only group that survived after the fifth cycle with 
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57% weight loss, which indicated that GO-modified hydration products from the fly ash had a 

better salt scaling resistance than the conventional cement hydrates. 

At 90 days, the degradation resistance of pervious concrete was tested according to 

ASTM C1747. The results indicated that the GO-modified fly ash pervious concrete had a 

comparable degradation resistance to the cement pervious concrete at later age. The 

incorporation of GO decreased the weight loss of fly ash pervious concrete significantly (from 

66% to 44%) during the degradation test. It is recommended that the durability test for fly ash 

concrete be performed at later ages due to its later strength development.  

It is concluded that the GO-modified fly ash pervious concrete developed in this study is 

comparable to ordinary cement pervious concrete, with the desirable density, void ratio, strength, 

infiltration rate, and degradation resistance. However, the freeze-deicer salt scaling resistance of 

fly ash pervious concrete is not as good as ordinary cement pervious concrete due to its high 

initial loss. Further investigation is needed to improve its hydration degree at early ages. 
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CHAPTER 5.0  CONCLUSION 

5.1 Summary 

The laboratory study reported here explores the beneficial use of coal fly ash as 

cementitious binder without heat activation. Based on the literature review, high-calcium fly ash 

shows the potential of being a sole binder in making moderate strength concrete such as pervious 

concrete. The study began with a small-scale mortar test. A uniform design scheme was 

employed for the statistical design of experiments. Predictive models were developed later based 

on the experimental data to quantify the influence of mix design parameters on the compressive 

strength of fly ash mortars at various ages. The models were verified and then employed for 

predictions. 

The first group of mortar samples was fabricated using a low-reactivity, high-calcium fly 

ash and a low-calcium fly ash, as well as admixtures intended to improve the strength and 

durability of hardened mortar. In the absence of chemical activation, these fly ash mortars 

exhibited a relatively low 28-day compressive strength in the range of 420–2975 psi, whereas a 

high-calcium, high-reactivity fly ash mortar developed a 28-day compressive strength of 4000 

psi at 28 days. The styrene–butadiene rubber (SBR) latex exhibited a negative impact on the 

compressive strength of fly ash mortars. Admixing a small amount of montmorillite nanoclay 

(0.6% by mass of Class C fly ash) significantly improved the compressive strength of fly ash 

mortars. 

The second group of mortar samples was fabricated using the same low-activity, high-

calcium fly ash along with the following chemical activators: sodium silicate, quicklime, calcium 

chloride, and sodium sulfate. Admixing chemical activators with fly ash mortars led to a 
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noticeable improvement in the mechanical properties of the fly ash, with a 28-day compressive 

strength in the range of 2432–4878 psi. These activators also showed a high level of synergetic 

effects.  

Microscopic examination was conducted to shed light on the hydration behavior of 

selected fly ash mortars. Without activation, the fly ash spheres were only covered by a 

submicron-thin layer of hydration products and served mainly as micro-aggregates. With 

chemical activation at room temperature, fly ash spheres dissolved, and some interlacing fibrous 

structures formed among the spheres, which contributed to strength improvement of the mortars. 

This explains the observed difference in the two groups of fly ash mortars and points to a 

direction for further improving the development of such unconventional mortars and concretes. 

The effect of graphene oxide (GO) on the strength of activated fly ash mortar was also 

studied. It is observed that an increase of 23% in the 28-day compressive strength of fly ash 

mortar was achieved by incorporating 0.03% (by weight of fly ash) GO. A microscopic 

investigation was also conducted to obtain more insights on the effects of GO. It was found that 

the Ca/Si mole ratio of the regular fly ash mortar featured a mean value of 0.926 with a standard 

deviation of 1.281, whereas that of GO-modified fly ash mortar had a higher mean value of 

1.384 with a standard deviation of 2.111. The increased average bulk Ca/Si ratio, from 0.926 to 

1.384, by GO indicated that the addition of 0.03% GO could facilitate the leaching of Ca2+ from 

fly ash particles. Meanwhile, since a higher standard deviation of the Ca/Si ratio was observed in 

the GO-modified fly ash mortar, it is likely that the GO nanosheets dispersed in fly ash paste act 

as growth points to form hydration products with a higher Ca/Si ratio due to their higher surface 

energy and template effect. 
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With the proven binding strength and durability of a pure fly ash paste, an innovative 

pervious concrete mix design of pure fly ash binder modified by GO was developed. All 

hardened pervious concrete samples from different mix designs had a density that ranged from 

1803 Kg/m3 to 1990 Kg/m3 with a void ratio between 20% and 31%.  

The average 28-day fc’ for fly ash pervious concrete was 1447 psi, and 2256 psi for GO-

modified fly ash pervious concrete. The average 28-day ft’ for fly ash pervious concrete was 200 

psi, and 274 psi for GO-modified fly ash pervious concrete. It was found that split tensile 

strength was equal to 12% of compressive strength for all pervious concrete mixes at 28 days. 

Young’s modulus was measured. Fly ash pervious concrete had a higher E of 2950 ksi than that 

of Portland cement pervious concrete (E = 2450 ksi) at 28 days. The incorporation of 0.03% GO 

increased the E of the fly ash pervious concrete by 6.8%. While the incorporation of 0.03% GO 

increased the overall mechanic performance of fly ash pervious concrete, it reduced the 

infiltration rate of fly ash pervious concrete. 

As part of the durability tests, the freeze-deicer salt scaling resistance test was conducted 

at 28 days. The results showed that the initial weight loss of fly ash pervious concrete was much 

higher than that of cement pervious concrete due to the slow hydration of fly ash, but the 

complete hydration products of GO-modified fly ash pervious concrete showed the best salt 

scaling resistance among all samples. The incorporation of GO increased the salt scaling 

resistance for all groups. Since the salt scaling test suggested that durability tests for fly ash 

concrete should be performed at later ages due to its later strength development, the degradation 

resistance of pervious concrete was tested according to ASTM C1747 at 90 days. The results 

indicated that GO-modified fly ash pervious concrete had comparable degradation resistance to 
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cement pervious concrete at a later age. The incorporation of GO decreased the weight loss of fly 

ash pervious concrete significantly (from 66% to 44%) during the degradation test.  

It is concluded from the laboratory study that GO-modified fly ash pervious concrete is 

comparable to ordinary cement pervious concrete with the desirable density, void ratio, strength, 

infiltration rate, and degradation resistance. However, the freeze-deicer salt scaling resistance of 

fly ash pervious concrete is not as good as ordinary cement pervious concrete due to its high 

initial loss. Further investigation is needed to improve its hydration degree at early ages.  

This study demonstrated an example of beneficial use of fly ash, which not only diverts 

fly ash from the waste stream to a building material application, but also shows the potential of 

fly ash for reducing the CO2 footprint of the concrete industry by replacing Portland cement. 

5.2 Findings 

In addition to being categorized as Class C and Class F, fly ash can be divided into high-

calcium fly ash (CaO content > 10%) and low-calcium fly ash (CaO content < 10%), based on 

CaO content difference. The reactivity of fly ash is determined by the content of CaO, Al2O3, 

and SiO2. As defined in Table 3.2, fly ash can be categorized into high-reactivity, low-reactivity, 

and inert groups.  

High-calcium, high-reactivity fly ash is cementitious in nature. High-calcium, low-

reactivity fly ash is both pozzolanic and cementitious in nature, which requires activation for 

complete hydration. Low-calcium fly ash is generally pozzolanic.  

In order to activate the high-calcium, low-reactivity fly ash used in this study, sodium 

silicate, quicklime, calcium chloride, and sodium sulfate were chosen as chemical activators. 

Admixing chemical activators into fly ash mortars led to a noticeable improvement in their 
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mechanical properties and durability. These activators also showed a high level of synergetic 

effects. 

Graphene oxide improved the overall performance of pervious concrete significantly by 

regulating hydration, providing a crack branching and bridging mechanism, and acting as 

nanofillers. 

Normally, the hydration degree for fly ash binder is relatively low at early ages. 

However, the GO-modified hydration products of fly ash showed better freeze-deicer salt scaling 

resistance than cement hydrates during the salt scaling test. The degradation test performed at 

later ages showed that GO can decrease the weight loss of fly ash pervious concrete significantly. 

It was noted that samples produced from the improved mixing procedure, described in 

Section 4.2.3, failed through the aggregate after compression tests (see Figure 4.8), which 

eliminated the weak interface zone between the paste and aggregates. 

5.3 Recommendations 

In Phase I of this project, many of the results suggested the potential of fly ash in its 

application to pervious concrete. Some areas still need study and evaluation in Phase II. 

 Water treatment tests should be conducted to evaluate the effectiveness of the filtration 

function provided by fly ash pervious concrete. These tests can also address the concerns 

about heavy metal leaching from fly ash itself, which can cause water contamination. 

 The performance of fly ash at early ages must be improved. Due to slow hydration, fly 

ash concrete typically shows better performance at later ages. To address this issue, some 

mechanical or chemical techniques, such as reinforcing fibers and better activators, are 

needed to improve early strength. 

 More studies are needed to characterize fly ash hydration products with GO. Some 



101 

advanced tools can be used to determine chemical compositions, mineralogy, and degree 

of polymerization of hydrates, such as NMR, FI-IR, XRD, and XRF.  

 The abrasion resistance of pervious concrete needs to be improved at early ages, which is 

a concern at locations where there is significant turning traffic, snow plows, and studded 

tire application. 

 Since fly ash binder is fundamentally different from cement binder, some other 

environmental benefits from fly ash pervious concrete, such as heat-island effects and 

acoustic absorption effects, need evaluation. 

Pervious concrete is a green concrete, which has many environmental benefits. Using fly 

ash from industrial waste in pervious concrete is an added environmental benefit. The successful 

development of fly ash pervious concrete provides a template to incorporate even more waste to 

reduce the need for consuming natural resources in building materials. Various types of recycled 

materials can be incorporated into this kind of pervious concrete in the future. 
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